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Abstract 

Reconstructing dynamics of complex systems from sparse, incomplete time series 
data is a challenging problem with applications in various domains. Here, we develop 
an iterative heuristic method to infer the underlying network structure and parameters 
governed by Ising dynamics from incomplete spin configurations based on sparse 
and small-sized samples. Our method iterates between imputing missing spin states 
given current coupling strengths and re-estimating couplings from completed spin 
state data. Central to our approach is the novel application of adaptive l1 regulari-
zation on updating coupling strengths, which features an automatic adjustment 
of the regularization strength throughout the iterative inference process. By doing 
so, we aim at preventing over-fitting and enforcing the sparsity of couplings with-
out access to ground truth parameters. We demonstrate that this approach accurately 
recovers parameters and imputes missing spins even with substantial missing data 
and short time series, providing improvements in the inference of Ising model param-
eters even for relatively small sample sizes.

Keywords:  Network inference, Inverse ising model, Complex networks

Introduction
Parameter inference from observed time-series data of the dynamics of complex systems 
is an important research topic in the statistical mechanics community (Zdeborová and 
Krzakala 2016). A widely recognized and well-established framework for statistical infer-
ence of complex-networked systems is the inverse kinetic Ising model (Roudi and Hertz 
2011b). This model aims at reconstructing pairwise interactions between spins in the 
Ising model from time-series observations, such as spin states. With its versatility, the 
inverse kinetic Ising model has found applications in various domains, including neuro-
science (Zeng et al. 2011; Tyrcha et al. 2013; Roudi et al. 2015; Donner and Opper 2017), 
computational biology (Nguyen et al. 2017; Cresswell-Clay and Periwal 2021), econom-
ics (Hoang et al. 2019a; Lee et al. 2021), and social sciences (Bisconti et al. 2015).

Due to the growing need to analyze high-throughput data using statistical models, 
significant efforts have been devoted to devising efficient approximate inference tech-
niques for the inverse kinetic Ising model. These efforts have led to the development of 
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utilizing mean-field approximations (Roudi and Hertz 2011b; Mézard and Sakellariou 
2011), the Thouless-Anderson-Palmer (TAP) method (Roudi and Hertz 2011a), cavity 
analysis (Zhang 2012), and the expectation-reflection approach (Hoang et  al. 2019b). 
However, these studies are based on the assumption that the system dynamics are fully 
observed. In contrast, the complexity of real-world systems and limitations in data sam-
pling techniques often make it difficult to obtain complete observations. For example, 
observing every neuron in the brain and monitoring their complete spiking activities is 
almost impossible (Soudry et al. 2015). Furthermore, considering the effects of hidden 
units in the statistical model can help improve the inference quality (Pearl 2000). There-
fore, recent research has primarily focused on the inference with incomplete data (Dunn 
and Roudi 2013; Tyrcha and Hertz 2014; Bachschmid-Romano and Opper 2014; Battis-
tin et al. 2015; Dunn and Battistin 2017; Hoang et al. 2019a; Campajola et al. 2019; Lee 
et al. 2021; Gemao et al. 2021).

One commonly used setting for inference with incomplete data is the assumption of 
the existence of hidden spins, whose states can never be observed (Dunn and Roudi 
2013; Tyrcha and Hertz 2014; Bachschmid-Romano and Opper 2014; Battistin et  al. 
2015; Dunn and Battistin 2017; Hoang et  al. 2019a; Gemao et  al. 2021). Of the stud-
ies above, Dunn and Battistin (2017) and Gemao et al. (2021) emphasize the impacts of 
hidden spins on dynamics of observed spins. However, they only provide estimates for 
coupling strengths between observed spins. In contrast, Hoang et  al. (2019a) tackle a 
broader aspect of this challenge by inferring not just the interaction strengths but also 
the states and the number of hidden spins. Similarly, other research efforts, including 
those by Dunn and Roudi (2013), Tyrcha and Hertz (2014), Bachschmid-Romano and 
Opper (2014), Battistin et al. (2015), employ an iterative estimation procedure to infer 
the coupling strengths between hidden spins. In more detail, their procedures alternate 
between two steps: estimating the states of hidden variables given current parameters, 
and optimizing model parameters given current hidden variable estimates.

On top of assuming the existence of hidden units, a more practical setting in the context 
of incomplete data is to consider that even visible spins may not be consistently observ-
able throughout the dynamics. This consideration holds significant relevance in domains 
such as neuroscience (Soudry et al. 2015), finance (Mazzarisi et al. 2020), and the social sci-
ences (Zipkin et al. 2016), where partially observable units are prevalent. To the best of our 
knowledge, there are only two previous studies investigating the inverse kinetic Ising model 
with partially observable spins using the framework of iterative estimations . Specifically, 
the work of Campajola et al. (2019) tackles this issue via employing the mean-field and TAP 
approximations. However, the mean-field method and TAP approach both assume a priori 
that interactions are weak and dense. As sparse networks, with only a fraction of nodes sig-
nificantly connected while the majority have limited or no connections, are widely observed 
in real-world systems (Han et  al. 2015; Mirshahvalad et  al. 2012; Singh and Humphries 
2015), it is important to devise an alternative method that does not impose the limitation 
of dense connectivity. The other study that considers network inference in the existence of 
partially observable spins is Lee et al. (2021). In this work, the authors iterate between the 
step of generating estimations for hidden spin states, and the step of optimizing couplings 
by utilizing linear regression. However, through our experiments in Sect. 3.1, we observed 
that this algorithm converges most effectively with intermediate sample sizes. For small 
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sizes, a specific threshold for the stopping criterion must be designed to ensure the conver-
gence of their algorithm. Nevertheless, in many applications, it is common to encounter sit-
uations where experimental data may not be sufficiently large to reconstruct the interaction 
network of a given system (Hoang et al. 2019b). Hence, more research is needed to improve 
methods for the inference of networks from short incomplete time series.

Motivated by the above-mentioned challenges of network sparsity and limited data avail-
ability, we propose an iterative heuristic method to reconstruct the couplings and hidden 
spin states of the Ising model from incomplete time series data in the context of sparse net-
works and small sample sizes. Our work focuses on the setting where we know all the spins, 
but some of the visible spins can have unobserved states, similar to the scenarios described 
in Campajola et  al. (2019), Lee et  al. (2021). From the dataset we can identify the set of 
unobserved spin states and its size. Drawing inspiration from Lee et al. (2021), our algo-
rithm consists of two main components. The first part employs iterative estimations and 
optimizations to deduce missing spin states and determine coupling strengths, gradually 
refining these parameters towards their true values. However, due to the small size of our 
datasets, this process is susceptible to overfitting. To address this issue and impose sparsity 
on the network’s structure, the second part of our algorithm incorporates l1 regularization. 
While existing methods often rely on manually tuned hyper-parameters by using cross-val-
idation or a priori knowledge about network sparsity levels, our approach automates the 
adjustment of the l1 regularization strength based on the convergence of the iteration pro-
cess. This automation is a key methodological novelty in our approach, as it eliminates the 
dependency on known network structures to manually tune the hyper-parameters, offering 
a robust solution when such ground truths are unavailable.

