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Nonlinear Models for Mixture Experiments Including Process Variables

Shroug Abdullah Alzahrani

Mixture experiments are applied in a variety of fields, for example, food processing, chemical en-

gineering, and product quality improvement. All these examples have in common that they rely

on experiments that mix multiple components. In mixture experiments, the measured response is

a function not of the amount of the mixture components but their proportions. This adds a layer

of complexity to the modeling of such experiments. In some mixture experiments, the blending

properties of the mixture may be affected by the processing conditions, such as temperature and

pressure, besides the mixture components’ proportions. Such types of mixture experiments are

known as mixture-process variables experiments.

This present work is concerned with finding and assessing a class of models that flexibly fits

data from mixture experiments and mixture-process variables experiments, and with providing

guidelines for how to design mixture experiments and mixture-process variables experiments when

these models are fitted. Most models in the literature are either based on polynomials and are

therefore not very flexible, or have a large number of parameters that make the response surface

interpretation difficult to understand. The modified fractional polynomial models are a recent

class of models from the literature that are flexible and parsimonious but quite restrictive. We

contribute to mixture experiments by proposing a new class of nonlinear models, the complement

mixture fractional polynomial (CMFP) models, by making an additional transformation of the

fractional polynomial, which results in less restrictive models while retaining (and indeed exceed-

ing) the advantages of this class. Moreover, we suggest an extended form for the modified fractional

polynomial models to fit data from mixture-process variables experiments.

A further main concern of this thesis is to optimize the response by finding the optimal com-

binations of proportions of the mixture components. Therefore, we found the maximum response

by determining the corresponding proportions of the mixture components that achieved this. We

conducted a simulation study in which we evaluated the performance of the CMFP models and

compared them with different models from the literature.

An efficient design can greatly improve the analysis of an experiment. We constructed exact and

near-optimal mixture designs in constrained experimental regions for CMFP models with respect

to the D-optimal criteria. Comparisons between the obtained designs in terms of their efficiency

and robustness assessment are illustrated with several examples.
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and s = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.16 The outcome measures for all fitted models when Scheffé’s model is the true model
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Chapter 1

Introduction

1.1 Mixture Experiments

Many industrial products and scientific experiments involve mixing or blending more than one

ingredient. In such experiments, changing the proportions of components of the mixture affects

the resulting product that the experimenter is interested in measuring. These experiments are

called mixture experiments. For example, concrete in building construction consists of mixing

cement, sand, and water in certain proportions. Indeed, mixture experiments are widely applied

in almost all fields and are commonly encountered in industrial product formulations, such as

food processing, chemical engineering, and improving the quality of a product by identifying the

optimal formulation as described by Chu and Resurreccion (2004), Akalin et al. (2010), and Bello

and Vieira (2011), respectively. The measured response (the properties of interest) is a function

of the proportions of the mixture components (factor levels) instead of being a function of the

total amount of the mixture. Therefore, mixture experiments are considered an effective tool for

exploring and adjusting the effects on the response of the proportions of each component in the

mixture. Such relationships can be represented as

Measured response= f(The mixture components’ proportions)

The proportions of the components present in the mixture can be expressed by weight, fraction,

volume, etc. These proportions are subject to two basic restrictions known as natural constraints

for mixture experiments. The first one is the sum of the proportions of the mixture components is

equal to one. The second constraint is that each proportion must be greater than or equal to zero.

Often, there are lower and upper limits on component proportions as additional restrictions. To

clarify this, assume that q denotes the number of mixture components, and the proportions of the

components are represented by xr, for r = 1, . . . , q, where the two natural constraints for mixtures

1
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are as follows:

0 ≤ xr ≤ 1, r = 1, . . . , q (1.1)

and
q∑

r=1

xr = x1 + x2 + . . .+ xq = 1 (1.2)

Often, there are lower and upper limits to ingredient proportions as additional restrictions, which

can be expressed as

lr ≤ xr ≤ ur (1.3)

where lr > 0 and ur < 1, r = 1, . . . , q

In some mixture experiments, the properties of the product are affected by the processing con-

ditions, in addition to the proportions of the ingredients in the mixture. Such experiments are

known as mixture experiments with process variables. For example, baking conditions, such as

time and temperature (process variables), are important concerns in developing cake textures

besides the cake mix (proportions of the mixture components). The experimenter needs to con-

sider process variables when conducting a mixture experiment in order to find the best settings

of process variables by studying their effect on the final product. This topic has become more

prevalent in recent research, for example, in pharmaceutical development (Anderson-Cook et al.,

2004). Bello and Vieira (2011) present a case study of optimizing a chemical compound consisting

of a three-component mixture where they consider two process variables to improve rocket engine

performance.

There are many models in the literature that are used to fit data from mixture experiments, but

most of these models are either inflexible, as in the case of traditional models, or very complex,

in the case of newer models. Therefore, we develop a new class of models that balance flexibility

and complexity. These proposed models fit data from mixture experiments with restricted design

regions. We also develop the extended forms of these models to fit data from mixture-process

variables experiments as well. We evaluate this class of models in estimation situations by fitting

them to several real datasets to demonstrate their good fit and compare the performance of the

new models with other statistical models from the literature.

Often, the purpose of a mixture experiment is to find the optimal combination of the mixture

proportions where the optimal response is obtained. Therefore, we want to establish how our pro-

posed models perform in this task. We assess our models by comparing them to several common

models from the literature. In particular, a simulation study was done based on five mixture mod-

els. We consider five scenarios of the true model used to generate data. We use a small standard
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error and a realistic standard error to generate two new datasets from the true model to check if

the variability of the random error affects the performance of the models. How close the optimal

proportions values of the mixture component of each fitted model are to those obtained from the

true model is a benchmark of the models’ performance evaluation. Furthermore, it is also of inter-

est to assess the most recent models in the literature, such as the modified fractional polynomials

(Khashab, 2018) and general blending models (Brown et al., 2015), which have limited assessment.

1.2 Design of Experiments

Experimental designs are tools to plan an experiment in order to achieve particular objectives

and answer research questions as clearly and efficiently as possible. So, designing an experiment

statistically is a powerful tool to improve scientific experimentation by collecting the maximum

information from the data with the least potential waste of resources. The design and the analysis

of an experiment go hand in hand, and therefore we will not only investigate modelling strategies

for mixture experiments (with and without process variables), but will also consider how to design

such experiments.

The design of experiments is an important statistical method that has become the cornerstone

of modern scientific research in many fields. Evaluating strategies to find optimal designs for these

new models is another purpose of this work. Thus, we intend to find efficient designs for these

models. First, we find locally optimal designs and then assess their robustness with respect to

the model parameter and/or model misspecification. In our study, we construct exact designs by

using the exchange algorithm (Meyer & Nachtsheim, 1995) and optimize the continuous designs

using constrained optimization functions in R such as constrOptim, solnp, and nloptr under the

D-optimality criterion. It should be noted that optimal design search for mixture experiments is

challenging because of the non-standard experimental regions, in particular when additional con-

straints of the form 1.3 are encountered. Little attention has been paid in the literature to find

exact optimal designs. Algorithms to find exact designs directly are often based on candidate sets,

and while a large candidate set slows down the optimization, a small set may not contain points

that are close to the optimal ones. Therefore, often continuous designs are found, and then their

weights are rounded to make them exact. We evaluate the merits of each of these strategies in the

framework of mixture experiments.

In summary, our novel contributions to the literature are:
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• A new class of models to fit data from mixture and mixture process variable experiments.

• Extensive model comparisons between our proposed class of models and common models

from the literature. Here, we not only compare the models with respect to their fit to the

data (Chapter 4) but also with respect to their ability to find the optimal proportions of a

mixture (Chapter 5), which is of interest to practitioners in the area.

• In our comparisons, we also include the most recent models proposed in the literature, mod-

ified fractional polynomials and general blending models, for which only limited assessment

is available.

• Finally, we found locally D-optimal designs for our new class of models and assessed their

robustness. We further evaluated different strategies for finding exact optimal designs.

1.3 Organization of the Work

This present work is concerned with modeling mixture experiments and mixture process variables

experiments in restricted experimental regions. So, we proposed a new class of models that can

fit experimental data from mixture and mixture process variables experiments. These new models

are called complement mixture fractional polynomials models (CMFP). The CMFP models will

be evaluated and compared with other models from the literature by statistical criteria such as

Akaike Information Criterion and Bayesian Information Criterion, as will be seen in Chapter 3

and Chapter 4. A literature review of modeling mixture experiments and mixture process vari-

ables experiments will be provided in Chapter 2. In many areas of experimentation, one of the

research aims is to maximize the response by finding the optimal values of the mixture proportions.

Therefore, we did a simulation study based on five different models. The simulation setup, models

used in the simulation, and the assessment measures that are used in the simulation study will be

presented in detail in Chapter 5.

Chapter 6 is dedicated to the designs of the CMFP models. First, we search for the optimum

continuous designs of four types of CMFP models, which are first-order CMFP and second-order

CMFP models with one power parameter and two power parameters in four different scenarios of

model parameter values. Also, comparisons are made between rounded continuous designs and ex-

act designs generated from an exchange algorithm for each scenario of parameter values. Moreover,

we search for optimal design in case of mixture experiments that include a process variable. All

optimal designs we obtained and their plots, accompanied by the results of the robustness study of

the designs will be shown in Chapter 6. Chapter 7 contains our main conclusions and suggestions

for future work.



Chapter 2

Literature Review and

Background

The wide range of applications for mixture experiments in various fields makes the mixture exper-

iments an essential research area in statistics. For example, they have numerous applications in

chemical engineering, pharmaceutical fields, materials science, and food science. Although mixture

experiments were first discussed by Quenouille et al. (1953), pioneering work on experiments with

mixtures was published by Scheffé (1958), and then Scheffé (1963). This literature review provides

a comprehensive overview of models that fit data from mixture experiments and mixture-process

variables experiments, finding optimal proportions of mixture components and optimal designs of

mixture experiments if process variables are included.

2.1 Modelling of Mixture Experiments

Polynomial models introduced by Box and Wilson (1951) are regression models appropriate to

represent mixture components through their polynomial terms. Ordinary polynomial models were

applied before Scheffé’s work and were commonly used in mixture experiments, for example, Clar-

ingbold (1955) and Hackler et al. (1956). Scheffé (1958) introduced a linear regression model

called the simplex-centroid model and the extension of the simplex-centroid model, which includes

quadratic terms. Despite the availability of sophisticated models of mixture experiments in today’s

literature, Scheffé’s canonical polynomial is still widely applied to analyze mixture experiments.

Scheffé’s canonical polynomials are obtained by modifying standard polynomial models considering

the natural constraints (1.1) and (1.2) of mixture experiments as shown in more detail in Section

3.1. The canonical polynomial model contains only a small number of terms and requires few ob-

5
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servations to estimate parameters, which makes it easy to interpret the effects of the components

in mixture experiments. Nevertheless, Scheffé’s models were criticized by Quenouillé (1963) who

stated a weak point of Scheffé’s polynomials, as these models cannot incorporate the common linear

blending when one component of the mixture has an excessive portion in the mixture. Kenworty

(1963) introduced useful models for mixture data analysis, ratio models, distinct from traditional

regression models focusing on the absolute quantities of variables. These models were among the

early attempts to address the primary challenges posed by experiments involving mixtures, where

the components of the mixture sum up to one. Becker (1968, 1978) explained the creation of

alternative models that allow additive components or inactive ingredients and can determine the

effect of a specific component. In addition, he added improvements that exceeded those previously

considered by inserting terms that could describe a broader range of effects.

However, the utility of Scheffé’s polynomial has been expanded by some researchers who have

developed Scheffé’s models in several ways. For example, the inverse of Scheffé’s polynomials was

suggested by Draper and St.John (1977), while Chen et al. (1985) proposed using logarithmic terms

of such models. Moreover, other researchers presented beneficial parameterizations, such as Draper

and Pukelsheim (1998) and Cornell (2000). Even though Scheffé’s models have a good ability to

analyze data from mixture data experiments, Cox (1971) criticized the lack of the direction and

magnitude of the curvature of the response in Scheffé’s quadratic polynomial models due to the

lack of the squared terms in these models and suggested several alternative models address this

obstacle. In addition, polynomial models include various formulations proposed by Cornell (1990)

using transformations and diagnostic tools to accommodate more complex and nonlinear relation-

ships in mixture experiments. However, statistical models that are nonlinear in their parameters

have been applied to data from mixture experiments on a small scale. Such models were proposed

by Focke et al. (2007). These models are applied to a few components of mixture experiments and

assume linear blending of one or more mixture components.

Brown et al. (2015) integrated existing statistical models, which have been proposed in Scheffé

(1958), Scheffé (1963) and Becker (1968), to introduce a new class of models to analyze data from

mixture experiments, known as general blending models. Although general blending models ex-

panded the description of effects of a broader range of mixture components, these models may

make an accurate interpretation of the response surface difficult due to a considerable number of

parameters in these models.

A new class of nonlinear models proposed by Khashab (2018), based on fractional polynomial
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models, has been shown to outperform common models from the literature in many examples.

These models are simple but flexible and fit experimental data from restricted regions. How-

ever, these modified fractional polynomial (MFP) models require that all mixture proportions are

bounded away from zero, which is not always realistic in applications. Therefore, we propose

a different transformation to the fractional polynomial, which is less restrictive. This proposed

new class of models provides a good explanation for the experimental response mechanism and

fits data from mixture experiments similarly well as the MFP models, which we will demonstrate

in Chapter 4. The advantages and disadvantages that mixture experiment models offer depend

on the nature of the experimental data and the complexity of the models. Table 2.1 outlines the

widely used models for mixture experiments and an overview of their advantages and disadvantages.

Table 2.1: The most important model classes in mixture experiments

Mixture experiments
models

Advantages Disadvantages

Canonical Polynomial
Models (Scheffé, 1958)

Widely used for their simplicity
and general applicability in
mixture experiments and can be
adapted to different levels of
complexity.

Potential limitations in modeling
complex interactions.
Potentially large numbers of terms
in complex situations.

Becker Models
(Becker, 1968)

Have polynomial terms different
from Scheffé’s models to capture
certain nuances in the data.

Their applicability is limited to
specific types of problems and
potentially requires more
sophisticated statistical analysis.

Cornell Models
(Cornell, 1990)

Focused on practical applications
and use transformation techniques
to accommodate more complex
relationships.

Complexity and computational
demands for proper application
and interpretation.

Weighted Power Mean
Mixture Model
(Focke et al., 2007)

Adaptability to different types
of mixtures and accuracy in
predicting overall properties.

Requires a solid background in the
relevant chemistry and mathematics
to implement and understand.

General Blending Models
(Brown et al., 2015)

High flexibility makes them
fit a more comprehensive range
of experimental data with varying
blending behaviors well.

Implementation and interpretation
may be challenging due to their
sophisticated nature.

Modified Fractional
Polynomial Models
(Khashab, 2018)

Show a good fit for several real
datasets from mixture experiments.

Quite restrictive if some proportions
may be zero.

2.2 Modelling of Mixture-Process Variables Experiments

In some mixture experiments, the properties of the product are affected by the processing con-

ditions in addition to being affected by the proportions of the ingredients in the mixture. Such

experiments are known as mixture experiments with process variables (MPV). So, these types of

experiments aim to find the best conditions of processes simultaneously with the best blending

formulas to produce the desired result. The mixture experiment problem involving process vari-

ables was first introduced by Scheffé (1963), who fitted the mth degree polynomial to the q,m
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simplex-lattice design (see Section 2.5.1) and used a qth degree polynomial to include process vari-

ables. Subsequently, Cornell (1973) discussed including process variables and fitting the full model

form of the traditional Scheffé’s model but found that cross products between process variables

and mixture components did not provide any comprehensive measurement of the main effects and

interactions of process variables themselves. Gorman and Cornell (1982) managed this issue by

separating the effects of the process variables and the mixture components. They used a subset

selection procedure to introduce a reparametrized model form that reduced the canonical model.

Piepel and Cornell (1985) introduced a modeling approach to unrestricted and restricted mixture

amount experiments, but it was also applicable to mixture-process variable experiments involving

one process variable. They wrote the parameters of the mixture model as functions of the total

amount variable, and any mixture model form can be used as a base with the parameters of a

mixture model in it, such as Scheffé’s canonical polynomials in Scheffé (1958) or Becker’s models

in Becker (1968, 1978). Moreover, experiments with mixtures in the presence of process vari-

ables were also considered by Czitrom (1988, 1989). She used Scheffé’s quadratic models for the

expected response of mixture components run in blocks or complete replicas in different combina-

tions of process variables. Cornell (1988, 1990) suggested models that contain mixture components

and process variables where blending properties of mixture components are expressed by Scheffé’s

polynomial, while the main effects and interaction effects of process variables are defined using the

standard polynomial model. The required information determines the combined form of the model

that contains the mixture components and the process variables.

Chitra and Ekong (1993) address a three-component mixture problem related to product devel-

opment in constrained region mixture experiments when three process variables are present. A

reduced form of the six-term quadratic Scheffé’s model was used at each combination of levels of

the three process variables. However, Cornell (1995) questioned the validity of this reduced com-

bined model and suggested some general recommendations and strategies for model fitting. For

example, he suggested a sufficient number of mixture blends must be performed to support the

fitting of Scheffé’s quadratic model to model the nonlinear blending properties of monomers.

Thereafter, a study was presented by Næs et al. (1998) in experimental data with a three-component

mixture and two process variables, which provided an equation of a combined model represent-

ing the blending properties and the effects of the process variables. This model is a product of

the two separated polynomial models where the blending properties are represented by the three

components full cubic Scheffé’s model minus the three components interaction, and a 2nd-degree
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polynomial represents the effects of the process variables. Although they attempted to exclude all

unimportant terms from this combined model using specific regression analysis accompanied by

t-tests of parameter estimates, this reduced model is still very complex in nature and is not easy to

explain. However, a combined model, which is based on Taylor series approximation, was proposed

by Kowalski et al. (2000). This model provides valuable insights into the experiment under study

because the interaction between the specific mixture component and the specific process variable

can be seen directly through this proposed model.

There are different ways to combine mixture models with process variable models. To accom-

modate mixture components and process variable interactions, multiplying the mixture model and

the process variable model to produce a combined model is the method adopted by many authors,

such as Cornell (2011), who provided a combined mixture process variables model by crossing a

special cubic model in mixture components with a quadratic process variables model. In addition,

another combined model obtained by crossing a quadratic mixture model with a quadratic process

variables model has been proposed by Prescott (2004) and Måge and Næs (2005). These kinds of

combined models are called interaction Mixture Process variables models, and they usually have a

large number of terms, some of which may not be necessary.

The simplicity of the model and its validity for interpretation is an important characteristic to

consider in any model. Therefore, variable selection techniques are usually used to reduce the

terms in Mixture-Process variable models without losing their predictive power. Sahni et al.

(2009) determined the complexity of the models needed to form a combined MPV model as a first

step by fitting separate Scheffé’s quadratic models for each combination of the process variables,

and separate process variables quadratic polynomial models at each combination of the mixture

components. Then, they removed the insignificant terms from each model before multiplying them

to produce the combined mixture process variables model. Strategies for formulations develop-

ment by Snee and Hoerl (2016) provided reasonable models that significantly reduced the number

of terms required by considering hybrid models with non-linear parameters.

In this work, we used the same combining idea proposed in Kowalski et al. (2000). In this com-

bining approach, only the primary interaction between each process variable and each mixture

component is considered. Therefore, we obtained a parsimonious model that is often adequate to

fit data from mixture process variables experiments, as will be seen in Chapter 3 (the model) and

Chapter 4 (the results).
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2.3 Finding Optimal Proportions of Mixture Components

Finding the optimal proportions of mixture components in order to optimize (maximize or min-

imize) the experimental response is of great practical significance in many industries. However,

the choice of approach for finding the optimal components’ proportions of a mixture depends on

the given resources and the particular implementation. So, there is no specified method to do

it. The classical optimization technique to find the optimal proportion of mixture components is

the simplex method (Nelder & Mead, 1965) and is widely used in fields such as engineering and

chemistry. The simplex method is operated by replacing the vertex with the highest value with

another vertice point of a general simplex, searching for the minimum function value. Another

approach is a computational procedure called Monte Carlo simulation (see Fishman (1996) for a

review). Monte Carlo Simulation starts with generating a large number of random samples from

the probability distribution of each mixture component for the purpose of optimizing the mixture

components’ proportions. Then, the sample with the highest calculated response determines the

optimal proportions of the mixture components.

Moreover, Bayesian methods have been used to optimize the formation of the oil mixture in the

oil industry (Gelfand & Ghosh, 1998). These methods build on a prior distribution over the model

parameters and then use data obtained from the mixture experiments to update this distribution.

Pal and Mandal (2006) and Pal and Mandal (2008) considered finding optimal designs for esti-

mating the optimal proportion of mixture components. Thus, Pal and Mandal (2006) suggested a

pseudo-Bayesian approach, which does not assume any specific form of the prior distribution, to

estimate the optimum mixture combination, and they have assumed the response function can be

approximated by a quadratic concave function in the mixture components over the simplex region.

They minimized the expected trace of the mean square error of the estimated optimum mixture

combination to get the optimum design. However, the resulting optimum design is a non-linear

function of the unknown parameters in the response function. Pal and Mandal (2008) solve this

problem by utilizing the minimax criterion in estimating the optimal proportion of the mixture

components, in the case of only two and three components when mixing ingredients subject to

restrictions. Furthermore, Sinha et al. (2014) discussed determining optimal designs to address

the problem of determining the optimum proportions of mixture components when one of the pro-

portions is bounded above. Response Surface Methodology by Khuri and Cornell (2018) builds on

analyzing the relationship between the response variable and the independent variables to optimize

the proportions of mixture components. This optimization technique can maximize or minimize

the response by fitting a mathematical model to the response surface data, which is used to predict
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the optimal proportions of the mixture variables. This method is widely used, especially in food

science and chemistry.

The desired properties of a mixture are yielded by determining the optimal combination of the

proportions of a mixture. The common approaches that have been used to find the optimal pro-

portions of mixture components often use Scheffé’s quadratic model besides various optimization

criteria to optimize the interesting properties of a mixture. This present work uses an optimiza-

tion approach based on a simulation study to find the Maximum response in constrained mixture

experiments and mixture experiments that include process variables. The Simulation setup will

be explained in detail in Chapter 5. This approach uses five models from the literature to simu-

late data from mixture experiments, and their performances are evaluated through three selected

criteria that measure our interests.

2.4 Optimal Design of Mixture Experiments

The scientific community and the relevant research world that relies on real experiments to produce

reliable results need optimal experimental designs. Therefore, recently optimal designs have been

used to maximize the chances of success in an experiment to reach the desired results with less

resource consumption. The comparison of designs using the values of non-centrality parameters

was initiated by Wald (1943) in linear normal regression. Chernoff (1953) was interested in optimal

designs, whether in the case of the traditional fixed-sample size or sequential settings. He estimated

parameters using the novel concept of locally optimal designs and gave several novel and practical

solutions for the sequential design of experiments. Next, research on finding the optimal designs

for the experiments appeared consecutively. Kiefer (1959, 1961) explored D-optimal designs for

various problems in the setting of simplex designs of the models proposed in Scheffé (1958) and

found the {q, 2} simplex lattice design; see also Section 2.5. Box and Lucas (1959) found locally

D-optimum designs for nonlinear models arising in chemical kinetics. Thus, they select the de-

sign points by maximizing the determinant of Fisher information or by minimizing the asymptotic

formula for the generalized variance of the maximum likelihood of the parameter estimates. Fol-

lowing that, several works that had previously been done on experiments for nonlinear functions

were reviewed by Cochran (1973). Also, he stated that before finding the design points to estimate

model parameters, we should know the values of the parameters previously, which is the weakness

of locally optimal designs.

John and Draper (1975) provided a review of general findings on optimal design theory and de-
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sign criteria in the case of nonlinear models as well as the construction of D-optimal designs by

algorithms. Some significant findings on the theory of design and design criteria were reviewed

by Draper and St.John (1977) in the case of nonlinear models. The development of designs for

nonlinear models is summarized by Atkinson (1982). Also, he highlighted developments in experi-

mental designs based on previous research. Ford et al. (1989) described some design methods and

their application, such as a sequential and static design with models in nonlinear parameters. Be-

sides, in their articles, they show that a reliable design of a nonlinear model can be obtained if we

have prior information about the parameters and by using the sequential design technique. In the

nineties, Atkinson and Donev (1992) presented statistical approaches to the design of experiments

and provided primary results on the theory of optimal design with a discussion of some design

aspects and pointed out the difficulty of estimating good design structure in constrained regions.

Subsequently, constructing and optimizing designs with several constraints on experiments was

a popular topic discussed in many publications, such as Pukelsheim (1993) and Cook and Fedorov

(1995). Moreover, to search for design points that help us to estimate the parameters correctly in

non-linear models, Chaudhuri and Mykland (1993) continued to search for models with non-linear

parameters with the aim of searching for design points that help us estimate the parameters cor-

rectly. They build asymptotically D-optimal designs using their approach to select design points

sequentially. Also, optimizing various product formulations through D-optimal designs is presented

by Jones (2011) through case studies. Furthermore, Fedorov (2013) presents the essential prop-

erties of continuous optimal design for various optimality criteria. He uses statistical methods to

make a sequential experimental design by supposing an initial experimental design and the values

of the variables in the design can be chosen in the planning stages, taking into account one or more

measurements in each sequential step to find the correct model and design.

In general, the literature on experiment design has evolved significantly over time, while there

are only a few contributions that look at mixture experiments. Moreover, Cornell (1990) and Cor-

nell (2011) made significant contributions to compiling and describing previous work on mixture

experiment designs comprehensively. Brown (2014) represented a new method of building optimal

designs for mixture experiments using general blending models. These designs are robust against

model uncertainty and possess good properties with respect to the D-optimality criterion. Fur-

thermore, Atkinson (2014) solved problems by optimal experimental design methods and provides

an overview of D-optimal designs in mixture experiments over irregular design regions for several

nonlinear models, such as the exponential and Weibull models.
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Moreover, Anderson and Whitcomb (2016) provides a simplified way of response surface meth-

ods which is an advanced tool for optimizing experimental design. Optimal designs for mixture

experiments, including D-optimal designs have been discussed in this book. Montgomery (2017)

provides a comprehensive overview of the design and analysis of the experiments and also includes

discussions of D-optimal designs for mixture experiments and mixture process variables experi-

ments. Coetzer and Haines (2017) presented a new approach for creating D- and I-optimal designs

for constrained mixture experiments using Scheffé’s models as the most common models used in

designs’ generating. Khashab (2018) found the continuous optimal designs with respect to the D-

optimality criterion of modified fractional polynomial models for constrained mixture experiments.

In the present work, we encounter experimental regions with limitations and find D-optimal de-

signs using the proposed CMFP models in the case of mixture experiments and mixture-process

variables experiments, as will be seen in Chapter 6.

2.5 Mixture Designs Settings

In this section, we will briefly describe and explain the shape of experimental regions in mixture

experiments. We will also introduce the most commonly used designs in this area. The constraints

on the proportions of components define the region shape of mixture designs. So, when the compo-

nents are subject to the natural restrictions that are given in 1.1 and 1.2, there are mixture designs

known as Simplex-Lattice designs and Simplex-Centroid designs, which are particularly important

designs and are often used as standard designs as they allow efficient estimation of Scheffé’s models.

These designs can be described as follows.

2.5.1 Simplex-Lattice Design

This design was introduced by Scheffé (1958), Which allows the experimenter to search the response

surface throughout the whole design simplex. A {q,m} simplex-lattice design for an m-degree

polynomial model is to fit the response surface of blends consisting of q mixture components with

proportions xr = 0, 1
m , 2

m , · · · , 1 for r = 1, 2, · · · , q. All possible proportions combinations of

a mixture are used from the above formula. The number of points for {q,m} Simplex-Lattice

design is

 q +m− 1

m

 according to Scheffé (1958). To illustrate, a {3, 2} Simplex-Lattice

design will contains

 3 + 2− 1

2

 = 6 points, and the values of xr are 0, 1
2 , 1, for r = 1, 2, 3.

The design points are (1, 0, 0), (0, 1, 0), (0, 0, 1),
(
1
2 ,

1
2 , 0
)
,
(
0, 1

2 ,
1
2

)
,
(
1
2 , 0,

1
2

)
. Figure 2.1 shows the

simplex-shaped design region for the {3, 2} simplex-lattice design.
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Figure 2.1: Simplex-lattice design for three components

We note that in the case of no additional constraints, the design region is an equilateral triangle,

or 2-dimensional simplex, which is formed by incorporating the natural constraints. The vertices

correspond to so-called pure mixtures, which consist of only one ingredient. The edges correspond

to mixtures of two ingredients, and the interior points correspond to mixtures of all 3 ingredients.

2.5.2 Simplex-Centroid Design

Scheffé (1963) proposed this mixture design in which all design points are equally weighted mixtures

of 1 to q components. It consists of

 q

1

 permutations of pure blends: (1, 0, ..., 0),

 q

2

 permu-

tations of binary blends: ( 12 ,
1
2 , 0, ..., 0),

 q

3

 permutations of tertiary blends: ( 13 ,
1
3 ,

1
3 , 0, ..., 0),

and so on to the overall centroid ( 1q ,
1
q , ...,

1
q ) with

 q

q

 permutations. So, the number of points

in a Simplex-centroid design is 2q − 1. To illustrate, in the case of q = 3, the design points are

(1, 0, 0), (0, 1, 0), (0, 0, 1), ( 12 ,
1
2 , 0), (

1
2 , 0,

1
2 ), (0,

1
2 ,

1
2 ), and one centroid point ( 13 ,

1
3 ,

1
3 ). Thus, the

total points in the design are 23 − 1= 7 points. Figure 2.2 shows the Simplex-Centroid design in

the case of three mixture components.



