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Abstract 
This study proposes a novel measure of systemic risk that is obtained by aggregating downside risk in-
formation from the cross section of assets. In contrast to existing studies, we expand the analysis of 
systemic risk to many assets and focus on marginal measures of tail risk that are aggregated using a 
Fisher-type test to detect the risk of systemic events. The presence of downside risk for each asset of 
the cross section is examined through a bootstrap test of first-order stochastic dominance between the 
underlying tail distribution and the tail distribution of the residuals of a multivariate DCC-GARCH model. 
The application of these methods to the cross section of the FTSE-100 stock returns provides over-
whelming evidence on the presence of financial instability during the period 2006–2009. Interestingly, 
we also find compelling evidence of systemic risk during the 2012–2015 period coinciding with the 
European debt crisis and after the outbreak of the coronavirus disease 2019 pandemic.
Keywords: downside risk, model misspecification, sequential limit theory, stochastic dominance test, systemic 
risk, Value-at-Risk
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Systemic risk is identified as the main risk to financial stability. By definition, this threat involves 
many institutions simultaneously and typically affects the system as a whole. Among others, 
Brunnermeier et al. (2009) emphasize the distinction between microprudential regulation and mac-
roprudential regulation. The former is focused on prudential controls at the firm level, whereas the 
latter considers the system as a whole. Although the impact of systemic events is a macroprudential 
concern, particular metrics of threats to financial stability may be applicable at either a micropru-
dential or a macroprudential level. Alexander (2010) provides a useful perspective on this issue 
and enumerates four distinct policy applications of systemic risk measures: (i) By identifying indi-
vidual institutions posing threats to financial stability, systemic risk measures help increase supervi-
sory standards; (ii) by identifying specific structural aspects of the financial system that are 
particularly vulnerable, systemic risk measures help policymakers identify where regulations need 
to be improved; (iii) by identifying potential negative shocks to the financial system, systemic risk 
measures may help guide policy on how best to address those threats; and (iv) by alerting that the 
potential for financial instability is rising in the form of early warning signals, systemic risk meas-
ures can be used to inform policymakers about the need of tightening macroprudential policies.
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The literature quantifying systemic risk has focused on (i) and (iv). In this article, we con-
sider (iii) and (iv). To do this, we propose contemporaneous measures of systemic risk 
based on existing evidence of statistically significant downside risk in the cross section of 
stock returns. These measures are useful for gauging the fragility of the financial system 
and also serve as monitoring indicators of financial distress. In this group, we include the li-
quidity measures of Khandani and Lo (2011) and Hu, Pan, and Wang (2013); the 
Mahalanobis distance metric of Kritzman and Li (2010); and the absorption ratio of 
Kritzman et al. (2010). Prominent models for modeling systemic risk in a predictive setting 
may also be deployed as contemporaneous monitoring tools; see, for example, the metrics 
introduced in Chan-Lau et al. (2009), Adrian and Brunnermeier (2016), Brownlees and 
Engle (2016), and Acharya et al. (2017), among others.

Most of these measures of financial instability and systemic risk focus on the joint distri-
bution of negative outcomes—tail events—of a collection of systemically important finan-
cial institutions. Thus, Adrian and Brunnermeier (2016) propose to measure systemic risk 
via an increase in the conditional Value-at-Risk (CoVaR) of the financial system. This mea-
sure, denominated ΔCoVaR, is able to quantify the risk contribution of individually sys-
temically important institutions, which are so interconnected and large that they can cause 
risk spillover effects on others. The Co-Risk of Chan-Lau et al. (2009) measures the tail co- 
dependence between credit default swaps of various financial institutions. Allen, Bali, and 
Tang (2012) propose a systemic risk index called CATFIN, which associates systemic risk 
to the VaR of the financial system. Huang, Zhou, and Zhu (2009) measure systemic risk as 
the marginal contribution of a financial firm to the distress insurance premium of the finan-
cial sector. More recently, Brownlees and Engle (2016) introduce the SRISK that measures 
the expected capital shortfall of a firm conditional on a severe market decline. This metric 
is a function of the size of the firm, its degree of leverage, and its expected equity loss condi-
tional on a market decline, which is denominated as Long Run Marginal Expected 
Shortfall (LRMES). Similarly, Acharya et al. (2017) introduce the marginal expected short-
fall (MES) and systemic expected shortfall (SES). The first measure is defined as the 
expected decrease of an institution’s net equity return conditional on a market decline. The 
SES extends the MES and measures the amount an institution’s equity would drop below 
its target level (defined as the prudential capital fraction k of assets) in case of a future crisis 
when aggregate capital is less than k times aggregate assets. Similarly, the CoES measures 
the conditional expected shortfall (ES).

