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The transition to synchronization of
networked systems

AtiyehBayani 1, FahimehNazarimehr 1, Sajad Jafari 1,2 , Kirill Kovalenko 3,
Gonzalo Contreras-Aso 4, Karin Alfaro-Bittner 4 ,
Rubén J. Sánchez-García 5,6,7 & Stefano Boccaletti 8,9,10

We study the synchronization properties of a generic networked dynamical
system, and show that, under a suitable approximation, the transition to
synchronization can be predicted with the only help of eigenvalues and
eigenvectors of the graph Laplacian matrix. The transition comes out to be
made of a well defined sequence of events, each of which corresponds to a
specific clustered state. The network’s nodes involved in each of the clusters
can be identified, and the value of the coupling strength at which the events
are taking place can be approximately ascertained. Finally, we present large-
scale simulations which show the accuracy of the approximationmade, and of
our predictions in describing the synchronization transition of both synthetic
and real-world large size networks, and we even report that the observed
sequence of clusters is preserved in heterogeneous networks made of slightly
non-identical systems.

From brain dynamics and neuronal firing, to power grids or financial
markets, synchronization of networked units is the collective behavior
characterizing the normal functioning of most natural and man-made
systems1–7. As a control parameter (typically the coupling strength in
each link of the network) increases, a transition occurs between a fully
disordered and gaseous-like phase (where the units evolve in a totally
incoherent manner) to an ordered or solid-like phase (in which,
instead, all units follow the same trajectory in time).

The transition between such twophases canbediscontinuous and
irreversible, or smooth, continuous, and reversible. The first case is
known as Explosive Synchronization8, which has been described in
various circumstances9–13, and which refers to an abrupt onset of syn-
chronization following an infinitesimally small change in the control
parameter, with hysteresis loops that may be observed as in a ther-
modynamic first-order phase transition. The second case is the most
commonly observed one, and corresponds instead to a second-order

phase transition, resulting in intermediate states emerging in between
the two phases. Namely, the path to synchrony14 is here characterized
by a sequence of events where structured states emerge made of dif-
ferent functional modules (or clusters), each one evolving in unison.
This is known as cluster synchronization (CS)15–17, and a lot of studies
pointed out that the structural properties of the graph are responsible
for the way nodes clusterize during CS18–21. In particular, it was argued
that the clusters formed during the transition are to be connected to
the symmetry orbits and/or to the equitable partitions of the graph19,22.
Precisely, partitions of the network’s nodes into orbits (for the whole,
or a subgroup, of the automorphism group of the graph) or, more
generally, equitable partitions, have been identified as potential clus-
ters that can synchronize before the setting of complete synchroni-
zation in the network23,24. The fact that a given graph partition can
sustain cluster synchronization of its cells is different, however, from
the problem faced in our study i.e., that of determining whether it will
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indeed be realized for some range of the coupling strength parameter
and, more importantly, in which order do clusters synchronize during
the transition between the two main phases (i.e., as the coupling
strength increases from zero).

On the other hand, clusters due to symmetries are found rather
ubiquitously, as most of real-world networks have a large number of
localized symmetries, that is, a large number of small subgraphs called
symmetric motifs25,26, where independent (formally, support-disjoint)
symmetries are generated, with each symmetric motif made of one or
more orbits. For instance, ref. 26 analyzes several real-world networks
and, in all cases, gives evidence of a large number of symmetricmotifs:
from 149motifs in the protein-protein interaction network of the yeast
(a network of 1647 nodes) to over 245,000 motifs in the LiveJournal
social network (more than 5 million nodes). More evidence of sym-
metries in real-world networks can be found in refs. 27–29.

In our work we assume that, during the transition, the synchro-
nous solution of each cluster does not differ substantially from that of
the entire network and, under such an approximation, we elaborate a
practical technique which is able to elucidate the transition to syn-
chronization in a generic network of identical systems. Namely, we
introduce a (simple, effective, and limited in computational demand)
method which is able to: (i) predict the entire sequence of events that
are takingplaceduring the transition, (ii) identify exactlywhichgraph’s
node is belonging to each of the emergent clusters, and (iii) provide a
well approximated calculationof the critical coupling strength value at
which each of such clusters is observed to synchronize. We also
demonstrate that, under the assumed approximation, the sequence of
events is in fact universal, in that it is independent on the specific
dynamical system operating in each network’s node and depends,
instead, only on the graph’s structure. Our study, moreover, allows to
clarify that the emerging clusters are those groups of nodes which are
indistinguishable at the eyes of any other network’s vertex. Thismeans
that all nodes in a cluster have the same connections (and the same
weights) with nodes not belonging to the cluster, and therefore they
receive the same dynamical input from the rest of the network. As
such, we prove that synchronizable clusters in a network are subsets
more general than those defined by the graph’s symmetry orbits, and
at the same time more specific than those described by equitable
partitions (see the Supplementary Information for a detailed descrip-
tion of the exact relationship between the observed clusters and the
graph’s symmetry orbits and equitable partitions). Finally, we present
extensive numerical simulations with both synthetic and real-world
networks, which demonstrate the high accuracy of our approxima-
tions and predictions, and also report on synchronization features in
heterogeneous networks showing that the predicted cluster sequence
can be maintained even for networks made of non-identical
dynamical units.

Results
The synchronization solution
The starting point is a generic ensemble of N identical dynamical sys-
tems interplaying over a network G. The equations of motion are

_xi = f ðxiÞ � d
XN
j = 1

Lij gðxjÞ, ð1Þ

where xi(t) is them-dimensional vector state describing the dynamics
of each node i ,f : Rm�!Rm describes the local (identical in all units)
dynamical flow, d is a real-valued coupling strength, Lij is the (ij) entry
of the Laplacian matrix associated to G, and g : Rm�!Rm is the
output function through which units interact. L is a zero-rowmatrix, a
property which, in turn, guarantees existence and invariance of the
network’s synchronized solution xs(t) = x1(t) =… = xN(t).

The necessary condition for the stability of such solution can be
assessed by means of the Master Stability Function (MSF) approach, a

method initially developed for pairwise coupled systems30, and later
extended in many ways to heterogeneous networks31, and to time-
varying32 and higher-order33 interactions. When possible, the MSF
formalism can be complemented by other global approaches (such as
the Lyapunov functionals) which provide sufficient conditions for
stability. As the MSF is of rather standard use, all details about the
associatedmathematics are contained in the Methods section. Notice,
moreover, that our Eq. (1) is in fact written in the simplest as possible
form for the easiness of the mathematical passages that will be
described below. However, our approach can be extended straight-
forwardly (see details in refs. 33,34 and references therein) to themuch
more general case of a coupling term given by d

PN
j = 1 Aij gðxi,xjÞ,

where Aij is the (ij) entry of the graph’s adjacency matrix, under only
two assumptions: (i) the Laplacian matrix L associated to A is diag-
onalizable, and the set of eigenvectors form an orthonormal basis of
RN , and (ii) the coupling function g(xi, xj) is synchronization non-
invasive i.e., it strictly vanishes at the synchronization solution
(g(xs, xs) = 0).

