Designing Exception Handling using Event-B

Asieh Salehi Fathabadi[0000-0002—0508-3066] (iolin Snook[0000—0002-0210—0983]
Thai Son Hoang!0000—-0003-4095-0732] ' Rhert Thorhurn!0000—0001-5888—7036]
Michael Butler[0000-0003—4642-5373] [onardo Aniellol0000—0003—2886—8445] ;g
Vladimiro Sassonel0000—-0002-6432-1482]

School of Electronics and Computer Science (ECS), University of Southampton, U.K.
{a .salehi-fathabadi, cfs, t.s.hoang, robert.thorburn, m.j.butler,
l.aniello, vsassone}@soton.ac.uk

Abstract. The design of exception handling is a complex task requir-
ing insight and domain expertise to ensure that potential abnormal con-
ditions are identified and a recovery process is designed to return the
system to a safe state. Formal methods can address this complexity,
by supporting the analysis of exception handling at the abstract design
stages utilising mathematical modelling and proofs.

Event-B is a state-based formal method for modelling and verifying the
consistency of discrete systems. However it lacks explicit support for
analysing the handling of exceptions. In this paper, we use UML-B state
machines to support the modelling of normal behaviour assisting the
identification and handling of exceptions. This is followed by verifica-
tion of exception handler recovery mechanisms using the built-in model
checker and provers of the Event-B tool-set.

1 Introduction

Programming languages offer exception handling for responding to detected fail-
ures. Exception handling is a complex and error prone activity, and systematic
reasoning is needed to identify and characterise exceptions. The formal analy-
sis of the exceptional control flow provides a means to validate the exception
handling design [6]. However, formal methods lack explicit support to specify
exception handling behaviour. This paper proposes an approach to systematic
reasoning about exception handling at the design level using the Event-B formal
method.

Event-B [2] is a formal method to model and verify correctness of safety/se-
curity critical systems. While exception handling can be modelled within the
existing features of Event-B toolkit, there is no explicit support for it. We use
UML-B [9] to visualise the normal expected behaviour of a system and add sup-
port for handling exceptions in safety/security systems from the design level to
the implementation. Our work is influenced by considering implementations on
capability hardware which provides hardware level protection against incorrect
memory access [11]. Capability hardware blocks unauthorised memory access
at runtime, raising hardware exceptions that should be handled by application

2 A.Salehi et al.

code. Unauthorised memory access might be caused by unintentional coding er-
rors, e.g., out of bounds array access, or malicious attacks, e.g., buffer overflow
exploitation. In principle, code that is developed formally will be free from in-
correct memory access. However, we assume the applications we develop will
operate in software environments where vulnerabilities remain, e.g., through use
of use of untrusted libraries.

We illustrate our approach using a Smart Ballot System (SBB) [1], an in-
tegral part of some modern voting systems. Earlier research work [8] presented
a correct-by-construction secure SBB system using Event-B. Our proposed ap-
proach can address the robustness of SBB model in [8].

The paper, is structured as follows. Section 2 introduces Event-B and the
SBB case study. Our proposed approach is outlined in Section 3 followed by
application of our approach in the SBB case study, Section 5 and Section 5.
Finally Section 6 concludes including summarising related works and directions
for future works.

2 Background

Event-B [2] is a refinement-based formal method for system development. The
mathematical language of Event-B is based on set theory and first order logic.
An Event-B model consists of two parts: contexts for static data and machines
for dynamic behaviour. Contexts contain carrier sets, constants, and axioms
that constrain the carrier sets and constants. Machines contain variables, in-
variant predicates that constrain the variables, and events. In Event-B, a ma-
chine corresponds to a transition system where variables represent the states and
events specify the transitions. An event comprises a guard denoting its enabling-
condition and an action describing how the variables are modified when the event
is executed.

Event-B is supported by the Rodin' tool set [3], an extensible open source
toolkit which includes facilities for modelling, verifying the consistency of models
using theorem proving and model checking techniques. In this paper we make
extensive use of the UML-B plug-in [10] extend the Rodin. UML-B [9] provides
a diagrammatic modelling notation for Event-B in the form of state machines
and class diagrams, which automatically generate the Event-B data elements.

SBB (Smart Ballot Box) [1] is to inspect a ballot paper by detecting a
barcode, decode it and evaluate if the decoded contents verifies the paper. If
the ballot is valid, then it can be cast into the storage box. Otherwise, the SBB
rejects the paper, that will be ejected. The key function of the SBB is to ensure
that only valid countable summary ballot documents that can be tabulated later
are included in ballot boxes.