The main objective of these measures is to identify those firms that contribute most to 
systemic risk. These measures provide an informal ranking of firms that are at risk of trig-
gering a systemic event. The literature does not provide, in general, a formal framework to 
statistically test if the financial system is under distress. Important exceptions considering 
pointwise tests are Kupiec and Guntay (2016) that construct test statistics for CoVaR and 
MES that can be used to detect systemic risk at the institutional level. Hurlin et al. (2017)
propose a bootstrap-based test to compare statistically conditional risk measures at a single 
point in time and that includes systemic risk measures as particular cases. These methods 
also incorporate the presence of estimation uncertainty when comparing risk measures 
across firms and estimation methods. A related literature extending backtesting procedures 
to systemic risk has recently emerged. Banulescu-Radu et al. (2021) implement a backtest-
ing procedure to assess the empirical validity of the MES, SRISK, and ΔCoVaR issued 
from a bivariate GARCH model and a dynamic conditional correlation (DCC) structure 
given by a GARCH-DCC model. More recently, Fissler and Hoga (2023) introduce the 
novel concept of multi-objective elicitability and propose bivariate scores equipped with 
the lexicographic order. Based on this concept, these authors are able to implement back-
testing procedures for systemic risk measures such as CoVaR, CoES, and MES, and pro-
pose Diebold–Mariano type tests to compare systemic risk forecasts.
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Most of the above measures and tests to measure systemic risk proxy the evolution of 
the financial system by a market return, and use bivariate models to capture the depen-
dence between the systemic stocks and the market under extreme events. This simplifica-
tion is very useful to obtain reliable econometric measures of systemic risk but may 
potentially overlook important information from the cross section of stock returns. These 
considerations motivate us to introduce an empirical methodology to measure and test for 
the presence of financial instability and systemic risk with information from the cross sec-
tion of stock returns. We define systemic risk as evidence of simultaneous downside risk 
for a large proportion of firms in the financial system. In our setting, downside risk takes 
place if the probability of a tail event characterized by a predicted risk measure (e.g., VaR 
at α% or CoVaR at β%) is greater than the corresponding coverage probability (e.g., α% or 

β%). In contrast to the existing literature on financial risk management, we do not focus on 
a specific tail quantile but consider, instead, a continuum of tail quantiles to measure 
downside risk. This definition is made operational through a test of first-order stochastic 
dominance (FSD) comparing the empirical downside probability of the financial return 
against the downside probability of a suitable risk model. This approach provides a test 
that assesses the downside risk of the financial institution uniformly over the tail domain. 
The proposed approach can be interpreted as an extension of conventional backtesting pro-
cedures and specification tests for tail risk measures, see Kupiec (1995), Christoffersen 
(1998), Engle and Manganelli (2004), and Escanciano and Olmo (2010) for single VaR lev-
els, and extensions to multilevel VaR models in which the VaR is defined for a finite set of 
coverage rates (see P�erignon and Smith (2008); Colletaz, Hurlin, and P�erignon (2013); 
Leccadito, Boffelli and Urga (2014); and Wied, Weiß, and Ziggel (2016), among others). 
Recent backtesting procedures have also focused on assessing ES measures such as Du and 
Escanciano (2017), Kratz, Lok, and McNeil (2018), and Couperier and Leymarie (2020), 
among others. The latter techniques are, however, applied to fixed tail quantiles, whereas 
our proposed approach is based on uniform tests of downside risk defined over the tail of 
the returns distribution.