The full details behind the MSF approach can be found in the
Methods section. We here concisely summarize them to pave the way
for the cluster synchronization analysis which will follow. In essence,
one considers perturbations around the synchronous state, and per-
forms linear stability analysis of Eq. (1). Due to the properties of L, the
perturbations can be expanded as linear combinations of its eigen-
vectors vi (which span the space T tangent to the synchronization
manifold M). The coefficients ηi of this expansion obey variational
equations involving the Jacobians of f and g, which only differ to one
another for the value of the corresponding eigenvalue λi. This fact
allows one to parameterize the problem, and to refer to a unique
variational equationwhich is now an explicit function of the parameter
ν = dλi. The maximum Lyapunov exponent Λ of such a parametric
equation can thenbe computed for increasing valuesof ν. The function
Λ(ν) is the Master Stability Function (MSF), and its values assess the
expansion (if positive) or contraction (if negative) rates in the direc-
tions of eigenvectors vi. One needs all of these rates to be negative in
order for the synchronization manifold M to be stable.

As noticed for the first time in Chapter 5 of ref. 4, and as illustrated
in Fig. 1, all possible choices of (chaotic) flows and output functions,
are in fact categorizable into only three classes of systems:

• Class I systems, for which the MSF does not intercept the hor-
izontal axis, like the yellow curve in Fig. 1. These systems

Fig. 1 | Classes in the Master Stability Function. The maximum Lyapunov expo-
nent Λ as a function of the parameter ν (see text for definitions), for a chaotic flow
(Λ(0) > 0). The curve Λ(ν) is called the Master Stability Function (MSF). Given any
pair of f and g, only three classes of systems are possible: Class I systems (yellow
line) for which the MSF does not intercept the horizontal axis; Class II systems
(violet line), for which the MSF has a unique intercept with the horizontal axis at
ν = ν*; Class III systems (brown line), forwhich theMSF intercepts the horizontal axis
at two critical points ν = ν*1 and ν = ν*2.
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intrinsically defy synchronization, because all directions of T are
always (i.e., at all values ofd) expanding, nomatter which network
architecture is used for connecting the nodes. Therefore, neither
the synchronized solution xs(t) nor any other cluster-
synchronized state will ever be stable.

• Class II systems, for which theMSF has a unique intercept with the
horizontal axis at a critical value ν = ν*, like the violet line of Fig. 1.
The scenario here is the opposite of that of Class I. Indeed, given
any network G, the condition dλ2 > ν* warrants stability of the
synchronized solution. These systems, therefore, are always syn-
chronizable, and the threshold for synchronization isdc � ν*

λ2
i.e., is

inversely proportional to the second smallest eigenvalue of the
Laplacian matrix.

• Class III systems, for which the MSF intercepts instead the hor-
izontal axis at two critical points ν = ν*1 and ν = ν*2, like the brown
V-shaped curve of Fig. 1. In order for the synchronization solution
to be stable, it is required in this case that the entire spectrum of
eigenvalues ofL falls (whenmultiplied by d) in between ν*1 and ν*2.
In other words, the two conditions dλN < ν*2 and dλ2 > ν

*
1 must be

simultaneously verified, and this implies that not all networks
succeed to synchronize Class III systems. In fact, the former
condition gives a bound dmax =

ν*2
λN
for the coupling strength above

which instabilities in tangent space start to occur in the direction
of vN, the latter provides once again the threshold dc �

ν*1
λ2

for
complete synchronization to occur.

In general, one should point out that the region of stability could
even be formed by the union of several intervals on the ν axis. How-
ever, the aim of present work is to describe the first transition to
synchronization (i.e., the process that starts at d =0 and occurs when
progressively increasing the coupling strength) for which the three
mentioned classes are indeed the only possible scenarios. When a
system will show multiple regions of stability in the ν axis, instead, a
series of synchronization and de-synchronization transitions (as many
as the stability regions of the system)will occur, and this latter scenario
will be reported by us elsewhere.

Finally, it is crucial to remark that all the above results are for-
mally valid only for the whole network’s synchronous solution. The
trajectories followed by the nodes’ dynamics in each cluster-
synchronous state slightly differ, instead, from those which are fol-
lowed in the global solution, as they rigorously depend on the quo-
tient network (and therefore on topology, node dynamics, and
clusterization, see the Methods section for a detailed description of
such differences), and several ad-hoc methods have been proposed
to assess the stability of synchronization in each specific clustered
state19,22,35–38.

However, since we are focusing on the transition to synchroni-
zation (i.e., on a regime where the coupling strength is normally very
small), in the following we will adopt the approximation that such a
difference will only be tight, and will not give rise to substantial
changes in the calculation of maximum Lyapunov exponents. As a
consequence, we will refer to the MSF calculated for the full network’s
synchronous solution as a an approximation of the values of the
maximum Lyapunov exponents corresponding to the eigenvectors
orthogonal to each cluster’s synchronous solutions. Notice, further-
more, that at each value of the coupling strength one might have a
distinct cluster-synchronous state.

The path to synchronization
With all this in mind, let us now move to describe all salient features
characterizing the transition to the synchronization solution (as d
increases from 0), and in particular to predict all the intermediate
events that are taking place during such a transition. Since now, we
anticipate that our results are valid for all systems in Class II, as well as

for those in Class III (up to themaximum allowed value of the coupling
strength i.e., for d< ν*2

λN
).

There are three conceptual steps that need to be made.
The first step is that, as d progressively increases, the eigenvalues

λi cross the critical point (ν = ν* in Class II, or ν = ν*1 in Class III)
sequentially. The first condition which will be met will be, indeed,
dλN > ν* in Class II (dλN > ν*1 in Class III), while for larger values of d the
other eigenvalueswill cross the critical point onebyone (if they are not
degenerate) and in the reverse order of their size.

Therefore, one can use this very same order to progressively
unfold the tangent space T . In particular, at any value of d, T can be
factorized as T + ðdÞ � T �ðdÞ, where T + ðdÞ [T �ðdÞ] is the subspace
generated by the set of eigenvectors {vi} whose corresponding dλi are
below (above) the stability condition, i.e. for which one has dλi ≤ ν*

(dλi > ν*) in Class II, or dλi ≤ ν*1 (dλi > ν
*
1) in Class III. In other words, the

subspace T + ðdÞ [T �ðdÞ] contains only expanding (contracting)
directions, and therefore the projection on it of the synchronization
error δX will exponentially increase (shrink) in size.

