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Introduction
Surgery, with or without neoadjuvant chemotherapy (nCT) or 
neoadjuvant chemoradiotherapy (nCRT), is the definitive treatment 
for patients with oesophageal adenocarcinoma (OAC)1,2. 
Multimodal treatment results in long-term changes to quality of 
life, raising interest in the possibility of omitting surgery for 
patients who achieve a cCR to neoadjuvant therapy3. It is not 
known whether it is safe to omit surgery, or the best ways of 
defining a cCR4.

This question is being addressed in several studies, including 
the SANO trial, in which bite-on-bite biopsies taken 6 and 12 
weeks after completion of nCRT are being used to guide 
treatment decision-making. The preliminary results suggest 
non-inferiority of active surveillance, although questions remain 
about the decision to delay surgery in patients with a cCR, 
especially given the high incidence of distant cancer recurrence 
in the surveillance arm, and the validity of the tissue sampling 
method used to detect viable residual disease5.

The present study assessed whether residual cancer could 
be detected in the scar tissue at the primary site of OAC 
that had a pCR to neoadjuvant therapy. Conventional 
pathological approaches were supplemented with expanded 
immunohistochemistry, bulk RNA and proteomics assessment, 
and single-cell RNA (scRNA) sequencing.

Methods
Resection and biopsy specimens were sampled directly in the 
operating theatre using an 8-mm punch biopsy, with normal 
oesophageal tissue being taken from the proximal resection 
margin. Pathological staging was performed in accordance with 
AJCC guidelines, and tumour regression classified according to the 
Mandard tumour regression grade (TRG)6. Proteomic and bulk RNA 
sequencing was performed on snap-frozen tissue samples, and 

scRNA sequencing was completed on disaggregated fresh samples 
using the DropSeq technique, as described previously7–10. Full 
methods are detailed in the supplementary material.

Results
Conventional pathology and bulk sequencing 
failed to identify residual cancer cells
A cohort (cohort 1) of five patients undergoing oesophagectomy 
was selected, two of whom were treatment-naive, two had 
progressive disease following nCT, and one achieved a pCR (TRG1 
in the primary tumour with no viable tumour on inspection of 
the tumour bed and resected lymph nodes) to nCT after routine 
pathological assessment (surgery 4–6 weeks after nCT).

Representative tissue from the tumour bed demonstrating a 
pCR, along with diagnostic pretreatment biopsies underwent 
additional staining for p53, KRT8/18, and EPCAM, to further 
assess for cancer cells. No evidence of cancer could be found in 
the resection specimen (Fig. 1a).

Bulk RNA profiling was undertaken, including the scar at the site 
of tumour regression in the TRG1 sample. CK8 (KRT8), CK18 
(KRT18), and EPCAM were expressed differentially (upregulated) 
in TRG5 tumours, but undetectable in the regressed lesion (Fig. 1b).

Global shotgun proteomic profiling was completed on all samples, 
resulting in profiling of 10 657 proteins (peptide false discovery rate 
less than 0.05), with progressing tumours demonstrating a distinct 
profile compared with normal tissue, whereas the TRG1 samples 
aligned closely with normal tissue (Fig. 1c).

Single-cell RNA sequencing
The cellular landscape of OAC was determined using scRNA 
sequencing (26 patients, including 28 tumour and 16 normal 
tissue samples)10. After data quality control, a total of 42 388 
cells were available for assessment. These were classified into 

BJS, 2024, znae103 

https://doi.org/10.1093/bjs/znae103

Short Report

D
ow

nloaded from
 https://academ

ic.oup.com
/bjs/article/111/4/znae103/7648796 by Southam

pton U
niversity user on 24 April 2024

https://orcid.org/0000-0003-2101-1318
https://orcid.org/0000-0003-4100-385X
https://orcid.org/0000-0001-9455-2188
mailto:tju@soton.ac.uk
https://twitter.com/timthesurgeon
http://academic.oup.com/bjs/article-lookup/doi/10.1093/bjs/znae103#supplementary-data
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


10 cell lineages based on canonical marker gene expression and a 
priori knowledge (Fig. S1a–c). To confirm the identity of the 4452 
malignant cells identified from tumours by their expression of 
OAC-associated genes (EPCAM, AGR2, CEACAM6, KRT8, KRT18, 
and KRT19), acquired copy number alterations were characterised 
using InferCNV. Reclustering of these malignant cells revealed 27 

distinct clusters, which (over 75% cells per cluster) grouped based 
on the patient of origin10 (Fig. S1d,e).