Chapter 2. Literature Review and Background 15

Figure 2.2: Simplex-Centroid design for three components

We note that:

• For irregularly shaped design regions with additional constraints, these constructions may

no longer be meaningful or feasible, in particular, if the constrained design region is not a

triangle.

• Both simplex-lattice and simplex-centroid designs have been shown to be efficient for esti-

mating Scheffé’s models. However, it is not clear if they can usefully be employed to estimate

more recent models for mixture experiments.

Therefore, there is a gap in the literature, which we will address in Chapter 6.



Chapter 3

Models for MPV Experiments

The objective of performing experiments involving mixtures is to discover the relationship between

the measured response and the proportions of the mixture components. While modeling data from

mixture experiments, the natural constraints (1.1) and (1.2) must be taken into account in the

modeling process. Pioneering work on modeling the data from experiments involving mixtures was

published by Scheffé (1958) and Scheffé (1963), who introduced the so-called canonical polynomial

models. The canonical polynomial models became the recourse for most practitioners since, al-

though alternative models appeared. These models are specifically developed to handle the natural

constraints of mixture data. Let us briefly illustrate modifying standard polynomial models to in-

corporate the natural constraints. For example, to get Scheffé’s first-degree polynomial model, β0

in an ordinary first-degree polynomial, β0 +
∑q

r=1 βrxr, is replaced with β0 ×
∑q

r=1 xr using that∑q
r=1 xr = 1. Hence,

E[y] = β0 +

q∑
r=1

βrxr

= β0 × 1 +

q∑
r=1

βrxr

= β0 ×

 q∑
r=1

xr

+

q∑
r=1

βrxr as

q∑
r=1

xr = 1

=

q∑
r=1

(β0 + βr)xr

=

q∑
r=1

β∗
rxr

where β∗
r = β0 + βr, for all r = 1, 2, . . . , q.

16



Chapter 3. Models for MPV Experiments 17

The literature review of mixture experiments shows that canonical polynomial models are still

widely used in experiments with mixtures. In this chapter, first, we present the most common

models used in mixture experiments, such as the canonical polynomial models, in addition to more

recent models. Next, we motivate and propose a new class of nonlinear models known as CMFP

models. Then we introduce models that are often used to describe the effects of two or more

process variables. In the final section of this chapter, we describe methods that can be used to

incorporate process variables into mixture models.

3.1 Models for Mixture Experiments

Scheffé (1958) and Scheffé (1963) suggested canonical polynomial models traditionally used in

mixture experiments. Scheffé’s first-order polynomial model is the linear model for a q-component

mixture that has the following form:

E(y) =

q∑
r=1

βrxr (3.1)

Here, E(y) means the expectation of the response y, and it is usually assumed that the responses

are independent with mean E(y) and constant variance. Scheffé’s quadratic polynomial model is

the quadratic model for a q-component mixture and has the following form:

E(y) =

q∑
r=1

βrxr +

q−1∑
r=1

q∑
j=r+1

βrjxrxj (3.2)

The full cubic model is as follows:

E(y) =

q∑
r=1

βrxr +

q−1∑
r=1

q∑
j=r+1

βrjxrxj +

q−1∑
r=1

q∑
j=r+1

δrjxrxj (xr − xj)

+

q−2∑
r=1

q−1∑
j=r+1

q∑
k=j+1

βrjkxrxjxk

(3.3)

An alternative to the full cubic model with fewer parameters is the special cubic polynomial model,

which results from excluding the terms
∑q−1

r=1

∑q
j=r+1 δrjxrxj

(
xr − xj

)
from the full cubic model.

The full cubic and special-cubic models are popular alternatives to the quadratic models. The

special cubic polynomial model is as follows:

E(y) =

q∑
r=1

βrxr +

q−1∑
r=1

q∑
j=r+1

βrjxrxj +

q−2∑
r=1

q−1∑
j=r+1

q∑
k=j+1

βrjkxrxjxk (3.4)
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However, increasing the degree of a polynomial does not sufficiently increase its flexibility. To

continue the mixture models list that we are going through, we should mention the fractional

polynomial models proposed by Royston and Altman (1994). This is because these fractional

polynomial models have been modified by Khashab (2018) to fit data from mixture experiments.

The modified fractional polynomial models are an important class of models that we consider

in our study. Perhaps even more importantly, the new class of models we propose in this work

is also based on fractional polynomials. The first-degree fractional polynomial (FP1) and the

second-degree fractional polynomial (FP2) are written as

E(y) = β0 +

q∑
r=1

βrx
(αr)
r , (3.5)

and

E(y) = β0 +

q∑
r=1

βrx
(αr)
r +

q∑
r=1

βrrx
2(αr)
r +

q−1∑
r=1

q∑
s=r+1

βrsx
(αr)
r x(αs)

s , (3.6)

where x
(αr)
r = xαr

r when αr ̸= 0 and log (xr) otherwise.

These models have been shown to fit well in many non-mixture applications and often gave a more

reasonable interpretation than polynomial models (Gilmour & Trinca, 2005). Although these pa-

rameters can take any real values, Royston and Altman (1994) limit the values of powers α to a

set of integer and non-integer values such as
{
−3,−2,−1,− 1

2 ,−
1
3 , 0,

1
3 ,

1
2 , 1, 2, 3

}
to avoid having

vast powers in these models, whether positive or negative, and to obtain a meaningful understand-

ing of them. However, fitting the models FP1 and FP2 described in (3.5) and (3.6) to mixture

experiments is not straightforward due to the natural restrictions that should be satisfied in the

proportions of components.

Subsequently, the fractional polynomial models have been modified by Khashab (2018) to satisfy

the natural constraints on mixture components’ proportions to fit the data from mixture experi-

ments. This class of modified fractional polynomial nonlinear models (MFP) exploits similarities

of this type of data with compositional data (Atchison & Shen, 1980). The MFP1 and MFP2

models, respectively, are as follows:

E(y) = β0 +

q−1∑
r=1

βr

(
xr

xq

)(αr)

, (3.7)
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and

E(y) = β0 +

q−1∑
r=1

βr

(
xr

xq

)(αr)

+

q−1∑
r=1

βrr

(
xr

xq

)2(αr)

+

q−2∑
r=1

q−1∑
s=r+1

βrs

(
xr

xq

)(αr)
(
xs

xq

)(αs)

, (3.8)

where

x(α) =

 xα if α ̸= 0

log(x) if α = 0

The choice of denominators in the MFP models is a significant issue. Thus, the best fitting model

is chosen by their residual standard error (RSE), trying to compare every possible denominator of

xr, for r = 1, . . . , q, in turn. Khashab (2018) showed that the MFP models fit several real data

sets well when the data come from constrained mixture experiments (i.e., where all proportions

xr are bounded away from 0). Nevertheless, these models are quite restrictive if some proportions

may be zero.

Therefore, we propose a different transformation of fractional polynomials, which is less restrictive.

We call the new proposed class of nonlinear models the complement mixture fractional polynomial

(CMFP) models. In these models, for any proportion of the mixture component selected in the

numerator, the numerator’s complement is in the denominator. This makes it impossible for the

denominator to be zero unless the numerator is 1, which is unrealistic in most applications as this

would correspond to a mixture that consists of only one component. In addition, these new mod-

els may avoid a high correlation between parameter estimates due to the repetition of the same

mixture component proportion in the denominator of all model terms. These CMFP models can

be considered competitors to many recent and common models from the literature. The first and

second-order CMFP models, respectively, are as follows:

E(y) = β0 +

q−1∑
r=1

βr

(
xr

1− xr

)(αr)

, (3.9)

and

E(y) = β0 +

q−1∑
r=1

βr

(
xr

1− xr

)(αr)

+

q−1∑
r=1

βrr

(
xr

1− xr

)2(αr)

+

q−2∑
r=1

q−1∑
s=r+1

βrs

(
xr

1− xr

)(αr)
(

xs

1− xs

)(αs)

,

(3.10)

where x(α) is defined as above.

As mentioned earlier, these models have the advantage that not all xr have to be bounded away

from 0 to appear in the denominator. However, for all xr that may be 0, we still have to restrict
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the corresponding exponent αr to be positive. We also need to select which q − 1 proportions

explicitly appear in the model. Choosing this combination is based on what best fits the data

under consideration according to residual standard error (RSE).

To estimate the nonlinear parameters in the new models, we used nonlinear least squares (nls).

The function nls in R uses the values that minimize the residual sum of squares to estimate the

parameters. The main procedure for nonlinear least squares is to use a partial linear algorithm

such as the Golub-Pereyra algorithm proposed by Golub and Pereyra (1973). The algorithm seeks

to minimize the residual sum of squares as follows. If the residual sum of squares at parameter J

is smaller than the residual sum of squares at parameter J − 1, the counter J is increased by 1,

and this step is repeated. Otherwise, parameter J − 1 is taken as an estimator for the parameters

if no such improvement is possible.

3.2 Models for Process Variables

Some common models are often used to describe process variables, such as a two-factor interaction

model (Cornell, 2011). This model is as follows:

E(y) = γ0 + γ1z1 + γ2z2 + γ12z1z2 (3.11)

This form can extend to p process variables z1, z2, ..., zp, and may also contain quadratic terms.

E(y) = γ0 +

p∑
l=1

γlzl +

p−1∑
l=1

p∑
m=l+1

γlmzlzm (3.12)

3.3 Mixture Model Including Process Variables

When the experimentation process is influenced by mixture components and process variables, we

need a model that can describe both the effect of mixture components and process variables and

their relationship to the response. Therefore, we need to combine a mixture model and a process

variables model to obtain a mixture process variables model (MPV model). There are various ways

to combine a mixture model and a process variable model to consider the effects of both types

of variables simultaneously. It is not uncommon to suggest adding a process variable model to a

mixture model, supposing that the blending properties of the mixture components are not affected

by the levels of the process variables. For example, Prescott (2004) considered that the additive

model is the simplest way to combine models of mixture and process variables. Then the additive

MPV model is (Mixture model)+(Process variable model). However, the additive mixture process
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variables model is often unrealistic even though it is easy to produce.

More realistic composite models are needed to describe data from experiments with mixture pro-

cess variables. Cornell (2011) relied on another way to produce a mixture process variables model:

multiplying a mixture model by a process variable model. The interaction MPV model is (Mixture

model )∗ (Process variable model). The interaction models suppose that the levels of the process

variables affect the blending properties of the mixture and are, therefore, more realistic. However,

the number of terms in such models is much higher than in the additive MPV models. Still, the

combined models that fit data from mixture process variables experiments are traditionally created

by multiplying a mixture model and a standard linear model of process variables. Model (3.13)

is generated by multiplying model (3.2), which is Scheffé’s quadratic model, with model (3.12),

which is the process variables model. However, in such combined models, the number of coefficients

increases rapidly with the number of components in the mixture and levels of the process variables.

E(y) =

q∑
r=1

β(0)
r xr +

q−1∑
r=1

q∑
s=r+1

β
(0)
rj xrxs +

q∑
r=1

p∑
l=1

β
(1)
rl xrzl +

q−1∑
r=1

q∑
s=r+1

p∑
l=1

β
(1)
rslxrxszl

+

q∑
r=1

p−1∑
l=1

p∑
m=l+1

β
(2)
rlmxrzlzm +

q−1∑
r=1

q∑
s=r+1

p−1∑
l=1

p∑
m=l+1

β
(2)
rslmxrxszlzm

(3.13)

Thus, more parsimonious models for mixture process variable experiments are in demand. There-

fore, Kowalski et al. (2000) introduced a quadratic MPV model, which assumed that there is no

linear effect of the process variables on the nonlinear mixture component blending. This model

is more parsimonious and frequently adequate for mixture process variables experiments. Some

compromise was made between the interaction and additive models to create model (3.14). There-

fore, this model combines the general second-order polynomial in q mixture components with a

second-order model of p process variables.

E(y) =

q∑
r=1

β(0)
r xr +

q−1∑
r=1

q∑
s=r+1

β(0)
rs xrxs +

p∑
l=1

 q∑
r=1

β
(1)
rl xr

 zl +

p−1∑
l=1

p∑
m=l+1

γlmzlzm +

p∑
l=1

γllz
2
l (3.14)

The MFP models (3.7) and (3.8) are recent and strong competitors to the established mixture

models from the literature. Therefore, we expanded one of them in two ways to fit the data from

the mixture process variables experiments. The first way we used the traditional method that

was used in model (3.13). It is obtained by multiplying model (3.8) by model (3.12). Thus, the

extended form of the first MFP model is as follows:
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E(y) = β0 +

q−1∑
r=1

β(0)
r

(
xr

xq

)(αr)

+

q−1∑
r=1

β(0)
rr

(
xr

xq

)2(αr)

+

q−2∑
r=1

q−1∑
s=r+1

β(0)
rs

(
xr

xq

)(αr)
(
xs

xq

)(αs)

+

q−1∑
r=1

p∑
l=1

β
(1)
rl

(
xr

xq

)(αr)

zl +

q−1∑
r=1

p∑
l=1

β
(1)
rrl

(
xr

xq

)2(αr)

zl +

q−2∑
r=1

q−1∑
s=r+1

p∑
l=1

β
(1)
rsl

(
xr

xq

)(αr)
(
xs

xq

)(αs)

zl

+

q−1∑
r=1

p−1∑
l=1

p∑
m=l+1

β
(2)
rlm

(
xr

xq

)(αr)

zlzm +

q−1∑
r=1

p−1∑
l=1

p∑
m=l+1

β
(2)
rrlm

(
xr

xq

)2(αr)

zlzm +

q−2∑
r=1

q−1∑
s=r+1

p−1∑
l=1

p∑
m=l+1

β
(2)
rslm

(
xr

xq

)(αr)
(
xs

xq

)(αs)

zlzm

(3.15)

The second way to extend the MFP model is the method used in model (3.14). Therefore, we

added the interaction effect of each mixture component with each level of the process variables

plus the pure quadratic term of each process variable to model (3.8).

E(y) = β0 +

q−1∑
r=1

βr

(
xr

xq

)(αr)

+

q−1∑
r=1

βrr

(
xr

xq

)2(αr)

+

q−2∑
r=1

q−1∑
s=r+1

βrs

(
xr

xq

)(αr)
(
xs

xq

)(αs)

+

q−1∑
r=1

p∑
l=1

β
(1)
rl

(
xr

xq

)(αr)

zl +

p∑
l=1

γllz
2
l

(3.16)

Likewise, the same two ways that are used to expand the MFP models to fit data from mixture

process variable experiments are applied to the CMFP models. The extended forms of (3.10) model

that incorporate process variables are as follows:

E(y) = β0 +

q−1∑
r=1

β(0)
r

(
xr

1− xr

)(αr)

+

q−1∑
r=1

β(0)
rr

(
xr

1− xr

)2(αr)

+

q−2∑
r=1

q−1∑
s=r+1

β(0)
rs

(
xr

1− xr

)(αr)

(
xs

1− xs

)(αs)

+

q−1∑
r=1
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(3.17)

and

E(y) = β0 +

q−1∑
r=1

βr

(
xr

1− xr
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+
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βrr
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γllz
2
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(3.18)
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Model (3.18) includes CMFP model terms plus the interaction terms for each mixture compo-

nent with each process variable and the pure quadratic term of each process variable. Model (3.17)

and model (3.18) are flexible and comprehensive models because any term can be kept or deleted

depending on the data under study. As will be seen in the next chapter, we will fit MPV models

from model (3.13) to model (3.18) to several real empirical datasets to compare and evaluate their

performance.

All competing models that fit data of mixture process variables experiments consist of the mixture

model terms besides interaction terms between mixture components and process variables. The

extended form of Scheffé’s quadratic model (3.13) has terms of all possible interactions between

mixture components and process variables. Model (3.14) consists of terms of Scheffé’s quadratic

model, which represent the mixture components, and has interaction terms of mixture components

with each level of the individual process variables besides the terms that represent the process

variables only. We use the same way to consider the interaction between mixture components and

process variables in (3.13) and (3.14) models to extend MFP and CMFP models. Model (3.15)

and model (3.17) have the second-order of MFP and CMFP models, respectively, and used the

same traditional way that was used in model (3.13). Also, Model (3.16) and model (3.18) have

the second-order of MFP and CMFP models, respectively, and used the same way that was used

in model (3.14). For convenience, the models (3.13) to (3.18) are summarised in Table 3.1 below.

Table 3.1: Summary of models

Model name Model type/combination

Model (3.13) Scheffé’s quadratic/Full interaction MPV (Traditional)

Model (3.14) Scheffé’s quadratic/Individual main interaction MPV (Kowalski)

Model (3.15) 2nd order MFP/Traditional

Model (3.16) 2nd order MFP/Kowalski

Model (3.17) 2nd order CMFP/Traditional

Model (3.18) 2nd order CMFP/Kowalski



Chapter 4

Estimation in MPV Experiments

As estimation is the main objective of this chapter, we use several statistical criteria to assess the

quality of models to fit a dataset. In this chapter, we will first introduce criteria commonly used

in model selection to compare CMFP models with other competing models from the literature.

In particular, we will consider residual standard error, Akaike information criterion, and Bayesian

information criterion. Then, we will look at the performance of the models under comparison

when fitted to datasets from mixture process variables experiments in four examples. Moreover,

the contour plots of response surfaces are used for further comparison between the competing MPV

models.

4.1 Statistical Criteria for Model Comparison

We use the residual standard error (RSE) to assess the quality of an estimator to obtain an accurate

estimate of the model parameters (see, e.g., Baty and Delignette-Muller (2004) and Khudri and

Sadia (2013)). RSE is calculated from the data to measure the discrepancy between the fitted

model predictions and the observed data, and it can be expressed as

RSE =

√√√√ n∑
e=1

(ye − ŷe)2/df

where n is the sample size, y is the observed value, ŷ is the predicted value, and df is the degrees

of freedom which is calculated by subtracting the total number of model parameters from the total

number of observations. Thus, the model that provides the best fit to a dataset is the one with

the smallest RSE. In addition, we use further statistical criteria such as the Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC) to make more significant comparisons

24
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between competing models. The AIC and BIC are common model selection criteria that balance

parsimony with a good fit; see, for example, Schwarz (1978) and Tong (2010). AIC is defined as

AIC = 2k − 2ℓ

where k is the number of parameters in the model, and ℓ is the natural logarithm of the likelihood

of the fitted model (the likelihood of a model is usually determined automatically by statistical

software). BIC can be calculated with the following mathematical equation

BIC = k log(n)− 2ℓ

A minimum value of these criteria is desired and indicates the optimum model that best fits the

experimental data because it means the model is closer to the truth while also not being unneces-

sarily complicated.

In addition to using these criteria for comparing the different models introduced in Chapter 3,

we also used them to remove insignificant terms from the models. To illustrate the process of

selecting the best-fit model for each dataset under study, we demonstrate this process using the

CMFP model as an example. To select the best-fit CMFP models for a dataset, we fitted both

models (3.17) and (3.18), which include all terms, to the dataset. Then, one of these two models

is selected according to the statistical criteria that we are considering here. After that, each

term in the selected model is removed individually, and the statistical criteria are checked. If the

statistical criteria are improved by removing this term, then this term is deemed insignificant, and

it is removed from the model. Otherwise, we return this term back to the model and try to check

the removal of another term. This process continues until the model only contains the significant

terms.

4.2 Example 1: Estimate a Mixture Experiment with a 2-

Level Process Variable

The opacity of a printable coating material used for tags and identification labels was studied

by Chau and Kelley (1993). In this formulation, there were three mixture components: two pig-

ments, x1 and x2, and a polymeric binder x3. The constraints on the component proportions were

0.13 ≤ x1 ≤ 0.45, 0.21 ≤ x2 ≤ 0.67, 0.20 ≤ x3 ≤ 0.34. The response of interest was the opacity of

the coating influenced by the two levels (low = −1 and high = +1) of the thickness of the coating
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(a process variable) besides the mixture of the three components. The opacity of printable coating

material, with two levels of the thickness of the coating, was investigated, and the data of the

experiment are given in Table 8.1. The original experiment was designed using the D-optimality

criterion (which will be introduced in Chapter 6), and polynomial models were fitted to the data

to approximate coating properties.

Model (3.18) showed the best results compared to the other models according to RSE, AIC, and

BIC criteria. Moreover, in terms of the complexity of the models, the number of parameters is

small in the models (3.18) and (3.16), which makes them simpler than the other models under

comparison, which is an extra advantage. Model (3.13) has the largest number of parameters (12)

as expected, followed by model (3.14) with ten parameters, while model (3.18) and model (3.16)

have the same number of parameters (7 parameters), which is the fewest among the competing

models. The results are as in Table 4.1:

Table 4.1: Summary Statistics for competing models

Models RSE AIC BIC
Model (3.13) 0.0148 -93.11 -83.32
Model (3.14) 0.0143 -94.28 -85.38
Model (3.16) 0.0135 -96.73 -89.61
Model (3.18) 0.0129 −98.35 −91.22

According to criteria RSE, AIC, and BIC, model (3.18) best fits the experimental dataset of the first

example among all other competing models. It has the following form after removing insignificant

terms:

ŷ = 0.846− 0.034

(
x1

1− x1

)( −0.52)

+ 0.059

(
x2

1− x2

)( −0.35)

+ 0.027

(
x1

1− x1

)( −0.52)

z + 0.037

(
x2

1− x2

)( −0.35)

z

The contour plots of the response surface are provided for the models that differ from CMFP mod-

els the most, as shown in Figure 4.1. The models (3.13), (3.14), and (3.18) are shown respectively

at both coating thickness levels z = −1 and z = 1. By looking at the contour plots of the response

surface of model (3.13), model (3.14), and model (3.18), the surface of each model clearly differs.

At the lower level of the process variable, z = −1, the fitted surfaces seem to be generally lower

than at the higher level, z = 1. However, we can clearly see the differences between the models,

for example, when we consider the value of the estimated maximum response in the experimental

region for each model. The same values of cuts are used for all models under comparison, whether

the value of z is −1 or 1.
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The left side of Figure 4.1 represents the surface plots of the models when z = 1. In this sta-

tus, both model (3.13) and model (3.18) can reach their maximum responses at 0.99 or above,

while the maximum point that model (3.14) can reach is between 0.90 and 0.99. At the low level

of the process variables, which the right side of Figure 4.1 shows, the contour plot of the surface

shows more colors for model (3.13). In this case, model (3.13) can again reach a maximum of more

than 0.99, as in the case of the high level of the process variable. However, the maximum response

that model (3.14) reaches is between 0.80 and 0.85, which is less than its maximum in the high

level of the process variable. Model (3.18) also has its maximum value (within the experimental

region) between 0.8 and 0.85.



Chapter 4. Estimation in MPV Experiments 28

Figure 4.1: The contour plots of the response surface of models (3.13), (3.14), and (3.18), respec-
tively, at both levels of the process variable
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4.3 Example 2: Estimate a Mixture Experiment with a 3-

Level Process Variable

A further mixture process variable experiment, this time with three levels of coating thickness, was

conducted by Chau and Kelley (1993) as well. The response of interest was influenced by changing

the selected level of coating thickness, where the levels of this process variable z are 10, 19, and

28, corresponding to 0, 1, and 2, respectively. The components of the mixture have the following

constraints on their proportions: 0.13 ≤ x1 ≤ 0.45, 0.21 ≤ x2 ≤ 0.67, 0.20 ≤ x3 ≤ 0.34. The

experimental data of the opacity of printable coating material with three coating thickness levels

are given in Table 8.2. When the competing models of mixture process variables were applied to

the second experimental dataset, model (3.18) was shown to be the best fit for this data among

all other competing models according to the RSE, AIC, and BIC criteria. The results are given in

Table 4.2.

Table 4.2: Summary Statistics for competing models

Models RSE AIC BIC
Model (3.13) 0.0157 -116.66 -103.03
Model (3.14) 0.0134 -124.31 -111.82
Model (3.16) 0.0137 -124.05 -113.83
Model (3.18) 0.0130 −126.26 −116.04

Regarding the complexity of the models, model (3.13) has the largest number of parameters (12)

followed by model (3.14) with ten parameters. While both models (3.16) and (3.18) have 8 pa-

rameters. However, the comparison criteria show that the model (3.18) is the best fit to this

experimental data among all other competing models and has the following form:

ŷ = 0.874− 0.061

(
x1

1− x1

)( −0.6)

− 0.005

(
x2

1− x2

)( −0.6)

+ 0.007

(
x1

1− x1

)( −0.6) (
x2

1− x2

)( −0.6)

+0.021

(
x1

1− x1

)( −0.6)

z + 0.017

(
x2

1− x2

)( −0.6)

z + 0.014(z)2

The contour plots of the response surface of the models (3.13), (3.14), and (3.18) are shown in

Figure 4.2 from top to bottom, respectively, at the three levels of the process variable. The surface

contours of each model are distinctly different, even for the same level of the process variable.

Model (3.13) generally seems to have higher fitted values, whereas model (3.14) and model (3.18)

show similar values within the experimental region.
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Figure 4.2: The contour plots of the response surface of models (3.13), (3.14), and (3.18), respec-
tively, in all levels of z
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4.4 Example 3: Estimate a Mixture Experiment with Two

Process Variables

Steiner et al. (2007) described an experiment aiming to find a good mixture of water, soap, and

glycerin for making a homemade bubble solution. Students conducted this experiment to find

an optimal mixture of these three mixture components. Realistic constraints considered in their

project were time and cost based on recipes in children’s books, leading to the following constraints

on the proportions: 0.04 ≤ x1 ≤ 0.35, 0.60 ≤ x2 ≤ 0.98, 0.03 ≤ x3 ≤ 0.15. To analyse the data,

they extended the quadratic model (Cornell, 1990) by adding the process variables combinations,

then reduced the quadratic model by removing insignificant terms. The original design of this

experiment was constructed to be distance-based (not model dependent). That means the design

points were spread uniformly over the feasible region (Johnson et al., 1990). The response of

interest was the number of bubbles, and the attribute was the average number of bubbles across

all conditions in the population. Soap type and water type were also included in the experiment.

Each of these process variables has two levels, which were z1: brand of soap (Joy = −1, Ivory

= +1) and z2: type of water (spring water = −1, tap water = +1). The dataset of the experiment

is given in Table 8.3. Since we only fit one extended form of MFP and CMFP models to each

dataset under study, we chose models (3.15) and (3.17), which fitted the data better than models

(3.16) and models (3.18) in the case of two process variables. Model (3.17) showed the best results

among all other models. The results are as in Table 4.3.

Table 4.3: Summary Statistics for competing models

Models RSE AIC BIC
Model (3.13) 1.349 134.14 173.73
Model (3.14) 1.867 159.39 183.14
Model (3.15) 1.594 148.77 178.86
Model (3.17) 1.095 121.74 151.82

More process variables and mixture components will produce a higher number of model parameters.

Model (3.13) has 24 parameters, the biggest number of parameters. Also, models (3.17) and (3.15)

both have 16 parameters, while model (3.14) has 15 parameters, which is the smallest number of

parameters. According to residual standard error in addition to the AIC and BIC criteria, model

(3.17) is the best among all other competing models. In the case of the experiment affected by

two process variables, we consider four statuses of levels combinations of the process variables, as

shown in Figure 4.3. Model (3.13) has a distinct surface at each status of level combinations. Here,

we are plotting only a subregion of the regular simplex to show the (relatively small) experimental

region more clearly.
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Figure 4.3: The contour plots of the response surface of models (3.13), (3.14), and (3.17), respec-
tively, in all combinations of levels of the two process variables, z1 and z2
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4.5 Example 4: Estimate a Mixture Experiment with a 3-

Level Process Variable

Hare (1979) designed an experimental study using three mixture variables: water (x1), oil (x2),

and emulsifier (x3) to determine the effectiveness of the unsaturated fatty acid esters of corn oil.

The following constraints were considered:

0.430 ≤ x1 ≤ 0.645, 0.350 ≤ x2 ≤ 0.550, 0.005 ≤ x3 ≤ 0.020

The oil separation ratio of water a week after storage at room temperature was the response of

interest in this experiment, which was also influenced by the agitation time in minutes as a three-

level process variable (z = 2, 3, and 4, corresponding to 0, 1, and 2, respectively). They performed a

similar transformation to that of Thompson and Myers (1968) (mixture components transformed

to pseudo-components) for quadratic Scheffé’s model for the combined mixture-process variable

exploration. To collect the data, a three-level factorial design was used in the process and mixture-

related variables. The experimental dataset of this example is given in Table 8.4, and the results

when the competing models of mixture process variables were applied to this experimental data

set are given in Table 4.4:

Table 4.4: Summary Statistics for competing models

Models RSE AIC BIC
Model (3.13) 1.258 99.16 116.00
Model (3.14) 1.057 89.13 103.38
Model (3.16) 1.097 89.51 99.88
Model (3.18) 0.969 82.86 93.22

In the case of this example that is affected by three mixture components besides a three-level

process variable, model (3.13) has the biggest number of parameters, 12. There are 10 parameters

in the model (3.14), while models (3.16) and (3.18) have the smallest number of parameters, i.e.7.