The second step consists in taking note that, if one constructs the
matrix V having as columns the eigenvectors vi = (vi1, vi2, . . . , viN), that
is

V =

v11 v21 � � � vN1
v12 v22 � � � vN2

..

. ..
. . .

. ..
.

v1N v2N � � � vNN

0
BBBB@

1
CCCCA, ð2Þ

then the rows ofmatrix (2) provide an orthonormal basis ofRN aswell,
since VTV = I implies VT =V−1, and hence also VVT = I.

Therefore, one can now examine the eigenvectors component-
wise and, for each eigenvector vi, define the following matrix

Eλi
=

ðvi1 � vi1Þ2 ðvi2 � vi1Þ2 � � � ðviN � vi1Þ2
ðvi1 � vi2Þ2 ðvi2 � vi2Þ2 � � � ðviN � vi2Þ2

..

. ..
. . .

. ..
.

ðvi1 � viNÞ2 ðvi2 � viNÞ2 � � � ðviN � viNÞ2

0
BBBBB@

1
CCCCCA:

Furthermore, following the same sequence which is progressively
unfolding T , one recursively defines the following set of matrices Sn

SN = EλN
,

SN�1 = SN + EλN�1
,

:::,

S2 = S3 + Eλ2
,

S1 = S2 + Eλ1
:

It is worth discussing a fewproperties of suchmatrices. First of all,
as v1 is aligned with M, all its components are equal, and therefore
Eλ1

= 0 and S1 = S2. Second, all the E-matrices, and thus all the S-matri-
ces, are symmetric, non negative and have all diagonal entries equal to
zero. In fact, the off diagonal ij elements of the matrix Sn (n = 1, . . . ,N)
are nothing but the square of the norm of the vector obtained as the
difference between the two vectors defined by rows i and j of matrix
(2), truncated to their n last components. As so, the maximum value
that any entry (ij) may have in the matrices Sn is 2, which corresponds
to the case inwhich such two vectors are orthonormal. In particular, all
off-diagonal entries of S2 = S1 are equal to 2.

The third conceptual step consists in considering the fact that the
Laplacian matrix L uniquely defines G, and as so any clustering prop-
erty of the networkG has to be reflected into a corresponding spectral
feature of L26,27. In this paper, we can prove rigorously that the syn-
chronized clusters emerging during the transition of G can be
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associated to a localization of a group of the Laplacian eigenvectors on
the clustered nodes. Namely, let us first define that a subset
S � fv2, v3, :::,vNg consisting of k − 1 eigenvectors forms a spectral
block localized at nodes {i1, . . . , ik} if

• eacheigenvector belonging toS has all entries (except i1, i2, . . . , ik)
equal to 0;

• for each other eigenvector v not belonging to S, the entries
i1, i2, . . . , ik are all equal i.e., vi1 = vi2 = :::= vik .

Moreover, all eigenvectors {v2, v3, . . . , vN} are orthonormal to v1, and
therefore the sum of all their entries must be equal to 0.

The main theoretical result underpinning our study is the Theo-
rem stated below.

Theorem. The following two statements are equivalent:
1. All k nodes belonging to a cluster defined by the indices {i1,…, ik}

have the same connections with the same weights with all other
nodes not belonging to the cluster, i.e. for any p, q∈ {i1,…, ik} and
j∉ {i1,…, ik} one has Lpj =Lqj .

2. There is a spectral block S made of k − 1 Laplacian’s eigenvectors
localized at nodes {i1, . . . , ik}.
A group of nodes satisfying condition (1) of the theorem is also

called an external equitable cell39.
The reader interested in themathematical proof of the theorem is

referred to our Supplementary Information. We here concentrate,
instead, on the main concepts involved. Conceptually, the first state-
ment of the Theorem is tantamount to assert that the nodes belonging
to a given cluster are indistinguishable to the eyes of any other node of
the network, but puts no constraints on the way such nodes are con-
nected among them within the cluster. Therefore, fulfillment of the
statement is realized by (but not limited to) the case of a network’s
symmetry orbit. In otherwords, thefirst statement of the theorem says
that the clustered nodes receive an equal input from the rest of the
network, and therefore (for the principle that a same input will even-
tually - i.e. at sufficiently large coupling -imply a sameoutput) theymay
synchronize independently on the synchronization properties of the
rest of the graph. Therefore, the intermediate structured states
emerging in the path to synchrony of a network aremore general than
the graph’s symmetry orbits, but more specific than the graph’s equi-
table partitions.

However, the most relevant consequence of the theorem is that
the localization of the eigenvectors’ components implies that the
matrices Sn may actually display entries equal to 2 also for n strictly
larger than 2! Indeed, the (ij) entry of the matrices Sn is just equal to

XN
k =n

ðvkj � vkiÞ2:

Now, suppose that S is a spectral block localized at i, j and some other
nodes. Then, if vk does not belong to S, the term ðvkj � vkiÞ2 =0, and
one has therefore that the (ij) entry of Sn has contributions only from
those eigenvectors vn belonging to S. Now, all the times that a loca-
lized spectral block S is contained in the set of those eigenvectors
generating T �ðdÞ the corresponding cluster of nodes will emerge as
stable synchronization cluster, because the tangent space of the cor-
responding synchronized solution (where synchrony is limited to
those specific nodes) can be fully disentangled from the rest of T and
will consist, moreover, of only contractive directions.

Complete description of the transition
By exploiting the outcomes of the three conceptual steps described
above, an extremely simple (and computationally low demanding)
technique can then be introduced, able to monitor and track locali-
zation of eigenvectors along the transition, and therefore to describe
the path to synchronization.

The method consists in the following steps:
• given a network G, one considers the Laplacian matrix L, and
extracts its N eigenvalues λi (ordered in size) and the corre-
sponding eigenvectors {vi};

• one then calculates the N matrices Eλi
and Sn

(i = 1, . . . ,N; n = 1, . . . ,N);
• one inspects the matrices Sn in the same order with which the
Laplacian’s eigenvalues (whenmultiplied by d) crosses the critical
point ν* (i.e., N,N − 1,N − 2, . . . , 2, 1), and looks for entries which
are equal to 2;

• when, for the first time in the sequence (say, for index p) an entry
in matrix Sp is (or multiple entries are) found equal to 2, a pre-
diction is made that an event will occur in the transition: the
cluster (or clusters) formed by the nodes with labels equal to
those of the found entry (entries) will synchronize at the coupling
strength value ν*/λp. The inspection ofmatrices Sn then continues,
focusing only on the entries different from those already found to
be 2 at level Sp;

• after having inspected all Sn matrices, one obtains the complete
description of the sequence of events occurring in the transition,
with the exact indication of all the values of the critical coupling
strengths at which each of such events is occurring. By events, we
here mean either the formation of one (or many) new synchro-
nized cluster(s), or the merging of different clusters into a single
synchronized one.