Our approach is also different from these methods because it is based on contemporane-
ous information. Whereas the above methods are mainly concerned with testing the valid-
ity of out-of-sample predictions of tail risk measures, such as VaR and ES, our setting 
based on FSD tests is based on testing the ability of suitable risk models to model the prob-
ability of tail events uniformly over the tail domain. The use of contemporaneous informa-
tion implies that the downside probabilities of the proposed risk model and the underlying 
data-generating process are estimated using the same information. Rejection of the FSD 
null hypothesis implies that the downside probability of the underlying process driving fi-
nancial returns is larger than the downside probability of the proposed model for, at least, 
some values of the tail domain. This is evidence in our setting of downside risk. There are 
two interpretations of this outcome: (i) the proposed family of distributions underestimates 
the underlying tail risk. This interpretation is similar to the above backtesting procedures 
and implies that the proposed risk model is not appropriate; (ii) the underlying tail risk is 
larger than the best risk model prediction using in-sample information. The latter interpre-
tation assumes that the fitted family of risk models is appropriate throughout the evalua-
tion period but there are periods in which the underlying tail risk cannot be described by 
such family of distributions. Under this interpretation, the occurrence of downside risk is 
due to an abnormal market condition with potential to produce a tail event (very negative 
return) and not to a misspecified risk model. We consider a GJR-GARCH-DCC model as 
originally proposed by Brownlees and Engle (2016) for modeling the SRISK and also 
implemented by Banulescu-Radu et al. (2021) for systemic risk backtesting purposes. The 
main difficulty in a cross-sectional setting with many stocks is the estimation of the condi-
tional volatility and, in particular, the estimation of the unconditional covariance matrix 
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used as input in the DCC model, see Engle, Ledoit, and Wolf (2019). To overcome this is-
sue, in the empirical application, we apply simple linear shrinkage methods (Ledoit and 
Wolf 2004) to estimate consistently this large-dimensional covariance matrix.

The outcomes of the individual downside risk tests applied to the residuals of a multivar-
iate GARCH-DCC model are aggregated to construct two indicators of systemic risk. One 
indicator measures the proportion of firms that report simultaneous downside risk. This in-
dicator is obtained by adding up the binary outcomes (rejection or not) of the individual 
FSD tests over the cross-section of stock returns. The second indicator aggregates the value 
of the test statistic rather than the test outcome over the cross section of assets. By construc-
tion, the latter indicator is more informative than the test based on violations of the FSD 
condition because it does not censor the information contained in the FSD tests. Large val-
ues of both indicators signal the potential of systemic risk triggered by the presence of si-
multaneous downside risk in the system.

The article also introduces statistical tests based on these indicators to determine if the pro-
posed risk models are suitable for capturing tail risk for the cross section of stock returns. 
These tests can be interpreted as tests of financial instability or systemic risk. More specifi-
cally, for the first indicator, systemic risk takes place when the expected number of firms 
exhibiting downside risk is larger than some significance level. This test is constructed from a 
Binomial distribution modeling the proportion of firms signaling distress in the tails and can 
be interpreted as a Fisher-type test for panel data. For the second indicator, a large value of 
the corresponding test statistic indicates that a large share of firms are under tail distress even 
if the assets do not formally reject the FSD hypothesis individually. Both tests converge, as-
ymptotically, to a Normal distribution after applying sequential limit theory developed in 
Phillips and Moon (1999) under the assumption that the number of firms in the cross section 
(N) is small compared to the estimation period (T), such that N=T ! 0 as both N;T !1.