According to the residual standard error in addition to AIC and BIC, model (3.18) is the best

among all other competing models and has the following form:

ŷ = −23.21− 13.55

(
x3

1− x3

)( −0.15)

− 0.00008

(
x2

1− x2

)( 48.11)

z + 1.39

(
x3

1− x3

)( −0.15)

z − 0.93(z)2

Figure 4.4 illustrates the surface plots of the response of model (3.13), model (3.14), and model

(3.18) from top to bottom, respectively, at all levels of the process variable z = 0, z = 1, and z = 2.

However, the surface plot of the models in this example is challenging because the constrained

region of this experiment is too small.
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Figure 4.4: The contour plots of the response surface of models (3.13), (3.14), and (3.18), respec-
tively, at all levels of the process variable
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4.6 Summary

According to the statistical criteria RSE, AIC, and BIC, the extended forms of the CMFP models

that incorporate process variables perform best in all 4 examples. Model (3.17) provides the best fit

for the datasets when the experimental datasets are affected by two process variables in addition to

the proportions of the mixture components, as shown in Example 4.4. Moreover, in cases of a three-

level process variable experiment, as in Examples 4.3 and 4.5, model (3.18) fits the experimental

dataset better than any of the other competing models. When looking at the surface plots, we

noticed that these could look quite different, even for models that provide a similar overall fit.

For example, the value and the positions of local and global maxima/minima in the fitted surfaces

can be quite different. As we don’t know where exactly the extrema are in these real datasets, we

will use simulated data, which are based on real datasets to make them realistic, in the following

chapter.



Chapter 5

Optimal Proportions of Mixture

Components

A statistical model is a mathematical equation that describes the relationship between explanatory

variables and one or more response variables. In mixture experiments, the explanatory variables

are the proportions of the mixture components and potentially one or more process variables, and

the response is a function of these explanatory variables. There are various purposes for defining

mixture models. One of them is to estimate the optimal proportions of mixture components to

optimize the measured response. In this chapter, we assess our proposed CMFPmodels with respect

to finding the optimal proportions of mixture components. This is done through a simulation study

that generates simulated data based on four real datasets using five different models. The datasets

we generated simulate mixture experiments and mixture-process variables experiments. First, we

will introduce the models that are used in the simulation study. Then, we will demonstrate the

whole process of this simulation study, including the outcome measures that have been used to

evaluate the models under study.

36
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5.1 Motivation

Often, an experimenter needs to determine the optimal combination of mixture proportions in order

to optimize the experimental response, as optimization (maximization or minimization) problems

appear in many areas of mixture experiments. Many research studies have been devoted to exper-

imental optimization, such as Li et al. (2021). For example, cement-based materials are prepared

using different types and proportions of individual ingredients. These mixture proportions play

a significant role in performing the fresh and hardened state, such as fluidity, development of

strength, and durability. Therefore, finding the maximum response and determining the propor-

tions of the mixture components that achieved this maximization is one of the main objectives

of this chapter. In particular, we want to compare standard models from the literature used in

mixture experiments with the CMFP models in optimization situations.

5.2 Methodology of Finding Optimal Mixture Proportions

5.2.1 Models Used in the Simulation Study

This study is based on simulated data from five models, which can represent data from mixture

experiments. So, we considered Scheffé’s quadratic model, MFP model, and CMFP model, which

are model (3.2), model (3.8), and model (3.10) in Section 3.1. They are shown again for convenience.

Scheffé’s quadratic model:

E(y) =

q∑
r=1

βrxr +

q−1∑
r=1

q∑
j=r+1

βrjxrxj

MFP model:

E(y) = β0 +

q−1∑
r=1

βr

(
xr

xq

)(αr)

+

q−1∑
r=1

βrr

(
xr

xq

)2(αr)

+

q−2∑
r=1

q−1∑
s=r+1

βrs

(
xr

xq

)(αr)
(
xs

xq

)(αs)

CMFP model:

E(y) = β0 +

q−1∑
r=1

βr

(
xr

1− xr

)(αr)

+

q−1∑
r=1

βrr

(
xr

1− xr

)2(αr)

+

q−2∑
r=1

q−1∑
s=r+1

βrs

(
xr

1− xr

)(αr)
(

xs

1− xs

)(αs)

,
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where

x(α) =


xα if α ̸= 0

log(x) if α = 0

In addition, we consider two additional classes of models from the literature. One of these is a

flexible class of models called General Blending Models (GBM) proposed by Brown et al. (2015).

The second-order GBM:

E(y) =

q∑
r=1

βrxr +

q−1∑
r=1

q∑
s=r+1

βrs

(
xr

xr + xs

)vrs
(

xs

xr + xs

)vsr

(xr + xs)
wrs , (5.1)

where each vrs and vsr should be chosen from the values [0.5, 1, 1.5, 2, 2.5, 3], while wrs should

be chosen from the values [0, 1, 2, 3].

Besides, we used the second-order Ratio model suggested by Cornell (1990). The second-order

Ratio model can be represented as follows.

E(y) = β0 +

q−1∑
r=1

βr

(
xr

xq

)
+

q−1∑
r=1

βrr

(
xr

xq

)2

+

q−2∑
r=1

q−1∑
s=r+1

βrs

(
xr

xq

)(
xs

xq

)
, (5.2)

where the proportion xq that has the smallest range is usually chosen for the denominator.

In addition, the expanded form of each competing model was also used in this study to simulate data

from mixture-process variable experiments. The extended forms of the MFP and CMFP models are

introduced in Section 3.3 as model (3.16) and model (3.18), respectively, which are used in mixture-

process variable experiments that include one process variable, whereas models (3.15) and (3.17)

are used in experiments that are affected by two process variables. Applying the mixture-process

variable models in Chapter 4, in which we conducted the study on four different experimental

datasets, provided us with a predictive viewpoint, enabling us to select the appropriate model for

each experimental dataset.

5.2.2 Simulation Setup

• For each experimental dataset under consideration, we chose a ‘true model’ for the simulation

process based on a real dataset. Each competing model was fitted to the experimental dataset

with different scenarios to decide which form and terms would be in the true model. To
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illustrate the step of the choice of the true model, all different forms of each model under

consideration were fitted to the experimental dataset, and the model’s form with the smallest

residual standard error (RSE) will be chosen.

• This true model with chosen values of parameters was used to create two new datasets. These

new datasets were generated by adding errors from a normal distribution to the true model.

Here, we wanted to check if the variability of the random error affects the performance of the

models. Therefore, we use a small standard error and a realistic standard error to generate

the new datasets. The normal distribution with a mean of zero and a standard deviation

equal to 0.5 was used to generate data in the first simulation. Next, generate the second

datasets by adding errors generated from a normal distribution with a mean of zero and a

standard deviation equal to RSE obtained in the previous step when the true model is fitted

to the real experimental dataset.

• All different forms of each competitor model were fitted to these two new datasets that have

been created. For example, to select an appropriate Ratio model, we tried to fit each xr,

for r = 1, . . . , q in the denominator to determine the best value of xr in the denominator.

Likewise, for MFP and CMFP models, we need to select the model form that has the best fit

depending on the status of exponents (for instance, the same exponent or different exponents).

Also, try different combinations of mixture proportions (x1, x2, ....., xq) to determine which

form of the CMFP model is the best. To select an appropriate GBM model, we need to

compare all possible model forms that can be obtained by trying different exponent values

for each model term and so on.

• Next, we search for the maximum value from the true model (TM) and corresponding values

of x1, x2, ....., xq (where the TM is obtained). Thus, optimization in R is needed to find TM.

The solnp function solves nonlinear optimization problems with both equality and inequality

constraints by providing sequential quadratic programming (SQP) algorithms, which is an

iterative method combining ideas from quadratic programming and Newton’s method.

• We fitted the chosen form of each competing model to the datasets generated by the simu-

lation process using the true model and found the optimum values of x1, x2, ....., xq (where
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the maximum is reached). Then, we enter the optimal values of the component proportions

we just got into the true model to obtain the estimated maximum (EM).

• We repeated this step 10,000 times in each standard error case for each true model scenario

(there are five scenarios in this study). So, we have 10,000 values of EM and optimal propor-

tions for each model we want to compare. This allows us to produce three different outcome

measures to evaluate the performance of the five competing models. Determining the optimal

proportions’ values of the mixture components (where the maximum is attained) for each

fitted model close to the optimal proportions’ values obtained from the true model (which is

used to simulate data) is our main concern. Therefore, three different methods were used to

assess the proportions of the mixture components that resulted from each competing model.

Suppose x1, . . . , xq are the optimal proportions of the mixture components obtained from

the true model, f , and x̂1, . . . , x̂q are the optimal proportions of the mixture components

obtained from another model (not the true model). Then

TM = f(x1, . . . , xq)

and

EM = f(x̂1, . . . , x̂q)

We considered two ways to make a comparison using the values of TM and EM. One way is

by finding the average difference (AD) between TM and EM. This difference measures how

much (in terms of the maximum response) we are losing if we recommend optimal x values

from a possibly incorrect model. The following formula can express it

AD = Mean[TM − EM ]

Figure 5.1 illustrates the meaning of true maximum and estimated maximum and magnitude

of the term AD as the average of the difference between TM and EM .
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Figure 5.1: The difference between TM and EM

Another way for comparison could be a standardized measure which can be produced by

dividing the average of EM by TM. Such a measure can be viewed as some form of efficiency

of a model for finding the maximum response, and we denote it by EFF. Its formula can be

expressed as follows:

EFF = Mean[EM ]/TM

In addition, we find the mean of the optimal x-values for each model in every single replay

of the last step of the simulation study on average as a further measure of outcome. We

will denote these averages of the estimated optimal proportions by Mean[x1], Mean[x2], . . . ,

Mean[xq].

5.3 Optimal Mixture Proportions for a 3-Component Ex-

periment

Our approach will first be illustrated using the chick-feeding experiment example. Cornell (1990)

provided experimental data which involved three mixture components with restricted propor-

tions. Restrictions on the proportions of the components of the mixture are 0.05 ≤ x1 ≤ 0.40,
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0.02 ≤ x2 ≤ 0.89, 0.06 ≤ x3 ≤ 0.86. The data were on thirty groups, all of similar weight and size.

Chicks in the experiment were fed for ten days, three times a day. These chicks were fed refined

diets of fats, proteins, and carbohydrates as energy supplements. The weight y was measured for

all chicks at the end of this time. The data from the chick feeding experiment are listed in Table

8.5. Five different true models (CMFP model, Ratio Model, General Blending Model, Scheffé’s

Second-Degree Model, and Modified Fractional Polynomial Model) were used to simulate the data

of this experimental dataset. The Ratio model when the denominator is x1 (the component with

the smallest range), was the first chosen true model that simulated data of the chick feeding exper-

iment. We found the optimal proportions of the mixture component values for each fitted model

at each simulation replay.

To make the comparison, all five competing models were fitted to the two datasets generated

by the true Ratio model where the standard deviation of the random error is equal to 0.5 and

8.924. The optimum proportions values for x1, x2, and x3 (where the maximum is attained for

the true model) are 0.4, 0.54, and 0.06, respectively. Table 5.1 shows the outcome measures for all

fitted models when the Ratio model is the true model and s = 0.5.

Table 5.1: The outcome measures for all fitted models when the Ratio model is the true model
and s = 0.5

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 2.014098 0.98821 0.39996 0.23977 0.36016
MFP 0.015099 0.99990 0.39996 0.53994 0.05999
CMFP 0.015099 0.99990 0.39996 0.53994 0.05999
GBM 1.014998 0.99114 0.39996 0.31246 0.28747
Ratio 0.015099 0.99990 0.39996 0.53994 0.05999

According to the first outcome measure, the MFP and CMFP models produce the optimum pro-

portions of the mixture component values identical to that resulting from the Ratio model (AD

close to zero) and the same as for the Ratio model. The desired result that we want to achieve

is determining the model form that has been used to simulate datasets under study. Because of

that, we try every possible form of each model. Consequently, the MFP and CMFP models that

were fitted to these datasets have no squared terms and have a single exponential value. The MFP

model has denominator x1, and the chosen combination of the fitted CMFP model was x2 and x3
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in this scenario. At the same time, Scheffé’s model produces the worst estimated maximum among

all the competing models according to the AD measure.

For the second outcome measure, the closer to 1, the better the model finds the maximum. So

again, it is evident that the MFP and CMFP models achieved the best result in this outcome

measure. Moreover, the last three columns in this table show the mean of the optimal mixture

proportions we get in each replay of the simulation as a third outcome measure. Scheffé’s and

GBM models cannot get the correct values of the mixture proportions (same as those from the

true ratio model). In contrast, the MFP model and CMFP model can find the correct values

of optimal mixture proportions. Likewise, we fitted all five competing models to 10,000 datasets

where the standard deviation of the random error is equal to 8.924. Table 5.2 shows the outcome

measures for all fitted models when s = 8.924.

Table 5.2: The outcome measures for all fitted models when the Ratio model is the true model
and s = 8.924

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 1.97591 0.98747 0.39832 0.25689 0.34469
MFP 0.17849 0.99878 0.39996 0.51207 0.08787
CMFP 0.25076 0.99832 0.39996 0.50079 0.09915
GBM 1.43366 0.99088 0.39996 0.30671 0.29323
Ratio 0.28190 0.99813 0.39996 0.49566 0.10428

The same five competing models we fitted to the previous datasets were also fitted to these sim-

ulated datasets. As a result of simulating larger standard errors, the first and second outcome

measures get worse than the outcome measures of the previous scenario (when s = 0.5) for the

MFP, CMFP, and Ratio models. However, there is no significant change in the outcome measures

of Scheffé’s and GBM models. Almost all models can get the correct x1 proportion. But again,

Scheffé’s and GBM models cannot get the correct proportion values for x2 and x3.

Scheffé’s quadratic polynomial model was the second true model from which we simulated data

of the chick feeding experiment. To make the comparison, all five competing models were fitted

to 10,000 versions of two datasets generated from Scheffé’s quadratic polynomial model where the

standard deviation of the random error is equal to 0.5 and 7.135. The optimum values of the pro-
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portions for x1, x2, and x3 are 0.40, 0.29, 0.30 respectively. Table 5.3 shows the outcome measures

for all fitted models when Scheffé’s model is the true model and s = 0.5.

Table 5.3: The outcome measures for all fitted models when Scheffé’s model is the true model and
s = 0.5

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 0.02126 0.99977 0.39996 0.30283 0.29711
MFP 2.79045 0.98285 0.39996 0.47495 0.12499
CMFP 3.91567 0.97597 0.39996 0.50745 0.09249
GBM 0.02464 0.99975 0.39996 0.29582 0.30412
Ratio 2.96295 0.98179 0.39996 0.11749 0.48245

According to the first and second outcome measures, the GBM model produces the best values of

the mixture proportions among all the other models, whilst the CMFP model produces the worst

values of the mixture proportions among all the other models. The MFP models used here have

denominator x3 and have no squared terms and a single exponential value. The CMFP models

have no interaction terms, and the terms are based on proportions x2 and x3. The Ratio model

with a denominator x2 was chosen to fit the generated datasets. All models can find the right

optimal proportions of x1. However, only the GBM model can get the right optimal proportions of

x2 and x3. Likewise, we fitted all five competing models to the second generated 10,000 datasets.

Table 5.4 shows the outcome measures for all fitted models when s = 7.135.

Table 5.4: The outcome measures for all fitted models when Scheffé’s model is the true model and
s = 7.135

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 0.63014 0.99605 0.39993 0.29816 0.30182
MFP 3.72495 0.97713 0.39996 0.36054 0.23940
CMFP 3.91567 0.97597 0.39996 0.50745 0.09249
GBM 0.93056 0.99421 0.39712 0.28959 0.31318
Ratio 3.20968 0.98028 0.39996 0.11056 0.48938

The outcome measures are slightly different from the previous outcome measures (a little worse)

for all models except the CMFP model, which remains stable.

The GBM model was the third true model that we used to simulate the chick feeding experiment

data. To make the comparison, all five competing models were fitted to the datasets generated from
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the GBM model, where the standard deviation of the random error is equal to 0.5 and 6.688. The

optimum values for x1, x2, and x3 are 0.40, 0.34, 0.26 respectively. Table 5.5 shows the outcome

measures for all fitted models when the GBM model is the true model and s = 0.5.

Table 5.5: The outcome measures for all fitted models when the GBM model is the true model
and s = 0.5

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 1.46280 0.99294 0.39996 0.37746 0.22248
MFP 11.8424 0.94364 0.39996 0.40996 0.18998
CMFP 1.46281 0.99294 0.39996 0.37746 0.22248
GBM 0.04714 0.99968 0.39996 0.34497 0.25497
Ratio 24.3061 0.88422 0.39996 0.50745 0.09249

Scheffé’s and CMFP models produce the best values of the mixture proportion according to the first

and second outcome measures, whilst the Ratio model outputs the worst outcome measures. The

MFP and CMFP models that were fitted to these datasets are full models (all terms are included),

and both have a single exponential value. The MFP and Ratio models with a denominator x3 were

fitted to these simulated datasets, while the chosen combination of the fitted CMFP model was x2

and x3 in this scenario. All models can find the right optimal proportion of x1. However, Scheffé’s

and CMFP models get the same optimal proportions of x2 and x3, which are slightly different from

the true model. The values of x2 and x3 from the Ratio model are farther from the ones from the

true model. Likewise, we fitted all five competing models to the datasets of the second simulation.

Table 5.6 shows the outcome measures for all fitted models when s = 6.688.

Table 5.6: The outcome measures for all fitted models when the GBM model is the true model
and s = 6.688

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 1.56309 0.99246 0.39986 0.37530 0.22474
MFP 13.3259 0.93656 0.39996 0.41835 0.18159
CMFP 2.33459 0.98879 0.39996 0.38595 0.21399
GBM 0.09186 0.99946 0.39990 0.34275 0.25725
Ratio 23.8002 0.88663 0.39996 0.50535 0.09459

In the GBM true model scenario, there is no significant difference between the results when chang-

ing the value of the standard error (s = 6.688, s = 0.5), as shown in Table 5.5 and Table 5.6. So

when the same model forms are fitted to these datasets, Scheffé’s and CMFP models achieve the

best outcome measures among the other models.

The MFP model was the fourth chosen true model that was used to simulate data based on
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the chick feeding experiment. To make the comparison, all five competing models were fitted to

the datasets generated from the MFP model where the standard deviation of the random error is

equal to 0.5 and 7.901. The optimum values of x1, x2, and x3 for this true model are 0.40, 0.46,

and 0.14, respectively. Table 5.7 shows the outcome measures for all fitted models when the MFP

model is the true model and s = 0.5.

Table 5.7: The outcome measures for all fitted models when the MFP model is the true model and
s = 0.5

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 7.54098 0.95677 0.39996 0.29618 0.30376
MFP 0.19300 0.99790 0.39996 0.44414 0.15526
CMFP 0.25416 0.99845 0.39996 0.47495 0.12499
GBM 6.63702 0.96194 0.39996 0.31247 0.28747
Ratio 3.32090 0.98091 0.39996 0.50745 0.09249

The CMFP model is the closest model to the MFP true model, and this was proven by outcome

measures shown in Table 5.7. On the contrary, we find that the outcome measures of Scheffé’s and

GBM models are similar, and both are far from the true model compared with the other models.

The CMFP model fitted to these datasets has no intercept and interaction terms and has a single

exponential value. The chosen combination of the fitted CMFP model was x2 and x3, and the

denominator was x3 in the fitted Ratio model in this scenario. Then, all five competing models

were fitted to the second generated datasets. Table 5.8 shows the outcome measures for all fitted

models when s = 7.901.

Table 5.8: The outcome measures for all fitted models when the MFP model is the true model and
s = 7.901

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 8.43729 0.95165 0.39994 0.29625 0.30372
MFP 0.70785 0.99587 0.39997 0.47960 0.12034
CMFP 0.53164 0.99686 0.39912 0.47626 0.12452
GBM 6.73489 0.96138 0.39996 0.31001 0.28993
Ratio 2.91147 0.98325 0.39996 0.50311 0.09683

There is no significant difference in the outcome measures for all models between Table 5.7 and

Table 5.8, except for the slight difference in outcome measures for the CMFP and MFP models.

However, it is important to mention that the outcome measures of the CMFP model became closer

to the true model than the fitted MFP model, even though the true model was the MFP model.

This is because the intercept in the fitted MFP model is removed to avoid the convergence problem

that occurred.
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The CMFP model was the fifth chosen true model that was used to simulate data based on the

chick feeding experiment. To make the comparison, all five competing models were fitted to the

datasets generated from the CMFP model, where the standard deviation of the random error is

equal to 0.5 and 8.467. The optimum values for x1, x2, and x3 are 0.40, 0.54, and 0.06, respectively,

for the fifth chosen true model. Table 5.9 shows the outcome measures for all fitted models when

the MFP model is the true model and s = 0.5.

Table 5.9: The outcome measures for all fitted models when the CMFP model is the true model
and s = 0.5

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 1.16250 0.99289 0.39996 0.34284 0.25710
MFP 0.01356 0.99982 0.39996 0.53995 0.05999
CMFP 0.01356 0.99982 0.39996 0.53995 0.05999
GBM 1.14655 0.99298 0.39996 0.34497 0.25498
Ratio 0.01356 0.99982 0.39996 0.53995 0.05999

According to the outcome measures, it is clear that the MFP and Ratio models can get the correct

optimum values for x1, x2, and x3, the same as the true model itself. The Ratio and the MFP

models have x1 in the denominator. Also, the MFP model has a single exponential value, while

the CMFP model has two different exponential values. Likewise, all five competing models were

fitted to the generated datasets when the standard deviation of the random error was equal to

8.467. Table 5.10 shows the outcome measures for all fitted models when s = 8.467.

Table 5.10: The outcome measures for all fitted models when the CMFP model is the true model
and s = 8.467

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 1.51988 0.99073 0.39993 0.33168 0.26829
MFP 0.26959 0.99827 0.39996 0.51353 0.08641
CMFP 0.03473 0.99969 0.39996 0.53776 0.06218
GBM 1.19395 0.99270 0.39996 0.34273 0.25721
Ratio 0.08817 0.99937 0.39996 0.53154 0.06841

There is no significant difference in the outcome measures for all models between Table 5.9 and

Table 5.10. So, the MFP and Ratio models still have the best outcome measures among all

competing models.
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5.3.1 Summary

• The outcome measures of all competing models are close to each other and close to the values

of the mixture components obtained from the true model in case the true model is a CMFP

model, whatever the standard error value used to simulate the experimental dataset.

• For all models, there are no better outcome measures than outcome measures for the model

that is the same type as the true model used to simulate the dataset when the standard error

equals 0.5.

• In this experimental dataset, the x1 component has the smallest range among the other

mixture components according to the restrictions on the proportions of the components.

Then, all true models can obtain the same value for the optimal proportion of the component

x1, which is equal to the upper bound of x1. But at the same time, all models got various

values of the optimal proportion of other mixture components.

Table 5.11: The models’ ranks when the standard errors equal 0.5

The true model
Models CMFP MFP GBM Scheffé’s Ratio
CMFP 2 2 2.5 5 2
MFP 2 1 4 3 2
GBM 4 4 1 2 4

Scheffé’s 5 5 2.5 1 5
Ratio 2 3 5 4 2

Table 5.12: The models’ ranks when the standard errors have realistic values

The true model
Models CMFP MFP GBM Scheffé’s Ratio
CMFP 1 1 3 5 2
MFP 3 2 4 4 1
GBM 4 4 1 2 4

Scheffé’s 5 5 2 1 5
Ratio 2 3 5 3 3

Table 5.11 and Table 5.12 show the ranks of all competing models in each scenario according

to their performance when generating datasets by adding a small standard error and a realistic

standard error, respectively. The first rank indicates the best performance according to AD and is

often for the fitted model with the same type as the true model. When two or more fitted models

have the same performance, we give them the average of their joint rank and the next rank.
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The lowest two ranks (4 and 5) are the same for the above tables in almost all scenarios. Every

fitted model except the Ratio model can get the first and second places at least once for each

scenario when the standard error value is realistic. Moreover, Scheffé’s model is ranked 5th (worst)

three times, while the CMFP model is ranked 1st twice. When the true model was an MFP model

or a Ratio model, adding a larger standard error to generate the second datasets affected the

performance of the fitted model that was of the same type as the true model negatively, as shown

in Table 5.2 and Table 5.8. As a result, it is not ranked first and is outperformed by the outcome

measures of other models.

5.4 Optimal Mixture Proportions for a 4-Component Ex-

periment

A dataset where the response is the illumination of candles and which includes four components

with specified proportions above and below is presented by Box and Draper (2007). The con-

straints on the proportions are 0.4 ≤ x1 ≤ 0.6 , 0.10 ≤ x2, x3 ≤ 0.47 , 0.03 ≤ x4 ≤ 0.08. The

illumination candle experimental data is given in Table 8.6. The process used in the previous

example, which contained three components of a mixture, will also be used in this example of four

mixture components.

The Ratio model has the denominator x4 is the first chosen true model that was used to simulate

data based on the illumination candle experiment. To make the comparison, all five competing

models fitted to the datasets generated by the true Ratio model where the standard deviation of

the random error is equal to 0.5 and 84.94. The optimum proportions values for x1, x2, x3, and x4

where the true maximum is attained are 0.60, 0.22, 0.10, and 0.08, respectively. Table 5.13 shows

the outcome measures for all fitted models when the Ratio model is the true model and s = 0.5.

Table 5.13: The outcome measures for all fitted models when the Ratio model is the true model
and s = 0.5

Models AD EFF Mean[x1] Mean[x2] Mean[x3] Mean[x4]
Scheffé’s 10.9746 0.96946 0.57221 0.22363 0.12407 0.07999
MFP 5.89e-05 0.99990 0.59994 0.21998 0.09999 0.07999
CMFP 5.89e-05 0.99990 0.59994 0.21998 0.09999 0.07999
GBM 7.57e-05 0.99990 0.59994 0.21998 0.09999 0.07999
Ratio 4.92e − 05 0.99990 0.59994 0.21998 0.09999 0.07999
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Obviously, the MFP, CMFP, and GBM models can get the correct optimum values for x1, x2, x3

and x4 which are close to the optimum proportions that were obtained from the true Ratio model,

while Scheffé’s model can get the correct proportion only for x4. As for the fitted models, x4 is

the denominator in the Ratio model, while the MFP model has a denominator x3. Also, both the

MFP and the CMFP models have a single exponential value. The CMFP model has the mixture

combination of x1, x2, and x4 and only contains pairwise interaction terms. However, the MFP

model contains only first-order terms with no intercept. Likewise, we fitted all five competing

models to the datasets of the second simulation. Table 5.14 shows the outcome measures for all

fitted models when s = 84.94.

Table 5.14: The outcome measures for all fitted models when the Ratio model is the true model
and s = 84.94

Models AD EFF Mean[x1] Mean[x2] Mean[x3] Mean[x4]
Scheffé’s 29.1233 0.91908 0.55839 0.20783 0.15803 0.07564
MFP 9.60268 0.97317 0.58672 0.22836 0.10554 0.07929
CMFP 9.03718 0.97442 0.59281 0.20391 0.12378 0.07940
GBM 18.2006 0.94940 0.58398 0.19854 0.14237 0.07500
Ratio 37.6286 0.89553 0.56653 0.22718 0.14264 0.06356

Adding such a significant error to the true model has a negative effect on all outcome measures

for all fitted models, but the Ratio model was shown to be the most sensitive, while the CMFP

and MFP models were the least affected. For accuracy and clarification, we find that using a small

sample size (n= 15) to simulate data causes a convergence problem in approximately 1 in 1000

replications of the simulation when fitting the MFP model.

Furthermore, Scheffé’s model was the second true model that was used to simulate data based

on the illumination candle experiment. To make the comparison, all five competing models were

fitted to the two datasets generated by Scheffé’s model with a standard deviation of the random

error equal to 0.5 and 59.55. The optimum values for x1, x2, x3, and x4 are 0.52, 0.23, 0.17, and

0.08, respectively. Table 5.15 shows the result of all competing models fitted to the first generated

dataset.
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Table 5.15: The outcome measures for all fitted models when Scheffé’s model is the true model
and s = 0.5

Models AD EFF Mean[x1] Mean[x2] Mean[x3] Mean[x4]
Scheffé’s 0.00080 0.99990 0.52293 0.22927 0.16771 0.07999
MFP 3.48036 0.99134 0.50146 0.23933 0.17912 0.07999
CMFP 0.44552 0.99881 0.52960 0.22038 0.16993 0.07999
GBM 3.04502 0.99241 0.50477 0.22472 0.19042 0.07999
Ratio 7.95465 0.98034 0.49049 0.24660 0.18282 0.07999

The outcome measures of the CMFP model show that the correct optimum proportions for the

mixture components can be obtained. Furthermore, the outcome measures of the MFP and GBM

models are very close to each other and better than the outcome measures of the Ratio model. As

for the fitted models, the MFP and CMFP models that were fitted to these datasets are full models

(all terms are included), and both have a single exponential value. Also, x1 is the denominator in

the Ratio and MFP models, while the proportions x1, x2, and x4 are used in the CMFP model. In

the same way, we fitted all five competing models to the second generated datasets. The outcome

measures are shown in Table 5.16.

Table 5.16: The outcome measures for all fitted models when Scheffé’s model is the true model
and s = 59.55

Models AD EFF Mean[x1] Mean[x2] Mean[x3] Mean[x4]
Scheffé’s 19.8527 0.95088 0.52864 0.22605 0.16632 0.07868
MFP 54.1417 0.86658 0.58998 0.20827 0.12167 0.07977
CMFP 51.2465 0.87388 0.59761 0.20934 0.11286 0.07990
GBM 35.4251 0.91260 0.52230 0.20363 0.19664 0.07712
Ratio 30.9485 0.92360 0.49682 0.24602 0.17891 0.07794

Adding such a significant error to the true model has a negative effect on the outcome measures

for all fitted models. However, the outcome measures for the GBM model and the Ratio model are

close to each other and better than the outcome measures for both the MFP and the CMFP models.