Once again, we here remark that our results andmethods are valid
under the approximation that all cluster-synchronous solutions are well
described by the synchronization state that each node in the cluster
would display in the complete synchronization scenario i.e., when the
entire network synchronizes. In the following, we will demonstrate the
accuracy of such an approximation with respect to synthetic and real-
world networks. We begin with illustrating themethod in a simple case,
in order for the reader to have an immediate understanding of the
consequences of the various steps that have been discussed so far. For
this purpose, we consider the network sketched in panel (a) of Fig. 2,
which consists of an all-to-all connected, symmetric, weighted graph of
N = 10 nodes (see the Supplementary Information for the adjacency
matrix of the network). By construction, the graph is endowed with
three symmetric orbits: the first being composed by the pink nodes 1, 2
and 3, the second containing the blue nodes 4, 5 and 6, and the third
beingmade of the four green nodes 7, 8, 9 and 10. The 10 eigenvalues of
the Laplacian matrix, when ordered in size, are {0, 1, 1, 1, 4, 4, 4, 6, 6, 6}.

After calculations of the corresponding eigenvectors, the matri-
ces Eλi

and Sn are evaluated. Then, one starts inspecting matrices Sn in
the reverse order of the size of the corresponding eigenvalues. Fig-
ure 2b shows S10, which corresponds to λ10 = 6, and it can be seen that
there are no entries equal to 2 in such a matrix. Nor entries equal to 2
are found in S9 (not shown). However, when inspecting S8 (which
corresponds to λ8 = 6), one immediately identifies [Fig. 2c] many
entries equal to 2, which clearlydefine a cluster formedby nodes 7, 8, 9
and 10. A prediction is then made that the first event observed in the
transition will be the synchronization of such nodes in a cluster,
occurring at d1 = ν*/λ8 = ν*/6.

Then, one continues inspecting the matrices Sn and con-
centrates only on all the other entries. No further entry is found equal
to 2 in S7, nor in S6. When scrutinizing S5 [Fig. 2d] one sees that other
entries becomes equal to 2, and they indicate that the cluster formed
by nodes 4, 5 and 6 will merge at d2 = ν

*=λ5 = ν
*=4= 3

2d1 with the
already existing group of synchronized nodes, forming this way a
larger synchronized cluster. No further features are observed in S4
and S3, while the analysis of S2 [Fig. 2e] reveals that at d3 = ν*/
λ2 = ν* = 4d2 also nodes 1, 2 and 3 join the existing cluster, determining
the setting of the final synchronized state, where all nodes of the
network evolve in unison.
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Figure. 2f schematically summarizes the predicted sequence of
events: if a dynamical system is networking with the architecture of
Fig. 2a, its path to synchronywillfirst (atd = d1) see the formationof the
synchronized cluster {7, 8, 9, 10}, then (at d = d2) nodes {4, 5, 6} will join
that cluster, and eventually (at d = d3) all nodes will synchronize.
Already at this stage it should be remarked that all predictions made
are totally independent on f and g: changing the dynamical system f
operating on each node and/or the output function g will result in the
same sequence of events. The only difference will be that the esti-
mated values di at which the ith event will occur will be, under the
adopted approximation, rescaled with the corresponding value of ν*.

In order to show how factual is our prediction, we monitored the
transition in numerical simulations of Eq. (1), by using the Laplacian
matrix of the network of Fig. 2a, and by considering two different
dynamical systems: the Rössler40 and the Lorenz system41 with proper
output functions. Precisely, the case of the Rössler system corre-
sponds to x ≡ (x, y, z), f(x) = ( − y − z, x + ay, b + z(x − c)) and g(x) = (0,
y, 0), while the case of the Lorenz system corresponds to x ≡ (x, y, z),
f(x) = (σ(y − z), x(ρ − z) − y, xy − βz) and g(x) = (x, 0, 0). When para-
meters are set to a = 0.1, b =0.1, c = 18, σ = 10, ρ = 28, β = 2, both sys-
tems are chaotic and belong to Class II, with ν* = 7.322 for the Lorenz
case and ν* = 0.179 for the Rössler case. It is worth noticing thatwehere
concentrate on chaotic systems, and do not consider instead periodic
dynamics. The reason is that, in the MSF, ν = 0 corresponds to λ1 = 0

i.e., to the eigenvector v1 aligned with the synchronization manifold.
Therefore, Λ(0) is the maximum Lyapunov exponent of the isolated
system which is equal to 0 for a periodic dynamics, leading to the
vanishing of the critical value ν* aswell as of the threshold for complete
synchronization. In turn, this would imply that intermediate clusters
couldnot beobserved as the entire networkwould synchronize for any
infinitesimal coupling strength.

In order to properly quantify synchronization, one calculates the
synchronization error over a given cluster, as

Ecl =
1
Ncl

X
i

jxi � �xcl j2
 !1

2
* +

ΔT

, ð3Þ

where the sum runs over all nodes i forming the cluster, < . . . > ΔT

stands for a temporal average over a suitable time span ΔT ,�xcl is the
average value of the vector x in the cluster, and Ncl is the number of
nodes in the cluster. In addition, the synchronization error is normal-
ized to its maximum value, so as to range from 1 to 0.

The results are reported in Fig. 3, where the normalized syn-
chronization errors are reported as a function of d (for both the Lorenz
and the Rössler case) for the entire network (black dotted line) and for
eachof the three orbits in the network (yellow, orange and red lines). It
is clearly seen that all predictions made are fully satisfied. Panels (b1-

Fig. 2 | Predicting the transition to synchronization. a An all-to-all connected,
symmetric, weighted graph of N = 10 nodes is considered. The graph is endowed
with three symmetry orbits: the one composed by the red nodes {1, 2, 3}, the one
made of the orange nodes {4, 5, 6}, and the one made of the four yellow nodes
{7, 8, 9, 10}. In the sketch, the widths of the links are proportional to the corre-
spondingweights, and the sizesof thenodes are proportional to the corresponding
strengths. b The entries of S10, which corresponds to λ10 = 6. c S8 (associated to
λ8 = 6), where the entries equal to 2 clearly define a cluster formed by nodes
{7, 8, 9, 10}. The first predicted event in the transition then consists in the

synchronization of such nodes at d1 = ν*/λ8 = ν*/6. d S5 (related to λ5 = 4), where
additional entries become equal to 2, indicating a second foreseen event in which
nodes {4, 5, 6} join the existent synchronization cluster at d2 = ν*/λ5 = ν*/4. e S2
(corresponding to λ2 = 1) where it is seen that nodes {1, 2, 3} also join the existing
synchronized cluster at d3 = ν*/λ2 = ν* in a third predicted event where complete
synchronization of the network takes place. f The expected events (and their exact
sequence) occurring in the path to synchrony of the network’s architecture
depicted in a. The bar at the bottom of the Figure gives the color code used in
panels (b-e) for matrices' entries.
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b4) of Fig. 3 report temporal snapshots of the dynamics of each of the
10 network’s nodes, and illustrate visually the different collective
phases which are observed during the transition to synchronization
reported in Fig. 3b.