Our contributions are thus as follows: (1) We propose an iterative heuristic that can 
reconstruct sparse Ising networks from incomplete time series data from small sample 
sizes. (2) We introduce an automatic regularization technique to prevent over-fitting during 
the inference process when the ground truth is unavailable. (3) We demonstrate through 
simulations that our method outperforms the state-of-the-art method in inferring net-
work structure especially in the setting of small samples, via an automated regularization 
approach without requiring ground truth for hyper-parameter tuning.

The remainder of this paper is organized as follows. In Sect.  2, we provide a formal 
description for the framework of network inference with missing data and the algorithm 
to solve this problem. In Sect. 3, we provide numerical results demonstrating the validity of 
our proposed approach on simulated sparse network data across varying settings such as 
sample sizes, missing data percentages, network connectivity, and network types. We dem-
onstrate the effectiveness of the automatic l1 regularization in preventing over-fitting and 
enhancing inference accuracy compared to prior methods. In Sect. 4, we summarise the 
main findings and contributions and discuss ideas for future work.

Model description and methods
Consider the stochastic dynamics of an Ising system with N binary spins. Each spin has 
two possible states at time t, denoted as σi(t) = ±1 for i = 1, . . . ,N  . Following the dis-
crete-time and synchronously updated Glauber algorithm (Glauber 1963), the system 
evolves according to the conditional probability at time steps t = 1, . . . ,T :
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Here, the local field Hi(t) =
∑

j wijσj(t) represents the weighted sum of interactions 
between spin i and each of its connected spins j at time t, where wij is the coupling 
strength from spin j to spin i.

In this paper, instead of assuming all spin states are always observable during the whole 
observation period T, we consider a more realistic scenario of partial observability, in 
which some of the spin states are unobserved (or missing). More specifically, we use the 
set U to represent these unobserved data points. To distinguish between unobserved 
and observable spin states, we introduce notations σ u

i (t) ∈ U for unobserved states and 
σ o
i (t) /∈ U for observed states. When the context is clear, we drop the superscripts u and 

o for brevity. Given the partially observed time series of spin states, we aim at inferring 
the model parameters θ = {wij}Ni,j=1 , i.e. the coupling network between the spins, which 
we assume to be constant over time.

In the presence of latent variables (i.e., σ u
i (t) ), the iterative estimation procedure is a 

commonly applied technique for finding maximum likelihood estimates of parameters 
in statistical models (Hastie et al. 2009). Here, following Lee et al. (2021), we extend the 
use of their iterative solution to compute coupling strengths from incomplete spin con-
figurations for small samples and sparse network structures. Our approach contains four 
key components: 

	(i)	 Estimation (E) step: Estimate missing spin states given observed spin states and the 
current estimate of couplings;

	(ii)	 Maximization (M) step: Recalibrate couplings based on completed spin state con-
figurations after applying the E-step;

	(iii)	 Automatic l1 regularization: Encourage sparsity and prevent over-fitting in the 
M-step with the regularization hyper-parameter automatically determined;

	(iv)	 Stopping criterion: Halt iterations between the E and M steps to further prevent 
over-fitting.

In the above, we provided a high-level overview of the four key components. Next, we 
detail the specific procedures for the E-step, M-step, regularization, and stopping crite-
rion, followed by a summary of the overall algorithm.

E‑step

In the E-step, the missing spin states σ u
i (t) ∈ U are estimated by calculating the likeli-

hoods of spins taking the states ±1 . More specifically, the values of σ u
i (t) are stochasti-

cally updated to 1 with probability L+1
i,t / L

+1
i,t + L

−1
i,t  , and to −1 with probability 

L
−1
i,t /

(

L
+1
i,t + L

−1
i,t

)

 . Here, L±1
i,t  stands for the likelihood of σ u

i (t) taking ±1 , computed as:

(1)P(σi(t + 1) | {σj(t)}Nj=1) =
eσi(t+1)Hi(t)

2 cosh(Hi(t))
.

(2)

L
±1
i,t =P

[

σ u
i (t) = ±1 | {σj(t − 1)}Nj=1, θ

]

×
N
∏

j=1

P
[

σj(t + 1) | {σ1(t), . . . , σ u
i (t) = ±1, . . . , σN (t)}, θ

]

.
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The first term of the right-hand side of Eq. (2) represents the one-step-backward likeli-
hood of σ u

i (t) taking the values ±1 . The second term stands for the one-step-forward 
likelihood. For the special case of t = 1 or t = T  , we only include the forward or back-
ward likelihood.

M‑step with expectation reflection

In the M-step, we integrate the observed spin states with the imputed miss-
ing states from the E-step to compile complete spin configurations, represented as 
S = {σj(t) | 1 ≤ j ≤ N , 1 ≤ t ≤ T } . At this stage, the distinction between observed and 
unobserved data points becomes unnecessary for our analysis, as we operate with these full 
configurations to update the coupling strengths. Consequently, we simplify our notation by 
omitting the superscripts u and o.

The expectation-reflection algorithm then consists of three main components: i) optimi-
zation of coupling strengths wij , ii) updating of local fields Hi(t) , and iii) a stopping criterion 
to determine when to terminate the iterations between optimizing wij and updating Hi(t) . 
In this study, we adopt the expectation-reflection algorithm for inferring coupling strengths 
for two main reasons. First, its computational efficiency surpasses traditional methods like 
maximum likelihood estimation, primarily due to its use of multiplicative weights. Second, 
the expectation-reflection algorithm exhibits enhanced performance through its stop-
ping criterion. This criterion, by assessing mismatches between observed spins and model 
expectations, curtails unnecessary iterations. Such a mechanism can not only be applied to 
improve the expectation-reflection algorithm’s performance but also has the potential to 
augment maximum likelihood estimation, especially in data-limited scenarios as shown in 
Hoang et al. (2019b). Overall, our selection of the expectation-reflection algorithm is driven 
by its efficiency and its effectiveness in addressing the challenges associated with data scar-
city, as outlined in our research.

To optimize the parameters {wij}Ni,j=1 across all times t, we first sum Hi(t) over time t and 
multiply this by spin fluctuations δσk(t) = σk(t)− �σk� , with 

〈

f
〉

= 1/T
∑T

t=1 f (t) denot-
ing the time average of function f:

By replacing Hi(t) with its fluctuation δHi(t) and mean 〈Hi〉 (i.e., Hi(t) = δHi(t)+ �Hi� ) 
in Eq. (3), we obtain

This leads to a simplified expression:

where 
〈

δσjδσk
〉

 is the covariance matrix. Note that, in the absence of l1 regularization, 
the coupling strengths wij can be obtained via:

(3)
∑

t

Hi(t)δσk(t) =
∑

t

∑

j

wijσj(t)δσk(t)

(4)
∑

t

δHi(t)δσk(t) =
∑

t

∑

j

wijδσj(t)δσk(t).