The concept of FSD to monitor downside risk is appealing. However, hypothesis tests 
based on this property and, in general, composite tests given by multiple inequality restric-
tions are over-conservative (see Davidson and Duclos (2000) and Barrett and Donald 
(2003) for early tests of this condition) yielding underestimates of the nominal size of the 
tests and low power. Linton, Song, and Whang (2010) and Delgado and Escanciano 
(2013) partially solve this problem by proposing bootstrap and nonparametric type tests, 
respectively, that are consistent over the boundary of the null hypothesis. We apply similar 
resampling procedures based on bootstrap methods to account for the presence of estima-
tion of the parametric risk models used by the modeler to capture tail risk. The use of boot-
strap allows us to obtain a valid finite-sample distribution of the FSD test under the null 
hypothesis. The test is, however, potentially undersized due to the composite inequality 
constraints. To study the importance of this effect in finite samples, we also explore in the 
Monte Carlo section the performance of a Kolmogorov–Smirnov type test that assesses the 
goodness of fit of the proposed risk model in the tails, and the implications for systemic 
risk of using this test for the cross section of assets.

The proposed methodology to detect systemic risk is applied to daily data for a cross sec-
tion of 68 stock returns containing the constituents of the FTSE-100 index that have 
remained in the main UK stock index during the evaluation period 2000–2022. The dy-
namics of financial returns are modeled using the fat tailed GJR-GARCH-DCC model that 
assumes a multivariate Student-t distribution with five degrees of freedom. The location- 
scale model parameters are estimated over rolling windows. We construct the proposed 
indicators of systemic risk introduced above at τ ¼ 0:10; 0:05 coverage probabilities, and 
find empirical evidence of episodes of financial distress in the system during the global fi-
nancial crisis covering the period 2006–2009, the sovereign debt crisis between 2012 
and 2015 and after March 2020 due to the outbreak of the coronavirus disease (COVID- 
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19) pandemic. These empirical findings suggest that during these periods the dynamics of 
financial returns are too extreme to be driven by the above multivariate time series process.

The article is structured as follows. Section 1 introduces the multivariate setting neces-
sary for measuring systemic risk. The section also discusses standard measures of marginal 
downside risk such as the VaR and ES. Section 2 introduces the tests of marginal downside 
risk based on FSD applied to individual firms and derives the corresponding asymptotic 
and bootstrap distributions. Section 3 introduces the tests of systemic risk based on aggre-
gate cross-sectional measures and derives the corresponding asymptotic distributions. 
Section 4 presents a comprehensive Monte Carlo simulation to study the finite-sample 
properties of the tests. Section 5 illustrates the performance of the tests to measure systemic 
risk with daily data on the constituents of the FTSE-100 index over the period 2000–2022. 
A final section concludes. Tables and figures are collected at the end of the document.

1 Measuring Systemic Risk

To measure systemic risk, we propose a multivariate location-scale process defined as 

Yt ¼ μt Wt−1; θ1ð Þþ ½Σt Wt−1; θ2ð Þ�
1=2εt; (1) 

with Yt ¼ ðy1;t; . . . ; yN;tÞ
0; μtðWt−1; θ1Þ ¼ E½Yt jWt−1� is a N×1 vector with the location pro-

cesses and ΣtðWt−1; θ2Þ is the N×N conditional covariance matrix. The agents’ information 
set is given by Wt−1 which may contain past values of Yt and other variables of relevance 
for predicting the multivariate distribution of financial returns. The multivariate error term 
εt ¼ ðε1;t; . . . ; εN;tÞ

0 is assumed to be iid and satisfies that E½εt jWt−1� ¼ 0.
We extend the existing literature based on bivariate models and consider a GARCH- 

DCC process for modeling the cross section of N assets, where N is potentially large.