Looking at Fig. 3, it must be remarked that the transition to syn-
chronization is identical for the Rössler and Lorenz systems, with the
only difference being the different values ν* (0.179 for Rössler and
7.322 for Lorenz). In other words, the horizontal axis in Fig. 3b just
corresponds to that of Fig. 3amultiplied by the ratio 0.179/7.322 of the
two critical values. This depends on the fact that the set of clusters that
are synchronizing during the transition, the nodes that compose them,
and the order in which clusters synchronize are, under the approx-
imation adopted in our study, completely independent on the specific
dynamical system that is ruling the evolution of the network’s nodes
(as these features only depend instead on the spectrum of the Lapla-
cianmatrix, and consequently only on the topology of the graph). This
is a strong result, because it implies that in all practical situations (i.e.,
when there are uncertainties in the model parameters, or even when
the knowledge of the dynamics of the nodes is fully unavailable) the
entire cluster sequence forming the transition to synchronization can
still be predicted.

Synthetic networks of large size
The next step is to test the accuracy of the method in the case of large
size graphs. To this purpose, we consider 2 networks that were syn-
thetically generated in ref. 42, where a specific method of generating
graphs endowed with desired clusters was introduced that initially
considers ensembles of disconnected nodes and then connects each

oneof thenodes in eachof suchensembles to the samegroupof nodes
of an external core network, this way forming clusters containing
nodes of equal degree. While we refer the reader to ref. 42 for the full
details of the generating algorithm, we here limit ourselves to report
themain attributes of the considered networks. The first networkG1 is
of size N = 1000 nodes, and is endowed with two symmetry orbits that
generate two distinct clusters of sizes 20 nodes (Cluster 1) and 10
nodes (Cluster 2), respectively. The second network G2 is made of
N = 10,000 nodes and is endowed with four symmetry orbits gen-
erating four clusters of sizes that span more than an order of magni-
tude (Clusters 1 to 4 contain, respectively, 1000, 300, 100, and
30 nodes).

Following the expectations which are detailed in the theorems of
our Supplementary Information, the calculation of the Laplacian
eigenvalues of G1 allows one to identify a first group of 19 degenerate
eigenvalues λ277,278,...,295 = 4 and a second group of 9 degenerate
eigenvalues λ59,60,...,67 = 2. The analysis of the matrices Sn then reveals
that the first event in the transition is the synchronization of Cluster 1
at d1 = ν*/4, followed by the synchronization of Cluster 2 at d2 = ν*/
2 = 2d1, this time ina statewhich is not synchronizedwith cluster 1, thus
determining an overall state where two distinct synchronization clus-
ters coexist. Eventually, the entire network synchronizes at d3 = ν*/
λ2 = ν*/0.4758.

In the case ofG2, four blocks of degenerate eigenvalues are indeed
found in correspondence with the four clusters. The transition pre-
dicted by inspection of the matrices Sn is characterized by the
sequence of five events. First, the cluster with 30 nodes synchronizes
at d1 = ν*/5. Second, at d2 = ν*/4, the cluster with 100 nodes
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Fig. 3 | The numerical verification of the predicted transition. a, b The nor-
malized synchronization errors Ecl (see text for definition) as a function of d, for the
Lorenz (a) and the Rössler (b) case. Data refers to ensemble averages over 500
different numerical simulations of the network sketched in (a) of Fig. 2. Cluster 1
(yellow line) is formed by nodes {7, 8, 9, 10}, Cluster 2 (orange line) is formed by
nodes {4, 5, 6}, and Cluster 3 (red line) is formed by nodes {1, 2, 3}. The black dotted
line refers to the synchronization error of the entire network (EN). In both panels it
is seen that the expected sequence of events taking place during the transition is
verified. Furthermore, the values d1 = 7.322/6 = 1.220 (d1 = 0.179/6 = 0.0298),
d2 = 7.322/4 = 1.8305 (d2 = 0.179/4 = 0.04475) and d3 = 7.322 (d3 = 0.179) are marked
in the horizontal axis respectively with a yellow, orange and red filled dot in (a) (in
b)), indicating how accurate are the predictions and approximations made on the

corresponding critical values for the coupling strength. For each interval, the arrow
points to the composition of the synchronized cluster that is being observed, once
again in perfect harmony with the predictions made. Finally, we have verified that
no extra synchronization features emerge during the transition, other than those
explicitly foreseen in Fig. 2. b1–b4 Temporal snapshots illustrating the evolution of
the y variable of each of the 10network’s nodes (see color code at the bottomof the
four panels) during the transition to synchronization reported in b. At d =0.01 (b1)
the nodes display a fully uncorrelated dynamics. At d =0.035 b2 the yellow nodes
(7,8,9,10) are clustered and display a synchronousmotion, whereas all other nodes
feature a uncorrelated dynamics. At d =0.1 (b3) the violet nodes (4,5,6) have joined
the clustered evolution, while nodes (1,2,3) remains unsynchronized. Finally, at
d =0.2 (b4), all network’s nodes are synchronized.
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synchronizes. At d3 = ν*/3 (d4 = ν*/2) also the cluster with 300 nodes
(with 1000 nodes) synchronizes. The four clusters evolve in four dif-
ferent synchronized states. Eventually, at d5 = ν*/0.6025 the entire
network synchronizes.

We then simulated the Rössler system on G1 and G2 and reported
the results in Fig. 4, which are actually fully confirming the predicted
scenarios.

Real-world and heterogeneous networks
We move now to show three applications to real-world networks.

For the first application, we have considered the network of the
US power grid. The PowerGrid network consists of 4,941 nodes and
6,594 links, and it is publicly available at https://toreopsahl.com/
datasets/#uspowergrid. It was already the object of several studies in
the literature, the first of whichwas the celebrated 1998 paper on small
world networks43. In the PowerGrid network, nodes are either gen-
erators, transformers or substations forming the power grid of the
Western States of the United States of America, and therefore they
have a specific geographical location. Recently, it was proven that a
fraction of 16.7% of its nodes are forming non trivial clusters corre-
sponding to symmetry orbits which are small in size, due to the geo-
graphical embedding of the graph26.