The scRNA sequencing data from the patients in cohort 1 
revealed two broad lineages for the cancer cells, one dominated 
by the expression of SPINK4 and CD24 composed mostly of 
cancer cells from a single patient, and the other containing cells 
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Fig. 1 Assessment of cohort 1 using immunohistochemistry, bulk RNA sequencing, and shotgun proteomics together with analysis of Dropseq data 
that revealed a population of 12 cancer cells originating from the patient with a pCR to neoadjuvant chemotherapy 

a Haematoxylin and esoin (H&E) staining showing poorly differentiated adenocarcinoma in the biopsy sample but absence of cancer cells in the resection specimen. 
TP53 antibody stained the nuclei of cancer cells in the biopsy, and cytokeratin 8/18 and EPCAM antibodies highlighted the cancer cells in the biopsy. These cells were 
absent from the resection specimen. b Volcano plots from differential gene expression analysis of bulk RNA sequencing data between tumour and normal tissue in 
(left) responders and (right) non-responders. c Principal component analysis of proteomic data between tumour and matched normal samples. The tumour samples 
with no response (tumour regression grade (TRG) 5) or no exposure (naive) to neoadjuvant therapy demonstrated heterogeneity, whereas the normal oesophageal 
tissue samples formed a tight cluster alongside the tumour sample from the complete responder (TRG1). d Uniform manifold approximation and projection for 
dimension reduction (UMAP) projection single-cell RNA sequencing data highlighting cell types from five patients’ samples (cohort 1). e Isolation of cancer cell 
cluster showing cancer cells captured from a TRG1 complete responder to chemotherapy. f InferCNV scoring displaying the chromosomal abnormalities of the 
cancer cells including cells isolated from patients with TRG1. The increased score from 0 (normal) demonstrated a greater CNV in the cancer cells in relation to 
the normal cell populations indicative of malignancy. Median values (bold line) i.q.r. (box), and range (error bars) with outliers (dots) are shown. g Expression of 
cancer cell markers EPCAM and KRT8 and the oncogenic genes MUC5AC, ANXA10, and CLDN18 in the cancer cells of each sample (in TRG groups). h Module 
score assigned with the expression of ALDH1A1, SOX9, ITGA6, SOX2, EZH2, and ALDH2. i Module score of the expression of ALDH1A1, ALCAM, CD24, CD44, 
PROM1, LGR5, EPCAM, MYC, MSI1, NANOG, DPP4, FUT4, ITGB1, BMI1, SALL4, KLF4, SOX2, and OCT4 showing enrichment of expression in post-treatment samples 
from TRG1 compared with treatment-naive or non-responders (TRG5). *P < 0.050, †P < 0.001 (Wilcox test).
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Fig. 2 Analysis of dropseq data revealing a population of cancer cells originating from the patient with a pCR to neoadjuvant chemoradiotherapy 

a Uniform manifold approximation and projection for dimension reduction (UMAP) displaying cell types identified in second cohort. b,c UMAP plots demonstrating 
the isolation and reclustering of cancer cells. This led to the identification of five subpopulations. Notably, cluster 4 was predominantly composed of tumour 
regression grade (TRG) 1 residual cancer cells and clustered separately from cancer cells from the same patient before treatment. Pre- and post-treatment 
cancer cells from the patient with a TRG4 response also clustered distinctly. d Differentially expressed genes between each cancer cell subpopulation; cluster 4 
was marked with raised expression of CLDN18. e module score assigned with the expression of ALDH1A1, SOX9, ITGA6, SOX2, EZH2, and ALDH2 showing 
enrichment of expression in post-treatment samples from TRG1 compared with treatment naive or non-responders (TRG4). f Module score of expression of 
ALDH1A1, ALCAM, CD24, CD44, PROM1, LGR5, EPCAM, MYC, MSI1, NANOG, DPP4, FUT4, ITGB1, BMI1, SALL4, KLF4, SOX2, and OCT4. *P < 0.001 (Wilcox test).
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from several patients and dominated by expression of SLPI, KRT18, 
and KRT7 (Fig. 1d). Within this second cluster were 456 cancer 
cells, including 12 cells from the scar site of the patient treated 
with chemotherapy who achieved a pCR (Fig. 1e). These 12 cells 
expressed EPCAM and KRT8, as well as MUC5AC, a marker of 
Barrett’s oesophagus, and ANXA10, which promotes growth in 
oesophageal squamous cell carcinomas11 (Fig. 1g).