(5)�δHiδσk� =
∑

j

wij

〈

δσjδσk
〉

,
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As mentioned above, to prevent over-fitting and encourage sparsity given the small 
sample sizes, we incorporate l1 regularization (Liu and Ihler 2011). Therefore, instead of 
optimizing Eq. (5) to find the best {wij}Ni,j=1 , we optimize a regularized loss function:

where � controls the regularization strength. A larger value of � will lead to stronger reg-
ularization, which tends to drive more of the coupling strengths towards zero, promot-
ing sparsity in the model. Conversely, a smaller � will result in weaker regularization, 
allowing the model to have larger coupling strengths. The process of updating the cou-
pling strengths under l1 regularization is carried out through the numerical optimization 
of the regularized loss function of Eq. (7). This optimization is specifically achieved using 
the coordinate descent method (Wu and Lange 2008). Note that, the above requires 
a choice of the parameter � . We will explain later how � can be automatically adapted 
based on a criterion related to our algorithm’s convergence in Sect. 2.3.

After obtaining the coupling strengths, the expectation-reflection employs a two-
step process to update the local field Hi(t) . A detailed deduction for the updating of 
Hi(t) can be found in Appendix A. Initially, Hi(t) is estimated using:

Subsequently, Hi(t) is refined to better align with the next time step’s state σi(t + 1) 
through:

where E[σi(t + 1) | Hi(t)] represents the expected value of σi(t + 1) given Hi(t) . This 
step helps correct the sign of Hi(t) and pull the expectation of σi(t + 1) closer to ±1.

As overfitting poses a significant challenge in the context of inference with small 
sample sizes, it is important to determine an appropriate stopping criterion for opti-
mizing wij and updating Hi(t) . In this regard, our focus shifts to the overall discrep-
ancy between the observed values, denoted by σi(t + 1) , and the model’s predictions, 
E[σi(t + 1) | Hi(t)] . This discrepancy is quantified as follows:

Following the heuristic proposed by Hoang et al. (2019a), we repeat optimizing Eq. (7) 
and updating Hi(t) until Di starts to increase. Note that the parameter updates given by 
Eqs. (7), (8) and (9) are completely independent of the computation of Di . This crucial 
aspect allows the inference process to avoid overfitting when dealing with small sam-
ple sizes, as the minimization of Di serves solely as a stopping criterion. This approach 

(6)wij =
∑

k

�δHiδσk�
[

δσkδσj
]−1

.

(7)
�

k



�δHiδσk� −
�

j

wij

�

δσjδσk
�





2

+ �

�

j

�

�wij

�

�

(8)Hi(t) ←
∑

j

wijσj(t).

(9)Hi(t) ←
σi(t + 1)

E[σi(t + 1) | Hi(t)]
Hi(t) = σi(t + 1)

Hi(t)

tanhHi(t)
,

(10)Di =
1

T

∑

t

(σi(t + 1)− E[σi(t + 1) | Hi(t)])2.
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is notably different from maximum likelihood methods, which directly minimize a cost 
function and terminate at the minimal cost configuration, even if it represents a local 
minimum rather than the global optimum. A more systematic comparison between the 
method of minimization of data and predictions mismatch and the maximum likelihood 
methods can be found in Hoang et al. (2019b).

Stopping criterion and automatic l1 regularization

By executing E and M steps iteratively, the model parameter θ is expected to converge 
to a local maximum. However, iterating too often can worsen inference accuracy due 
to over-fitting, especially with small samples (Lee et al. 2021). Therefore, an appropriate 
stopping criterion is critical. To address this issue, we consider prediction consistency 
between observed and unobserved data, where the model should have similar perfor-
mance in predicting the observed data and the unobserved data. Specifically, the model-
data discrepancy for the observed data Dobs and the unobserved data Dun is determined 
by

and

where, |U | stands for the number of unobserved data points. Typically, the iterative 
estimation procedure halts when |Dobs − Dun| < ε , where ε is a threshold that needs to 
be properly chosen to stop the estimation procedure at an appropriate time (Lee et al. 
2021). However, as there is no ground truth for most real-world inference problems, 
it is challenging to determine the best choice of ε . To address this issue, together with 
the problem of determining the hyper-parameter of the l1 regularization � , we propose 
a heuristic that gets around the problem of finding the threshold ε . Instead, we pro-
pose an approach, which is based on the observation that best results from the iterated 
approach tend to be found at parameter values just before convergence is lost. Hence, 
we directly set Dobs = Dun as the stopping criterion and, incrementally increasing � from 
� = 0 , choose � to be right at the threshold at which the algorithm changes from conver-
gence to non-convergence. The effectiveness of this heuristic is systematically verified in 
Sect. 3.

In summary, the overall procedure for determining the model parameters θ involves 
these main steps: 

	(i)	 Start by setting the regularization parameter to � = 0 and set the maximum num-
ber of iterations to Qmax = 100 . (A detailed discussion for the choice of Qmax can 
be found in Sect. 3.2.)

	(ii)	 Randomly initialize every unobserved spin state σ u
i (t) ∈ U to to either +1 

or −1 , each with a 50% probability. Then, given the observed and randomly 
assigned spin states, we obtain a complete collection of binary time series: 
S = {σj(t) | 1 ≤ j ≤ N , 1 ≤ t ≤ T }.

(11)Dobs =
1

NT − |U |
∑

{t+1,i|σ o
i (t+1)/∈U}

(σi(t + 1)− E[σi(t + 1) | Hi(t)])2

(12)Dun =
1

|U |
∑

{t+1,i|σu
i (t+1)∈U}

(σi(t + 1)− E[σi(t + 1) | Hi(t)])2
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	(iii)	 M-step: We then infer the model parameters θ via the above-mentioned expecta-
tion-reflection method. 

a)	 We first initialize the local field Hi(t) as σi(t).
b)	 Then the coupling strength wij can be obtained via the regularized loss function 

of Eq. (7).
c)	 Update Hi(t) according to Eqs. (8) and (9).
d)	 Repeat steps b) and c) iteratively until the discrepancy between true and 

expected values of the spin states (see Eq. (10)) is minimized.

	(iv)	 E-step: Stochastically update the values of σ u
i (t) to 1 with the probability of 

L
+1
i,t /

(

L
+1
i,t + L

−1
i,t

)

 , and to −1 with probability L−1
i,t /

(

L
+1
i,t + L

−1
i,t

)

 according to 

Eq. (2).
	(v)	 Repeat steps (iii) and (iv) until Dobs = Dun (see Eqs. (11) and (12)) or the number of 

iterations exceed the maximum number of iterations Qmax.
	(vi)	 The procedure is terminated if the number of iterations exceeds the maximum 

number of iterations Qmax . Otherwise, increase � by a small increment of �� and 
repeat steps (i) to (vi). This process continues, with � incrementally increasing, 
until the iterative procedure fails to converge. The � value used in the final con-
verged iteration prior to non-convergence is then considered as the optimal � for 
the l1 regularization.

Furthermore, to evaluate our algorithm, we use the mean square error (MSE) between 
the inferred weights and the true weights:

where wij refers to the inferred linking weights from spin j to spin i and the w∗
ij repre-

sent the corresponding true values. We choose MSE because it is a standard metric, and 
is used widely for evaluating the accuracy of inferred network connections and weights 
(Hoang et al. 2019a; Lee et al. 2021). By benchmarking with MSE, we can directly com-
pare the performance of our proposed approach against existing methods.