Application of our method detects that the synchronization
transition is made of a very well defined sequence of events, which

involves the emergence of 381 clusters. The clusters that are being
formed are all small in size, because of the constraints made by the
geographical embedding. In particular, 310 clusters contain only 2
nodes, 49 clusters are made of 3 nodes, 14 clusters are formed by 4
nodes, 4 clusters have 5 nodes, 2 clusters appearwith 6 nodes, 1 cluster
has 7 nodes, and 1 cluster is made of 9 nodes. The overall number of
network’s nodes which get clustered during the transition is 871. A
partial list of these clusters (spanning about one order ofmagnitude in
the size of the corresponding eigenvalues) and the various values of
coupling strengths at which the different events are predicted is
available in Table 1 of Supplementary Information.

We have then simulated the Rössler system on the PowerGrid
network, and monitored the synchronization error on 6 specific clus-
ters (highlighted in red in the list of Table 1 of Supplementary Infor-
mation) that our method foresees to emerge during the path to
synchrony in a well established sequence and at well specific values of
the coupling strength (d1 = 0.04475,d2 = 0.0596, d3 = 0.0895,
d4 = 0.1294,d5 = 0.179, d6 = 0.3056). The values d1, . . . , d6 are explicitly
calculated in the Supplementary Information, and are marked as filled
dots in the horizontal axis of Fig. 5 with the same colors identifying the
corresponding clusters. Looking at Fig. 5a one sees that, once again,
the observed sequence of events matches the predicted one, with an
excellent fit with the values d1, . . . , d6, thus validating ex-post the
approximation adopted in our study.

Ecl

0.5

0.4

0

0.2

0.3

0.1

0.150.05

d

d
0.25

Ecl

0.35 0.45

0.150.15 0.25 0.35

0.5

0.25

0

0.75

a

bc1 c2 c3 c4 EN

c1 c2 EN

d1

d2

d3

d1d2 d3 d4 d5

Fig. 4 | Applications to large size synthetic networks. Ecl (see text for definition)
vs. d, for the Rössler system (see the differential equations in the text). Data in a [in
b] refer to ensemble averages over 50 (150) different numerical simulations of the
graph G1 (G2) described in the main text. In both panels, the legend sets the color
code for the curves corresponding to each of the existing clusters Ci and to the
Entire Network (EN). Once again, the two predicted transitions are verified.
a Cluster 1 synchronizes at d1 = 0.179/4 = 0.04475 (marked with a yellow dot),
Cluster 2 synchronizes atd2 = 0.179/2 = 0.0895 (orangedot), and the entirenetwork
synchronizes at d3 = 0.179/0.4758 = 0.376 (black dot), as predicted. b The cluster
with 30 nodes synchronizes at d1 = 0.179/5 = 0.0358 (yellow dot), the cluster with
100 nodes at d2 = 0.179/4 = 0.04475 (orange dot), the cluster with 300 nodes at
d3 = 0.179/3 = 0.0597 (red dot), the cluster with 1,000 nodes at d4 = 0.179/
2 = 0.0895 (violet dot), and the entire network at d5 = 0.179/0.6025 = 0.297
(black dot).
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Fig. 5 | Applications to the PowerGrid network. Ecl (see text for definition) vs. d,
for the Rössler system (see the differential equations in the text). Data in a [in b]
refer to ensemble averages over 850 (200) different numerical simulations of the
PowerGrid network. As in Fig. 4, the legends of both panels set the color code for
the curves corresponding to each of the reported clusters Ci and to the Entire
Network (EN). a reports the case of identical Rössler systems, and the error of
6 specific clusters is plotted (see the Supplementary Information for the compo-
sition of each of the 6 clusters Ci). The observed sequence of events perfectly
matches the predicted one, with an excellent fit with the values d1, . . . , d6. In panel
(b) the effects of heterogeneity in the network are reported. Namely, for each node
i of the PowerGrid network, the parameter bi in the Rössler equations is randomly
sorted from a uniform distribution in the interval [0.1 − ϵ, 0.1 + ϵ]. The curves
plotted refer to ϵ =0.01.
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We also tested how robust is the predicted scenario against pos-
sible heterogeneities present in the network. To this purpose, one
again simulates the Rössler system on the PowerGrid network, but this
time one distributes randomly different values of the parameter b to
different network’s nodes. Precisely, for each node i of the network,
one uses a parameter bi in the Rössler equations which is randomly
sorted from a uniform distribution in the interval [0.1− ϵ, 0.1 + ϵ], with
the extra parameter ϵ that now quantifies the extent of heterogeneity
in the graph. The results are reported in panel (b) of Fig. 5 for ϵ =0.01,
corresponding to 10% of the value (b = 0.1) which was used for all
nodes in the case of identical systems, thus representing a case of a
rather large heterogeneity.

It has to be remarked that, when the networked units are not
identical, the very same synchronization solution ceases to exist, and
therefore it formally makes no sense to speak of the stability of a
solution that does not even exist. Indeed, if one selects no matter
which ensemble of nodes, the synchronization error never vanishes
exactly in the ensemble. Nonetheless, it is still observed that the values
of the normalized synchronization errors fluctuate around zero for
some sets (clusters) of network’s nodes which, therefore, anticipate
the setting of the almost completely synchronized state (wherein all
nodes evolve almost in unison). In Fig. 5b it is clearly seen that, while
the synchronization errors approach zero at values that are obviously
different from those predicted in the case of identical systems, the
sequence at which the different clusters emerge during the transition
is still preserved. Similar scenarios characterize the evolution of the
network also when the heterogeneity is affecting the other two para-
meters (a and c) entering into the equations of the Rössler system.

The second (third) application is given with reference to a real-
world biological (social) network. Precisely, we consider the Yeast
protein-protein interaction network (a dataset made of N = 1647
nodes and E = 2, 518 edges44) and the ego-Facebook network (a
dataset containing N = 2888 nodes and E = 2981 edges45). The results
are reported in Fig. 6, and refer to ensemble averages over 100 dif-
ferent numerical simulations of identical Rössler systems (same

parameters and initial conditions as in the case reported in Fig. 5)
coupled by the structure of connections of the two graphs. For the
biological network, it is found that the transition to synchronization
includes 188 clusters, and Fig. 6a reports the synchronization error of
4 of them: C1 and C2 (which are both 2 nodes clusters), C3 (a cluster
containing 3 nodes), C4 (a cluster of 7 nodes). For the social network,
18 clusters are found during the transition to synchronization, and
also in this case Fig. 6b reports the synchronization error of 4 of
them: C1 and C2 (which are both made of 2 nodes), C3 (a cluster
containing 5 nodes), C4 (a subset of 3 nodes—out of a cluster of 280
nodes—which is forming a cluster by itself). In both cases, one easily
sees that the numerically observed sequence of events perfectly
matches the predicted one, with an excellent fit of the critical cou-
pling strength values d1, d2, d3, and d4.