The GBM model was the third true model that was used to simulate data based on the illu-

mination candle experiment. To make the comparison, all five competing models were fitted to the

datasets generated from the true GBM model where the standard deviation of the random error is

equal to 0.5 and 32.45. The optimum proportions for x1, x2, x3, and x4 are 0.53, 0.18, 0.21, 0.08

respectively. Table 5.17 shows the outcome measures for all fitted models when the GBM model

is the true model and s = 0.5.
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Table 5.17: The outcome measures for all fitted models when the GBM model is the true model
and s = 0.5

Models AD EFF Mean[x1] Mean[x2] Mean[x3] Mean[x4]
Scheffé’s 20.3176 0.95361 0.52790 0.22528 0.16673 0.07999
MFP 13.1638 0.96999 0.55387 0.19321 0.17283 0.07999
CMFP 12.0337 0.97248 0.55233 0.19396 0.17363 0.07999
GBM 0.00086 0.99990 0.52739 0.18116 0.21136 0.07999
Ratio 26.9633 0.93846 0.51969 0.13825 0.26197 0.07999

The outcome measures of the MFP model and the CMFP model are the best among all other

models’ outcome measures. But, the outcome measures of the Ratio model are the worst. As for

the chosen fitted models, both the MFP model and the CMFP model are full models (all terms are

included), and each has one exponential value. Moreover, x1 is the denominator in the MFP model,

and x2 is the denominator in the Ratio model, while the mixture combination was x2, x3, and x4

for the CMFP model. To fit the CMFP and MFP models to the second generated datasets. Some

changes in the fitted CMFP and MFP models are needed to avoid convergence issues. Therefore,

the intercept has been removed from both models. The outcome measures are in Table 5.18.

Table 5.18: The outcome measures for all fitted models when the GBM model is the true model
and s = 32.45

Models AD EFF Mean[x1] Mean[x2] Mean[x3] Mean[x4]
Scheffé’s 33.1967 0.92427 0.53219 0.22513 0.16261 0.07999
MFP 55.8407 0.87276 0.59515 0.16942 0.15616 0.07918
CMFP 41.6814 0.90495 0.58018 0.17887 0.16099 0.07986
GBM 3.77244 0.99131 0.52799 0.18228 0.20964 0.07999
Ratio 36.7770 0.91611 0.52330 0.13789 0.25875 0.07996

Adding such a significant error to the true model has affected the outcome measures for all fitted

models. Thus, the optimum proportions of mixture components that result from the fitted models

are inaccurate. However, the worst outcome measure is for the MFP model, and the best is for

Scheffé’s model. Moreover, there was the occasional convergence problem (in 5 of the 10,000 repli-

cations of the simulation) when fitting the MFP model to these datasets and in 7 of the 10,000

replications when fitting the CMFP model.

The MFP model was the fourth true model that was used to simulate data based on the illu-

mination candle experiment. To make the comparison, all five competing models were fitted to

the datasets generated from the true MFP model where the standard deviation of the random
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error is equal to 0.5 and 33.66. The optimum values for x1, x2, x3, and x4 are 0.54, 0.20, 0.18, and

0.08, respectively. Table 5.19 shows the result of fitting all competing models to the first generated

datasets.

Table 5.19: The outcome measures for all fitted models when the MFP model is the true model
and s = 0.5

Models AD EFF Mean[x1] Mean[x2] Mean[x3] Mean[x4]
Scheffé’s 6.74991 0.98439 0.52683 0.23379 0.15928 0.07999
MFP 0.00028 0.99990 0.53924 0.20190 0.17877 0.07999
CMFP 6.10063 0.98589 0.51675 0.23004 0.17312 0.07999
GBM 4.79060 0.98890 0.52334 0.22891 0.16766 0.07999
Ratio 21.1087 0.95142 0.50307 0.26193 0.15491 0.07999

The GBM model produced the values of the mixture proportions, which are the closest to the ones

obtained from the true MFP model, while the values of the mixture proportions produced by the

Ratio model are the furthest away. The outcome measures for the CMFP model and Scheffé’s

model are almost the same, and they range between the outcome measures of the GBM and the

Ratio models but closer to the results of the GBM model. Regarding the chosen forms of the

fitted models, x1 is the denominator in the Ratio model, and the CMFP model has no squared

and interaction terms and includes mixture proportions x1, x2, and x3. In the same way, we fitted

all five competing models to the datasets of the second simulation. The result is shown in Table

5.20.

Table 5.20: The outcome measures for all fitted models when the MFP model is the true model
and s = 33.66

Models AD EFF Mean[x1] Mean[x2] Mean[x3] Mean[x4]
Scheffé’s 26.4582 0.93913 0.53194 0.23404 0.15395 0.07996
MFP 1.42399 0.99663 0.54049 0.20158 0.17784 0.07999
CMFP 18.4686 0.95749 0.51851 0.23346 0.16793 0.07999
GBM 26.7765 0.93840 0.52962 0.23161 0.16009 0.07858
Ratio 45.2929 0.89587 0.50635 0.26210 0.15155 0.07991

The CMFP model is closest to the true model according to the outcome measures, while the Ratio

model is furthest away again.

Then, the CMFP model was the fifth chosen true model that was used to simulate data based

on the illumination candle experiment. To make the comparison, all five competing models were

fitted to the datasets generated from the true CMFP model, where the standard deviation of the

random error is equal to 0.5 and 43.53. The optimum values for x1, x2, x3, and x4 are 0.51, 0.18,
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0.23, and 0.08, respectively, for the fifth chosen true model. Table 5.21 shows the result of fitting

all competing models to the first generated datasets.

Table 5.21: The outcome measures for all fitted models when the CMFP model is the true model
and s = 0.5

Models AD EFF Mean[x1] Mean[x2] Mean[x3] Mean[x4]
Scheffé’s 17.1570 0.95793 0.53064 0.25988 0.12938 0.07999
MFP 4.00125 0.99011 0.53963 0.17899 0.20129 0.07999
CMFP 0.00083 0.99990 0.51333 0.18148 0.22509 0.07999
GBM 0.88197 0.99774 0.52529 0.17926 0.21536 0.07999
Ratio 24.2241 0.94065 0.50677 0.28888 0.12425 0.07999

The GBM model produced the values of the mixture proportions, which are the closest to the ones

obtained from the true model, while the values of the mixture proportions produced by the Ratio

model are the furthest away. Also, the outcome measures for the MFP model are considered good

compared to the outcome measures of Scheffé’s and Ratio models. Here, the full MFP model with

a single exponential value and x2 in the denominator was fitted to these datasets. But, the Ratio

model fitted to these datasets has x1 in the denominator. Likewise, we fitted all five competing

models to the datasets generated by the second simulation. The result is shown in Table 5.22.

Table 5.22: The outcome measures for all fitted models when CMFP model is the true model and
s = 43.53

Models AD EFF Mean[x1] Mean[x2] Mean[x3] Mean[x4]
Scheffé’s 19.9232 0.95117 0.53171 0.25226 0.13609 0.07984
MFP 47.5019 0.88371 0.51817 0.12459 0.27727 0.07987
CMFP 10.3471 0.97456 0.51775 0.19496 0.20782 0.07937
GBM 14.1030 0.96541 0.52949 0.18998 0.20153 0.07889
Ratio 26.2095 0.93579 0.50447 0.27655 0.13917 0.07971

The values of the mixture proportions of all models became far from the values of the true op-

timal proportions when fitted to the second datasets. For clarification, there is the occasional

convergence problem when fitting the CMFP and MFP models to these datasets in proportions

0.0026 and 0.0004, respectively. However, removing the intercept from the MFP model reduced

the convergence problem but made the outcome measures for the MFP model the worst among all

fitted models, as shown in Table 5.22, while the outcome measures for the GBM model were the

closest to the true ones.
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5.4.1 Summary

• The estimated standard error value for each true model used to generate the second sim-

ulation datasets became significantly larger compared to the example of the three mixture

components.

• The outcome measures of all competing models are close to each other; simultaneously, they

are close to the optimal proportions obtained from the true model in the case of true Scheffé’s

model when generating the first datasets by adding a standard error equal to 0.5. In contrast,

the outcome measures for all competing models are the furthest from the optimal values

obtained from the true Scheffé’s model when adding a realistic standard error to generate

the second datasets.

• In each true model scenario, there are no better outcome measures than those for the model

that resembles the true model when the standard error equals 0.5. However, adding a large

standard error to generate the second simulated datasets usually has a bad impact on the

outcome measures for all models, especially in the case of the true Ratio model, in which

the fitted Ratio model is most affected and produces the worst outcome measures among

all models. As a result, the CMFP model outcome measures outperformed the Ratio model

outcome measures in the true Ratio model scenario.

• In this experimental dataset, the proportion x4 has the smallest range among the other

mixture proportions according to the restrictions. Then, all true models can obtain the same

value for the optimal proportion x4, equal to the upper bound of this proportion. But at

the same time, all models got various values of the optimal proportion of other mixture

components.

Table 5.23: The models’ ranks when the standard errors equal 0.5

The true model
Models CMFP MFP GBM Scheffé’s Ratio
CMFP 1 3 2 2 2.5
MFP 3 1 3 4 2.5
GBM 2 2 1 3 4

Scheffé’s 4 4 4 1 5
Ratio 5 5 5 5 1
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Table 5.24: The models’ ranks when the standard errors have realistic values

The true model
Models CMFP MFP GBM Scheffé’s Ratio
CMFP 1 2 4 4 1
MFP 5 1 5 5 2
GBM 2 4 1 3 3

Scheffé’s 3 3 2 1 4
Ratio 4 5 3 2 5

The ranks of all fitted models in each scenario are shown in Table 5.23 and Table 5.24 when

datasets were generated by adding a small standard error and a large standard error, respectively.

The first rank is often for a fitted model whose type is the same as the true model. The first ranks

are almost the same in both tables in all scenarios, in contrast to the lowest ranks, which are often

different when comparing the two tables. The Ratio model has most of the fifth ranks in Table

5.23. Also, every fitted model except the Ratio model can get the first and second places at least

once for each scenario when the standard error value used in the simulation process is realistic,

as shown in Table 5.24. Moreover, in Table 5.24, the MFP and the Ratio models were ranked 5

(worst) at least twice, while the CMFP model was ranked 1st twice. Referring to Table 5.24, it is

clear that the outcome measures of the MFP model and CMFP model are better than the outcome

measures of the fitted Ratio model, which are surprising results as the true model in this scenario

was the Ratio model.

These surprising results of the Ratio model appeared after adding a significant standard error

(s=84.94) to the true Ratio model to generate the second datasets. This obviously had a negative

impact on all competing models except MFP and CMFP models, which are the least affected by

adding such significant errors to simulate the data. Such unexpected results deserve more inves-

tigation to find out their causes. A similar issue appeared when applying Example 5.5. Again,

the outcome measures of the MFP and CMFP models exceed the outcome measures of the fitted

model, whose type is the same as the true model in two different scenarios. For more clarification,

we investigate the logical reasons behind the results for such cases, which are provided in the last

paragraph of Section 5.5.
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5.5 Optimal Mixture Proportions for a 3-Component Ex-

periment with One Process Variable

In some mixture experiments, the response is dependent on the processing conditions as well as the

proportion of the mixture components. This example, which has been introduced in Section 4.2,

represents the opacity of a printable coating material used for tags and identification labels as the

response, and this mixture-process variable experiment was studied by Chau and Kelley (1993).

This formulation contained three mixture components, two pigments, x1 and x2, and a polymeric

binder (x3). The constraints on the component proportions were

0.13 ≤ x1 ≤ 0.45, 0.21 ≤ x2 ≤ 0.67, 0.20 ≤ x3 ≤ 0.34

The response of interest was the opacity of the coating, which was influenced by the thickness of

the coating (z) as a process variable besides the mixture of the three components. The opacity of

printable coating material, with two levels of the thickness of the coating, was investigated, and

the experiment data are given in Table 8.1. To fit all competing models under study to the data

from a mixture-process variable experiment, the interaction terms between the individual main

effects of mixture components with each process variable are added to each competing mixture

model to simulate data of mixture-process variable experiments. So, the extended forms of the

models are used in this experimental data that includes a process variable. Using the same method

as the previous examples, each model was fitted to the real dataset in turn to decide which form

and terms would be in the respective true models. Besides, the values of the parameters and the

values of RSE will be used in the true models to simulate the datasets. So, we tried all different

forms for each of the models by fitting them to the real experimental dataset, and the model’s

form with the smallest RSE was chosen to be the true model. Since the realistic standard errors

for this example were small (about 0.015) in all scenarios, we will not simulate the data with s = 0.5.

Moreover, each form of the competing model was fitted to the simulated datasets generated by the

true model to choose the form with the minimum standard error and find the optimum setting of
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the process variable of this model using an optimization function called solnp. Then, we optimized

the values of the proportions of the mixture components and the level of the process variable for all

fitted models in each round of the simulation procedure. So, this step was repeated 10,000 times

for each true model scenario.

The Ratio model with denominator x3 was the first chosen true model to simulate data based

on the experimental data provided by Chau and Kelley (1993). In this scenario, we obtained the

true optimal values for x1, x2, x3 when z = 1, which are 0.35, 0.45, and 0.20, respectively. Table

5.25 shows the outcome measures for all five competing models when simulating the mixture-

process variable experiment data using the Ratio model. In addition, the correct value of the

process variable was identified by all models in all simulation runs.

Table 5.25: Outcome measures for all models when simulating data using the Ratio model

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 0.00858 0.99128 0.38951 0.40647 0.20393
MFP 0.00583 0.99404 0.39461 0.40530 0.19999
CMFP 0.01042 0.98943 0.41350 0.37988 0.20653
GBM 0.00776 0.99210 0.38883 0.40815 0.20293
Ratio 0.00572 0.99415 0.36251 0.42944 0.20795

According to the outcome measures, the Ratio and MFP models can produce accurate optimum

values of the mixture proportions. The MFP model that was fitted to these simulated datasets has

In this example, following the real experiment as closely as possible, the sample size was quite small

(n = 18) denominator x1 and a single exponent value. As a result, a proportion of 0.006 of the

runs have convergence issues that occurred when fitting the MFP model to the simulated datasets

in this scenario. Outcome measures are not counted if any convergence issue occurs when fitting

the models to generated datasets. This is because the simulation process has a loop with 10,000

repeats, which stops in such a situation. In general, all fitted models have good outcome measures

close to the optimal ones, which result from the true Ratio model. The CMFP model that was fit-

ted to these datasets has a single exponent value, and the terms are based on proportions x2 and x3.

Scheffé’s quadratic model was the second chosen true model that was used to simulate data. In

this scenario, we obtained the true optimal proportions values for x1, x2, x3 when z = 1, which
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are 0.43, 0.23, and 0.34, respectively. The outcome measures for all five competing models when

simulating the mixture-process variable experiment data using Scheffé’s model are shown in Table

5.26. In addition, the correct value of the process variable was identified by all models in all sim-

ulation runs.

Table 5.26: Outcome measures for all models when simulating data using Scheffé’s model

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 0.00253 0.99734 0.41481 0.26302 0.32207
MFP 0.00041 0.99949 0.44996 0.20998 0.33997
CMFP 0.00042 0.99947 0.44996 0.21005 0.33991
GBM 0.00238 0.99749 0.41476 0.25781 0.32734
Ratio 0.02258 0.97705 0.38344 0.38157 0.23489

The outcome measures of the CMFP model and MFP model are very close to each other and

show that they can get accurate optimum values for x1, x2, and x3. Both the CMFP model and

MFP model have a single exponent value here. The MFP model has denominator x2, and the

CMFP model is based on proportions x1, x3. In contrast, the Ratio model produced values of

the mixture proportions that are the furthest from the optimal ones. However, all other models

produced values of the proportions of the mixture components close to that produced by the true

model according to their outcome measures.

The GBM model was the third true model chosen to simulate data of the mixture-process variable

experiment. In this scenario, we obtained the true optimal proportions values for x1, x2, x3 when

z = 1, which are 0.43, 0.24, and 0.34, respectively. Table 5.27 shows the outcome measures for all

fitted models when a GBM model is the true model.

Table 5.27: Outcome measures for all models when simulating data using the GBM model

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 0.00343 0.99734 0.41537 0.26443 0.32010
MFP 0.00066 0.99643 0.44996 0.20998 0.33997
CMFP 0.00067 0.99923 0.44996 0.21000 0.33994
GBM 0.00298 0.99688 0.42018 0.25749 0.32223
Ratio 0.03122 0.96832 0.36587 0.43381 0.20023

The outcome measures of the CMFP model and MFP model are very close to each other and show

that they can get accurate optimum values for x1, x2, and x3. Both the CMFP model and MFP
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model have a single exponent value. The MFP model has denominator x2, and the CMFP model

is based on proportions x1, x3. In contrast, the Ratio model has denominator x3 and produced the

furthest values of the mixture components proportions among all models according to its outcome

measures.

Furthermore, the MFP model was the fourth true model chosen to simulate data from a mixture-

process variable experiment. In this scenario, we obtained the true optimal proportions values for

x1, x2, x3 when z = 1, which are 0.45, 0.21, and 0.34, respectively. Table 5.28 shows the outcome

measures for all fitted models when the MFP model is the true model. In addition, the correct

value of the process variable was identified by all models in all simulation runs.

Table 5.28: Outcome measures for all models when simulating data using the MFP model

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 0.00287 0.99703 0.44373 0.22039 0.33577
MFP 3.21e − 08 0.99990 0.44996 0.20998 0.33997
CMFP 3.76e-06 0.99990 0.44996 0.20999 0.33995
GBM 0.00262 0.99728 0.44440 0.21952 0.33598
Ratio 0.00547 0.99441 0.44996 0.22977 0.32018

The outcome measures indicate that the CMFP model yields optimal values of the mixture pro-

portions that are the closest to the ones from the MFP model. The CMFP model is based on

proportions x1, x3, and the MFP model has denominator x2. Both the CMFP model and MFP

model have a single power value. It is clear that the Ratio model has the worst outcome measures

among all competing models.

Thereafter, the CMFP model was the fifth true model that was used to simulate data of the

mixture-process variable experiment. In this scenario, we obtained the true optimal proportions

values for x1, x2, x3 when z = 1, which are 0.45, 0.21, and 0.34, respectively. Table 5.29 shows

the outcome measures for all five competing models when simulating the mixture-process variable

experiment data by the CMFP model. In addition, the correct value of the process variable was

identified by all models in all simulation runs.
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Table 5.29: Outcome measures for all models when simulating data by the CMFP model

Models AD EFF Mean[x1] Mean[x2] Mean[x3]
Scheffé’s 0.00250 0.99806 0.43989 0.22254 0.33747
MFP 5.36e − 07 0.99990 0.44996 0.20998 0.33997
CMFP 5.40e − 07 0.99990 0.44996 0.20998 0.33997
GBM 0.00181 0.99856 0.44258 0.21912 0.33820
Ratio 0.00025 0.99972 0.44996 0.21067 0.33927

All five fitted models produced optimal values of the mixture proportions close to the optimal

values of the true model. To be more detailed, the MFP and the CMFP models produced almost

identical values of the optimal proportions of the mixture components. Thus, the AD measure for

the MFP and the CMFP models is nearly equal to zero. The Ratio used here has denominator x1

and produced AD measure equal to 0.0002, which is better than the GBM and Scheffé’s models.

However, the GBM and Scheffé’s models produce values of mixture proportions that are similar to

each other and very close to the optimal values of the true model.

5.5.1 Summary

• Generally, for all scenarios, each competing model can produce accurate values of the optimal

mixture proportions like those obtained from the true model.

• The outcome measures of the MFP model and the CMFP model surpassed the outcome

measures of all other models for all scenarios except when the true model is the Ratio model.

• The model form for the CMFP and the MFP models was model (3.16) and model (3.18),

respectively (but without square terms) in all scenarios, except when the Ratio model is the

true model, a square term are included in the CMFP models.

Table 5.30: The ranks of the fitted models

The true model
Models CMFP MFP GBM Scheffé’s Ratio
CMFP 1.5 2 1.5 1.5 5
MFP 1.5 1 1.5 1.5 2
GBM 4 3 3 3 3

Scheffé’s 5 4 4 4 4
Ratio 3 5 5 5 1

The Table of the ranks 5.30 shows the performance for each competing model of each true model

scenario. 1st place indicates the best performance, but 1.5 is the average of 1st and 2nd place,
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which is used when two models have the best performance. So, the CMFP and MFP models have

the highest rank most often, while the GBM model is the most ranked third, which means it has

moderate performance when fitted to the different true models. However, the Ratio model has the

highest number of the fifth rank, which indicates it has the worst performance among all models.

What is unexpected in Table 5.30 is that the CMFP model and the MFP model have better ranks

than the fitted model whose type is the same as the true model in two scenarios, when the true

model is Scheffé’s model and when the true model is the GBM model.

To find a logical explanation for the above finding, Scheffé’s model has been further investigated.

We generated several samples (from Scheffé’s model in this case). Then, Scheffé’s and CMFP

models were fitted to such samples to observe the optimal values of the mixture proportions pro-

duced from each model. The result is that the CMFP model is more stable in producing the

optimal proportions of the mixture components (x̂1, . . . , x̂q), which are close to the optimal ones,

while Scheffé’s model is inconsistent in producing these values. So, produced values from Scheffé’s

model are sometimes identical to those from the true model and other times clearly far from the

true model’s values. Furthermore, we investigated the scenario of the true GBM model, which

has similar results to the true Scheffé’s model scenario. Likewise, we found that the GBM model

produced dissimilar proportions of the mixture components, which are sometimes identical to the

true optimal ones and other times far from the optimal values of the true model. Figure 5.2 depicts

an example of the magnitude of the difference between true Scheffé’s, fitted Scheffé’s, and CMFP

models by providing the contour plots of the response surfaces of the true Scheffé’s model, fitted

Scheffé’s model, and the CMFP model, respectively. Here, the last two plots were generated by

fitting the respective models to a simulated dataset where the estimated optimal proportions are

different from the true optimal proportions for Scheffé’s model. We can see from Figure 5.2 that for

this dataset, Scheffé’s model estimates the maximum to occur in the interior of the experimental

region, whereas it is close to the boundary.
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Figure 5.2: The contour plots of the response surfaces of the true Scheffé’s model, fitted Scheffé’s
model, and the CMFP model, respectively
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5.6 Optimal Mixture Proportions for a 3-Component Ex-

periment with Two Process Variables

Goldfarb et al. (2003) studied throughput in a soap processing plant application where the amount

of soap the process yields (in pounds per hour) is this experiment’s primary interest. This soap

blend consists of three mixture components (soap = x1, co-surfactant = x2, and filler = x3).

However, the proportions of these mixture components are subject to the following restrictions:

0.20 ≤ x1 ≤ 0.80

0.15 ≤ x2 ≤ 0.50

0.05 ≤ x3 ≤ 0.30

Moreover, there are two process variables of interest in manufacturing mixture blends: plodder tem-

perature (z1) and mixing time (z2). Low and high levels of plodder temperature will be considered

in the experiment, as well as mixing time run at two levels, 0.5 hours and 1 hour, corresponding

to -1 and 1, respectively. The soap processing experimental data is given in Table 8.7. To fit

the competing models to the data of mixture experiments affected by two process variables, the

extended forms of the models that include the terms of the process variables are used. Each type

of model was fitted to this experimental dataset, and then the model with the smallest RSE was

chosen. The realistic standard error that results when fitting the true models to this experimental

dataset is big. For this reason, two different new datasets were generated by each true model by

adding a big realistic standard error and a standard error equal to 0.5.

The Ratio model with denominator x1 was the first chosen true model used to simulate data

based on the soap processing experiment. The optimum values of the mixture proportions in the

true model are given when z1 = −1 and z2 = −1, and they are 0.55, 0.15, and 0.30, respectively.

Table 5.31 shows the outcome measures for all five competing models when simulating the mixture-

process variables experiment data using the Ratio model when the error standard deviation equals

0.5.
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Table 5.31: Outcome measures for all models when simulating data from the Ratio model, s=0.5

Models AD EFF Mean [x1] Mean [x2] Mean [x3]

Scheffé’s 4.69e− 05 0.99989 0.54995 0.14998 0.29997

MFP 29.6864 0.93355 0.62423 0.14998 0.22568

CMFP 0.00023 0.99989 0.54995 0.14998 0.29997

GBM 0.00022 0.99989 0.54995 0.14999 0.29997

Ratio 4.48e − 05 0.99989 0.54995 0.14999 0.29990

The outcome measures of Scheffé’s model are closest to the outcome measures of the Ratio model,

and both can produce accurate optimal values of the mixture proportions. The MFP model has

the furthest values of mixture proportions, but it got the proportion values of x2 correctly as all

other models did. However, Table 5.32 shows the effect on the outcome measures when data is

generated with the realistic standard error.

Table 5.32: Outcome measures for all models when simulating data using the Ratio model, s=25.37

Models AD EFF Mean [x1] Mean [x2] Mean [x3]

Scheffé’s 0.11602 0.99964 0.55052 0.14999 0.29940

MFP 25.7098 0.94240 0.62286 0.14999 0.22706

CMFP 0.42503 0.99895 0.55204 0.14999 0.29787

GBM 5.91609 0.98668 0.57479 0.14999 0.27512

Ratio 0.32022 0.99918 0.55091 0.14999 0.29900

According to the outcome measures, the proportion values of the mixture components became

slightly further from the true optimal values for all fitted models except the MFP model. Never-

theless, Scheffé’s model has the best outcome measures, and the MFP model still has the worst.

Scheffé’s model was the second true model used to simulate data based on the soap processing

experiment. The optimal proportion values of the true Scheffé’s model are given when z1 = 1, and

z2 = −1 for x1, x2, and x3 and they are 0.799, 0.15, and 0.05 respectively. Table 5.33 shows the

outcome measures for all five competing models when the true model is Scheffé’s model, and the

standard deviation is equal to 0.5.

Table 5.33: Outcome measures for all models when simulating data using Scheffé’s model, s=0.5

Models AD EFF Mean [x1] Mean [x2] Mean [x3]

Scheffé’s 0.0 0.99999 0.79992 0.149985 0.049995

MFP 0.0 0.99989 0.79992 0.149985 0.049995

CMFP 0.0 0.99989 0.79992 0.149985 0.049995

GBM 4.34e− 05 0.99989 0.79992 0.149985 0.049995

Ratio 0.0 0.99999 0.79992 0.149985 0.049995
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It is obvious that all fitted models got the optimal values of the mixture proportions accurately.

Table 5.34 demonstrates outcome measures for all five competing models when each fitted to the

new datasets generated by adding the realistic standard error.

Table 5.34: Outcome measures for all models when simulating data using Scheffé’s model, s=44.79

Models AD EFF Mean [x1] Mean [x2] Mean [x3]

Scheffé’s 0.33473 0.99920 0.79927 0.14999 0.05065

MFP 20.8496 0.95563 0.76321 0.14999 0.08670

CMFP 0.03184 0.99983 0.79986 0.14999 0.05005

GBM 1.75339 0.99623 0.79775 0.14999 0.05216

Ratio 1.95102 0.99581 0.79648 0.14999 0.05343

The CMFP model has the best outcome measures, indicating that it produced accurate values for

the mixture proportions. In contrast, the MFP model had the worst outcome measures among all

models.

The third true model from which we simulated the data was the GBM model. The optimal

proportion values of the true GBM model are given when z1 = −1 and z2 = 1, and they are 0.55,

0.15, and 0.30, respectively. Table 5.35 shows the outcome measures for all five competing models

when the true model is the GBM model and the error standard deviation is equal to 0.5.

Table 5.35: Outcome measures for all models when simulating data using the GBM model, s=0.5

Models AD EFF Mean [x1] Mean [x2] Mean [x3]

Scheffé’s 0.0 0.99899 0.54995 0.14999 0.29997

MFP 0.07 0.99976 0.55015 0.14999 0.29977

CMFP 0.0 0.99989 0.54995 0.14999 0.29997

GBM 0.0 0.99899 0.54995 0.14999 0.29997

Ratio 0.0 0.99899 0.54995 0.14999 0.29997

Although the outcome measures of the MFP model indicate that it produced values slightly dif-

ferent from the true optimal proportions, in general, all fitted models can have accurate optimal

values for the mixture proportions, as is evident in Table 5.35. However, Table 5.36 shows changes

in outcome measures for all five competing models when each was fitted to the new datasets gen-

erated by adding the realistic standard error.
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Table 5.36: Outcome measures for all models when simulating data using the GBM model, s=29.59

Models AD EFF Mean [x1] Mean [x2] Mean [x3]

Scheffé’s 0.04616 0.99979 0.55012 0.14999 0.29979

MFP 18.0120 0.96081 0.61069 0.14999 0.23922

CMFP 6.27417 0.98627 0.56939 0.15139 0.27913

GBM 1.00149 0.99773 0.55371 0.14999 0.29621

Ratio 0.00452 0.99989 0.54996 0.14999 0.29996

According to the outcome measures of the Ratio model, it has the best outcome measures among

all models, while the MFP model has the worst outcome measures among all models.