Results
In this section, we validate the applicability of our proposed algorithm for network infer-
ence on sparse networks for small sample sizes. In Sect. 3.1, we start by analyzing the 
performance of network inference without l1 regularization. Results shown there provide 
a benchmark for later comparisons. In this section, we also present a counterintuitive 
observation, where diluting the quality of available information by adding empty rows 
to the time series is found to result in improved inference accuracy. We show that this is 
explained by over-fitting to noise in the case of limited data. These experiments set the 
stage for the necessity of l1 regularization. Next, in Sect. 3.2, we present an initial explo-
ration of the iterative heuristic including the procedure of automatically determining 
the regularization parameter. We then conduct comprehensive tests on the algorithm’s 

(13)MSE = N−1
∑

i,j

(wij − w∗
ij)

2
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performance across various data availability scenarios, including sample sizes, amounts 
of missing data, average degrees 〈k〉 of the network, average connectivity strength, and 
network types in Sect. 3.3.

In our study, we employ a structured approach to generate simulated time series 
for network inference. This process begins with the construction of sparse networks 
using commonly studied network topologies. Specifically we use the Barabási-Albert 
(BA) model (Barabási and Albert 1999), the Erd?s-Rényi (ER) model (Newman et al. 
2001), and the small-world (SW) model (Watts and Strogatz 1998) to build sparse 
networks of size N = 100 . Once the network structure is established, we assign link 
weights to the existing connections. More specifically, link weights are drawn from 
a normal distribution with a mean of 0 and a standard deviation of g/

√
N  . Here, the 

parameter g influences the connectivity strength.
Subsequent to the network and weight setup, we simulate the Ising dynamics on 

these networks using Glauber dynamics. For the initial conditions of the spin states, 
we employ a random assignment where 50% of the states are set to −1 and the remain-
ing 50% to +1 , ensuring a balanced start for each simulation. Crucially, the recording 
of the time series begins from time 0, capturing the entire evolution of the system 
from the very start.

Network inference without l1 regularization for small sample sizes

We first explore network inference based on small sample sizes without applying the 
automatically determined l1 regularization. In this case, our approach reduces to the 
algorithm introduced by Lee et  al. (2021), which provides state-of-the-art perfor-
mance in reconstructing coupling strengths from limited observations with missing 
data. A major drawback of their algorithm is the need to manually tune the thresh-
old ε of |Dobs − Dun| < ε to ensure the algorithm stops at the right time. In their set-
ting with observation lengths T ≥ 2500 , they choose a specific value of ε = 0.01 as 
the stopping threshold. However, the appropriate threshold is highly dependent on 
the amount of data available. In Fig. 1a, we demonstrate how the optimal threshold 
ε∗ is influenced by varying observation lengths T in contexts with different percent-
ages of missing data. The optimal threshold ε∗ is determined as the specific value 
of |Dobs − Dun| at which the MSE is minimized during the algorithm’s iterations. In 
Fig. 1a, with extremely limited data T ≤ 1500 , we observe higher optimal thresholds 
(ε∗ > 0.01) in order to halt the iterations earlier.

Correspondingly, in Fig.  1b, we compare the MSE when stopping at the optimal 
threshold ε∗ (as determined above) versus at |Dobs − Dun| < 0.01 for varying observa-
tion lengths T. The relative MSE on the y-axis shows the percentage increase in MSE 
from using 0.01 as the threshold compared to the optimal threshold. This comparison 
reveals a key insight: Whereas performance losses for longer time series are not sig-
nificant, for smaller values of observation lengths T, adhering to a fixed threshold of 
|Dobs − Dun| < 0.01 results in excessive iterations and decidedly suboptimal perfor-
mance. However, it is unrealistic to design a specific ε value for each T, especially with-
out knowledge of the ground truth. Therefore, for small lengths of the time series T, a 
new stopping criterion that eliminates manually assigning ε is required.
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To further demonstrate the over-fitting challenges with limited samples, we explore 
the impact of supplementing the dataset with additional empty rows that do not con-
tain any spin state information. Specifically, these empty rows are added to the end of 
the original dataset, and they represent time steps where the spin states for all spins 
in the network are unobserved or missing. Somewhat surprisingly, we note that add-
ing empty rows significantly improves the inference accuracy, as shown in Fig. 2a. More 
specifically, Fig. 2a shows the dependence of MSE on the number of additional empty 
rows. The inference is carried out on a dataset containing two parts: a 90% visible data 
part with length T1 = 500 plus a number of empty rows as shown on the x-axis. The 
unobserved data points in T1 are chosen randomly. Here, padding with empty rows leads 
to monotonic improvement despite the fact that the appended rows do not provide any 
extra information. This highlights the tendency of the unregularized algorithm of Lee 
et al. (2021) to capitalize on spurious noise patterns, fitting to spurious patterns in lim-
ited data rather than real underlying correlations.

To directly illustrate this over-fitting behavior, Fig. 2b, c compare true weights versus 
those inferred by the algorithm of Lee et al. (2021) without and with 500 added empty 
rows. Without extra rows in Fig. 2b, the lack of data causes inferred weights to be drasti-
cally overestimated in early iterations. However, with empty padding in Fig. 2c, weights 
initially underestimate true values as the algorithm attempts to latch onto non-existent 
signals in the meaningless rows. These experiments conclusively demonstrate the need 
for safeguards such as l1 regularization to constrain over-fitting.

Network inference with l1 regularization

As discussed above, network inference without l1 regularization can lead to over-fitting, 
especially for small data sets. To address this, we now examine the performance when 
including automatic l1 regularization through the heuristic approach proposed in Sect. 2. 
Notice that, l2 can also be used to avoid overfitting. However, it typically results in mod-
els where most coefficients are non-zero but small. This attribute makes l2 regularization 

Fig. 1  a Dependence of optimal threshold ε∗ on varying observation lengths T. The optimal threshold ε∗ 
is determined as the specific value of |Dobs − Dun| at which the MSE is minimized during the algorithm’s 
iterations. b Dependence of relative MSE on varying observation lengths T. The relative MSE on the 
y-axis is calculated as the difference between the minimal MSE at |Dobs − Dun| < ε∗ and the MSE at 
|Dobs − Dun| < 0.01 , divided by the minimal MSE. Here, we use a setting of BA networks with network size 
N = 100 , average degree �k� = 10 , and connectivity strength coefficient g = 1 . The blue squares represent 
the scenarios of 30% randomly missing data, while the black circles are for 50% randomly missing data. The 
results are based on 10 repetitions of the experiments, and error bars indicate 95% confidence intervals
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less suited for our purpose. A detailed comparison between l1 and l2 regularization can 
be found in Appendix C.

We first present a sweep across different values of the regularization parameter � and 
examine the resulting inference errors. As shown in Fig. 3a, we note that the MSE ini-
tially decreases as � increases, reaching a minimum and then starts increasing again. 
This aligns with expectations – a small amount of regularization typically constrains 
over-fitting, but too much regularization might degrade performance. Moreover, we also 
see that the optimal regularization parameter and the benefits of regularization depend 
on the lengths of the time series, with the largest benefits observed for T = 500.