! The formal modelling tools used, are available as bundled installation packages via
https://www.uml-b.org/Downloads.html.

https://www.uml-b.org/Downloads.html

Exception Handling using Event-B 3
3 Overview of approach

This section gives an outline of our suggested approach to analyse exceptions,
and their associated recovery mechanisms, during systems modelling.
To consider exceptions at the formal design level, we propose the steps below:

— Build a state-machine to model normal behaviour (without exceptions). Ex-
ternal controlled machinery can be modelled by other state-machines that
synchronise via guards and synchronised transitions. Additional (ancillary)
variables are added to model details maintained by the control system.
Safety, security and other consistency properties are expressed as state in-
variants. Typically, these are expected values of machinery and ancillary
variables in each control state.

— verify the normal-behaviour in the absence of exceptions (i.e. prove the in-
variant properties about the system).

— For each state in the state-machine, identify potential abnormal behaviour
resulting in exceptions.

— For each exception, specify a corresponding recovery state to go to when the
exception occurs in that occurrence state.

— Attempt to verify that the system invariants still hold even with abnormal
behaviour.

— When an invariant cannot be verified it may be because the recovery state
is inappropriate. For example, does not allow external machinery to return
to an appropriate state. If so, change the recovery state or introduce new
recovery states specifically to address this.

— When an invariant cannot be verified it may be because changes to ancillary
variables need to be reverted due to the aborted process. If so, add roll-back
actions to the exception handler for these specific cases.

These steps are presented through the SBB case study: Section 5 presents
the normal behaviour model of the SBB as the first step and Section 5 presents
the proposed exception handling approach within the rest of the above steps.

4 Case study: SBB normal-behaviour

Utilising UML-B, we model the SBB normal behaviour (without exceptions) as
a state-machine (Figure 1).

The normal-behaviour SBB case, presented in Figure 1, starts in the Waiting
state and, in the case of accepting the ballot, progresses through the following sequence
of states: Waiting, BarcodeReading, BarcodeProcessing, UserSelection, PrepareAccept-
ing, Accepting, Waiting. There are 2 ancilliary variables which are not shown in the
state-machine but contained in the Event-B model. These are a count of the votes
cast by the user (incremented by the transition USER_cast) and a count of the papers
accepted by the roller (incremented by the transition ROLLER _accept_paper). The
Waiting state contains two invariant properties which are expected to hold when the
SBB is in the Waiting state:

4 A.Salehi et al.

Maintenance

<4 accepted_count = cast_count

finish_mail scheduled_maintenance

@ INITIALISATION e
|Waiing | ROLLER paper_in [BarcodeReadin BR,reédmgjalls
ROLLER reject_paper < ROLLER = ROLLER_StandBy Py IesumToastoonnt BR_reading_succeeds

ROLLER_accept_paper | <>accepted_count = cast_count BarcodeProcessin
ROLLER_spoil_paper < accepted_count = cast_count
J

barcode_invalid barcode_valid

Spoiling ROLLER start_spoiling [PrepareSpoilin USER _spoil (UserSelection
i
<+ accepted_count = cast_count [+ _count = cast_count |

Acceptin ROLLER _start_accepting [—g—l,‘PrepareAcceptin USER cast

[¢ accepted_count+1 = cast,countJ [¢ accepted_count+1 = cast,countJ
[
|
|

USER_cancel| <~ accepted_count = cast_count
barcode_illegitit

Rejectin,

ROLLER start_rejecting PrepareRejectint

|4 accepted_count = cast_count | < accepted_count = cast_count

Fig. 1. State Machine, normal-behaviour SBB

— The roller should be in the state ROLLER_Standby so that it is ready to take
another paper.

— The count of votes cast by the user should be the same as the count of papers
accepted by the roller.

The invariants in the other states are needed to help the provers prove the second of
these invariants. The proofs are automatically discharged by the Rodin provers.

In order to encode the state machines in Event-B, the UML-B tools automatically
generate sets, constants and axioms in a newly generated context component. The SBB
states are an enumeration of a carrier set which is encoded via a generated partition
axiom as below. Each state (Waiting, BarcodeReading, ...), is specified as a constant
and the set of states, SBB_.STATES, are specified as an axiom using carrier sets:

@axml: partition(SBB_STATES, {Waiting}, {BarcodeReading},{BarcodeProcessing},

{UserSelection}, {Accepting}, {Spoiling}, {Rejecting}, {PrepareRejecting}, {PrepareSpoiling},
{PrepareAccepting})

The dynamic behaviour of the state machine (Figure 1), is generated as part of the
containing machine component. Each event that represents a transition, checks, within
its guards, that the current state of the SBB is the transition source state, and changes
the state to the transition target state, within its actions. For example:

event ROLLER_paper_in when @grdl: SBB =Waiting ©grd2: ROLLER =ROLLER_StandBy
then Qactl: SBB :=BarcodeReading Qact2: ROLLER :=ROLLER_Paperin end

event BR_reading_succeeds when @grdl: SBB =BarcodeReading ©@grd2: Exceptions =Normal
then Qactl: SBB :=BarcodeProcessing end

5 Case study: SBB exceptional-behaviour

We consider two types of exception; an invalid memory access which could be caused
by a security attack and a timeout when an external actor or machine does not provide
a response. These exceptions are detected by the following interrupt signals:

— SIGPROT: a memory protection exception can be generated by capability hard-
ware [11] when a pointer is used outside of its protected range (representing a
possible memory attack).