Identification by scRNA sequencing of residual cancer cells not 
observed by bulk approaches or current clinical gold standard 
histopathological assessment could represent the detection of a 
rare but clinically significant population. This observation in a 
single patient, who had received nCT as opposed to nCRT, which 
is favoured by trials in organ-sparing approaches, prompted 
further investigation in a second cohort (cohort 2).

Matched pre–post-treatment sample assessment
Paired samples from three patients were included in cohort 2 for 
assessment. This included two patients treated with nCRT, one 
of whom experienced a pCR (TRG1 in the primary tumour) and 
one with progressive disease (TRG4) (surgery 8–10 weeks after 
nCRT). The third patient elected not to receive neoadjuvant 
treatment, but had tissue taken for scRNA sequencing at the 
time of diagnosis and then later at definitive surgery.

In total, 6410 high-quality cells clustered into the same broad 
cell lineages as described previously (Fig. 2a). The cancer cells 
from cohort 2 were reclustered into five populations, which 
included a population of 45 cancer cells identified from the scar 
of the patient with a pCR after nCRT (Fig. 2b,c). These cancer 
cells had survived nCRT and clustered independently (Fig. 2c, 
cluster 4) of the pretreatment cancer cells from the same 
patient. They were marked by increased expression of claudin 
18 along with other markers of a cancer stem cell phenotype 
(Fig. 2d).

Residual cells expressed cancer stem cell markers
Genes expressed differentially between residual cancer cells and 
matched pretreatment biopsy specimens from the patient with 
a pCR (TRG1) treated with nCRT included the known cancer 
stem cell markers SOX2 and ALDH1A112,13. To interrogate 
the potential that these rare residual cancer cells represented 
OAC cancer stem-like cells, a 6-gene panel of cancer stem cell 
markers from the differentially expressed gene list was 
generated and used alongside a recently published 13-gene 
panel of cancer stem cell markers14. Both gene sets were 
significantly enriched in the two TRG1 post-treatment samples, 
but not the treatment-naive or TRG4 samples (Figs 1h,i and 2e,f).

Discussion
Using scRNA sequencing, rare populations of residual cancer cells 
within the scar tissue of primary tumours labelled as showing a 
pCR after neoadjuvant treatment were identified. That these 
cancer cell populations were not detectable by routine 
approaches, expanded immunohistochemistry, bulk RNA and 
proteomic assessment, points to their rarity, although their 
significance is unknown. This is pertinent given the current 
interest in organ-sparing approaches in OAC. Clinical trials in 
this space have used routine immunohistochemistry of 
bite-on-bite biopsies taken at endoscopy, which may lack the 
tissue coverage and resolution needed to identify residual 
cancer, bringing into question the safety of this management 
approach.

These residual cancer cells exhibit a strong cancer stem cell 
phenotype, which might explain their inherent resistance to 
neoadjuvant therapy. These cells demonstrate upregulation of 
CLDN18; claudin proteins have an emerging role in regulation of 
cancer stem cell populations, and isoform CLDN18.2 is subject 
to ongoing investigation as a therapeutic target. Results from 
ongoing phase III studies are encouraging15 and it looks likely 
that CLDN-targeted therapeutics will soon become part of 
the treatment algorithm for advanced oesophageal cancer. Such 
observations could lead to attractive future adjuvant 
therapeutic approaches in the curative setting too.
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