Additionally, in Fig.  3b, we show the corresponding dependence of the number of 
iterations until convergence is reached on � , again for varying observation lengths T. 
Here, we set a maximum of 100 iterations, Qmax = 100 . Iterations exceeding Qmax = 100 
are considered non-convergent. As seen in Fig.  3b, the � value corresponding to the 
minimum MSE aligns closely with the transition point between convergence and 

Fig. 2  a Dependence of MSE on numbers of additionally empty rows padded at the end of the original 
dataset. More specifically, the inference is carried out on a dataset containing two parts: a 90% visible data 
part with length T1 = 500 , and an empty dataset with lengths shown in the x-axis. The unobserved data 
points in T1 are chosen randomly. b Comparison between the true and inferred wij at different iterations: 
1 (black circles), 2 (blue stars), and 3 (red triangles). The inference is conducted in a dataset with length 
T = 500 , and 10% data points are randomly missed. After the first iteration, wij is overestimated. c Comparison 
between the true and inferred wij at different iterations: 1 (black circles), 3 (blue stars), and 5 (red triangles). 
The inference is conducted in a dataset with two parts: a 90% visible data part with length T1 = 500 , and an 
empty dataset part with length T2 = 500 . At early iterations, wij is underestimated. Here, we use a setting of 
BA networks with network size N = 100 , average degree �k� = 10 , and connectivity strength coefficient g = 1
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non-convergence, validating the proposed heuristic. Initially, increasing � causes more 
iterations until eventual non-convergence is reached at Qmax = 100 . With further � 
increases, the strong regularization pushes coupling strengths near zero, abruptly re-
establishing convergence (note the last data points in panels (b) and (d)).

To illustrate the non-convergent behavior, Fig. 3c shows the evolution of discrepancies 
Dobs and Dun at T = 500 , and relatively large � = 0.0003 , with 50% missing data. We see 
that in spite of fluctuations Dobs remains above Dun , so the iterations continue beyond 
Qmax = 100 , as the convergence criterion cannot be met. Finally, Fig.  3d verifies that 
the overall shape and turning points are robust to the choice of Qmax . For large enough 
Qmax , the curves exhibit two distinct behaviors: quick convergence or sustained non-
convergence, and results for the first point of non-convergence become independent of 
the exact choice of Qmax . A more systematic exploration for the non-convergent behav-
ior under varying numbers of missing data can be found in Appendix .

Dependence of performance on data availability

Next, we carry out a comprehensive set of experiments on our proposed algorithm from 
the perspective of missing data selection, the structure of the weights matrix, and network 

Fig. 3  a Dependence of MSE on the l1 regularization parameter � for varying observation lengths T. b 
The number of iterations until convergence or reaching maximum iterations Qmax = 100 as a function 
of � . c Example evolution of the discrepancies Dobs and Dun for non-convergent iterations at T = 500 and 
� = 0.0003 . d Dependence of convergence iterations on � for varying values of maximum iterations Qmax . 
Here, we use a setting of BA networks with network size N = 100 , average degree �k� = 10 , connectivity 
strength coefficient g = 1 , and with 50% missing data points. The results are based on 10 repetitions of the 
experiments, and error bars indicate 95% confidence intervals



Page 13 of 22Cai et al. Applied Network Science            (2024) 9:13 	

types to verify the effectiveness of the automatically determined l1 regularization. To be 
specific, we test the performance of our algorithm depending on the following model spec-
ifications: (i) Percentages of unobserved data p, (ii) Average degrees 

〈

k
〉

 for reflecting lev-
els of network sparsity, (iii) connectivity strengths g, (iv) Network models, such as the BA 
model, the ER model, and the SW model. To maintain conciseness in the main discussion, 
we have placed the detailed examination of network size (N) in Appendix B.

To evaluate the robustness of our approach to missing observations, we test the infer-
ence performance under varying percentages of unobserved data p in the range from 
10% to 70% . This range was selected to encompass a realistic spectrum of missing data 
scenarios encountered in practical applications, starting from minimal data loss ( 10% ) 
to a substantial but manageable level ( 70% ). At the lower end of the range, a 10% level 
of missing data represents scenarios with minimal data loss, which can occur in well-
connected online social networks or transportation networks (Li et al. 2014; Kossinets 
2006) during periods of normal operation. On the other hand, a 70% level of missing 
data represents a substantial but manageable level of unobserved nodes, as often seen 
in biological networks where experimental techniques may not capture the complete set 
of biomolecules (Liao et al. 2018). The decision to cap the range at 70% was informed by 
the consideration that beyond this threshold, the volume of missing data likely becomes 
too extensive for reliable inference. Additionally, experiments are conducted for several 
observation lengths T = 500, 1000, 2000 , and T = 4000 time steps with a fixed connec-
tivity strength g = 4.

In our analysis, we determine the quality of the network reconstructions by comput-
ing the MSE between the true and inferred networks, using three distinct approaches: (i) 
Optimal Inference MSE (min MSEtrue ): This represents the MSE obtained at the � value 
that yields the minimum MSE, reflecting the best possible inference outcome when the 
ground truth is known. This optimal MSE serves as a benchmark for the highest achiev-
able performance in network inference. (ii) Algorithmic Inference (min MSEapprox ): This 
MSE is calculated at the � value determined by our algorithm, providing a measure of 
how well our proposed method performs in approximating the true network. (iii) Base-
line MSE (MSE�=0 ): This metric calculates the MSE without applying l1 regularization, 
which corresponds to the method described by Lee et al. (2021). To be specific, MSE�=0 
acts as a reference for the state-of-the-art performance in network inference with miss-
ing data.

To summarize, here, we introduce two reference classes including an ideal benchmark 
(i.e., min MSEtrue ) and the state-of-the-art (i.e., MSE�=0 ) for evaluating MSE values. The 
above enables us to more meaningful comparisons across different scales and param-
eter settings, facilitating a better understanding of the effectiveness of our approach in 
achieving accurate network reconstruction.

The results of these experiments are plotted in the panels of Fig. 4. We make the fol-
lowing observations. First, inspecting panels (a)-(d), we see that results for the truly best 
regularization (min MSEtrue ) and approximated best regularization (min MSEapprox ) are 
very close across the range of missing data p. Second, performances without regulariza-
tion (MSE�=0 ) tend to be significantly worse, with decreasing differences as the lengths 
of the time series increase. The closeness of the optimally and heuristically regularized 
results demonstrates our algorithm’s ability to automatically find a suitable regularization 
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strength approaching the optimal MSE. For larger p, min MSEtrue and min MSEapprox 
begin to diverge, indicating greater difficulty in identifying the optimal � as the amount 
of missing data increases. However, even for 70% missing data, our approach maintains 
strong gains over the no regularization scenario. Correspondingly, in Fig. 4e, we show 
the difference between the optimal regularization strength, labelled as �true that mini-
mizes MSE, versus the automatically determined �approx based on the convergence tran-
sition point. We find that, our algorithm manages to find a very close approximation for 
the optimal regularization strength, especially when not many data points are missing.