Likewise, the MFP model was the fourth true model used to simulate this data. The optimal

proportion values of the true MFP model are given when z1 = −1 and z2 = 1, and they are 0.76,

0.15, and 0.089, respectively. Table 5.37 shows the outcome measures for all five competing models

when the true model is the MFP model, and the standard error is equal to 0.5.

Table 5.37: Outcome measures for all models when simulating data using the MFP model, s=0.5

Models AD EFF Mean [x1] Mean [x2] Mean [x3]

Scheffé’s 2.21989 0.99473 0.79991 0.14999 0.04999

MFP 0.00132 0.99989 0.76111 0.14999 0.08880

CMFP 2.21989 0.99473 0.79991 0.14999 0.04999

GBM 2.21989 0.99473 0.79991 0.14999 0.04999

Ratio 0.88873 0.99783 0.72799 0.14999 0.12192

The outcome measures for Scheffé’s model, CMFP model, and GBM model have similar results,

but the Ratio model has the outcome measures that are closest to those of the MFP model. When

each competing model was fitted to the new datasets generated by adding the realistic standard

error, the outcome measures changed for all models, which indicates that all models produce values

for the mixture proportions different from the optimal true proportions. Table 5.38 demonstrates

outcome measures for all five competing models.

Table 5.38: Outcome measures for all models when simulating data using the MFP model, s=47.3

Models AD EFF Mean [x1] Mean [x2] Mean [x3]

Scheffé’s 8.23815 0.98073 0.71311 0.15039 0.13639

MFP 3.16541 0.99253 0.74109 0.14998 0.10883

CMFP 7.38619 0.98271 0.72126 0.15037 0.12827

GBM 9.72349 0.97727 0.69135 0.15030 0.15825

Ratio 7.12503 0.98332 0.72005 0.15316 0.12669
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According to the outcome measures of all fitted models, all models obtain values slightly different

from the optimal values of the mixture proportions. In comparison, the Ratio and CMFP models

have close outcome measures and are better than the outcomes measures of the GBM model and

Scheffé’s model.

The CMFP model was the fifth true model used to simulate this data. The optimal propor-

tion values of the true CMFP model are given when z1 = −1 and z2 = 1, and they are 0.55, 0.15,

and 0.299, respectively. Table 5.39 shows the outcome measures for all five competing models when

the true model is the CMFP model, and the standard error equals 0.5. All fitted models except the

MFP model can produce accurate values of the mixture proportions identical to the true values of

mixture proportions from the true model.

Table 5.39: Outcome measures for all models when simulating data using the CMFP model, s=0.5

Models AD EFF Mean [x1] Mean [x2] Mean [x3]

Scheffé’s 0.0 0.99989 0.54995 0.14999 0.29997

MFP 8.13 0.98131 0.62066 0.14999 0.22925

CMFP 0.0 0.99989 0.54995 0.14999 0.29997

GBM 0.0 0.99989 0.54995 0.14999 0.29997

Ratio 0.0 0.99989 0.54995 0.14999 0.29997

Also, the changes in outcome measures for all five competing models when each was fitted to the

new datasets generated using the realistic standard error are shown in Table 5.40.

Table 5.40: Outcome measures for all models when simulating data using the CMFP model,
s=19.33

Models AD EFF Mean [x1] Mean [x2] Mean [x3]

Scheffé’s 0.01875 0.99986 0.55012 0.14999 0.29979

MFP 9.40702 0.97840 0.63519 0.14999 0.21473

CMFP 4e − 08 0.99989 0.54995 0.14999 0.29997

GBM 0.46096 0.99885 0.55424 0.14999 0.29568

Ratio 0.45294 0.99887 0.55330 0.15005 0.29655

The outcome measures of Scheffé’s model are closest to the outcome measures of the true CMFP

model, while the MFP model has the worst outcome measures among all models.
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5.6.1 Summary

• When generating data from a true model by adding a standard error of 0.5, all competing

models except the MFP model have similar outcome measures and can produce accurate

optimal proportion values for mixture components like those obtained from the true model.

• When generating data from a true model by adding a realistic standard error, the fitted

model, whose type is the same as the true model, can produce values that are closest to

the true optimal values of mixture proportion, often in only two scenarios: the true CMFP

model and the true MFP model.

• Each true model has the same optimal proportion of x2. Thus, all fitted models can find the

optimal proportion values of component x2 in all scenarios.

• Overall, the MFP model has the worst outcome measures among all competing models in

most scenarios.

Table 5.41: The models’ ranks when the standard errors equal 0.5

The true model
Models CMFP MFP GBM Scheffé’s Ratio
CMFP 2.5 4 2.5 2.5 4
MFP 5 1 5 2.5 5
GBM 2.5 4 2.5 5 3

Scheffé’s 2.5 4 2.5 2.5 2
Ratio 2.5 2 2.5 2.5 1

Table 5.42: The models’ ranks when the standard errors have realistic values

The true model
Models CMFP MFP GBM Scheffé’s Ratio
CMFP 1 3 4 1 3
MFP 5 1 5 5 5
GBM 4 5 3 3 4

Scheffé’s 2 4 2 2 1
Ratio 3 2 1 4 2

Table 5.41 and Table 5.42 are the rank tables that show the performance of each competing model

in all true model scenarios. The common ranks are what distinguish Table 5.41.

The scenario of the true Ratio model is the only one that does not contain common ranks when

fitting models to datasets that are generated by adding the small standard errors. In Table 5.42,
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the CMFP model has the first rank twice, which means it has the best performance among all

competing models in the scenarios of the true Scheffé’s model and the true CMFP model. At

the same time, the MFP model has the highest number of the fifth ranks, which indicates it has

the worst performance among all models in all scenarios except for the true MFP model scenario.

However, according to ranks Table 5.42, Scheffé’s model and the Ratio model often have better

performance than the GBM model when fitted to the different scenarios of the true models.

Regarding the results of the MFP model, we should clarify that it has the most variation in

producing the values of the mixture proportions. Thus, its estimated maximum is furthest from

the true maximum in each scenario. For example, in Table 5.34, Scheffé’s model is the true model,

and the optimal values of the mixture proportions for this case are 0.799, 0.15, 0.05. However, the

values produced from the MFP model could be 0.55, 0.15, and 0.30, although it can sometimes

get the correct values of proportions. Three figures of the contour plots of the response surfaces of

three different cases of the MFP model: true (fitted the MFP model to data generated from the

MFP model without error), good (fitted the MFP model to data generated from the MFP model

with accurate values of mixture proportions), and bad (fitted the MFP model to data generated

from the MFP model with inaccurate values of mixture proportions) respectively. As shown in

Figure 5.3, there are no big differences between the response surfaces for all cases of the MFP

model. However, when looking closely at the maximum and minimum positions for each case, we

can notice the subtle differences between each response surface.
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Figure 5.3: The contour plots of the response surfaces of three different cases of the MFP model:
true, good, and bad models, respectively
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5.7 Overall Summary

• The optimal proportion of mixture components was found through a simulation process that

was based on four experimental datasets with 5 ’true’ scenarios each.

• Outcome measures based on 10,000 simulation runs have been used to measure how close

each fitted model’s resulting mixture proportions are to the true optimal proportions.

• In most scenarios, the fitted model, whose type is the same as the true model, produces

values closest to the true optimal proportions of the mixture. However, there are special

cases in which a fitted model with a different type of true model can get optimal values of

proportions identical to the true optimal proportions.

• Practically, finding optimal proportions values for datasets with four mixture components is

more complicated than for datasets with three mixture components, and we may need to use

more reliable optimization algorithms to facilitate the process.

• This optimization approach that was used to find optimal values of mixture proportion was

expanded to find the optimal setting of the process variables as well when simulating data

of mixture-process variables experiments.

• Mostly in the case of simulating data of mixture-process variables experiments, the fitted

model, which has the same type as the true model, can get values closest to the true optimal

proportion only in the scenarios when the true model is the CMFP model or the MFP model.

Table 5.43 shows the total number of times each rank was obtained by each model according to the

previous tables to summarize the performance of the models when fitted to the datasets generated

by adding the realistic standard error.

Table 5.43: Overall distribution of ranks of all models

Models Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
CMFP 9 6 3 3 2
MFP 7 6 5 3 7
GBM 2 2 4 6 1

Scheffé’s 3 5 2 6 4
Ratio 2 4 6 2 6



Chapter 5. Optimal Proportions of Mixture Components 73

We can see from Table 5.43 that the CMFP models perform best according to this study. They

have rank 1 most often (9 times), and when they are not best, then they are often second best.

The performance of the MFP models is more mixed. While they have ranks 1 and 2 quite often,

they also have the worst rank 7 times.



Chapter 6

Designing Experiments for CMFP

Models

An optimal design can make data collection and analysis more efficient, which leads to reliable

conclusions in an economical way. In the first section of this chapter, we will introduce the area of

optimal design of experiments, in particular in the context of mixture experiments. We will then

find and visualize optimal continuous designs for CMFP models and study their robustness with

respect to misspecifications of the model parameters and terms. Since only exact designs can be

applied in practice, we next compare the performance of two strategies for finding (near-) optimal

exact designs in Section 6.3. The chapter concludes with several examples of designs where a

process variable is present.

6.1 Introduction

Approximate (continuous) designs are an essential tool in constructing optimal designs and, thus,

are popular in the literature on optimal design. Although in practice, we can only apply exact

designs, solving the optimization problems for finding approximate designs is more flexible than for

exact designs in which the number of trials at any design point must be an integer. This flexibility

is due to the fact that optimal continuous designs can be found independently of sample size. This

74
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is because the observations’ proportions in each design point xi in a continuous design can be real

numbers varying continuously between 0 and 1. These proportions are called the weights and are

denoted by wi.

Suppose ξ is a design with n trials and ni replicates, i = 1, 2, ...,m, at distinct support points

x1,x2, ...,xm where n =
∑m

i=1 ni. Then this design can be expressed as a continuous design with

weights wi assigned to each support point where wi satisfies wi = ni

n , and hence
∑m

i=1 wi = 1.

This design can be represented as

ξ =


x1 x2 · · · xm

w1 w2 · · · wm


. (6.1)

A continuous design ξ can be converted into an exact design directly if nwi is an integer for all

i ∈ {1, 2, · · · ,m}. Otherwise, rounding has to be applied to nwi, i = 1, 2, . . . ,m.

A support point in ξ is xi where xi=(xi1, ....., xiq) and the information matrix of a continuous

design can generally be formulated as follows:

M(ξ) =

∫
χ

f(x)f ′(x)ξ(dx) =

m∑
i=1

wif (xi) f
′ (xi) , (6.2)

where f ′ (xi) is the row of the design matrix that corresponds to the design point xi and χ is the

experimental region, which is also called the design space. Although much of the design work in the

literature has focused on linear models, optimal designs for nonlinear models are required in many

application fields. The main characteristic of nonlinear models is that their information matrix

is based on the values of unknown parameters. Hence, the corresponding optimal designs also

depend on unknown model parameters and are therefore called locally optimal designs (Chernoff,

1953). Thus, a point prior estimate of the unknown parameters is used to find (locally) optimal

designs. According to Fedorov (2013), the most frequent technique to formulate a design problem

for a nonlinear model is using a Taylor series expansion up to the first-order term around a given
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value of the parameter vector, β0, to linearise the regression function g(x,β) in terms of βc where

c ∈ {1, 2, · · · , P}. So, the model function becomes

g(x,β) ≈ g (x,β0) +
P∑

c=1

(
∂g(x,β)

∂βc

∣∣∣∣
βc=βc0

)
(βc − βc0) (6.3)

where ∂g(x,β)
∂βc

∣∣∣
βc=βc0

=f(x,β) is the partial derivative of the considered nonlinear regression with

respect to parameters in the model, which is the row elements of the design matrix. β and β0

are P × 1 dimensional vectors where P is the number of parameters in the model. The value

of β0 is often chosen as the prior point estimate of the unknown β. In what follows, we will,

however, use the notation f(x) for both linear and nonlinear models. For example, to find f(x)

for a first-order CMFP model, such as g(x,β) = β0 + β1

(
x1

1−x1

)(α)
+ β2

(
x2

1−x2

)(α)
, we find the

partial derivative of this model with respect to each parameter (in this model there are four pa-

rameters α, β0, β1, β2). So, f(x) has four elements and they are: f(x) = (1,
(

x1

1−x1

)α
,
(

x2

1−x2

)α
,

β1

(
x1

1−x1

)α
log
(

x1

1−x1

)
+ β2

(
x2

1−x2

)α
log
(

x2

1−x2

)
).

Optimality criteria measures are used to assess the quality of a design, and they help researchers

determine which design is the most efficient for the experiment’s objectives. An optimality crite-

rion could be related to minimizing experimental error, maximizing statistical power, or reducing

parameter estimation variance. So, optimality criteria are different depending on the goals of an

experiment conducted. As we are looking for efficient and reliable estimates for all the model

parameters simultaneously, we need an optimality criterion that ensures that the information ob-

tained from the experimental data is spread evenly across the parameters, resulting in a robust

and accurate estimation process. D-optimality is the most widely used optimization criterion for

selecting designs, as it focuses on obtaining a design that provides precise estimates for all the

model parameters. The D-optimal design is obtained by maximization of the determinant of the

information matrix. A design ξ∗ is D-optimal if

|M(ξ∗)| = maxξ|M(ξ)| (6.4)

Therefore, a design with a bigger determinant of the information matrix is considered more efficient
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and preferable according to the D-optimality criterion. The obtained designs can help maximize

the information that is gained from the experiment and improve the efficiency of parameter esti-

mates. Various algorithms and optimization techniques can be used to find approximate designs

that satisfy the D-optimal criterion. So, we intend to find the locally D-optimal designs in con-

strained experimental regions for CMFP models. We will next explain and illustrate, through an

example, how we find locally D-optimal designs and how we can check if these designs are indeed

D-optimal.

Since we are concerned with the mixture problem, we deal with optimization problems in a re-

stricted area where the components are subject to natural and additional constraints. For con-

strained optimization, the constrOptim function in the R software was applied to find the op-

timal values of the component proportions xir and their corresponding optimal weights wi. It

needs a guess of the initial starting values of the components’ proportions and their allocated

weights. Then, the constrOptim process optimizes the function subject to equality and inequal-

ity constraints. However, the starting value must be in the feasible region, which is defined by

ui×θ−ci ≥ 0, where ui is the (k×p) constraint matrix, θ is the vector of the initial guess values

and ci is the constraint vector of length k. The restrictions
∑q

r xir = 1, for all xi, i = 1, . . . ,m

and
∑m

i wi = 1, are placed on both xir, and wi so these values must be varying between 0 and 1.

To explain the constrOptim process, we provide an example below. Here, we consider the CMFP

model with 3 components and one power parameter (same α) to find the constraint matrix ui and

the constraint vector ci. We should have at least four support points for estimating the model

parameters since the model has four parameters (Atkinson et al., 2007). We refer to Section 5.3

the example of feeding chicks where restrictions on the proportion of energy supplementation are

set as: 0.05 ≤ xi1 ≤ 0.40, 0.02 ≤ xi2 ≤ 0.89, 0.06 ≤ xi3 ≤ 0.86. Assume four support points

x1 = (x11, x12, x13) ,x2 = (x21, x22, x23) ,x3 = (x31, x32, x33) ,x4 = (x41, x42, x43), with weights

assigned to each support point w1, w2, w3, and w4. Then, constraint matrix ui, in this case, can

be expressed as in Table 6.1. For simplicity, 0.05 ≤ x11, x11 ≤ 0.40 → −x11 ≥ −0.40 results in the

first and second row. We can use a similar method for all proportions, all support points, and all
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weights. Rows 1 - 6 are for the first point, and rows 19 - 24 are for the fourth point. However, the

last four rows correspond to the weights.

To get the constraint vector ci, all of its elements correspond to the numerical value on the right

hand side of each inequality, which we can find to construct the above matrix. So the resulting con-

straint vector is: ci = (0.05,−0.40, 0.02,−0.89,−0.94, 0.14, 0.05,−0.40, 0.02,−0.89,−0.94, 0.14, 0.05,

− 0.4, 0.02,−0.89,−0.94, 0.14, 0.05,−0.40, 0.02,−0.89,−0.94, 0.14, 0, 0, 0,−1). After the matrix ui

and the vector ci are obtained, we can use the constrOptim method, and the statistical D-optimum

criterion is our objective function. The optimal weights and proportions of the components result-

ing from the constrained optimization are represented in Table 6.2.

Table 6.2: D-optimal 4-point design for a first-degree CMFP model

Design points Weights
x1=(0.05,0.09,0.86) w1=0.250
x2=(0.39,0.54,0.07) w2=0.250
x3=(0.17,0.15,0.68) w3=0.250
x4=(0.39,0.02,0.59) w4=0.250

To check if the optimized design using constrOptim is an optimal continuous design or not, we can

apply the equivalence theorem for D-optimum design by letting

d(x, ξ) = f(x)M−1(ξ)f ′(x) (6.5)

where d(x, ξ) is a function of the design ξ and the point x is a point within the design space. This

function is called the sensitivity function (Fedorov & Hackl, 1997), and it is the basic tool on which

continuous optimization design theory is based to check the optimization mechanism. If d(x, ξ) ⩽

P (number of model parameters) for all x in the experimental region, then the optimized design

is a D-optimal continuous design. To illustrate, we check whether the optimal 4-point design in

Table 6.2 satisfies the equivalence theorem by first substituting all obtained design points in the

sensitivity function (6.5) of the first-degree CMFP model with one power parameter. The numer-

ical expression for d(x, ξ) in this case is:
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d(x, ξ) = 62205.27−57315.59
(
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The sensitivity functions for the points of the optimized design in Table 6.2 is: d(x1, ξ) = 3.99,

d(x2, ξ) = 3.99, d(x3, ξ) = 4.00, d(x4, ξ) = 3.99. As the design points satisfy the condition equal

to or less than value 4 (the number of parameters), this design may be D-optimal.

To show the optimality of a design, we next need to show that d(x, ξ) ≤ P for all x in the

experimental region. For the simplest scenario with three mixture components, this could be done

graphically by generating a contour plot of d(x, ξ) in the experimental region and checking if P is

exceeded. For more complicated cases, this is no longer feasible. Therefore, instead, we evaluated

the sensitivity function at a large selection of further points from the experimental region. This

way, we can be reasonably confident the design we found is D-optimal or at least close to being

D-optimal.

We generated designs with different numbers of support points by optimizing initial designs us-

ing the constrOptim function and observing the design with the maximum determinant of the

information matrix to get the near D-optimal design. We must provide initial design points and

their weights in the constrOptim function. These initial values of the design points should be

in the feasible region of the constrOptim function, and they could be arbitrary or used by the

XVERT/Fillv approach, which is described below in a different context. So, we tried the design

with the number of support points equal to the number of model parameters, then we checked the

design when support points increased by one more than the number of model parameters, and so
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on until the condition of the equivalence theorem was satisfied or at least close to being satisfied.

Applying the equivalence theorem by evaluating the sensitivity function (6.5) is a background pro-

cess we kept doing for the CMFP models while searching for optimal designs. Optimizing a design

within a restricted region with several constraints makes the search for the optimal design more

challenging. Therefore, we always tried several different starting designs. We still could not always

find a design that strictly satisfied the equivalence theorem, but they were close. (The maximum

of d(x, ξ) on our grid of points did not exceed P by more than 5%.). Therefore, the continuous

designs presented here should be viewed as near-optimal rather than strictly optimal.

Unless all products of the weights with the sample size result in integer values, we cannot use

continuous designs directly for an experiment. Therefore, we will next describe a method to find

optimal exact designs. The choice of algorithm often depends on the specific needs of the search

purpose and the experimental design problem. Several algorithms which offer different approaches

to optimizing experimental designs have been developed. Some notable algorithms that have been

used in constructing and optimizing designs include the simulated annealing algorithm (Kirkpatrick

et al., 1983), known for its simplicity and general applicability but also for its slow convergence

that requires a large number of iterations. The tabu search algorithm (Glover, 1986) is another

alternative algorithm that uses memory structures to avoid getting stuck in local optima. Still,

it needs more memory to store the moves’ history and is more complex to implement than the

exchange algorithm. Furthermore, the genetic algorithm (Goldberg, 1989) is beneficial for highly

complex or non-linear design spaces. Still, it is more computationally intensive than the exchange

algorithm and suffers from the complexity of implementation and parameter tuning.

The coordinate exchange algorithm, proposed by Meyer and Nachtsheim (1995), is a significant

approach in constructing exact optimal designs. The key idea behind the exchange algorithm is

that optimizing subsets of variables individually can potentially find better solutions than tra-

ditional optimization methods. The exchange algorithm depends on the choice of initial design,

which is a limitation in optimizing some experiments. It is therefore recommended to try different

initial designs to reduce the risk of getting stuck in a local optimum. In our research study, we
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always found a candidate set of points that covered the design space well, using the XVERT/Fillv

approach described below. We then used 100 random starting designs consisting of points from

the candidate set. Hence, the exchange algorithm is a powerful optimization tool in this research

to find locally optimal designs as, through the choice of the candidate set, takes into account the

constraints imposed by the mixture components. Before illustrating the procedure of this algo-

rithm, the XVERT algorithm suggested in Snee and Marquardt (1974) needs to be described first.

It is a procedure to generate the coordinates of all extreme vertices of a constrained area, as in the

following steps:

• Rank the components in terms of their ranges, where x1 has the smallest range and xq has

the largest range.

• Form 2q−1 combinations of two-level designs from the upper and lower bounds of the com-

ponents.

• Use (xq = 1−
∑q−1

r=1 xr) to compute the level of the qth component.

• A given point should be an extreme vertex while satisfying Lr ≤ xr ≤ Ur. Otherwise, the

proportion that is outside the range should be set equal to the upper or the lower limit,

whichever is closer to the computed value.

• Generate additional points from points that are out of bounds by adjusting the component

level by an amount equal to the difference between computed values for xq and the substituted

upper and lower limits.

To clarify these steps, suppose there are limits on the proportions of the components as follows:

0.05 ≤ x1 ≤ 0.40, 0.02 ≤ x2 ≤ 0.89, 0.06 ≤ x3 ≤ 0.86. First, calculate the range of each component

and rank components in order of increasing ranges. We found that x1 has the smallest range

while x2 has the largest range. Then, we can form four combinations of two-level design with

the components x1 and x3 as follows L1L3 L1U3 U1L3 U1U3
. After that, we determine the

levels of the omitted components x2.
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We obtained extreme vertices A, B, and C, which are in the core group, while point D needs to be

adjusted because the value -0.26 is outside the limits.

We compute the difference between computed values for x2 in point D and the lower limit of x2,

which equals 0.28. Then, the x2 value is modified to be 0.02, while we subtract the value 0.28 once

from x3 and again from x1. This procedure generates two additional points from point D, which

are D1 and D2. From these points, we can produce some candidate subgroups for each such point.

The centroids and overall centroids points are additional points that can be found by grouping

and averaging the vertices that we represented above into groups of two or more vertices, where

each vertex has the same value of xq for one of the components. For instance, A and B vertices

have the proportion x1 in common, that is x1 = 0.05; by grouping these vertices and averaging

their compositions, we got a centroid of the two points (A and B) that define a face. All remaining

centroid points can be found by following a similar process. In order to further fill the design space

with possible design points, we apply a function called Fillv in R, which successively picks points

in the middle between the points we already have. We stop the XVERT/Fillv algorithm when the

set of points it has produced is sufficiently large and spread out across the design space to become

the candidate set for the exchange algorithm.

After describing the methodology of XVERT that finds the boundaries of a region defined by

placing limits on the proportions of the mixture components and the Fillv function that fills the

space between these points, the procedure of the exchange algorithm will be illustrated as follows:

First, generate an initial design of size n (predefined) chosen with replacement from candidate de-

sign points found using the XVERT/Fillv algorithm. Then, exchange the first point in the initial
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design with each candidate point and evaluate the determinant of the resulting information matrix

in each replacement. Then, replace the initial point with the candidate point, which provides the

optimum criterion value to improve the design. If none of the candidate points improves the design,

keep the point from the initial design. Finally, repeat the same procedure for each point in the

initial design. The design search continues until no exchange improves the criterion, and if there

is no exchange, the process will stop. The entire procedure of this algorithm can be repeated for

many different random initial designs to gain more confidence that the designs are near D-optimal

for the area we are interested in.

To further explain the procedure of this algorithm, suppose that our problem is to find a near-

optimal design for a constrained region with three restricted mixture components 0.05 ≤ x1 ≤

0.40, 0.02 ≤ x2 ≤ 0.89, 0.06 ≤ x3 ≤ 0.86 and the first order CMFP model is to be fitted on this

restricted region. The restricted experimental region of this example is shown in Figure 6.1.

Figure 6.1: A restricted experimental region

Various random starting designs (the number of tries specified here is N = 100) are generated with

replacements from already found candidate points by applying the XVERT/Fillv algorithm (1001

candidate points found in this case). After this, try every possible exchange for each point in the

initial design with each candidate point and calculate the optimum criterion under consideration.

If no exchange improves the criteria, then stop. The entire procedure was repeated under the
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current example for 100 tries. Table 6.3 provides the initial and resulting designs after performing

this process for a first-order CMFP model under the D-optimality criterion. Also, the values of

the determinants of these designs are provided at the bottom of this table.

Table 6.3: Initial Design and Optimal Design for the example

Initial Design Optimal Design

x1 x2 x3 x1 x2 x3
0.20 0.31 0.49 0.40 0.02 0.58

0.18 0.28 0.54 0.05 0.89 0.06

0.24 0.10 0.66 0.05 0.89 0.06

0.32 0.19 0.49 0.40 0.02 0.58

0.26 0.02 0.72 0.05 0.09 0.86

0.15 0.39 0.46 0.05 0.89 0.06

0.23 0.17 0.60 0.05 0.09 0.86

0.10 0.04 0.86 0.40 0.02 0.58

0.25 0.26 0.49 0.05 0.89 0.06

0.23 0.17 0.60 0.05 0.09 0.86

0.27 0.33 0.40 0.40 0.02 0.58

0.18 0.43 0.39 0.40 0.54 0.06

0.22 0.24 0.54 0.05 0.89 0.06

0.17 0.03 0.80 0.05 0.09 0.86

0.32 0.28 0.40 0.40 0.02 0.58

0.14 0.47 0.39 0.05 0.09 0.86

0.24 0.26 0.50 0.05 0.89 0.06

0.21 0.14 0.65 0.40 0.02 0.58

0.15 0.19 0.66 0.40 0.54 0.06

0.35 0.22 0.43 0.18 0.76 0.06

0.18 0.43 0.39 0.05 0.89 0.06

0.09 0.65 0.26 0.18 0.76 0.06

0.40 0.22 0.38 0.18 0.76 0.06

0.32 0.26 0.42 0.17 0.36 0.47

0.21 0.14 0.65 0.17 0.36 0.47

0.16 0.21 0.63 0.18 0.76 0.06

0.16 0.18 0.66 0.17 0.46 0.37

0.26 0.15 0.59 0.17 0.46 0.37

0.15 0.22 0.63 0.17 0.36 0.47

0.28 0.50 0.22 0.40 0.54 0.06

83909578 21489380578

Looking more closely at the design generated by the algorithm, we find that all selected points were

vertices and repeated. Furthermore, the D-criterion for the initial design and near-optimal design

is 83909578 and 21489380578, respectively, and thus the optimal designs significantly improved
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the initial design. The computational time required to run this method is about four minutes

per scenario for all examples in this chapter, except for the four mixture components example,

which takes about thirty-three minutes per scenario because the candidate sets generated by the

XVERT/Fillv algorithm for this case are much larger than those that are used in the three mixture

components examples. The designs before and after applying the exchange algorithm are shown

in Figure 6.2, where it is clear that the initial design, where most of its points are internal points,

is then improved by making most of the design points vertices.

Figure 6.2: a. The initial design, and b. The near-optimal design
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To compare the performance of designs, we can use a concept called relative D-efficiency. This

efficiency is used to compare the goodness of two designs ξ1 in the numerator relative to ξ2 in

the denominator by their information matrices M (ξ1) and M (ξ2), respectively. The relative D-

efficiency is defined as:

Drel −eff =

{∣∣M (ξ1)
∣∣∣∣M (ξ2)
∣∣
} 1

P

, (6.6)

where design ξ1 is better than design ξ2 if the relative D-efficiency is greater than one. Also, the

value of the relative D-efficiency tells us how many further observations we would need from the

worse design to perform as well as the better design. For example, if the relative D-efficiency

is 0.5, then ξ1 provides estimates with reduced precision and accuracy compared to ξ2 which is

approximately half as efficient as ξ2 in estimating the model parameters. We would need to have

twice as many observations when using design ξ1 to achieve the same precision as ξ2.

In this chapter, we will use relative D-efficiency for several purposes. In Section 6.2, we study

the robustness of locally D-optimal designs with respect to misspecification of the unknown pa-

rameters in β. To do this, we search for the optimum continuous designs for four CMFP models,

which are first-order CMFP and second-order CMFP models with one power parameter (same α)

and two power parameters (different α’s). In each of these models, we try four different scenarios

of the values of the model parameters and compare the resulting designs from these scenarios,

and see if changing these parameter values can make a difference in designs or not. For a further

study of robustness, we checked the effect of misspecified terms on the designs in Section 6.2.5 and

calculated D-efficiencies for designs of misspecified model terms considering the correct model in

three different cases. Then, in Section 6.3, we illustrate how to round a continuous design to make

it an exact design and make comparisons between rounded continuous optimal designs and exact

optimal designs directly found by the exchange algorithm. Also, design plots are used to show

the support points and their replication for both designs to illustrate similarities and differences.