Discussion
In conclusion, our work provides an approximated, yet very accurate,
description of the transition to synchronization in a network of iden-
tical systems. We unveil, indeed, that the path to synchronization is
made of a sequence of events, each of which can be identified as either
the nucleation of one (or several) cluster(s) of synchronized nodes, or
to the merging of multiple synchronized clusters into a single one, or
to the growth of an already existing synchronized cluster which
enlarges its size. In our study, all nodes in a cluster have the same
connections (and the same weights) with nodes not belonging to the
cluster, and therefore they receive the same dynamical input from the
rest of the network.

By combing methodologies borrowed from stability of nonlinear
systems with tools of algebra and symmetries, and under the
approximation that the systems’ trajectories in all cluster-synchronous
states do not substantially differ from those featured at complete
synchronization, we have been able to introduce a simple and effective
method able to provide the complete prediction of the sequence of
such events, to identify which graph’s node is belonging to each of the
emergent clusters, and to give a forecast of the critical coupling
strength values at which such events are taking place.

While the local node dynamics and the coupling function are
entirely responsible for the specific synchronization class of theMaster
Stability Function, the sequence of events that are taking place during
the transition to synchronization depends, instead, only on the graph’s
structure and, more precisely, on the only knowledge of the full
spectrum of eigenvalues and eigenvectors of the Laplacian matrix.

Our method does not require an a-priori knowledge of the net-
work’s symmetries. We moreover clarify once forever the intimate
nature of the clusters that are being formed along the transition path:
they are formed by those nodes which are indistinguishable at the
eyes of any other network’s vertex. This implies that nodes in a
synchronized cluster have the same connections (and the same
weights) with nodes not belonging to the cluster, and therefore they
receive the same dynamical input from the rest of the network.
Synchronizable clusters in a network are therefore subsets more
general than those defined by the graph’s symmetry orbits, and at the
same time more specific than those described by equitable
partitions.

Finally, our work gave evidence of several extensive numerical
simulations with both synthetic and real-world networks, and
demonstrates how high is the accuracy of our predictions. Remark-
ably, the synchronization scenario in heterogeneous networks (i.e.,
networks made of non-identical units) preserves the predicted cluster
sequence along the entire synchronization path.

Our results, therefore, call for a lot of applications of general
interest in nonlinear science, ranging from synthesizing networks
equipped with desired cluster(s) and modular behavior, until pre-
dicting the parallel (clustered) functioning of real-world networks
from the analysis of their structure.
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Fig. 6 | Application to biological and social networks. Synchronization error for
the considered clustersC1,C2,C3 and C4 (see the color-code at the top of the panel)
for the Yeast protein-protein interaction network44 (a), and the ego-Facebook
network45 b. In both panels, we report also the synchronization error of the entire
network (EN, black dotted line).
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Methods
In what follows we consider a connected weighted undirected graphG
with N nodes and uniquely identified by its adjacency matrix A and its
Laplacian matrix L. Furthermore, we will call λ1 = 0 < λ2≤λ3…≤λN the
(ordered in size) real and nonnegative eigenvalues of L, and
v1 =

1ffiffiffi
N

p ð1, 1, 1, . . . , 1ÞT , v2,v3, . . . ,vN corresponding orthonormal
eigenvectors.

The MSF for the network’s synchronous solution
Let us recall here that the equation governing a generic ensemble ofN
identical dynamical systems interplaying over a networkG is Eq. (1) i.e.,
_xi = f ðxiÞ � d

PN
j = 1 Lij gðxjÞ, where xi(t) is am-dimensional vector state

describing the dynamics of each node i,f : Rm�!Rm is the local
(identical in all units) dynamical flow describing the evolution of the
isolated systems, d is a real-valued coupling strength, Lij is the ij entry
of the Laplacian matrix, and g : Rm�!Rm is an output function
describing the functional way through which units interplay.

L is a zero-row matrix, a property which, in turn, guarantees
existence and invariance of the synchronized solution

xsðtÞ=x1ðtÞ= . . . =xNðtÞ:

In order to study stability of such a solution, one considers perturba-
tions δxi = xi − xs for i = 1, . . . ,N, andperforms linear stability analysisof
Eq. (1). The result are the following equations:

_δxi = Jf ðxsÞδxi � d
XN
j = 1

Lij JgðxsÞδxj , ð4Þ

where Jf(xs) and Jg(xs) are, respectively, them ×m Jacobianmatrices of
theflowandof theoutput function, both evolving in time following the
synchronization solution’s trajectory.

One can, in fact, consider the global error δX 2 RNm �
ðδx1,δx2,:::,δxNÞT around the synchronous state, and recast Eq. (4) as

_δX= I� Jf ðxsÞ � dL� JgðxsÞ
� �

δX, ð5Þ

where I is the identity matrix, and⊗ stands for the direct product.
Moreover, L is a symmetric, zero row sum, matrix. As so, it is

always diagonalizable, and the set of its eigenvectors forms an ortho-
normal basis of RN . The zero row sum property of L implies further-
more that λ1 = 0 and that v1 =

1ffiffiffi
N

p ð1, 1,::::, 1, 1ÞT . Therefore, all
components of v1 are equal, and this means that v1 is aligned, in phase
space, to themanifoldM defined by the synchronization solution, and
that an orthonormal basis for the space T tangent to M is just pro-
vided by the set of eigenvectors v2, v3, . . . , vN. For the synchronization
solution to be stable, the necessary condition is then that all directions
of the tangent space be contractive.

One can now expand the error δX as a linear combination of the
eigenvectors {vi} i.e.,

δX =
XN
i = 1

vi � ηi:

Then, plugging the expansion in Eq. (5) and operating the scalar pro-
duct of both the right and left part of the equation times the eigen-
vectors vi, one obtains that the coefficients ηi 2 Rm obey the
equations

_ηi = Jf ðxsÞ � dλi JgðxsÞ
� �

ηi:

Notice that the equations for the coefficient ηi are variational, and
only differ (at different i0s) for the eigenvalue λi appearing in the
evolution kernel. This entitles one to cleverly separate the structural
and dynamical contributions, by introducing a parameter ν ≡ dλ, and

by studying the m-dimensional parametric variational equation

_η= Jf ðxsÞ � νJgðxsÞ
� �

η=KðνÞη: ð6Þ

The kernel K(ν), indeed, only depends on f and g (i.e., on the
dynamics), and the structure of the network is now encoded within a
specific set of ν values (those obtained by multiplying d times the
Laplacian’s eigenvalues).