Fig. 4  MSE between inferred and true networks versus percentage of missing data p for observation lengths 
T of a 500, b 1000, c 2000, and d 4000 time steps. Three MSEs are compared: min MSEtrue at optimal � , min 
MSEapprox at automatically determined � by our algorithm, and MSE�=0 without regularization. e Comparison 
of the optimal regularization strength �true that minimizes MSE versus the automatically determined �approx 
based on the convergence transition point. Here, we use a setting of BA networks with network size N = 100 , 
average degree �k� = 10 , and connectivity strength coefficient g = 4 . The results are based on 10 repetitions 
of the experiments, and error bars indicate 95% confidence intervals
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Next, we continue with an exploration of the effects of varying network connectivity 
strengths g on the accuracy of network inference. Specifically, we examine four cases: 
g = 1 in Fig. 5a, g = 2 in Fig. 5b, g = 4 in Fig. 4a, and g = 10 in Fig. 5c. Throughout 
these evaluations, we observe a consistent and noteworthy alignment between the 
minimum mean square error of the true model min MSEtrue and its approximation min 
MSEapprox . This finding reinforces the robustness of our proposed algorithm, particu-
larly in its ability to significantly surpass the performance metrics of the baseline model 
MSE�=0 , across varied network connectivity paradigms.

Following the evaluation of connectivity strengths, we examine the role of network 
sparsity by considering different average degrees 〈k〉 of the networks. A higher average 
degree corresponds to a denser network with more connections, while a lower average 
degree represents a sparser network with fewer connections. Specifically, we exam-
ine scenarios with �k� = 5 in Fig. 6a, �k� = 10 in Fig. 4a, �k� = 20 in Fig. 6b, �k� = 30 
in Fig.  6c, and �k� = 40 in Fig.  6d. These average degrees cover a range of network 
densities, from highly sparse networks with �k� = 5 to denser networks with �k� = 40 . 
Across all the examined average degree scenarios, we observe that our proposed algo-
rithm maintains a high level of accuracy and significantly outperforms the baseline 
model MSE�=0 without regularization. This is evident from the close correspondence 

Fig. 5  MSE between inferred and true networks on varying connectivity strengths g = 1 (a), g = 2 (b), 
and g = 10 (c) for observation length T = 500 . Three MSEs are compared: min MSEtrue at optimal � , min 
MSEapprox at automatically determined � , and MSE�=0 without regularization. Here, we use a setting of BA 
networks with network size N = 100 , average degree �k� = 10 . The results are based on 10 repetitions of the 
experiments, and error bars indicate 95% confidence intervals
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between the minimum mean square error of the true model min MSEtrue and the 
approximate model min MSEapprox obtained with our method. Moreover, we find the 
relative improvement compared to the unregularized model generally becomes more 
substantial for denser graphs with higher 〈k〉 . For instance, at �k� = 5 in Fig.  6a, regu-
larized MSE (min MSEapprox ) is 2–25% of baseline MSE�=0 . However, at �k� = 40 in 
Fig.   6d, regularized MSE decreases to only 0.3− 2% of the baseline, representing a 
larger accuracy gain. This reveals greater over-fitting risks in dense networks, fur-
ther motivating the regularization to constrain complexity. This observation suggests 
that our method becomes more effective and beneficial as the network connectivity 
increases and the networks become denser. The greater improvement in accuracy for 
dense networks can be attributed to the higher risk of overfitting in such scenarios, 
further motivating the need for regularization to constrain the complexity of the 
models and prevent overfitting.

So far our experiments have explored the performance of our approach on net-
works based primarily on the BA model. To demonstrate wider applicability beyond 
the BA model, we additionally evaluate performance using two other commonly 
studied network models: SW networks and ER networks. Figure  7 shows the MSE 
between inferred and true networks on different network types: ER networks (a), and 

Fig. 6  MSE between inferred and true networks on varying average degrees �k� = 5 (a), �k� = 20 (b), 
�k� = 30 (c), and �k� = 40 (d) for observation length T = 500 . Three MSE are compared: min MSEtrue at 
optimal � , min MSEapprox at automatically determined � , and MSE�=0 without regularization. Here, we use a 
setting of BA networks with network size N = 100 , and connectivity strength coefficient g = 4 . The results 
are based on 10 repetitions of the experiments, and error bars indicate 95% confidence intervals
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SW networks (b) for observation length T = 500 . As seen in Fig. 7a, b, our method 
continues achieving significant accuracy gains over the baseline across both network 
models. We observe that on both ER and SW networks, the MSE is improved by over 
70% relative to the unregularized inference. Importantly, these generalized gains are 
achieved without needing to tune the regularization approach to the specific net-
work structure. The consistent benefits verify the broad applicability of our proposed 
framework beyond reliance on particular topological constraints or connectivity pat-
terns. By automatically adapting the complexity penalty during inference, the benefits 
persist whether there are highly structured motifs like triangular clustering or entirely 
random edge formation as in ER graphs. This flexibility highlights the potential to 
extend the regularization approach to diverse network inference tasks.

Conclusion
In this work, we have proposed and validated an enhanced approach for stochastic net-
work inference from limited time-series observations. Our method introduces auto-
matic l1 regularization to constrain over-fitting, which is particularly problematic when 
data are scarce. The algorithm heuristically determines a suitable regularization strength 
by identifying the transition point between convergence and non-convergence of the 
heuristic iterations. This provides a data-driven technique for regularization without 
requiring manual parameter tuning.

Experiments on simulated sparse networks demonstrated significant performance 
gains over the state-of-the-art method of Lee et al. (2021), especially for small sample 
sizes. The l1 regularization is found to result in reduced inference error across varying 
conditions including observation length, missing data percentages, and network connec-
tivity. Moreover, our approach eliminates the need to manually select a stopping thresh-
old ε , which was previously required to halt iterations before over-fitting. The automatic 
regularization inherently prevents excess iterations by driving the model toward spar-
sity. The ability to infer networks from limited, incomplete data with minimal parameter 
tuning will help enable adoption in real-world settings. Potential applications include 

Fig. 7  MSE between inferred and true networks on different network types: ER networks (a), SW networks 
(b) for observation length T = 500 . Three MSEs are compared: min MSEtrue at optimal � , min MSEapprox at 
automatically determined � , and MSE�=0 without regularization. Here, we use a setting of network size 
N = 100 , average degree �k� = 10 , and connectivity strength coefficient g = 4 . The results are based on 10 
repetitions of the experiments, and error bars indicate 95% confidence intervals
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reconstructing gene regulatory networks from scarce biological data and learning neural 
connectivity from partial observations.

Future work can focus on extending the approach to additional network models beyond 
the binary Ising spin glass tested here. Testing on real-world inference tasks and integrating 
side information are also worthwhile directions. Overall, this work takes a significant step 
toward practical and automated inference of complex networks from scarce, noisy data.