1.1 GARCH-DCC Modeling
The DCC model was proposed in Engle (2002) to capture the time-varying correlation be-
tween financial returns. Let Yt ¼ ðy1t; . . . ; yNtÞ

0 be an N×1 vector of financial returns. The 
dynamics of the components are assumed to follow an AR(1)-GJR-GARCH(1,1) model 
such that 

yi;t ¼ αi;0þαi;μyi;t−1þξi;t;

ξi;t ¼ σii;t εi;t;
(2) 

where ξi;t is the error term and εi;t is an innovation process with E½εi;t jWt−1� ¼ 0 and 
E½ε2

i;t jWt−1� ¼ 1; αi;0 and αi;μ are the parameters of the autoregressive process with jαi;μj<1 
to ensure stationarity of the process yi;t for i ¼ 1; . . . ;N. The DCC model is estimated in 
two steps. In the first step, univariate GARCH type models are fitted to each time series of 
returns and estimates of their conditional variances are obtained. In the second step, the 
standardized residuals εi;t ¼ ξi;t=σii;t are used to estimate the time-varying correla-
tion matrix.

The conditional variance process can be expressed as Σt ¼ DtRtDt, with Rt ¼ ½ρij;t� the 
conditional correlation matrix, and Dt a diagonal matrix with time-varying standard devia-
tions on the diagonal. Thus, 

Dt ¼ diag σ11;t; . . . ; σNN;tð Þ;

Rt ¼ diag σ−1=2
11;t ; . . . ; σ−1=2

N N;t

� �

Σtdiag σ−1=2
11;t ; . . . ; σ−1=2

N N;t

� �

:
(3) 
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To capture stylized facts such as the leverage effect, we model the idiosyncratic conditional 
variances as univariate GJR-GARCH models: 

σ2
ii;t ¼ ωiþðαiþγiIfξi;t−1<0gÞξ2

i;t−1þβiσ2
ii;t−1; i ¼ 1; . . . ;N: (4) 

The matrix Σt ¼ ½σij;t� in Equation (3) is symmetric positive definite and is specified as 

Σt ¼ ð1−ψ1−ψ2Þ
�Σþψ1εt−1εT

t−1þψ2Σt−1; (5) 

where �Σ ¼ E½εtεT
t � is the unconditional covariance matrix of the standardized residuals εt 

obtained from the first step estimation; ψ1 and ψ2 are non-negative scalars satisfying 
0<ψ1þψ2<1. The correlation estimator is given by ρij;t ¼

σij;t

σii;tσjj;t
.

The GARCH-DCC parameters are estimated using maximum likelihood methods under 
the assumption of joint normality of the error terms. The matrix �Σ is usually estimated us-
ing the sample covariance matrix, see Engle (2002). However, in large dimensions, this 
nonparametric estimator of �Q may be very imprecise and ill-conditioned, see Engle et al. 
(2019). Ledoit and Wolf (2003, 2004), in a sequel of papers, introduce several shrinkage 
methods to improve the estimation of the covariance matrix in large-dimensional settings. 
In the empirical application below, we apply the simple linear shrinkage method intro-
duced in Ledoit and Wolf (2004), see also Engle et al. (2019) for DCC models, and propose 
the following estimator of �Σ: 

��Σ ¼ λINþð1−λÞ�̂Σ ; (6) 

where IN is the identity matrix of dimension N and 0<λ<1 is the shrinkage parameter 
obtained from minimizing the quadratic loss function E½jj��Σ−�Σjj2�.

Another interesting approach to model the dynamics of the cross section of stock returns 
and, in particular, the time-varying conditional covariance matrix is the use of unspanned 
stochastic volatility models, recently introduced by Creal and Wu (2015, 2017). In these 
models, the cross-sectional dimension is reduced by considering latent factors that are esti-
mated using Bayesian methods and a novel MCMC algorithm. Whereas these authors im-
plement this approach to model the cross section of bond yields and their volatilities, the 
method can be naturally extended to model the cross section of stock returns. This is, nev-
ertheless, beyond the scope of this study.