Moreover, we search for optimal designs in the case of mixture experiments that include a pro-

cess variable. So, four scenarios of the model parameter values were considered for single power

parameter CMFP models and two power parameters CMFP models in Section 6.4.
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Table 6.1: Constraint matrix ui of four support points design

1 2 3 4 5 6 7 8 9 10 11

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

−1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 −1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

−1.00 −1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 −1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 −1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 −1.00 −1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 −1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 −1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 −1.00 −1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 −1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 −1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 −1.00 −1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −1.00 −1.00 −1.00
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6.2 Optimal Continuous Designs for CMFP Models

To find the optimal designs for the first-order CMFP and the second-order CMFP model, which

are models (3.9) and (3.10) in Section 3.1, we have tried various designs with different numbers

of design points. In order to estimate P model parameters, we need at least P support points.

Therefore, we tried P , P + 1, P + 2, and P + 3 support points and so on until the condition

from the equivalence theorem was (close to being) satisfied. We found that often P + 2 points

were a sufficient number for finding the optimum continuous designs for the CMFP models. We

considered four CMFP models to study. Each has a different number of model parameters and

therefore needs a different number of support points in the design.

6.2.1 Designs for First-Degree CMFP Models with a Single Power Pa-

rameter

The first-degree CMFP models for three components with one power parameter have four pa-

rameters in total. Then, six design points are used as a starting point to find their near-optimal

designs. Our example is based on the chicken feeding data introduced in Section 5.3. The con-

straint matrix ui and constraint vector ci of a six support point design is as in Table 8.8 in

the appendix. The constraint vector ci is: ci = (0.05,−0.40, 0.02,−0.89,−0.94, 0.14, 0.05,−0.40,

0.02,−0.89,−0.94, 0.14, 0.05,−0.40, 0.02,−0.89,−0.94, 0.14, 0.05,−0.40, 0.02,−0.89,−0.94, 0.14, 0.05,

− 0.40, 0.02,−0.89,−0.94, 0.14, 0.05,−0.40, 0.02,−0.89,−0.94, 0.14, 0, 0, 0, 0, 0,−1). To illustrate

the influence of the model parameter values on a design, we studied four different scenarios of

parameter values for first-order CMFP models with one power parameter. These scenarios are:

a) All parameters of the model have the estimated values from the real dataset (α = 0.11,

β0 = −381.11, β1 = 529.14, β2 = 42.19).

b) All parameters have the estimated values but with opposite signs.

We also wanted to investigate the effect of a large positive and negative value of α and similar

values of the linear parameters. Therefore, we also chose the following scenarios:

c) α = −1.5, and β’s set to either one or negative one. In both cases, the designs turn out to

be identical.
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d) α = 1.2, and β’s set to either one or negative one. In both cases, the designs turn out to be

identical.

Table 6.4, Table 6.5, Table 6.6, and Table 6.7 show the optimized designs for these scenarios in

order.

Table 6.4: The optimized design when all model parameters have the estimated values

Design points Weights
x1=(0.05,0.09,0.86) w1=0.21167
x2=(0.40,0.02,0.58) w2=0.20722
x3=(0.17,0.38,0.45) w3=0.20012
x4=(0.19,0.75,0.06) w4=0.04569
x5=(0.05,0.89,0.06) w5=0.22969
x6=(0.40,0.54,0.06) w6=0.10561

Table 6.5: The optimized design when all parameters have the estimated values but with opposite
signs

Design points Weights
x1=(0.40,0.54,0.06) w1=0.15750
x2=(0.12,0.02,0.86) w2=0.10170
x3=(0.40,0.02,0.58) w3=0.18752
x4=(0.16,0.40,0.45) w4=0.21767
x5=(0.05,0.09,0.86) w5=0.13937
x6=(0.05,0.89,0.06) w6=0.19624

To look at the optimized designs with large positive and negative parameter values, see the design

points in Table 6.6 and Table 6.7. There are only four or five support points in both tables, which

seems to be a sufficient number of points in these two cases. This is because some resulting design

points are very close to each other. In such a case, we add the weight of the point with a small

weight to the weight of the point with a large weight to become one point. For example, in the

case of α = −1.5 and β’s=1, we found the points (0.11,0.04,0.85) and (0.10,0.04,0.86) with weights

0.00058 and 0.24875 respectively. These two points have identical second component values, and

the difference between their first and third component values is only 0.01. So, we added these

points together to become the point (0.10,0.04,0.86) with a weight of 0.24933. Likewise, the point

(0.40,0.53,0.07), which has a weight of 0.00004, needs to be added to another point (0.39,0.55,0.06),

which is close to it and has a bigger weight of 0.25089. We then checked the (near-)optimality of

the design by using the equivalence theorem. Of course, the optimal weights in Table 6.6 should

each be 0.25, as a D-optimal design with as many support points as there are model parameters

that have equal weights. The numerical result is reasonably close, which provides some confidence
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in the algorithm, at least in such a simple scenario.

Table 6.6: The optimized design when α = −1.5 and β’s=1

Design points Weights
x1=(0.05,0.89,0.06) w1=0.25045
x2=(0.39,0.55,0.06) w2=0.25093
x3=(0.40,0.02,0.58) w3=0.24929
x4=(0.10,0.04,0.86) w4=0.24933

Table 6.7: The optimized design when α = 1.2 and β’s=1

Design points Weights
x1=(0.40,0.03,0.57) w1=0.17972
x2=(0.05,0.89,0.06) w2=0.24901
x3=(0.05,0.09,0.86) w3=0.21232
x4=(0.06,0.78,0.16) w4=0.19869
x5=(0.40,0.54,0.06) w5=0.16025

To visualize our results, Figure 6.3 shows plots of the support points of the optimized designs for

the four different scenarios. In general, the reversal of the model parameter values has only a small

effect on the design, as is evident in the second scenario, which is closest to the first. Also, the fourth

scenario has the lowest number of design points and one internal point with a different location

than the first and second scenarios, while the third scenario has no internal points. Then, we found

that the points (0.40,0.02,0.58), (0.05,0.89,0.06), and (0.40,0.54,0.06) are common to all scenarios,

while the point (0.05,0.09,0.86) is common to all scenarios except for the one in which α=−1.5.

The point (0.17,0.38,0.45) or a point close to it is an inner point that exists only when all model

parameters have the estimated values or have opposite signs. Moreover, the point (0.12,0.02,0.86)

or a point close to it is only present in designs when all parameters have the estimated values but

with opposite signs and when α = −1.5. Some points are specific to some designs, such as the

point (0.19,0.75,0.06) found only in the first scenario when all model parameters are the estimated

values. Likewise, the point (0.06,0.78,0.16) exists only when α = 1.2. For some scenarios, such as

when α = −1.5, fewer design points are enough.
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Figure 6.3: Optimized designs for four different scenarios of a first-order CMFP model with a
single power parameter

After seeing the similarities and differences of the support points, we would like to know how

robust the designs are to the misspecification of the model parameters. For our robustness study,

we assume that scenario (a) is the true set of parameter values, and we find the relative D-efficiency

(6.6) of the near D-optimal designs with misspecified parameter values relative to the design with

the correctly specified parameter values for all scenarios. Thus, we calculated the relative D-

efficiency considering that the design (ξ2) in the denominator is optimal for the parameter values
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estimated from the real datasets. The values obtained are expressed as a percentage where a

design that produces a relative D-efficiency value close to one is considered an efficient design.

For example, in the case of first-degree CMFP models with a single power parameter, the relative

D-efficiency is equal to 0.995, 0.841, and 0.661 when all parameters have the estimated values but

with opposite signs, α = −1.5 and α = 1.2, respectively. So, a CMFP model with a single power

parameter can produce robust designs even when the estimated values of the model parameters are

completely reversed or misspecified. Similarly, next, we will investigate the designs for first-order

CMFP models if more power parameters are involved.

6.2.2 Designs for First-Degree CMFP Models with Two Power Param-

eters

We will again base our examples on the chicken feeding experiment that was introduced in Section

5.3. Seven support point designs were chosen as a starting point for the design search for the first-

degree CMFP models with two power parameters. The constraint matrix ui is shown in Table 8.9 in

the appendix, and the constraint vector ci for seven support point designs with two power parame-

ters is as follows: ci = (0.05,−0.40, 0.02,−0.89,−0.94, 0.14, 0.05,−0.40, 0.02,−0.89,−0.94, 0.14, 0.05,

−0.4, 0.02,−0.89,−0.94, 0.14, 0.05,−0.40, 0.02,−0.89,−0.94, 0.14, 0.05,−0.40, 0.02,−0.89,−0.94, 0.14,

0.05,−0.4, 0.02,−0.89,−0.94, 0.14, 0.05,−0.4, 0.02,−0.89,−0.94, 0.14, 0, 0, 0, 0, 0, 0,−1). To continue

illustrating the effect of changing model parameter values on a design, we changed the parameter

values of the first-degree CMFP models with two power parameters to several different values.

Therefore, four different combinations of power parameters were tried. In particular, we wanted to

study the effect of all combinations of signs for the two power parameters. These studied scenarios

are:

a) All parameters of the model have the estimated values from the real dataset (α1 = 0.14,

α2 = −0.4, β0 = −224.25, β1 = 422.53, and β2 = −6.40).

b) All parameters have the estimated values but with opposite signs.

c) α1 = 0.1, α2 = 0.39, and β0=β1=β2= 1 or -1. In both cases, the designs turn out to be

identical.

d) α1 = −0.1, α2 = −0.9, and β0=β1=β2= 1 or -1. In both cases, the designs turn out to be

identical.



Chapter 6. Designing Experiments for CMFP Models 93

Table 6.8: The optimized design when all parameter values have the estimated values

Design points Weights
x1=(0.40 0.21 0.39) w1=0.15965
x2=(0.40 0.02 0.58) w2=0.15167
x3=(0.14 0.02 0.84) w3=0.13725
x4=(0.05 0.89 0.06) w4=0.17074
x5=(0.17 0.12 0.72) w5=0.08431
x6=(0.05 0.09 0.86) w6=0.17445
x7=(0.18 0.76 0.06) w7=0.12193

Table 6.9: The optimized design when all parameters have the estimated values but with opposite
signs

Design points Weights
x1=(0.05,0.35,0.60) w1=0.20569
x2=(0.13,0.02,0.85) w2=0.17191
x3=(0.17,0.77,0.06) w3=0.18297
x4=(0.40,0.54,0.06) w4=0.10923
x5=(0.05,0.89,0.06) w5=0.19952
x6=(0.40,0.02,0.58) w6=0.13068

Table 6.10: The optimized design when α1 = 0.1, α2 = 0.39 and β’s=1

Design points Weights
x1=(0.05,0.09,0.86) w1=0.05004
x2=(0.40,0.54,0.06) w2=0.13014
x3=(0.05,0.89,0.06) w3=0.18054
x4=(0.05,0.45,0.50) w4=0.18094
x5=(0.40,0.02,0.58) w5=0.14998
x6=(0.16,0.02,0.82) w6=0.14998
x7=(0.18,0.76,0.06) w7=0.15838

Table 6.11: The optimized design when α1 = −0.1, α2 = −0.9 and β’s=1

Design points Weights
x1=(0.40,0.07,0.53) w1=0.14284
x2=(0.40,0.02,0.58) w2=0.15482
x3=(0.12,0.02,0.86) w3=0.14586
x4=(0.05,0.89,0.06) w4=0.15209
x5=(0.14,0.05,0.81) w5=0.11130
x6=(0.05,0.09,0.86) w6=0.12817
x7=(0.20,0.74,0.06) w7=0.16492

Some design points become identical after rounding them to just two decimals. Thus, they are

written as one point in the table, and we add their weights together. So, we find that there are

six points in Table 6.9 instead of seven points. Generally, the fourth scenario (inversion of only

one sign of the power parameters) is closest to the first. On the other hand, the designs of the

second and third scenarios are close to each other. Then, we found that the points (0.40,0.02,0.58),

(0.05,0.89,0.06), and (0.18,0.76,0.06) are common to all scenarios, while the points (0.05,0.09,0.86)
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are common to all scenarios except for the one in which all parameters have the estimated values

but with opposite signs. Furthermore, all scenarios have points close to the point (0.14,0.02,0.84).

Also, the point (0.40,0.54,0.06) is only present in designs when all parameters have the estimated

values but with opposite signs and in the third scenario when both power parameters have positive

signs. Some points are specific to some designs, such as (0.40,0.21,0.39) and (0.17,0.12,0.72), found

only in the first scenario when all model parameters are the estimated values. Likewise, the point

(0.05,0.35,0.60) exists only in the scenario when all parameters have the estimated values but with

opposite signs. Figure 6.4 makes the description of all design scenarios explicit.

Figure 6.4: Optimized designs for four different scenarios of first-order CMFP models with two
power parameters.
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As in the previous example, we calculated the relative D-efficiency considering that the design (ξ2)

in the denominator is optimal for the parameter values estimated from the real datasets. In the

case of first-order CMFP models with two power parameters, the relative D-efficiency is high for

all scenarios and equal to 0.831, 0.875, and 0.981 when all parameters have the estimated values

but with opposite signs, α1 = 0.1, α2 = 0.39, and when α1 = −0.1, α2 = −0.9, respectively. Con-

sequently, the fourth scenario, when reversing the sign of only one power parameter, is considered

the closest to the first scenario when all model parameter values have the estimated values. Next,

we will consider the designs of second-order CMFP models in different parameter value scenarios.

6.2.3 Designs for Second-Order CMFP Models with One Power Param-

eter

Are models with more parameters giving very different designs? Will there be more interior points

for second-order models? This further study illustrates the influence of the second-order CMFP

models’ parameter values on their optimal designs. Nine design points generated by a model with

seven parameters for four different scenarios of parameter values were investigated. These scenarios

are:

a) All parameters of the model have the estimated values from the real dataset (α = 0.3,

β0 = −218.27, β1 = 553.33, β2 = 150.056, β3 = −160.53, β4 = −36.11, and β5 = −109.68).

b) All parameters have the estimated values but with opposite signs.

c) α = −1.5, and β’s set to one.

d) α = 1.2, and β’s set to negative one.

Tables 6.12, 6.13, 6.14, and 6.15 show the optimized designs for these scenarios in order.

Table 6.12: The optimized design when all parameter values have the estimated values

Design points Weights
x1=(0.05,0.73,0.22) w1=0.13857
x2=(0.13,0.23,0.64) w2=0.07105
x3=(0.05,0.09,0.86) w3=0.11337
x4=(0.40,0.02,0.58) w4=0.13342
x5=(0.12,0.02,0.86) w5=0.10900
x6=(0.05,0.89,0.06) w6=0.14205
x7=(0.14,0.24,0.62) w7=0.07000
x8=(0.22,0.72,0.06) w8=0.10000
x9=(0.40,0.54,0.06) w9=0.12254
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Table 6.13: The optimized design when all parameters values have the estimated values but with
opposite signs

Design points Weights
x1=(0.11,0.83,0.06) w1=0.11438
x2=(0.09,0.09,0.82) w2=0.05775
x3=(0.05,0.09,0.86) w3=0.09947
x4=(0.40,0.02,0.58) w4=0.12562
x5=(0.12,0.02,0.86) w5=0.12525
x6=(0.05,0.89,0.06) w6=0.13589
x7=(0.09,0.10,0.80) w7=0.06379
x8=(0.28,0.18,0.54) w8=0.15690
x9=(0.40,0.54,0.06) w9=0.12095

Table 6.14: The optimized design when α = −1.5 and β’s=1

Design points Weights
x1=(0.05,0.53,0.42) w1=0.14137
x2=(0.14,0.03,0.83) w2=0.12386
x3=(0.40,0.05,0.55) w3=0.12491
x4=(0.40,0.02,0.58) w4=0.18860
x5=(0.12,0.02,0.86) w5=0.10901
x6=(0.08,0.86,0.06) w6=0.13700
x7=(0.40,0.54,0.06) w7=0.02918
x8=(0.25,0.69,0.06) w8=0.14607

Table 6.15: The optimized design when α = 1.2 and β’s=-1

Design points Weights
x1=(0.08, 0.86,0.06) w1=0.14870
x2=(0.40,0.02,0.58) w2=0.06156
x3=(0.05,0.10,0.85) w3=0.16325
x4=(0.40,0.54,0.06) w4=0.10778
x5=(0.32,0.02,0.66) w5=0.16151
x6=(0.05,0.89,0.06) w6=0.12558
x7=(0.05,0.74,0.21) w7=0.11261
x8=(0.27,0.67,0.06) w8=0.11901

Only the designs in the first and second scenarios have interior points, and they have five points in

common. Thus, they are the scenarios most similar to each other in designs. However, the points

(0.40,0.02,0.58), (0.40,0.54,0.06), and (0.05,0.89,0.06) are common among all four optimized de-

signs. Also, the point (0.12,0.02,0.86) is common in all optimized designs except the fourth design,

while the point (0.05,0.09,0.86) (or a point very close to it) is common in all optimized designs

except the third optimized design. Some design points are common only in two scenarios, such as

(0.08,0.86,0.06) and (0.40,0.05,0.55) in the third and fourth scenarios. However, each design has

at least two distinguishing points, such as (0.22,0.72,0.06), (0.13,0.23,0.64), and (0.14,0.24,0.62) in

the first scenario design. Figure 6.5 shows the distinguishing points and common points between
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the optimized designs in the four studied scenarios of the second-order CMFP models with a single

power parameter.

Figure 6.5: Optimized designs for four different scenarios of quadratic CMFP models with one
power parameter.

The relative D-efficiency of all studied scenarios for quadratic CMFP models with a single power

parameter is computed when the design (ξ2) corresponds to the estimated values of model param-

eters to measure the goodness of these optimized designs under parameter misspecification. As a

result, the relative D-efficiency is equal to 0.632, 0.516, and 0.365 when all parameters have the

estimated values but with opposite signs, α = −1.5 and α = 1.2, respectively. These are now quite

low, but then the misspecifications we have chosen are quite severe. The relative D-efficiency of
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the second-order CMFP models with one power parameter indicates that the designs of the first-

order CMFP model with a single power parameter are more robust with respect to misspecified

values of the model parameters. It is likely that this is because there are more parameters in the

second-order models, and hence a misspecified model will be ’more different’ in some sense than in

the first-degree case. To see if this trend continues, we optimize the designs for the second-degree

CMFP model with two power parameters and look at how different and similar the design points

are in each scenario compared to the others.

6.2.4 Designs for Second-Order CMFP Models with Two Power Param-

eters

Four different scenarios of parameter values for the second-order CMFP models with two power

parameters were studied to further investigate the influence of changing the parameter values on

a design. These scenarios are:

a) All parameters of the model have the estimated values from the real dataset (α1 = −0.545,

α2 = 0.297, β0 = 232.81, β1 = −87.32, β2 = 51.32, β3 = 7.09, β4 = −40.04 and β5 = 13.55).

b) All parameters have the same estimated values but with opposite signs.

c) α1 = 0.1, α2 = 0.6, β0 = 300, β1=β2=β3=β4=-1, and β5=10.

d) α1 = −0.1, α2 = −0.9, and β’s set to one.

Table 6.16, 6.17, 6.18, and 6.19 show the optimized designs for these scenarios in order. The

points (0.40,0.02,0.58), (0.05,0.89,0.06), and (0.40,0.54,0.06) are common in all optimized designs

of second-order CMFP models with two power parameters. Also, all designs have the point

(0.05,0.09,0.86), except for the second scenario design, which has a very close but not completely

identical point. Moreover, all four designs have points close to (0.12,0.02,0.86). However, there are

at least three distinct points for each design. The plots in Figure 6.6 show the design points in the

four studied scenarios of the second-order CMFP models with two power parameters.
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Table 6.16: The optimized design when all parameter values have the estimated values

Design points Weights
x1=(0.05,0.89,0.06) w1=0.12616
x2=(0.23,0.71,0.06) w2=0.09083
x3=(0.40,0.02,0.58) w3=0.10987
x4=(0.08,0.40,0.52) w4=0.06374
x5=(0.40,0.54,0.06) w5=0.08515
x6=(0.05,0.09,0.86) w6=0.12010
x7=(0.08,0.86,0.06) w7=0.09378
x8=(0.12,0.02,0.86) w8=0.10992
x9=(0.22,0.16,0.62) w9=0.11094
x10=(0.05,0.75,0.20) w10=0.08951

Table 6.17: The optimized design when all parameters values have the estimated values but with
opposite signs

Design points Weights
x1=(0.14,0.02,0.84) w1=0.14528
x2=(0.40,0.02,0.58) w2=0.12846
x3=(0.20,0.55,0.25) w3=0.03420
x4=(0.17,0.77,0.06) w4=0.09574
x5=(0.30,0.05,0.65) w5=0.09516
x6=(0.40,0.54,0.06) w6=0.10962
x7=(0.05,0.36,0.59) w7=0.10096
x8=(0.05,0.89,0.06) w8=0.11206
x9=(0.08,0.06,0.86) w9=0.15882
x10=(0.27,0.02,0.71) w10=0.01970

Table 6.18: The optimized design when α1 = 0.1, α2 = 0.6, β0 = 300, β1=β2=β3=β4=-1, and
β5=10.

Design points Weights
x1=(0.16,0.40,0.44) w1=0.12666
x2=(0.05,0.79,0.16) w2=0.11206
x3=(0.15,0.02,0.83) w3=0.11192
x4=(0.40,0.54,0.06) w4=0.12524
x5=(0.05,0.89,0.06) w5=0.14935
x6=(0.05,0.22,0.73) w6=0.03191
x7=(0.40,0.02,0.58) w7=0.12804
x8=(0.05,0.09,0.86) w8=0.10099
x9=(0.13,0.81,0.06) w9=0.11383

Table 6.19: The optimized design when α1 = −0.1, α2 = −0.9 and β’s=1

Design points Weights
x1=(0.40,0.54,0.06) w1=0.10387
x2=(0.40,0.02,0.58) w2=0.13492
x3=(0.12,0.02,0.86) w3=0.12772
x4=(0.20,0.07,0.73) w4=0.11218
x5=(0.40,0.03,0.57) w5=0.12377
x6=(0.40,0.12,0.48) w6=0.03716
x7=(0.05,0.89,0.06) w7=0.11903
x8=(0.16,0.78,0.06) w8=0.12227
x9=(0.05,0.09,0.86) w9=0.11908
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Figure 6.6: Optimized designs for four different scenarios of second-order CMFP models with two
power parameters

For all the scenarios considered, The D-efficiency relative to the design that is optimal for the

estimated parameter values is equal to 0.508, 0.775, and 0.399 when all parameters have the

estimated values but with opposite signs, α1 = 0.1, α2 = 0.6, and α1 = −0.1, α2 = −0.9,

respectively. The designs of the first and third scenarios have almost seven points in common that

are either identical or close to each other. Therefore, the relative D-efficiency of the second-order

CMFP models with two power parameters indicates that the design of the third scenario has the

highest relative D-efficiency among other scenarios. According to the relative D-efficiency numbers,
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designs of first-order CMFP models in both cases for power parameters (same or different) appear

more robust to parameter misspecification than designs of second-order CMFP models in both

cases. Therefore, if a second-order model is to be fitted to the data, the experimenter should try

to obtain a reasonable guess of the model parameters, e.g. through data from similar experiments.

If this is not possible, more robust design strategies such as sequential design, Bayesian design, or

maximin-efficient design should be adopted to avoid potentially big losses in efficiency.

6.2.5 The CMFP Models with Misspecified Terms.

We have studied designs where the parameters were misspecified and found D-efficiencies for these

cases earlier. These previous studies considered first and second-order CMFP model designs with

one and two power parameters. It would be interesting to see the effect of misspecified terms on

the designs. We therefore calculate D-efficiencies for designs where the model has misspecified

terms. For this robustness study, again the chick feeding experimental data provided in Table 8.5

was used. The nature of CMFP models is that one component of the mixture is implicit and not

explicit. For example, if there are five mixture components, only four will appear in the CMFP

model. Therefore, since the chick feeding experiment data contains three mixture components x1,

x2, and x3, we assume three possible scenarios for the correct models, which have the following

forms:

−381.11 + 529.14

(
x1

1− x1

)0.11

+ 42.19

(
x2

1− x2

)0.11

−381.11 + 529.14

(
x1

1− x1

)0.11

+ 42.19

(
x3

1− x3

)0.11

−381.11 + 529.14

(
x2

1− x2

)0.11

+ 42.19

(
x3

1− x3

)0.11

If the first scenario, that is where the CMFP model with combination x1x2 is correct, we generate

the optimal designs of the other CMFP models with combinations x1x3 and x2x3. Thereafter,

we find the respective determinants of the optimal designs for the misspecified models using the

information matrix of the correct model and calculate the D-efficiencies considering the determinant

of the optimal design for the correct model in the denominator. The D-efficiencies of all misspecified

terms models in each scenario are shown in Table 6.20.
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Table 6.20: D-efficiencies for optimal designs for the misspecified models relative to the optimal
designs for the correct model

Misspecified models D-eff relative to x1x2 D-eff relative to x1x3 D-eff relative to x2x3

x1x2 − 0.973 0.924

x1x3 0.962 − 0.948

x2x3 0.730 0.674 −

The D-efficiencies of the optimal designs for misspecified terms models x1x2 and x1x3 are very

high and close to one in all scenarios, which means that these designs can efficiently estimate the

other models. However, the D-efficiencies of the optimal design for misspecified terms model x2x3

is only approximately 0.7, which means the optimal design for this model is not as efficient at

estimating the other two models. As we set all parameters to be the same in the 3 models under

consideration, these differences in efficiency must be related to the different ranges we have for the

proportions x1, x2, and x3. The proportions x2 and x3 only slightly differ in their ranges, which

are 0.87 and 0.8, respectively. So, replacing x2 by x3 or vice versa does not seem to change the

optimal design by much. However, the optimal design for x2x3 seems less efficient for estimating a

model containing x1, presumably because the x1 proportion has a narrow range (0.35) compared

with the ranges of the other proportions.

The plots in Figure 6.7 show how the designs for all the studied scenarios are similar and have

almost five common points. The first design of the x1x2 model has the largest number of points,

which is 8, two of which are internal points. The second design of the x1x3 model has 7 points, one

of which is an interior point. The third design of the x2x3 model showed the lowest robustness,

with only 6 points without any internal points.
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Figure 6.7: Optimal designs for a. x1x2, b. x1x3, and c. x2x3
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6.2.6 Designs for CMFP models with 4-Mixture Components

We also considered optimal designs for four components. This is numerically more tricky, and the

constrOptim function could not cope with this situation. We will discuss two further optimization

functions in R that can be used in such a case. To find the optimal designs for four mixture

components, where each has an upper and lower bound, we used the experimental dataset of the

illumination candle experiment presented by Box and Draper (2007), which have been introduced

in Section 5.4 and are shown in Table 8.6. Here, we tried other optimization functions, such as

the solnp and nloptr functions. The solnp function was previously mentioned and has been used

in the simulation study in Chapter 5. The nloptr function is an R interface to NLopt, which is an

open-source library for nonlinear optimization that provides some interface optimization routines

online for free. Bhadani (2021) presented several examples that have been solved using nloptr.

Therefore, it is an opportunity to apply the nloptr function to find the optimal continuous design

points and their corresponding optimal weights in the experimental dataset containing more than

three mixture components with equality and inequality constraints. To do this, we used the CMFP

model with the following form:

β0 + β1

(
x1

1− x1

)(α)

+ β2

(
x2

1− x2

)(α)

+ β3

(
x3

1− x3

)(α)

This form of the CMFP model has five parameters, which are β0, β1, β2, and β3, in addition to

the power parameter α. Since we need design points greater than or equal to the number of model

parameters, we optimize a continuous design with six support points using the nloptr function.

The nloptr function implements many algorithms for nonlinear optimization and supports both

local and global optimization methods. The choice of algorithm and specific options can be con-

trolled using the opts arguments. For example, the Nelder Mead algorithm, which is known as the

downhill simplex method, is a popular local optimization algorithm that uses a simplex to search

for the minimum of a function. Moreover, the NLOPT −GN − ISRES algorithm is a global op-

timization method based on improved stochastic ranking evolution strategies implemented in the

NLopt library. To use the nloptr function, we define the set of inequality constraints. By exploiting

the natural condition of the mixture components, we write inequality constraints in term of the
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fourth proportion of the mixture x4 = 1− x1 − x2 − x3. The restrictions on the fourth proportion

are 0.03 ⩽ x4 ⩽ 0.08, and each of them needs to be written in the form g(x) ≤ 0. Consequently,

the lower bound is written as 0.03 − (1 − x1 − x2 − x3) ⩽ 0, and the upper bound is written as

(1−x1−x2−x3)−0.08 ⩽ 0. Therefore, we have to set twelve inequality constraints for the six de-

sign points. Then, we provide initial starting values of the proportions and allocated weights while

considering each mixture proportion’s upper and lower limits, which must be explicitly placed as

one of the nloptr arguments.

In fact, we got a good optimization for the continuous design from running this function com-

pared to that resulting from the constrOptim function. This was a motive to search for more

optimization algorithms that can find optimal designs for first-order CMFP models with four com-

ponents. That is why we decided to also consider the performance of the solnp function (see Section

5.2.2) in this part. So, we optimized designs by using the solnp function and that method also

gave us better optimization for the designs in the case of 4 mixture components.

The optimized continuous designs in the scenario when the model parameter values are the es-

timated values and in the scenario when the model parameter values are estimated values with

opposite signs are shown in Table 6.21 and Table 6.22, respectively.