Updating of local fields Hi(t)

The local field, denoted as Hi(t) , determines the impact of the current state, {σk(t)}Nk=1 , on 
the predicted future state, σi(t + 1) . Here, we examine a scenario where the local field is 
defined by Hi(t) =

∑

j wijσj(t) , focusing on identifying the elements of the weight matrix 
wij.

The tendency of the state σi(t + 1) to align with its local field Hi(t) forms the basis of our 
model. This alignment is quantitatively expressed as

where the model expectation is a function of the probabilities of σi(t + 1) assuming val-
ues of ±1 given the current state {σk(t)}Nk=1 . We observe that the magnitude of the model 
expectation relative to the actual state, σi(t + 1) , is constrained by

To refine the predictive accuracy, we carry out an update to the local field Hi(t) that 
enhances the alignment of the model expectation with the actual state

resulting in an improved predictive capability as evidenced by the increased magnitude 
of the model expectation. This update, importantly, not only improves the prediction but 
can also correct the direction (sign) of the local field Hi(t) if initially incorrect.

Dependence of performance on network sizes N
In Fig. 8, we investigate the impact of different network sizes N on the accuracy of our net-
work inference method. This exploration specifically covers two scenarios: a network size of 
N = 20 , illustrated in Fig. 8a, and a network size of N = 50 , shown in Fig. 8b. In these anal-
yses, we consistently find that the MSE of our approximation, denoted as min MSEapprox 
outperforms the baseline model’s MSE (MSE�=0 ) across a spectrum of network size set-
tings. This outcome underscores the superior robustness and reliability of our proposed 
algorithm in various network configurations.

E[σi(t + 1) | Hi(t)] = tanh [Hi(t)],

∣

∣

∣
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Comparison between l1 and l2 regularization
In Fig. 9, we evaluate the performance of l1 and l2 regularization techniques in inferring 
network structures, particularly within BA networks characterized by a size of N = 100 
and a connectivity strength coefficient g = 4 . This evaluation is conducted over an 
observation length of T = 500 , with the goal of comparing four distinct MSE metrics: 
“min MSEtrue ” at optimal � , “l1: min MSEapprox ” at automatically determined � calcu-
lated by the l1 regularization, “MSE�=0 ” without regularization, and “l2: min MSEapprox ” 
at automatically determined � calculated by the l2 regularization. The experiments 
reveal that l1 regularization can improve the inference accuracy of network structures 
in most cases compared to the l2 regularization, especially in the scenarios when a large 
amount of data is missing. The superiority of l1 regularization in inferring sparse net-
works can be attributed to its ability to encourage many coefficients to shrink to zero. 

Fig. 8  MSE between inferred and true networks on varying network sizes N, a N = 20 and b N = 50 
for observation length T = 500 . Three MSE are compared: min MSEtrue at optimal � , min MSEapprox at 
automatically determined � , and MSE�=0 without regularization. Here, we use a setting of BA networks with 
connectivity strength coefficient g = 4 . The results are based on 10 repetitions of the experiments, and error 
bars indicate 95% confidence intervals

Fig. 9  MSE between inferred and true networks for observation length T = 500 . Four MSE are compared: 
min MSEtrue at optimal � , l1: min MSEapprox at automatically determined � calculated by the l1 regularization, 
MSE�=0 without regularization, and l2: min MSEapprox at automatically determined � calculated by the l2 
regularization. Here, we use a setting of BA networks with network size N = 100 , and connectivity strength 
coefficient g = 4 . The results are based on 10 repetitions of the experiments, and error bars indicate 95% 
confidence intervals
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On the other hand, l2 regularization, which penalizes the square of the coefficients, does 
not inherently promote sparsity in the same way l1 does. While l2 regularization can help 
in reducing overfitting by discouraging large coefficients and thus limiting the model’s 
complexity, it typically results in models where most coefficients are non-zero but small. 
This attribute makes l2 regularization less suited for our purpose.

Non‑convergent behavior under different percentage of missing data
Consistent with Fig. 3a, which showed the impact of varying temperature T, in Fig. 10a, 
we present a sweep across different values of the regularization parameter � and exam-
ine the resulting inference errors for a fixed observation length T = 500 and varying 
percentages of missing data p = 0.1, 0.2, 0.3, 0.4, 0.5 . As shown in Fig. 10a, we note that 
the MSE initially decreases as � increases, reaching a minimum, and then starts increas-
ing again. This behavior is observed for all percentages of missing data. Additionally, in 
Fig. 10b, we show the corresponding dependence of the number of iterations required 
for convergence on � , again for varying percentages of missing data p. Here, we set a 
maximum of 100 iterations, Qmax = 100 , and iterations exceeding Qmax = 100 are con-
sidered non-convergent. As seen in Fig. 10b, the � value corresponding to the minimum 
MSE in Fig. 10a aligns closely with the transition point between convergence and non-
convergence for each percentage of missing data. This observation further validates our 
proposed heuristic.
Acknowledgements
The authors acknowledge the use of the IRIDIS High Performance Computing Facility in the completion of this work. ZC 
acknowledges support from China Scholarships Council (No.201906310134). MB acknowledges support from the Alan 
Turing Institute (EPSRC grant EP/N510129/1, https://​www.​turing.​ac.​uk/) and the Royal Society (grant IES\R2\192206, 
https://​royal​socie​ty.​org/).

Author Contributions
Conceptualization, ZC, MB and EG; Methodology, ZC, MB and EG; Software, ZC; Validation, MB and EG; Formal analysis, ZC; 
Investigation, ZC, MB and EG; Resources, ZC, MB and EG; Data curation, ZC; Writing-original draft preparation, ZC; Writing-
review and editing, ZC, MB and EG; Visualization, ZC; Supervision, MB and EG; Project administration, MB and EG.

Fig. 10  a Dependence of MSE on the l1 regularization parameter � for varying percentages of unobserved 
data p for observation length T = 500 . b The number of iterations until convergence or reaching maximum 
iterations Qmax = 100 as a function of � for observation length T = 500 . Here, we use a setting of BA 
networks with network size N = 100 , average degree �k� = 10 , and connectivity strength coefficient g = 4 . 
The results are based on 10 repetitions of the experiments, and error bars indicate 95% confidence intervals

https://www.turing.ac.uk/
https://royalsociety.org/


Page 21 of 22Cai et al. Applied Network Science            (2024) 9:13 	

Availibility of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable 
request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 13 December 2023   Accepted: 22 April 2024

References
Bachschmid-Romano L, Opper M (2014) Inferring hidden states in a random kinetic ising model: replica analysis. J Stat 

Mech: Theory Exp 2014:P06013
Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512
Battistin C, Hertz J, Tyrcha J, Roudi Y (2015) Belief propagation and replicas for inference and learning in a kinetic ising 

model with hidden spins. J Stat Mech: Theory Exp 2015:P05021
Bisconti C, Corallo A, Fortunato L, Gentile AA, Massafra A, Pellè P (2015) Reconstruction of a real world social network 

using the potts model and loopy belief propagation. Front Psychol 6:1698
Campajola C, Lillo F, Tantari D (2019) Inference of the kinetic ising model with heterogeneous missing data. Phys Rev E 