Exception Handling using Event-B 5

— SIGALARM: timeout exception can be raised when an expected response from the
environment fails to occur within a time limit.

The table below outlines these potential exceptions and their handling mechanisms
within the SBB system:

Exception Signal States Handling Rollback

Memory protec- SIGPROT BarcodeReading, reject ballot -
tion error BarcodeProcess-
ing, UserSelection

User does not en- SIGALRM UserSelection reject ballot -
ter selection
Roller jammed SIGALRM Accepting maintenance cast
count
Roller jammed SIGALRM Spoiling, Reject- maintenance -
ing

An attack on the software resulting in a SIGPROT interrupt is most likely to
occur when the barcode reading subsystem is active and the safe handling response
is to cancel and reject the ballot. When the user does not respond with a decision a
SIGALRM interrupt is generated and again the safe handling response is to cancel and
reject the ballot. It is also possible for the roller mechanism to malfunction and not
confirm its completion, resulting in a SIGALRM interrupt. However, the ballot cannot
be rejected as a response to this exception because it would involve the faulty roller.
Instead a maintenance mode is entered to allow human intervention to correct the
roller and reject the ballot. In the case where the roller was in the process of accepting
a ballot an additional rollback action is needed because the users cast decision has
already been counted but the ballot will now be rejected. To maintain consistency
(and the invariant of the waiting state), the cast count must be decremented as part
of the exception handling before the maintenance state is entered.

We extend our Event-B model to include the abnormal behaviour of exceptions
as follows: SIGNAL is a set consisting of the types of interrupting signals (SIGPROT
and SIGALRM). For each signal type, we specify a handling state that should be
entered in order to recover from each state the signal could occur in. This is a constant
partial function from SBB_STATES to SBB_STATES: A further constant function,
signalHandling, gives the Handling function to be used for each signal. The values of
these signal handling functions for the SBB are defined directly as axioms:

axm3: SIGPROT_Handling ={ axmé4: SIGALRM_Handling ={
BarcodeReading +>PrepareRejecting, UseSelection +—PrepareRejecting,
BarcodeProcessing +—PrepareRejecting, Spoiling +—Maintenance,
UseSelection +— PrepareRejecting} Accepting +—>Maintenance,

Rejecting — Maintenance}

The event exception_handler represents the occurrence of an exception:

event exception_handler any s
where Qgrdl: s €dom(signalHandling) ©grd2: SBB &dom(signalHandling(s))
then Q@actl: SBB :=signalHandling(s) (SBB) end

6 A.Salehi et al.

Since the new event changes the state of the state-machine, the tools generate
proof obligations to ensure that the state invariants concerning cast_count and ac-
cepted_count are respected. Most of these can be discharged by guiding the prover to
show that there are no cases that enter the state containing that invariant or that the
property was already true in the occurrence state. (We split the event into the two
cases of s (s=SIGPROT and s=SIGALRM) and added theorems concerning the possi-
ble values of SBB and signalHandling(s)(SBB) for that case. This enabled the proofs
to be automatically discharged). However, there remained one case (s=SIGALRM,
SBB=Accepting) that was not proved and this corresponds to the case where we need
to add a rollback of the cast_count. Hence the Event-B verification identifies any miss-
ing rollback actions and discovers the exact case where they are needed.

Other state invariants may identify inappropriate handling recovery states. For
example, initially, we specified a recovery from a SIGPROT exception occuring in
BarcodeReading directly to Waiting and imagine a transition from BarcodeReading to
Waiting), the ROLLER would be left in the state ROLLER PaperIn violating the safety
invariant. We could not prove this unsafe design (the proof obligation could not be dis-
charged) and we discovered a counter-example using the ProB model checker. Since the
Roller is an external system it cannot be easily changed like the cast_count. Changing
the recovery state from BarcodeReading to PrepareRejecting allows the ROLLER sub-
system to reject the paper before the controller returns to Waiting, thereby maintaining
a verified safe system.