Table 6.21: The optimized design when the parameter values have the estimated values

Design points Weights
x1=(0.4115,0.2684,0.2402,0.08) w1= 0.15605
x2=(0.4000,0.4700,0.1000,0.03) w2= 0.19873
x3=(0.4000,0.1000,0.4700,0.03) w3= 0.19881
x4=(0.6000,0.2200,0.1000,0.08) w4= 0.16637
x5=(0.4000,0.2886,0.2814,0.03) w5= 0.10992
x6=(0.6000,0.1752,0.1948,0.03) w6= 0.17012

Table 6.22: The optimized design when the parameter values have the estimated values but with
opposite signs

Design points Weights
x1=(0.4004,0.3268,0.2429,0.03) w1= 0.19899
x2=(0.4000,0.1000,0.4700,0.03) w2= 0.17360
x3=(0.6000,0.1000,0.2700,0.03) w3= 0.08191
x4=(0.5716,0.2984,0.1000,0.03) w4= 0.17354
x5=(0.4000,0.4200,0.1000,0.08) w5= 0.17941
x6=(0.6000,0.1522,0.1678,0.08) w6= 0.19255



Chapter 6. Designing Experiments for CMFP Models 106

As shown in both designs for the two studied scenarios, the optimal proportions of the first and

the fourth mixture components reach their respective bounds. So, we find two similar points in

both designs that have a proportion of 0.08 for the fourth component, one companion to the upper

bound of the first component and another with the lower bound of the first component. The second

proportion never reaches its upper limit, whereas the third proportion reaches it at the common

point (0.4000,0.1000,0.4700,0.03). However, all mixture components reach the minimum propor-

tion more than once in both designs. As in all previous cases, the relative D-efficiency needed to

be calculated to continue the robustness study of CMFP model designs. The relative D-efficiency

is equal to 0.721 when calculating the relative D-efficiency of the near-optimal designs with mis-

specified parameter values relative to the design with the correctly specified parameter values.

This indicates that the designs of CMFP models are reasonably robust in the case of misspecified

parameter values, even in such more complicated cases.

After studying the robustness of the designs when the model parameters or the model terms

have been misspecified, we would like to compare two strategies for finding exact designs in the

next section.

6.3 Strategies for Finding Optimal Exact Designs

In practice, only exact designs can be run, and therefore any continuous design must be rounded

to become an exact design to be viable. There is no single standard algorithm to find the opti-

mal exact designs or any unifying theory for determining and studying their properties, making

the search for optimal exact designs complex. Furthermore, each optimal exact design search has

distinctive technical characteristics that depend on the proposed model, an optimality criterion,

and, in particular, a fixed total number of observations, which leads to discrete optimization. For

this situation, there is no equivalence theorem available, and we therefore cannot check the opti-

mality of a design. A commonly used algorithm to find exact designs is the exchange algorithm

introduced in Section 6.1, which relies on a candidate set of points. However, as the dimension

of the design space (i.e. the number of proportions in our situation) increases, these points will

either be quite sparse in the experimental region, or the candidate set of possible design points
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will need to become very large. In the first case, we may not be able to find a good design as the

candidate points may be too far away from the actual ’optimal’ points. In the second case, the

algorithm may not be able to find an optimal or near-optimal design in a reasonable amount of time.

We want to investigate if, for CMFP models, it is more advantageous to use the exchange al-

gorithm to find exact optimal designs directly (using a moderate sized candidate set) or if rounded

versions of continuous optimal designs will perform better. But first, let’s illustrate the difference

between exact and continuous designs. For example, consider a design with n = 12 trials and

three design points x1, x2 and x3, where n = n1 + n2 + n3 and ni is the replication of point

xi. Suppose that the first design point has n1 = 4, the second design point has n2 = 4, and

the third design point also has n3 = 4. The weights of the design can then be represented by

wi = ni/n = 4/12 = 1/3, i = 1, 2, 3. Thus, the optimal design can be represented as

ξ∗ =


x1 x2 x3

1/3 1/3 1/3


. (6.7)

A design is considered an exact design if nwi are integers for all i = (1, 2, . . . ,m). So, the result-

ing design is an exact design and can be implemented in practice since n1 = n2 = n3 = 1/3 ·12 = 4.

On the other hand, suppose that n = 11, then n1 = n2 = n3 = 1/3 · 11 = 3.67 which is a

fractional number. We need to round the weights of such a design to be an exact design to be

practically applicable. So, the exact design with n = 11 trials could be defined as x1 has n1 = 4,

x2 has n2 = 4, and x3 has n3 = 3, which can be written as

ξ∗∗ =


x1 x2 x3

4
11

4
11

3
11


(6.8)

As we have seen, not every continuous design can be expressed directly as an exact design, while
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any exact design can be defined as an equivalent continuous design. As a rule, the continuous

design ξ∗∗∗ for the exact design ξ can be represented as

ξ∗∗∗ =


x1 x2 · · · xm

n1

n
n2

n · · · nm

n


. (6.9)

To study the efficiency of the exact design and the rounded continuous design of each scenario

for parameter values in the CMFP model, two procedures are investigated. First, search for the

optimal exact designs using the exchange algorithm. Second, round the respective continuous

optimal designs from each scenario.

6.3.1 Comparison Between Exact Designs and Rounded Continuous De-

signs

We round the continuous optimal design from each scenario for the CMFP models and compare

it to the optimized exact design for the same scenario. To do this, multiply the allocated weights

wi for each point xi by n (number of trials), and round each of the multiplication results to the

nearest integer ni which is then representing the number of replications for each design point xi.

It is important to make sure during the rounding procedure that n = n1 + n2 + ... + nm. For

example, suppose there are six points for the near-optimal continuous design with weights 0.1657,

0.1970, 0.2053, 0.0839, 0.2377, and 0.1104, respectively. Then, multiply each weight by the number

of trials. If the number of trials in this example is 30, then the result of the multiplication is 4.971,

5.913, 6.158, 2.518, 7.130, and 3.311, respectively. Next, round each number in the result of this

multiplication to be an integer while their sum is 30. So, the replication will be 5, 6, 6, 3, 7, and 3

for the six design points, respectively. Now, there is a rounded continuous design with 30 points,

ready to be compared with the exact design generated from the exchange algorithm for the same

scenario of parameter values. This rounding procedure is recommended in Pukelsheim and Rieder

(1992).

To consider the performance of the exact designs and the rounded continuous designs under D-
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efficiency, the relative D-efficiency is computed considering the exact design in the denominator

for each scenario of parameter values in the CMFP models, whether the power parameters are

the same or different. We will again consider the scenarios introduced in Section 6.2.1. In the

case of the first-order CMFP models with one power parameter, when all parameters of the model

have the same values estimated from the real dataset (α = 0.11, β0 = −381.11, β1 = 529.14,

β2 = 42.19), the relative D-efficiency is 0.995. Similar relative D-efficiency to the first scenario is

obtained when all parameters have the same estimated values but with opposite signs and when

α = 1.2. Higher relative D-efficiency is obtained in the third scenario when the power parameter

value is -1.5, where the relative D-efficiency is 0.997.

The relative D-efficiency for all scenarios in the case of a single power parameter of a first-order

CMFP model is approximately one, which means that there are no significant differences between

the exact design, which results from the numeric algorithm and the rounded continuous design.

Figure 6.8 visualizes the support points and their replication for both rounded continuous designs

and exact designs to make the similarities and differences more noticeable.
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Figure 6.8: The optimal support points and their replication for a first-order CMFP model with
one power parameter when all parameters have the estimated values (Scenario a in Section 6.2.1)
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Figure 6.9: The optimal support points and their replication for a first-order CMFP model with one
power parameter when all parameters have the estimated values but with opposite signs (Scenario
b in Section 6.2.1)



Chapter 6. Designing Experiments for CMFP Models 112

Figure 6.10: The optimal support points and their replication for a first-order CMFP model with
one power parameter when α = −1.5 (Scenario c in Section 6.2.1)



Chapter 6. Designing Experiments for CMFP Models 113

Figure 6.11: The optimal support points and their replication for a first-order CMFP model with
one power parameter when α = 1.2 (Scenario d in Section 6.2.1)
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The exact designs and rounded designs are generally similar. In the first scenario, when all model

parameters are set to the original estimated values, the 6 points in the rounded continuous design

are a subset of the 8 points of the exact design, which are clearly shown in the plots. Often, all

design points in the rounded continuous design are present in the exact design but with different

replications. The same status was observed in the second scenario when all parameters had the

same estimated values but with opposite signs. However, the similarity becomes stronger when

the power parameter value is -1.5 or 1.2. In both cases, the exact design and rounded continuous

design almost have the same design points and replications.

In the case of a first-order CMFP model with two power parameters, the relative D-efficiency is

0.996 when all parameters of the model have the values estimated from the real dataset (α1 = 0.14,

α2 = −0.4, β0 = −224.25, β1 = 422.53, and β2 = −6.40). Also, the relative D-efficiency is 0.995

when all parameters have the estimated values but with opposite signs. As well, the relative D-

efficiency is 0.994 when α1 = 0.1, α2 = 0.39 and equal to 0.987 when α1 = −0.1, α2 = −0.9.

Similar to the case of one power parameter, the exact and rounded designs are generally simi-

lar. The relative D-efficiency for all scenarios in the case of two power parameters of a first-order

CMFP model is almost one. So, there are no significant differences between the exact designs and

the rounded continuous designs. The plots in the figures 6.12, 6.13, 6.14, and 6.15 visualize these

designs’ points and their replications for both rounded continuous designs and exact designs to

make similarities and differences more obvious.
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Figure 6.12: The optimal support points and their replication for a first-order CMFP model with
two power parameters when parameters have the estimated values (Scenario a in Section 6.2.2)
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Figure 6.13: The optimal support points and their replication for a first-order CMFP model with
two power parameters when parameters have the estimated values but with opposite signs (Scenario
b in Section 6.2.2)
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Figure 6.14: The optimal support points and their replication for a first-order CMFP model with
two power parameters when α1 = 0.1, α2 = 0.39 (Scenario c in Section 6.2.2)
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Figure 6.15: The optimal support points and their replication for a first-order CMFP model with
two power parameters when α1 = −0.1, α2 = −0.9 (Scenario d in Section 6.2.2)
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From the plots of the optimal designs for first-order CMFP models with two power parameters, we

can see that the points of the rounded continuous design are subsets of the exact design points in

all considered scenarios. To extend this study, we examined several scenarios for the second-order

CMFP model with one power parameter and the second-order CMFP model with two power pa-

rameters. As before, in each case, we set the model parameters to different combinations of values.

In the case of a single power parameter, the relative D-efficiency is 0.992 when the power pa-

rameter and all other model parameters are set to the estimated values from the real dataset. We

also considered the case when the power parameter and other model parameters have the estimated

values but with opposite signs, and the relative D-efficiency is 0.984. We also find that the relative

D-efficiency is 0.927 when the power parameter is -1.5, and the other model parameters are set

to 1. Moreover, when the power parameter is 1.2, and the other model parameters are set to -1,

the relative D-efficiency is 0.983. Consequently, in the case of the same power parameters, the

rounded continuous optimal designs for first-order CMFP models have higher relative D- efficiency

than those for second-order CMFP models. In other words, the differences in efficiency between

rounded continuous designs and exact designs were very small for first-order models but were more

noticeable for second-order models with a single power parameter. In all cases, the exact designs

found by the exchange algorithm are performing better. The plots in figures 6.16, 6.17, 6.18, and

6.19 visualize the design points and their replication for both rounded continuous designs and exact

designs to visualize the similarities and differences in these designs.



Chapter 6. Designing Experiments for CMFP Models 120

Figure 6.16: The design points and their replication in the exact design and the rounded continuous
design when all parameter values have the estimated values (Scenario a in Section 6.2.3)
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Figure 6.17: The design points and their replication in the exact design and the rounded continuous
design when all parameter values have the estimated values but with opposite signs (Scenario b in
Section 6.2.3)
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Figure 6.18: The design points and their replication in the exact design and the rounded continuous
design when α = −1.5 (Scenario c in Section 6.2.3)
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Figure 6.19: The design points and their replication in the exact design and the rounded continuous
design when α = 1.2 (Scenario d in Section 6.2.3)
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The plots show that in most cases of second-order CMFP models with a single power parameter,

the design points are common in the rounded continuous design and the exact design. Therefore,

the rounded continuous designs are similar to the exact designs or a subset of them except for the

scenario when the power parameter is -1.5, in which the rounded continuous design differs from

the exact design.

In the case of two power parameters, the relative D-efficiency is 0.998 when the power param-

eters and all other model parameters have the estimated values from the real dataset. We also

considered the case when the power parameters and the other model parameters have the estimated

values but with opposite signs. The relative D-efficiency is 0.958 in this case. We also find that the

relative D-efficiency is 0.983 when the values of the first and second power parameters are positive

and equal to 0.1 and 0.6. Moreover, when the values of the first and second power parameters are

both negative and equal to -0.1 and -0.9, respectively, and the other model parameters are set to 1,

the relative D-efficiency is 0.965. According to these results in the case of two power parameters,

the first-order CMFP models mostly have higher relative D-efficiency than the second-order CMFP

models. The following plots in figures 6.20, 6.21, 6.22, and 6.23 visualize the design points and

their replication for both rounded continuous designs and exact designs for different scenarios of

the second-order CMFP model with two power parameters to see the similarities and differences

in these designs.
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Figure 6.20: The design points and their replication in the exact design and the rounded continuous
design when all parameter values have the estimated values (Scenario a in Section 6.2.4)
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Figure 6.21: The design points and their replication in the exact design and the rounded continuous
design when all parameter values have the estimated values but with opposite signs (Scenario b in
Section 6.2.4)
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Figure 6.22: The design points and their replication in the exact design and the rounded continuous
design when α1 = 0.1, α2 = 0.6 (Scenario c in Section 6.2.4)
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Figure 6.23: The design points and their replication in the exact design and the rounded continuous
design when α1 = −0.1, α2 = −0.9 (Scenario d in Section 6.2.4)
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From the plots of all cases of second-order CMFP models with two power parameters, any point

present in the rounded continuous design also exists in the exact design or is close to a point in the

exact design. The slight difference between the rounded continuous designs and the exact designs

is in the frequencies of the points in each design.

In the case of four mixture components, to compare the rounded continuous design relative to

the exact design of the same scenario, we use designs that we got in table 6.21 and 6.22. As in the

previous examples of three mixture component designs, the exact designs need to be generated by

the exchange algorithm to perform a comparison with rounded continuous designs for the same

model parameter values. We are particularly interested in whether the candidate set that we use

to generate the exact design can sufficiently fill a four-dimensional space to find an efficient design.

Since constrained optimization algorithms struggle with continuous design in the case of the four

components of the mixture, it will be helpful to look at the performance of the exact design. For

that, the exchange algorithm is used to generate the optimized exact designs. This algorithm can

generate exact designs smoothly in the case of four mixture component designs, similar to the case

of three mixture component designs. The D-efficiency is 0.97 and 0.98 for the scenarios when the

parameter values are the estimated values and the estimated values with opposite signs, respec-

tively. The high value of D-efficiency, approximately one in both scenarios, means that the rounded

continuous design of each scenario is equivalent to the exact design of the same scenario. Overall,

we note that the exact designs and the rounded continuous designs have very similar performance,

with the exact designs always being very slightly better.

If there are cases where the exact designs underperform compared to the rounded continuous

designs, we propose to augment candidate sets for the exchange algorithm with optimal points

found by continuous optimization to improve the candidate set. This has not been necessary for

the scenarios we considered, as the candidate sets already contained the ’good’ points.

6.4 Designs when Considering a Process Variable

In this section, we want to investigate the structure of D-optimal designs for CMFP models with a

process variable. We are interested in assessing how the presence of a process variable in the model

will affect the design features, such as the number and location of the design points. First-order

CMFP model designs are more robust in parameter misspecification cases compared to designs

of second-order CMFP models, as shown in Section 6.2. So, we want to compare the features of

designs for first-order CMFP models when process variable terms are included with designs for
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first-order CMFP models without process variables. Here, we use a special form of model (3.18),

which contains the terms of the interaction effect of the mixture proportions with the process

variables but without the pure quadratic terms of process variables. The model that is used in this

section has the following form:

β0 + β1

(
x1

1− x1

)(α1)

+ β2

(
x2

1− x2

)(α2)

+ β3

(
x1

1− x1

)(α1)( x2

1− x2

)(α2)

+ β4

(
x1

1− x1

)(α1)

z

+β5

(
x2

1− x2

)(α2)

z

In Section 6.3, we have seen (albeit in scenarios without process variables) that the exact designs

found by the exchange algorithm seem to be slightly more efficient than rounded continuous designs.

We therefore use this approach to find exact designs in this study. The exact designs were generated

by optimizing an initial 60-point design using the exchange algorithm that was illustrated in Section

6.1. We considered three datasets of mixture experiments with a process variable, each of which

has either two or three levels. The four scenarios of parameter values that were studied in the case

of one power parameter are as follows:

a) All model parameters have the values estimated from the experimental dataset.

b) All model parameters have the estimated values with opposite signs.

c) α = 0.88, and all linear parameters have been set to negative one.

d) α = −0.93, and all linear parameters have been set to positive one.

Likewise, the four scenarios of parameter values studied for CMFP models with two power param-

eters are as follows:

a) All model parameters have the values estimated from the experimental dataset.

b) All model parameters have the estimated values but with opposite signs.

c) α1 = −0.50, α2 = 0.77, and all linear parameters have been set to negative one.

d) α1 = 0.85, α2 = −0.60, and all linear parameters have been set to positive one.

The following sections 6.4.1, 6.4.2, and 6.4.3 show optimized designs through tables and plots for

three mixture experiments with a process variable for the above scenarios in order.



Chapter 6. Designing Experiments for CMFP Models 131

6.4.1 Example 1: MPV Designs for the Opacity of Printable Coating

Material Experiment with a 2-level Process Variable

An experimental dataset by Chau and Kelley (1993), which has been introduced in Section 4.2,

represents the opacity of a printable coating material used for identification labels and tags (see

Table 8.1 in the appendix). The coating material is a mixture of two pigments, x1 and x2, and a

polymeric binder, x3. Coating opacity was affected by the mixture of the three proportions and

coating thickness (z) as a two-level process variable (pro.var). The proportions of the components

were subject to limitations and were:

0.13 ≤ x1 ≤ 0.45, 0.21 ≤ x2 ≤ 0.67, 0.20 ≤ x3 ≤ 0.34. In the case when the power parameters

are the same, the first and fourth scenarios resulted in only nine design points, while the second

scenario resulted in ten design points. More design points resulted in the third scenario. In the

case when the power parameters are different, the first scenario resulted in only nine design points,

the third scenario resulted in ten design points while the second and fourth scenarios resulted in

eleven design points. All optimized MPV designs in the case of a single power parameter with the

levels of the process variable are shown in tables 6.23, 6.24, 6.25, and 6.26 and are visualized in

Figure 6.24.

Table 6.23: The MPV design when all parameter values have the estimated values

Design points Replications The pro.var level
x1=(0.45,0.21,0.34) 8 z= 1
x2=(0.45,0.21,0.34) 8 z=-1
x3=(0.13,0.67,0.20) 6 z=-1
x4=(0.13,0.67,0.20) 7 z= 1
x5=(0.13,0.53,0.34) 6 z= 1
x6=(0.13,0.53,0.34) 7 z=-1
x7=(0.37,0.43,0.20) 9 z= 1
x8=(0.33,0.47,0.20) 4 z=-1
x9=(0.29,0.51,0.20) 5 z=-1

Table 6.24: The MPV design when all parameter values have the estimated values but with opposite
signs

Design points Replications The pro.var level
x1=(0.13,0.67,0.20) 8 z= -1
x2=(0.13,0.67,0.20) 8 z= 1
x3=(0.45,0.21,0.34) 6 z=-1
x4=(0.45,0.21,0.34) 8 z= 1
x5=(0.45,0.35,0.20) 6 z=-1
x6=(0.13,0.53,0.34) 9 z= 1
x7=(0.37,0.43,0.20) 1 z= 1
x8=(0.21,0.45,0.34) 8 z=-1
x9=(0.45,0.35,0.20) 2 z= 1
x10=(0.33,0.47,0.20) 4 z= 1
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Table 6.25: The MPV design when α = 0.88 and β’s=-1

Design points Replications The pro.var level
x1=(0.13,0.67,0.20) 8 z= -1
x2=(0.45,0.21,0.34) 7 z= 1
x3=(0.45,0.21,0.34) 7 z=-1
x4=(0.13,0.67,0.20) 8 z= 1
x5=(0.45,0.35,0.20) 4 z=-1
x6=(0.45,0.35,0.20) 4 z= 1
x7=(0.21,0.45,0.34) 3 z=-1
x8=(0.21,0.45,0.34) 2 z= 1
x9=(0.17,0.49,0.34) 5 z=-1
x10=(0.17,0.49,0.34) 6 z= 1
x11=(0.33,0.47,0.20) 3 z= 1
x12=(0.33,0.47,0.20) 3 z=-1

Table 6.26: The MPV design when α = −0.93 and β’s=1

Design points Replications The pro.var level
x1=(0.45,0.21,0.34) 9 z= 1
x2=(0.13,0.67,0.20) 6 z=-1
x3=(0.45,0.21,0.34) 9 z=-1
x4=(0.13,0.67,0.20) 6 z= 1
x5=(0.13,0.53,0.34) 6 z=-1
x6=(0.13,0.53,0.34) 6 z= 1
x7=(0.33,0.47,0.20) 8 z=-1
x8=(0.25,0.41,0.34) 4 z= 1
x9=(0.29,0.51,0.20) 6 z= 1

In the first and fourth scenarios, the designs have nine design points. Three of these points

((0.45, 0.21, 0.34), (0.13, 0.67, 0.20), and (0.13, 0.53, 0.34)) are identical and common in both levels

of the process variable. However, MPV designs have more design points for the second and third

scenarios. The points that are common in the second and third scenarios are (0.45, 0.35, 0.20), (0.45,

0.21, 0.34), and (0.13, 0.67, 0.20). Thus, each MPV design has at least nine design points. Three of

them are common in both levels of the process variable, while the rest of the points are produced

at only one level of the process variable (low level or high level) except in the third scenario, in

which all design points are common in both levels of the process variable. Two points appear

in all MPV designs for the four studied scenarios: (0.13,0.67,0.20) and (0.45,0.21,0.34). These

points are two of the vertices of the experimental region. The other two vertices also feature in

some designs. Generally, all points lie on the boundary of the experimental region. This is similar

to what we have seen before when investigating first-order CMFP models without process variables.

Next, the tables 6.27, 6.28, 6.29, and 6.30, as well as the plots in Figure 6.25, show the MPV

designs for the four different scenarios in the case of two power parameters.
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Figure 6.24: MVP designs for CMFP models with a single power parameter for the four studied
scenarios
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Table 6.27: The MPV design when all parameter values have the estimated values

Design points Replications The pro.var level
x1=(0.45,0.21,0.34) 8 z= 1
x2=(0.45,0.21,0.34) 7 z=-1
x3=(0.13,0.67,0.20) 6 z=-1
x4=(0.13,0.67,0.20) 6 z= 1
x5=(0.13,0.53,0.34) 7 z=-1
x6=(0.13,0.53,0.34) 7 z= 1
x7=(0.45,0.35,0.20) 7 z= 1
x8=(0.33,0.47,0.20) 7 z=-1
x9=(0.25,0.55,0.20) 5 z= 1

Table 6.28: The MPV design when all parameters values have the estimated values but with
opposite signs

Design points Replications The pro.var level
x1=(0.13,0.67,0.20) 7 z=-1
x2=(0.13,0.67,0.20) 8 z= 1
x3=(0.45,0.21,0.34) 7 z= 1
x4=(0.45,0.35,0.20) 6 z=-1
x5=(0.13,0.53,0.34) 7 z= 1
x6=(0.45,0.21,0.34) 7 z=-1
x7=(0.41,0.39,0.20) 7 z= 1
x8=(0.13,0.53,0.34) 3 z=-1
x9=(0.17,0.49,0.34) 2 z=-1
x10=(0.25,0.41,0.34) 3 z=-1
x11=(0.25,0.55,0.20) 3 z=-1

Table 6.29: The MPV design when α1 = −0.50, α2 = 0.77 and β’s=-1

Design points Replications The pro.var level
x1=(0.13,0.67,0.20) 7 z= 1
x2=(0.45,0.21,0.34) 8 z= 1
x3=(0.13,0.53,0.34) 7 z=-1
x4=(0.13,0.67,0.20) 7 z=-1
x5=(0.13,0.53,0.34) 7 z= 1
x6=(0.45,0.21,0.34) 6 z=-1
x7=(0.45,0.35,0.20) 6 z= 1
x8=(0.25,0.55,0.20) 7 z=-1
x9=(0.25,0.55,0.20) 4 z= 1
x10=(0.45,0.35,0.20) 1 z=-1
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Table 6.30: The MPV design when α1 = 0.85, α2 = −0.60 and β’s=1

Design points Replications The pro.var level
x1=(0.45,0.21,0.34) 7 z= 1
x2=(0.45,0.21,0.34) 7 z=-1
x3=(0.45,0.35,0.20) 7 z= 1
x4=(0.13,0.67,0.20) 6 z=-1
x5=(0.13,0.53,0.34) 7 z= 1
x6=(0.45,0.35,0.20) 7 z=-1
x7=(0.13,0.67,0.20) 3 z= 1
x8=(0.13,0.53,0.34) 2 z=-1
x9=(0.29,0.51,0.20) 6 z= 1
x10=(0.29,0.37,0.34) 5 z=-1
x11=(0.33,0.33,0.34) 3 z= 1

Figure 6.25: MVP designs for CMFP models with two power parameters for the four studied
scenarios
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The optimized MPV designs have points similar to those generated for the single power parameter

case for the four scenarios in general. Three design points, namely (0.13,0.67,0.20), (0.13,0.53,0.34),

and (0.45,0.21,0.34), are present at both levels of the process variable and are common to all designs.

These three points are, again, vertices of the experimental region, and this set includes the two

points that had been seen to feature in all designs for the single power parameter models. The

fourth vertex finally features in all designs, but not at every level of z. Again, all design points lie on

the boundary of the experimental region. Next, we will find MPV designs for another experimental

dataset with a process variable with three levels to make the comparison between two levels and

three levels of a process variable evident.

6.4.2 Example 2: MPV Designs for the Opacity of Printable Coating

Material Experiment with a 3-level Process Variable

As introduced in Section 4.3, Chau and Kelley (1993) also obtained experimental data on the

opacity of the printable coating material when the process variable, coating thickness, was measured

at 3 different values, 10, 19, and 28, which correspond to 0, 1, and 2, respectively. Again, the opacity

was also affected by the mixture proportions, which were subject to the same limitations as in the

first dataset. See Table 8.2 in the appendix for the data. When the power parameters are the

same, the first, second, and fourth scenarios resulted in only nine design points, while more design

points resulted in the third scenario. When the power parameters are different, the first scenario

resulted in twelve design points, the second and fourth scenarios resulted in eleven design points,

and the third scenario resulted in only ten design points. All optimized MPV designs in the case

of a single power parameter with the levels of the process variable are shown in Table 6.31, Table

6.32, Table 6.33, and Table 6.34 and are visualized in the plots in Figure 6.26.

Table 6.31: The MPV design when all parameter values have the estimated values

Design points Replications The pro.var level
x1=(0.45,0.21,0.34) 8 z= 2
x2=(0.13,0.53,0.34) 7 z= 0
x3=(0.45,0.21,0.34) 8 z= 0
x4=(0.13,0.67,0.20) 7 z= 2
x5=(0.13,0.67,0.20) 6 z= 0
x6=(0.13,0.53,0.34) 6 z= 2
x7=(0.37,0.43,0.20) 9 z= 2
x8=(0.29,0.51,0.20) 4 z= 0
x9=(0.33,0.47,0.20) 5 z= 0
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Table 6.32: The MPV design when all parameter values have the estimated values but with opposite
signs

Design points Replications The pro.var level
x1=(0.13,0.67,0.20) 8 z= 2
x2=(0.13,0.67,0.20) 8 z= 0
x3=(0.45,0.21,0.34) 7 z= 2
x4=(0.45,0.21,0.34) 6 z= 0
x5=(0.13,0.53,0.34) 9 z= 2
x6=(0.45,0.35,0.20) 6 z= 0
x7=(0.21,0.45,0.34) 9 z= 0
x8=(0.37,0.43,0.20) 5 z= 2
x9=(0.45,0.35,0.20) 2 z= 2

Table 6.33: The MPV design when α = 0.88 and β’s=-1

Design points Replications The pro.var level
x1=(0.13,0.67,0.20) 8 z= 2
x2=(0.45,0.21,0.34) 7 z= 2
x3=(0.13,0.67,0.20) 8 z= 0
x4=(0.45,0.21,0.34) 7 z= 0
x5=(0.45,0.35,0.20) 4 z= 0
x6=(0.45,0.35,0.20) 4 z= 2
x7=(0.21,0.45,0.34) 3 z= 0
x8=(0.21,0.45,0.34) 2 z= 2
x9=(0.17,0.49,0.34) 5 z= 0
x10=(0.17,0.49,0.34) 6 z= 2
x11=(0.33,0.47,0.20) 3 z= 0
x12=(0.33,0.47,0.20) 3 z= 2

Table 6.34: The MPV design when α = −0.93 and β’s=1

Design points Replications The pro.var level
x1=(0.45,0.21,0.34) 9 z= 0
x2=(0.13,0.53,0.34) 6 z= 2
x3=(0.13,0.67,0.20) 6 z= 0
x4=(0.13,0.67,0.20) 6 z= 2
x5=(0.13,0.53,0.34) 6 z= 0
x6=(0.45,0.21,0.34) 9 z= 2
x7=(0.25,0.41,0.34) 4 z= 2
x8=(0.33,0.47,0.20) 8 z= 0
x9=(0.29,0.51,0.20) 6 z= 2
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Figure 6.26: MVP designs for CMFP models with a single power parameter for the four studied
scenarios



Chapter 6. Designing Experiments for CMFP Models 139

All MVP designs for the four studied scenarios when the dataset has a process variable with three

levels are the same as MVP designs for the four studied scenarios when the dataset has a process

variable with two levels in the case of one power parameter. Likewise, we need to check the designs

in the case of two power parameters when the dataset has a three-level process variable. These

MPV designs are evident in Table 6.35, Table 6.36, Table 6.37, and Table 6.38 in addition to the

plots in Figure 6.27.