99:062138
Cresswell-Clay E, Periwal V (2021) Genome-wide covariation in sars-cov-2. Math Biosci 341:108678. https://​doi.​org/​10.​

1016/j.​mbs.​2021.​108678
Donner C, Opper M (2017) Inverse ising problem in continuous time: a latent variable approach. Phys Rev E 96:062104. 

https://​doi.​org/​10.​1103/​PhysR​evE.​96.​062104
Dunn B, Battistin C (2017) The appropriateness of ignorance in the inverse kinetic ising model. J Phys A: Math Theor 

50:124002
Dunn B, Roudi Y (2013) Learning and inference in a nonequilibrium ising model with hidden nodes. Phys Rev E 87:022127
Gemao B, Lai PY et al (2021) Effects of hidden nodes on noisy network dynamics. Phys Rev E 103:062302
Glauber RJ (1963) Time-dependent statistics of the ising model. J Math Phys 4:294–307
Han X, Shen Z, Wang WX, Di Z (2015) Robust reconstruction of complex networks from sparse data. Phys Rev Lett 

114:028701
Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009) The elements of statistical learning: data mining, inference, and 

prediction, vol 2. Springer
Hoang DT, Jo J, Periwal V (2019a) Data-driven inference of hidden nodes in networks. Phys Rev E 99:042114. https://​doi.​

org/​10.​1103/​PhysR​evE.​99.​042114
Hoang DT, Song J, Periwal V, Jo J (2019b) Network inference in stochastic systems from neurons to currencies: improved 

performance at small sample size. Phys Rev E 99:023311. https://​doi.​org/​10.​1103/​PhysR​evE.​99.​023311
Kossinets G (2006) Effects of missing data in social networks. Soc Netw 28:247–268
Lee S, Periwal V, Jo J (2021) Inference of stochastic time series with missing data. Phys Rev E 104:024119. https://​doi.​org/​

10.​1103/​PhysR​evE.​104.​024119
Li Y, Li Z, Li L (2014) Missing traffic data: comparison of imputation methods. IET Intel Transport Syst 8:51–57
Liao L, Li K, Li K, Yang C, Tian Q (2018) A multiple kernel density clustering algorithm for incomplete datasets in bioinfor-

matics. BMC Syst Biol 12:99–116
Liu Q, Ihler A (2011) Learning scale free networks by reweighted l1 regularization. In: Proceedings of the fourteenth inter-

national conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, pp 40–48
Mazzarisi P, Zaoli S, Campajola C, Lillo F (2020) Tail granger causalities and where to find them: extreme risk spillovers vs 

spurious linkages. J Econ Dyn Control 121:104022
Mézard M, Sakellariou J (2011) Exact mean-field inference in asymmetric kinetic ising systems. J Stat Mech: Theory Exp 

2011:L07001
Mirshahvalad A, Lindholm J, Derlén M, Rosvall M (2012) Significant communities in large sparse networks. PLoS ONE 

7:e33721
Newman ME, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. 

Phys Rev E 64:026118
Nguyen HC, Zecchina R, Berg J (2017) Inverse statistical problems: from the inverse ising problem to data science. Adv 

Phys 66:197–261. https://​doi.​org/​10.​1080/​00018​732.​2017.​13416​04
Pearl J (2000) Causal inference without counterfactuals: comment. J Am Stat Assoc 95:428–431
Roudi Y, Dunn B, Hertz J (2015) Multi-neuronal activity and functional connectivity in cell assemblies. Curr Opin Neurobiol 

32:38–44. https://​doi.​org/​10.​1016/j.​conb.​2014.​10.​011
Roudi Y, Hertz J (2011a) Dynamical tap equations for non-equilibrium ising spin glasses. J Stat Mech: Theory Exp 

2011:P03031
Roudi Y, Hertz J (2011b) Mean field theory for nonequilibrium network reconstruction. Phys Rev Lett 106:048702. https://​

doi.​org/​10.​1103/​PhysR​evLett.​106.​048702
Singh A, Humphries MD (2015) Finding communities in sparse networks. Sci Rep 5:8828
Soudry D, Keshri S, Stinson P, Oh MH, Iyengar G, Paninski L (2015) Efficient “shotgun’’ inference of neural connectivity from 

highly sub-sampled activity data. PLoS Comput Biol 11:e1004464

https://doi.org/10.1016/j.mbs.2021.108678
https://doi.org/10.1016/j.mbs.2021.108678
https://doi.org/10.1103/PhysRevE.96.062104
https://doi.org/10.1103/PhysRevE.99.042114
https://doi.org/10.1103/PhysRevE.99.042114
https://doi.org/10.1103/PhysRevE.99.023311
https://doi.org/10.1103/PhysRevE.104.024119
https://doi.org/10.1103/PhysRevE.104.024119
https://doi.org/10.1080/00018732.2017.1341604
https://doi.org/10.1016/j.conb.2014.10.011
https://doi.org/10.1103/PhysRevLett.106.048702
https://doi.org/10.1103/PhysRevLett.106.048702


Page 22 of 22Cai et al. Applied Network Science            (2024) 9:13 

Tyrcha J, Hertz J (2014) Network inference with hidden units. Math Biosci Eng 11:149–165
Tyrcha J, Roudi Y, Marsili M, Hertz J (2013) The effect of nonstationarity on models inferred from neural data. J Stat Mech: 

Theory Exp 2013:P03005. https://​doi.​org/​10.​1088/​1742-​5468/​2013/​03/​P03005
Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world’’ networks. Nature 393:440–442
Wu TT, Lange K (2008) Coordinate descent algorithms for lasso penalized regression. Ann Appl Stat
Zdeborová L, Krzakala F (2016) Statistical physics of inference: thresholds and algorithms. Adv Phys 65:453–552. https://​

doi.​org/​10.​1080/​00018​732.​2016.​12113​93
Zeng HL, Aurell E, Alava M, Mahmoudi H (2011) Network inference using asynchronously updated kinetic ising model. 

Phys Rev E 83:041135. https://​doi.​org/​10.​1103/​PhysR​evE.​83.​041135
Zhang P (2012) Inference of kinetic ising model on sparse graphs. J Stat Phys 148:502–512
Zipkin JR, Schoenberg FP, Coronges K, Bertozzi AL (2016) Point-process models of social network interactions: parameter 

estimation and missing data recovery. Eur J Appl Math 27:502–529

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1088/1742-5468/2013/03/P03005
https://doi.org/10.1080/00018732.2016.1211393
https://doi.org/10.1080/00018732.2016.1211393
https://doi.org/10.1103/PhysRevE.83.041135

	Enhanced network inference from sparse incomplete time series through automatically adapted  regularization
	Abstract 
	Introduction
	Model description and methods
	E-step
	M-step with expectation reflection
	Stopping criterion and automatic  regularization

	Results
	Network inference without  regularization for small sample sizes
	Network inference with  regularization
	Dependence of performance on data availability

	Conclusion
	Updating of local fields 
	Dependence of performance on network sizes N
	Comparison between  and  regularization
	Non-convergent behavior under different percentage of missing data
	Acknowledgements
	References