The maximum Lyapunov exponent Λ [i.e., the maximum of them
Lyapunov exponents of Eq. (6)] can then be computed for each value
of ν. The function Λ(ν) is called the Master Stability Function, and only
depends on f and g. At each value of d, a given network architecture is
just mapped to a set of ν ≠0 values. The corresponding values of Λ(ν)
provide the expansion (if positive) or contraction (if negative) rates in
the directions of the eigenvectors v2, v3, . . . , vN, and therefore one
needs all these values to be negative in order forM to be attractive in
all directions of T .

Finally, notice that ν = 0 corresponds to λ1 = 0 i.e., to the eigen-
vector v1 aligned with M. Therefore, Λ(0) is equal to the maximum
Lyapunov exponent of the isolated system _x= f ðxÞ. In turn, this implies
that the Master Stability Function starts with a value which is strictly
positive (strictly equal to0) if the networksunits are chaotic (periodic).

The 3 different Classes of systems supported by the Master Sta-
bility Function are illustrated in Fig. 1, and largely discussed in the
Manuscript.

The stability properties of the clusters’ synchronous solution
It is important to remark that all the above results are formally valid
only for the whole network’s synchronous solution. The trajectories
followed by the nodes’ dynamics in each cluster-synchronous state
slightly differ, instead, from those which are followed in the global
solution, as they rigorously depends on the quotient network, and
therefore on topology, node dynamics, and clusterization. Let us
indeed focus on a given cluster Cl, and let us call Cl the set of indices
identifying the nodes that belong to Cl. For each node i (i 2 Cl), Eq. (1)
becomes

_xi = f ðxiÞ � d
X
j2Cl

Lij gðxjÞ � d
X
j=2Cl

Lij gðxjÞ, ð7Þ

where the overall coupling is now split into the sum of an intra-cluster
termand of a term accounting for the connections of the cluster to the
rest of the network. Eq. (7) can be rewritten as

_xi = f ðxiÞ � d
X
j2Cl

Lij gðxjÞ+d
X
j=2Cl

Aij gðxjÞ, ð8Þ

whereA is the adjacencymatrix. This is because all the elements of the
Laplacian matrix considered in the second coupling term are just the
opposite of the corresponding terms of the adjacency matrix. The
second coupling term is, indeed, limited to j =2 Cl and therefore, by
definition, it does not contain the diagonal element of the Laplacian
(j = i) which is instead contained in the intra-cluster coupling term.

We now recall that the main theorem of our study asserts that
synchronizable clusters are those formed by nodes which are equally
connected to, and receive an equal input from, the rest of the network.
Therefore, as the last term of Eq. (8) accounts for the total input
received by node i fromall nodes that do not belong to the cluster, our
theorem ensures that it is a term which is formally independent on i.
The cluster synchronous solution is xiðtÞ=xjðtÞ=xCl

ðtÞ,8i 2 Cl and 8j 2
Cl (j ≠ i), and obeys the equation

_xCl
= f ðxCl

Þ+d
X
j=2Cl

Aij ½gðxjÞ � gðxCl
Þ�: ð9Þ
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This is because the diagonal terms of the Laplacian matrix are
equal to the sum of the number of intra-cluster connections and of
the number of extra-cluster connections, the latter ones being now
incorporated in the remaining coupling term, which once again does
not depend on i. Once again, one can consider perturbations
δxi =xi � xCl

(8i 2 Cl), and perform linear stability analysis of Eq. (8).
The result is

_δX= I� Jf ðxCl
Þ � dL� JgðxCl

Þ
h i

δX, ð10Þ

where δX 2 RNlm is the global error vector, and Nl is the number of
nodes forming the cluster Cl.

It is immediately seen that the linearized Eq. (10) is formally
identical to Eq. (5), and therefore the same expansion of the error can
be made with the eigenvectors of the Laplacian. The difference, how-
ever, is that the evaluation of the maximum Lyapunov exponents
requires now to calculate the Jacobians of the functions f and g over
the cluster-synchronous solution xCl

, which obeys Eq. (9). In other
words, while the MSF formalism calculates the Maximum Lyapunov
exponents using the trajectories experienced by the whole network’s
synchronous solution (a state in which each node of the network
repeats the same dynamical behavior of a single, isolated, system), the
trajectories experienced by the cluster synchronous state are per-
turbed by an extra term KðtÞ=dPj=2ClAij ½gðxjÞ � gðxCl

Þ�, and depend
therefore explicitly on the entire network’s dynamics, and on the
specific coupling function. This fact leads to two main consequences:

• The very same cluster-synchronous solution is not invariant, as
K(t) explicitly depends on d. In particular, at each value of the
coupling strength one would have a distinct cluster-synchronous
state, and therefore the entire framework of the MSF wouldmake
no sense in this case as it would not be possible to rigorously
separate dynamics and structure;

• The perturbation K(t) may lead the synchronous trajectories to
visit areas of the phase space which are instead never visited by a
single isolated system, and therefore it may determine slight
variations in the calculations of the maximum Lyapunov expo-
nents, and consequently slight variations in the determination of
the critical coupling strength value at which the cluster synchro-
nous state becomes stable.

On the other hand, the term K(t) is directly proportional to d, and
therefore it has to be expected that such a perturbation will in fact be
small across the transition to complete synchronization, where d starts
from0 and only slightly increases to values which are normally smaller
than 1. In addition, K(t) consists of the sum of terms which are in
general uncorrelated, as there are no constraints on the dynamics of
the nodes which do not form part of the synchronous cluster. This
latter fact would also contribute to determine smallness of the
perturbation.

In our study, we decided therefore to adopt a practical approx-
imation to the problem, by assuming that the perturbation K(t) is
always negligible and consequently that the trajectories visited by the
clustered synchronous nodes are always equal to those that char-
acterize complete synchronization (i.e., those of a single, isolated,
system). This allows one to refer to a uniqueMSF (the one constructed
in thewholenetwork’s synchronous state) for determining the stability
properties of all cluster synchronized states.

Simulations
Simulations were performed with an adaptative Tsit integration algo-
rithm implemented in Julia. In each trial, the network is simulated for a
total period of 1,500 time units, and the synchronization errors are
averaged over the last ΔT = 100 time units.

As one is only interested tomonitor the vanishing of Ecl, with the
purpose of saving calculations in all our simulations the

synchronization error is computed by only taking into account those
variables of the system’s state where the coupling is acting. This
implies that, when referring to the Rössler (Lorenz) system, Ecl has
been evaluated taking into account only the difference yi � �ycl
(xi � �xcl). The results are, indeed, identical to those obtained when all
state variables of the systems are accounted for in the evaluation of
Ecl, as its formal definition of Eq. (3) would instead require.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the
article and Supplementary Information, and can be accessed in the
repository https://github.com/goznalo-git/ClusterSynchronization.

Code availability
All relevant codes used are open source and available at the repository
https://github.com/goznalo-git/ClusterSynchronization.
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