6 Conclusion and future direction

This paper outlines an approach to analysing systematic exception handling and recov-
ery at a formal systems design level. The proposed approach utilises UML-B state ma-
chines augmented by systematic identification and handling of exceptions in Event-B.
We extend normal behavioural modelling and formal verification to address exceptional
behaviour and recovery responses to bring the system back to a safe state according
to system invariant properties. By considering exception handling in an abstract for-
mal model of the complete system (i.e. a closed incorporating the controller and its
environment including the controlled subsystems) we are able to verify that the chosen
recovery mechanisms do not violate any safety properties. If we were to leave this veri-
fication to an implementation level (e.g. code) it would be more difficult to provide this
level of verification since the controlled external environment would not be represented
in a format that can be analysed.

To address the exception handling mechanism in different domains, related at-
tempts have been presented before. [7] extends ERS (Event Refinement Structure)
to introduce the interrupt and retry operators in Event-B. [5] and [4] formally de-
fine BPEL (Business Process Execution Language) compensation mechanisms using
Event-B, focusing on the role of Event-B invariants during refinement. The research
work presented in this paper, elaborates the existing state machine feature and auto-
matic transformation to Event-B model to support explicit exception handling.

It is important to assure that the verified model is reflected in an implementation.
Our future aim is to generate C code to implement the application functionality and
exception handling based on signals as defined in UNIX systems. The implementation
is derivable from our UML-B/Event-B models in a straightforward methodical way
that could be mechanised with tool support.

Exception Handling using Event-B 7

Acknowledgement:

This work is supported by HD-Sec project, which was funded by the Digital Security
by Design (DSbD) Programme delivered by UKRI to support the DSbD ecosystem.

References

10.

11.

Galois and Free Fair. The BESSPIN Voting System. https://github.com/
GaloisInc/BESSPIN-Voting-System-Demonstrator-2019, accessed: 2024-02-07
Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge
University Press (2010)

Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. International journal on
software tools for technology transfer 12(6), 447-466 (2010)

Ait-Sadoune, 1., Ameur, Y.A.: Formal Modelling and Verification of Transactional
Web Service Composition: A Refinement and Proof Approach with Event-B. In:
Thalheim, B., Schewe, K., Prinz, A., Buchberger, B. (eds.) Correct Software in
Web Applications and Web Services, pp. 1-27. Texts and monographs in symbolic
computation, Springer (2015)

. Babin, G., Ameur, Y.A., Pantel, M.: Web Service Compensation at Runtime: For-

mal Modeling and Verification Using the Event-B Refinement and Proof Based
Formal Method. IEEE Trans. Serv. Comput. 10(1), 107-120 (2017)

Brito, P.H.S., de Lemos, R., Rubira, C.M.F., Martins, E.: Architecting fault toler-
ance with exception handling: Verification and validation. J. Comput. Sci. Technol.
24(2), 212-237 (2009)

Dghaym, D., Butler, M.J., Fathabadi, A.S.: Extending ERS for Modelling Dynamic
Workflows in Event-B. In: 22nd International Conference on Engineering of Com-
plex Computer Systems, ICECCS 2017, Fukuoka, Japan, November 5-8, 2017. pp.
20-29. IEEE Computer Society (2017)

Dghaym, D., Hoang, T.S., Butler, M.J., Hu, R., Aniello, L., Sassone, V.: Verify-
ing system-level security of a smart ballot box. In: Raschke, A., Méry, D. (eds.)
Rigorous State-Based Methods - 8th International Conference, ABZ 2021, Ulm,
Germany, June 9-11, 2021, Proceedings. Lecture Notes in Computer Science, vol.
12709, pp. 34-49. Springer (2021)

Snook, C.F., Butler, M.J.: UML-B: formal modeling and design aided by UML.
ACM Trans. Softw. Eng. Methodol. 15(1), 92-122 (2006)

Snook, C.F., Butler, M.J.: UML-B: A Plug-in for the Event-B Tool Set. In: Borger,
E., Butler, M.J., Bowen, J.P., Boca, P. (eds.) Abstract State Machines, B and Z,
First International Conference, ABZ 2008, London, UK, September 16-18, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5238, p. 344. Springer (2008)
Watson, R.N.M., Woodruff, J., Neumann, P.G., Moore, S.W., Anderson, J., Chis-
nall, D., Dave, N.H., Davis, B., Gudka, K., Laurie, B., Murdoch, S.J., Norton,
R.M., Roe, M., Son, S.D., Vadera, M.: CHERI: A hybrid capability-system archi-
tecture for scalable software compartmentalization. In: 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA. pp. 20-37. IEEE Computer
Society (2015)

https://github.com/GaloisInc/BESSPIN-Voting-System-Demonstrator-2019
https://github.com/GaloisInc/BESSPIN-Voting-System-Demonstrator-2019

	Designing Exception Handling using Event-B