Table 6.35: The MPV design when all parameter values have the estimated values

Design points Replications The pro.var level
x1=(0.13,0.67,0.20) 6 z= 0
x2=(0.45,0.21,0.34) 7 z= 0
x3=(0.45,0.21,0.34) 7 z= 2
x4=(0.13,0.53,0.34) 6 z= 0
x5=(0.13,0.67,0.20) 7 z= 2
x6=(0.13,0.53,0.34) 7 z= 2
x7=(0.33,0.47,0.20) 5 z= 0
x8=(0.45,0.35,0.20) 6 z= 2
x9=(0.29,0.51,0.20) 4 z= 2
x10=(0.21,0.59,0.20) 1 z= 0
x11=(0.33,0.33,0.34) 3 z= 0
x12=(0.29,0.51,0.20) 1 z= 0

Table 6.36: The MPV design when all parameter values have the estimated values but with opposite
signs

Design points Replications The pro.var level
x1=(0.13,0.67,0.20) 7 z= 0
x2=(0.13,0.67,0.20) 8 z= 2
x3=(0.45,0.21,0.34) 7 z= 2
x4=(0.45,0.21,0.34) 7 z= 0
x5=(0.45,0.35,0.20) 6 z= 0
x6=(0.13,0.53,0.34) 6 z= 2
x7=(0.37,0.43,0.20) 6 z= 2
x8=(0.13,0.53,0.34) 4 z= 0
x9=(0.45,0.35,0.20) 1 z= 2
x10=(0.29,0.51,0.20) 3 z= 0
x11=(0.25,0.41,0.34) 5 z= 0

Table 6.37: The MPV design when α1 = −0.50, α2 = 0.77 and β’s=-1

Design points Replications The pro.var level
x1=(0.13,0.67,0.20) 7 z= 2
x2=(0.13,0.53,0.34) 7 z= 2
x3=(0.13,0.53,0.34) 7 z= 0
x4=(0.45,0.21,0.34) 8 z= 2
x5=(0.13,0.67,0.20) 7 z= 0
x6=(0.45,0.35,0.20) 6 z= 2
x7=(0.45,0.21,0.34) 6 z= 0
x8=(0.25,0.55,0.20) 4 z= 2
x9=(0.25,0.55,0.20) 7 z= 0
x10=(0.45,0.35,0.20) 1 z= 0
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Table 6.38: The MPV design when α1 = 0.85, α2 = −0.60 and β’s=1

Design points Replications The pro.var level
x1=(0.45,0.21,0.34) 7 z= 2
x2=(0.45,0.21,0.34) 7 z= 0
x3=(0.13,0.53,0.34) 7 z= 2
x4=(0.45,0.35,0.20) 7 z= 2
x5=(0.45,0.35,0.20) 7 z= 0
x6=(0.13,0.67,0.20) 6 z= 0
x7=(0.13,0.67,0.20) 3 z= 2
x8=(0.13,0.53,0.34) 2 z= 0
x9=(0.29,0.37,0.34) 5 z= 0
x10=(0.29,0.51,0.20) 6 z= 2
x11=(0.33,0.33,0.34) 3 z= 2

Figure 6.27: MVP designs for CMFP models with two power parameters for the four studied
scenarios
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In this case, the MPV designs in the four studied scenarios for a 3-level process variable are similar

to MPV designs for a 2-level process variable. Yet, there are minor differences between the MPV

designs of the first and second datasets in each scenario. For example, in the design of the second

dataset, the first scenario resulted in more design points. One more point that became common

in both levels is (0.29,0.51,0.20) instead of a point close to it in the first dataset, which exists only

at a high level of the process variable, and this point is (0.25,0.55,0.20). In the second scenario,

the point (0.45,0.35,0.20) became common in both levels while it only exists at the low level of the

design of the first dataset. These differences can be explained by the slightly different values of

the estimated model parameters in the two datasets. Again, in all scenarios for this example, the

vertices of the experimental region are featured in most designs, and all design points are on the

boundary.

After studying two datasets with a process variable, whether it has two or three levels, the opti-

mized MPV designs generated by the exchange algorithm using the CMFP models produced design

points at the low and high levels of the process variable only. This is likely to be a consequence of

the models only having terms that are linear in the process variable. The similarity of the MPV

designs of CMFP models in the cases of one power parameter and two power parameters facilitates

the experimenter to generate a good design without overthinking what power parameters case in

the CMFP model will be used.

Furthermore, MPV designs for four scenarios of each case of power parameters of CMFP models

are generated for the following dataset that contains a three-level process variable.

6.4.3 Example 3: MPV Designs for Oil-Water Separation Experiment

with a 3-level Process Variable

The oil-water separation ratio after a week of storage at room temperature was the response of in-

terest in an experiment conducted by Hare (1979). In this experiment, which has been introduced in

Section 4.5, three mixture components were used (water x1, oil x2, and emulsifier x3) to determine

the effectiveness of the unsaturated fatty acid esters of corn oil. The restrictions on the proportions

of the mixture components were 0.430 ≤ x1 ≤ 0.645, 0.350 ≤ x2 ≤ 0.550, 0.005 ≤ x3 ≤ 0.020. The

response of this experiment is also affected by the agitation time in minutes, which is a three-level

process variable (z = 2, 3, and 4, corresponding to 0, 1, and 2, respectively). The data are shown

in Table 8.4 in the appendix. When the power parameters are the same, the first, second, and

fourth scenarios resulted in twelve design points, while more design points resulted in the third

scenario. When the power parameters are different, the first and second scenarios resulted in fifteen
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design points. The third and fourth scenarios resulted in twelve design points. All optimized MPV

designs in the case of a single power parameter are shown in tables 6.39, 6.40, 6.41, and 6.42 and

Figure 6.28.

Table 6.39: The MPV design when all parameter values have the estimated values

Design points Replications The pro.var level
x1=(0.430,0.550,0.020) 7 z= 2
x2=( 0.430,0.550,0.020) 8 z= 0
x3=(0.630,0.350,0.020) 6 z= 2
x4=(0.645,0.350,0.005) 5 z= 2
x5=(0.445,0.550,0.005) 3 z= 2
x6=(0.645,0.350,0.005) 6 z= 0
x7=(0.445,0.550,0.005) 2 z= 0
x8=(0.630,0.350,0.020) 4 z= 0
x9=(0.520,0.475,0.005) 6 z= 0
x10=(0.545,0.450,0.005) 7 z= 2
x11=(0.530,0.450,0.020) 3 z= 0
x12=(0.530,0.450,0.020) 3 z= 2

Table 6.40: The MPV design when all parameter values have the estimated values but with opposite
signs

Design points Replications The pro.var level
x1=(0.645,0.350,0.005) 8 z= 0
x2=(0.430,0.550,0.020) 6 z= 0
x3=(0.445,0.550,0.005) 6 z= 2
x4=(0.645,0.350,0.005) 7 z= 2
x5=(0.445,0.550,0.005) 4 z= 0
x6=(0.430,0.550,0.020) 4 z= 2
x7=(0.630,0.350,0.020) 3 z= 2
x8=(0.630,0.350,0.020) 3 z= 0
x9=(0.530,0.450,0.020) 7 z= 2
x10=(0.555,0.425,0.020) 6 z= 0
x11=(0.545,0.450,0.005) 4 z= 0
x12=(0.545,0.450,0.005) 2 z= 2

Table 6.41: The MPV design when α = 0.88 and β’s=-1

Design points Replications The pro.var level
x1=(0.445,0.550,0.005) 5 z= 2
x2=(0.645,0.350,0.005) 7 z= 2
x3=(0.430,0.550,0.020) 5 z= 2
x4=(0.630,0.350,0.020) 3 z= 0
x5=(0.645,0.350,0.005) 7 z= 0
x6=(0.445,0.550,0.005) 5 z= 0
x7=(0.630,0.350,0.020) 3 z= 2
x8=(0.430,0.550,0.020) 5 z= 0
x9=(0.530,0.450,0.020) 5 z= 0
x10=(0.555,0.425,0.020) 3 z= 2
x11=(0.545,0.450,0.005) 4 z= 2
x12=(0.545,0.450,0.005) 4 z= 0
x13=(0.530,0.450,0.020) 3 z= 2
x14=(0.555,0.425,0.020) 1 z= 0
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Table 6.42: The MPV design when α = −0.93 and β’s=1

Design points Replications The pro.var level
x1=(0.430,0.55,0.020) 7 z= 0
x2=(0.430,0.55,0.020) 7 z= 2
x3=(0.630,0.35,0.020) 5 z= 0
x4=(0.645,0.35,0.005) 5 z= 2
x5=(0.645,0.35,0.005) 5 z= 0
x6=(0.445,0.55,0.005) 3 z= 0
x7=(0.630,0.35,0.020) 5 z= 2
x8=(0.445,0.55,0.005) 3 z= 2
x9=(0.545,0.45,0.005) 6 z= 2
x10=(0.545,0.45,0.005) 6 z= 0
x11=(0.530,0.45,0.020) 4 z= 0
x12=(0.530,0.45,0.020) 4 z= 2

Figure 6.28: MVP designs for CMFP models with one power parameter for the four studied
scenarios
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Although this experiment was performed on three levels of the process variable, the points of our

MPV designs were only generated at low and high levels, as previously when studying the dataset

in Section 6.4.2. MPV designs for all four scenarios have at least five points in common at both

levels of the process variable, and four of these points are common to all designs. These points

are (0.430,0.55,0.020),(0.630,0.35,0.020),(0.645,0.35,0.005), and (0.445,0.55,0.005). As shown, all

optimized MPV designs are generally similar to each other. Furthermore, four other scenarios were

studied to investigate the form of the designs when the model has two power parameters. The

designs for this case are shown in tables 6.43, 6.44, 6.45 and 6.46.

Table 6.43: The MPV design when all parameter values have the estimated values

Design points Replications The pro.var level
x1=(0.645,0.350,0.005) 6 z= 2
x2=(0.645,0.350,0.005) 7 z= 0
x3=(0.430,0.550,0.020) 5 z= 2
x4=(0.430,0.550,0.020) 6 z= 0
x5=(0.445,0.550,0.005) 3 z= 0
x6=(0.630,0.350,0.020) 3 z= 2
x7=(0.445,0.550,0.005) 4 z= 2
x8=(0.630,0.350,0.020) 5 z= 0
x9=(0.595,0.400,0.005) 6 z= 0
x10=(0.495,0.500,0.005) 4 z= 0
x11=(0.495,0.500,0.005) 2 z= 2
x12=(0.595,0.400,0.005) 1 z= 2
x13=(0.561,0.425,0.014) 4 z= 2
x14=(0.530,0.450,0.020) 2 z= 2
x15=(0.580,0.400,0.020) 2 z= 0

Table 6.44: The MPV design when all parameter values have the estimated values but with opposite
signs

Design points Replications The pro.var level
x1=(0.605,0.375,0.020) 1 z= 0
x2=(0.645,0.350,0.005) 6 z= 0
x3=(0.430,0.550,0.020) 5 z= 2
x4=(0.630,0.350,0.020) 5 z= 2
x5=(0.430,0.550,0.020) 4 z= 0
x6=(0.445,0.550,0.005) 4 z= 2
x7=(0.645,0.350,0.005) 5 z= 2
x8=(0.432,0.550,0.018) 2 z= 0
x9=(0.630,0.350,0.020) 5 z= 0
x10=(0.545,0.450,0.005) 6 z= 0
x11=(0.445,0.550,0.005) 3 z= 0
x12=(0.505,0.475,0.020) 1 z= 0
x13=(0.480,0.500,0.020) 5 z= 2
x14=(0.480,0.500,0.020) 2 z= 0
x15=(0.587,0.400,0.013) 6 z= 2
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Table 6.45: The MPV design when α1 = −0.50, α2 = 0.77 and β’s=-1

Design points Replications The pro.var level
x1=(0.445,0.550,0.005) 7 z= 2
x2=(0.645,0.350,0.005) 6 z= 0
x3=(0.445,0.550,0.005) 6 z= 0
x4=(0.430,0.550,0.020) 7 z= 0
x5=(0.430,0.550,0.020) 6 z= 2
x6=(0.630,0.350,0.020) 6 z= 2
x7=(0.645,0.350,0.005) 3 z= 2
x8=(0.630,0.350,0.020) 2 z= 0
x9=(0.545,0.450,0.005) 5 z= 2
x10=(0.530,0.450,0.020) 5 z= 0
x11=(0.505,0.475,0.020) 4 z= 2
x12=(0.520,0.475,0.005) 3 z= 0

Table 6.46: The MPV design when α1 = 0.85, α2 = −0.60 and β’s=1

Design points Replications The pro.var level
x1=(0.645,0.350,0.005) 6 z= 2
x2=(0.630,0.350,0.020) 7 z= 0
x3=(0.645,0.350,0.005) 6 z= 0
x4=(0.430,0.550,0.020) 7 z= 2
x5=(0.630,0.350,0.020) 7 z= 2
x6=(0.430,0.550,0.020) 4 z= 0
x7=(0.445,0.550,0.005) 4 z= 0
x8=(0.445,0.550,0.005) 3 z= 2
x9=(0.545,0.450,0.005) 6 z= 2
x10=(0.570,0.425,0.005) 4 z= 0
x11=(0.555,0.425,0.020) 5 z= 0
x12=(0.580,0.400,0.020) 1 z= 2

Often, more design points are generated in this case than in the case of a single power parameter.

Generally, the designs are similar in both cases. There are slight differences between cases con-

cerning design points. For the first scenario, one more design point appears, which is common on

both levels, while the same number of common points appears in the second scenario in both cases.

Fewer points that are common at both levels exist in the third and fourth scenarios compared to

those in the other case. Thus, more special points are found that appear at only the low level or

only the high level in these two scenarios for this case. Again, the vertices of the experimental

region feature in most designs, and all design points are on its boundary. Similar to first-order

CMFP without process variable, all design points lie on the boundary of the experimental region.

Although rare interior design points appear in the designs of first-order CMFP without a process

variable, in our examples, none appear in the designs of first-order CMFP with a process variable.
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Figure 6.29: MVP designs for CMFP models with two power parameters for the four studied
scenarios



Chapter 7

Conclusion and Some Further

Recommendations

7.1 Brief Review

Linear models, such as Scheffé’s polynomial models, are traditionally used to model data from ex-

periments with mixtures. Recently, nonlinear models, for example, general blending models, have

been proposed to be applied to such data. However, existing approaches are either not flexible

enough in all situations or are quite complex. Therefore, we seek models that are flexible and par-

simonious at the same time. So, we proposed a new class of nonlinear models for fitting the data

from mixture and mixture-process variables experiments. These new models propose an additional

transformation of the modified fractional polynomial models, which are quite constrained if some

proportions may be zero. In addition, we proposed an extended form for the modified fractional

polynomial models to fit data from mixture-process variables experiments. Then, these models are

compared with several models from the literature. The CMFP models and the MFP models, such

as model (3.7), model (3.8), model (3.9), and model (3.10) for mixture experiments, as well as

the extended forms of the CMFP and the MFP models such as model (3.15), model (3.16), model

(3.17), and model (3.18) for mixture-process variables experiments, were fit to real data and have

been found to be good competitor models to the standard and popular models from the literature,

and often even outperforming them. The experimental datasets that have been studied in Chapter

4 illustrate that model (3.18) can ideally fit data from three mixture components experiments with

a single process variable, whether the number of levels of the process variable is two or three.

Model (3.17), on the other hand, best fits experimental datasets that are affected by two process

variables. Moreover, model (3.10) demonstrated its ability to find optimal values of the mixture

147
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proportions in the simulation study in Section 5.3 and 5.4, besides its flexible use of either retaining

or deleting any term as needed for each different scenario. Additionally, model (3.16) and model

(3.18) can find the optimal values of the mixture proportions and the best condition of the process

variable for data from mixture experiments that include a process variable as described in Section

5.5. In addition, we note the flexibility of all CMFP models because any of the CMFP models can

be simple or more complex as needed (any term can be kept or deleted depending on the dataset

under study, or higher order terms could be added).

Constructing a suitable design depends on the chosen model, the region of interest, and the opti-

mality criteria that we consider. In Chapter 6, we find designs for the CMFP models for several

scenarios of the model parameter values under the D-optimality criterion. As the component pro-

portions are subject to further constraints in addition to the natural constraints of the mixture

in all experimental datasets under study, the experimental regions of all designs are non-simplex-

shaped (irregular) regions. We found that the locally optimal designs for each CMFP model under

study are similar for all scenarios, with most optimal support points situated on the boundary of

the experimental regions. Regarding assessing the robustness of these designs with respect to the

model parameters, we calculated the relative D-efficiencies of the D-optimal designs with misspec-

ified parameter values relative to the design with the correctly specified parameter values for all

scenarios. The relative D-efficiencies of the designs in Section 6.2 indicate that the optimal designs

for first-order CMFP models are more robust to misspecified values of model parameters than the

optimal designs for the second-order CMFP models, regardless of the number of power parameters

(the same power parameter for all linear terms or different power parameters). In order to study

the robustness of the CMFP models with respect to misspecified terms, we assessed the locally

optimal designs for models where terms have been misspecified in Section 6.2.5. The D-efficiencies

of these designs indicate that the optimal designs for misspecified terms models do not lose too

much efficiency if the ranges of the mixture proportions in the misspecified and the correct model

are close together. In section 6.3, we investigated strategies to find optimal exact designs. We

rounded the continuous optimal design for each scenario and compared it to the exact optimal

design for the same scenario. We found that the relative D-efficiency for all scenarios of the CMFP

model is almost equal to one. So, there are no significant differences between the exact designs

and the rounded continuous designs for all CMFP models, and thus both strategies can be applied

to find optimal exact designs.
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7.2 Suggested Points for Future Work

In the optimization study that has been done in the present work, we conducted a simulation study

in which we evaluated the performance of the CMFP models and compared them with different

models from the literature. So, we found the maximum response by determining the corresponding

proportions of the mixture components that achieved this. A limitation of a simulation based

(rather than a theoretical) approach is that the performance of a model depends on the ’true

model’ in the simulation, and only a finite number of models can be selected. We tried to mitigate

this issue by

• using real datasets from a range of applications to broaden the scope of the study (Chapter

4);

• selecting each type of model in the study to be the true model in turn to incorporate an

element of fairness (Chapter 5).

Still, the simulation studies, and indeed our modelling approach, could be extended in various

directions. For example, extending our proposed methodology to optimize multiple responses, par-

ticularly in mixture-process variables experiments, would be an interesting idea for future research.

Regarding the optimal design research, we found the locally optimal designs for the CMFP mod-

els considering the D-optimality criterion that seeks precise model estimation by maximizing the

determinant of the information matrix. However, it would be interesting to consider another op-

timality criterion to build optimal designs, such as the I-optimality criterion, which minimizes the

prediction average variance. It seems appropriate for mixture experiments where the aim is to

identify the optimal proportion for each mixture component as precise prediction of the response

is required in this situation.

When we compared the two different strategies for finding exact optimal designs, we used ex-

amples where the mixture has three or four components. In this case, the designs we found had

similar performance, with the exact designs found directly by the exchange algorithm always doing

slightly better. It would be interesting to see if this advantage persists in higher dimensions and if

the candidate set would need to be increased in size to retain this advantage. Further research in

this direction would be interesting. To do this, further methods for finding the continuous optimal

designs, such as particle swarm optimization (Wong et al., 2015), may need to be explored.

While the optimal designs for first-order CMFP models seem to be reasonably robust with respect

to misspecifications of the model parameters or terms, this is not the case for the second-order
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models. We only considered locally optimal designs in this thesis, but it would be interesting

to investigate robust design approaches, such as sequential design, Bayesian design, or maximin

efficient design. In the case of optimizing continuous designs in constrained experimental regions,

we have tried various optimization functions in R, such as constrOptim, Solnp, and nloptr. These

optimization functions become challenging to run and do not easily give the desired design points

and corresponding weights when there are many mixture components. So, more advanced con-

strained optimization functions are needed in the case of many mixture components, and have

to be improved to include process variables. This is an area of research that is important and

required, in particular when robust designs are sought.
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Appendix

Table 8.1: Experimental data of the opacity of printable coating material with a 2-level process
variable

x1 x2 x3 z y
0.13 0.53 0.34 -1 0.698
0.13 0.53 0.34 -1 0.711
0.13 0.53 0.34 1 0.912
0.13 0.53 0.34 1 0.930
0.13 0.60 0.27 -1 0.700
0.13 0.67 0.20 -1 0.710
0.13 0.67 0.20 -1 0.680
0.13 0.67 0.20 1 0.908
0.13 0.67 0.20 1 0.901
0.29 0.37 0.34 -1 0.772
0.29 0.51 0.20 -1 0.772
0.45 0.21 0.34 -1 0.823
0.45 0.21 0.34 -1 0.798
0.45 0.21 0.34 1 0.992
0.45 0.28 0.27 -1 0.818
0.45 0.35 0.20 -1 0.802
0.45 0.35 0.20 1 0.976
0.45 0.35 0.20 1 0.940
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Table 8.2: Experimental data of the opacity of printable coating material with a 3-level process
variable

x1 x2 x3 z y
0.13 0.67 0.20 0 0.710
0.45 0.35 0.20 0 0.802
0.45 0.21 0.34 0 0.823
0.13 0.53 0.34 0 0.698
0.29 0.51 0.20 0 0.772
0.45 0.28 0.27 0 0.818
0.29 0.37 0.34 0 0.772
0.13 0.60 0.27 0 0.700
0.13 0.67 0.20 1 0.780
0.29 0.44 0.27 1 0.861
0.13 0.53 0.34 1 0.782
0.13 0.67 0.20 2 0.908
0.45 0.35 0.20 2 0.976
0.13 0.53 0.34 2 0.912
0.45 0.21 0.34 2 0.992
0.13 0.67 0.20 0 0.680
0.45 0.35 0.20 0 0.822
0.45 0.21 0.34 0 0.798
0.13 0.53 0.34 0 0.711
0.13 0.67 0.20 1 0.791
0.13 0.67 0.20 2 0.901
0.45 0.35 0.20 2 0.940
0.13 0.53 0.34 2 0.930



Chapter 8. Appendix 153

Table 8.3: Homemade bubble solution experimental data

x1 x2 x3 z1 z2 y
0.350 0.600 0.05 -1 -1 23.8
0.350 0.600 0.05 -1 1 14.2
0.350 0.600 0.05 1 -1 4.2
0.350 0.600 0.05 1 1 3.6
0.250 0.600 0.15 -1 -1 12.6
0.250 0.600 0.15 -1 1 13.6
0.250 0.600 0.15 1 -1 2.6
0.250 0.600 0.15 1 1 3.4
0.250 0.650 0.10 -1 -1 12.0
0.250 0.650 0.10 -1 1 12.0
0.250 0.650 0.10 1 -1 5.8
0.250 0.650 0.10 1 1 2.6
0.250 0.750 0.05 -1 -1 12.8
0.250 0.750 0.05 -1 1 15.4
0.250 0.750 0.05 1 -1 4.0
0.250 0.750 0.05 1 1 4.4
0.150 0.700 0.15 -1 -1 10.8
0.150 0.700 0.15 -1 1 9.2
0.150 0.700 0.15 1 -1 3.2
0.150 0.700 0.15 1 1 3.4
0.145 0.775 0.08 -1 -1 8.8
0.145 0.775 0.08 -1 1 11.2
0.145 0.775 0.08 1 -1 4.4
0.145 0.775 0.08 1 1 3.0
0.040 0.810 0.15 -1 -1 2.4
0.040 0.810 0.15 -1 1 4.0
0.040 0.810 0.15 1 -1 3.0
0.040 0.810 0.15 1 1 4.2
0.120 0.850 0.03 -1 -1 12.8
0.120 0.850 0.03 -1 1 8.0
0.120 0.850 0.03 1 -1 1.6
0.040 0.850 0.03 1 1 3.4
0.040 0.880 0.08 -1 -1 2.0
0.040 0.880 0.08 - 1 4.6
0.040 0.880 0.08 1 -1 0.6
0.040 0.880 0.08 1 1 0.6
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Table 8.4: Experimental data of oil separation ratio

x1 x2 x3 z y
0.6375 0.3575 0.0050 0 7
0.6375 0.3575 0.0050 1 7
0.6375 0.3575 0.0050 2 8
0.6338 0.3537 0.0125 0 2
0.6338 0.3537 0.0125 1 3
0.6338 0.3537 0.0125 2 5
0.6300 0.3500 0.0200 0 1
0.6300 0.3500 0.0200 1 1
0.6300 0.3500 0.0200 2 3
0.5412 0.4538 0.0050 0 6
0.5412 0.4538 0.0050 1 10
0.5412 0.4538 0.0050 2 9
0.5375 0.4500 0.0125 0 2
0.5375 0.4500 0.0125 1 6
0.5375 0.4500 0.0125 2 3
0.5338 0.4462 0.0200 0 1
0.5338 0.4462 0.0200 1 2
0.5338 0.4462 0.0200 2 2
0.4450 0.5500 0.0050 0 6
0.4450 0.5500 0.0050 1 6
0.4450 0.5500 0.0050 2 6
0.4412 0.5463 0.0125 0 2
0.4412 0.5463 0.0125 1 4
0.4412 0.5463 0.0125 2 2
0.4375 0.5425 0.0200 0 1
0.4375 0.5425 0.0200 1 3
0.4375 0.5425 0.0200 2 1
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Table 8.5: The chick feeding experimental data

x1 x2 x3 y
0.05 0.89 0.06 59.00
0.05 0.73 0.22 60.00
0.05 0.09 0.86 29.00
0.05 0.25 0.70 35.00
0.05 0.57 0.38 53.00
0.05 0.41 0.54 48.00
0.12 0.82 0.06 82.00
0.12 0.66 0.22 90.00
0.12 0.02 0.86 63.00
0.12 0.18 0.70 73.00
0.12 0.50 0.38 100.00
0.12 0.34 0.54 80.00
0.19 0.75 0.06 105.00
0.19 0.59 0.22 105.00
0.19 0.43 0.38 120.00
0.19 0.27 0.54 109.00
0.19 0.11 0.70 110.00
0.26 0.68 0.06 136.00
0.26 0.04 0.70 125.00
0.26 0.20 0.54 133.00
0.26 0.36 0.38 130.00
0.26 0.52 0.22 141.00
0.33 0.61 0.06 141.00
0.33 0.45 0.22 156.00
0.33 0.29 0.38 157.00
0.33 0.13 0.54 153.00
0.40 0.54 0.06 156.00
0.40 0.38 0.22 179.00
0.40 0.22 0.38 163.00
0.40 0.06 0.54 143.00
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Table 8.6: The illumination candle experimental data

x1 x2 x3 x4 y
0.40 0.10 0.47 0.03 75
0.60 0.10 0.27 0.03 195
0.40 0.10 0.42 0.08 180
0.60 0.10 0.22 0.08 300
0.60 0.27 0.10 0.03 220
0.60 0.22 0.10 0.08 350
0.40 0.47 0.10 0.03 145
0.40 0.42 0.10 0.08 230
0.40 0.27 0.27 0.06 190
0.60 0.17 0.17 0.06 310
0.50 0.10 0.35 0.06 220
0.50 0.35 0.10 0.06 260
0.50 0.24 0.24 0.03 260
0.50 0.21 0.21 0.08 410
0.50 0.22 0.22 0.06 425

Table 8.7: The soap processing experimental data

x1 x2 x3 z1 z2 y
0.2 0.5 0.3 −1 −1 245.2
0.8 0.15 0.05 −1 −1 381.5
0.8 0.15 0.05 −1 −1 381.0
0.55 0.15 0.3 −1 −1 453.3
0.45 0.5 0.05 −1 −1 172.9
0.2 0.5 0.3 −1 1 285.4
0.8 0.15 0.05 −1 1 409.1
0.8 0.15 0.05 −1 1 411.7
0.55 0.15 0.3 −1 1 450.0
0.45 0.5 0.05 −1 1 245.8
0.2 0.5 0.3 1 −1 213.8
0.8 0.15 0.05 1 −1 378.4
0.8 0.15 0.05 1 −1 377.3
0.55 0.15 0.3 1 −1 408.8
0.45 0.5 0.05 1 −1 180.6
0.2 0.5 0.3 1 1 250.6
0.8 0.15 0.05 1 1 404.2
0.8 0.15 0.05 1 1 406.6
0.55 0.15 0.3 1 1 410.1
0.45 0.5 0.05 1 1 245.44
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Table 8.8: Constraint matrix ui of 6 support points design
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Table 8.9: Constraint matrix ui of 7 support points design
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