1.2 Defining Systemic Risk in a Multivariate Setting
This section discusses two definitions of systemic risk obtained from aggregating marginal 
measures of downside risk widely used in the literature.

1.2.1 VaR-based measures of downside risk
Let qτðWt−1Þ ¼ ðq1;τ1ðWt−1Þ; . . . ; qN;τNðWt−1ÞÞ

0 be a multivariate quantile process that is de-
fined by the following condition: 

PfYt≤qτ Wt−1ð Þ jWt−1g ¼ τ; (7) 

where Pf� jWt−1g denotes the cumulative distribution function of the vector Yt conditional 
on the information set Wt−1; τ 2 ð0; 1Þ denotes the coverage probability that is usually iden-
tified with a probability in the tail. In contrast to the univariate setting, the above condition 
is not sufficient to identify the quantile process, see White, Kim, and Manganelli (2015). 
This is overcome in our setting by considering the multivariate location-scale model (1) 
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and, in particular, taking advantage of the iid assumption on the vector εt. Thus, the above 
expression is equivalent to Pfεt≤½ΣtðWt−1; θ2Þ�

−1=2
ðqτðWt−1Þ−μtðWt−1; θ1ÞÞ jWt−1g and 

such that 

Pfεt≤Σ−1=2
t qτ−μtð Þ jWt−1g ¼ Pfε1;t≤~q1;τ1

jWt−1g � � �PfεN;t≤~qN;τN
jWt−1g; (8) 

with ~qi;τi 
the i−th element of the vector Σ−1=2

t ðqτ−μtÞ, where, for notational convenience, 
we have removed the dependence of the different functions on the conditioning set and 
parameters. These functions are the marginal quantile processes corresponding to each co-
variate and satisfy, by construction, the condition Pfεi;t≤~qi;τi

jWt−1g ¼ τi for i ¼ 1; . . . ;N 
such that condition (8) implies that τ1 � � � τN ¼ τ. To identify these functions, we take ad-
vantage of the homogeneity of the marginal distributions of the components of the vector 
εt in the DCC-GARCH specification such that τi ¼ τ1=N � τ�. Thus, under the continuity of 
the marginal distributions of the error term, the above equality characterizes the marginal 
quantile process that is defined as ~qi;τ� ¼ F−1

εi
ðτ�Þ, where F−1

εi
ðτ�Þ is the inverse of the cumu-

lative distribution function of the covariate εi;t evaluated at probability τ�. Therefore, the 
multivariate quantile process is defined as 

qτ Wt−1ð Þ ¼ μt Wt−1; θ1ð Þþ½Σt Wt−1; θ2ð Þ�
1=2F−1

ε τ�ð Þ; (9) 

with F−1
ε ðτ�Þ ¼ ðF−1

ε1
ðτ�Þ; . . . ;F−1

εN
ðτ�ÞÞ0. Using this identification strategy, the marginal quan-

tile processes qi;τ� ðWt−1Þ ¼ μi;tðWt−1; θ1Þþ~ΣitðWt−1; θ2ÞF−1
ε ðτ�Þ can be interpreted as the 

true conditional quantile process at a coverage probability τ� associated to the covariate yit 

for i ¼ 1; . . . ;N; ~ΣitðWt−1; θ2Þ denotes the ith−row of the matrix ½ΣtðWt−1; θ2Þ�
1=2.

The conditional multivariate quantile process qτðWt−1Þ is usually not known and needs 
to be approximated by a risk model imposed by the modeller. Consider the following 
(semi)parametric risk model mτðWt−1; θÞ ¼ ðm1;τ� ðWt−1; θÞ; . . . ;mN;τ� ðWt−1; θÞÞ0 for the dy-
namics of the conditional quantile process at τ 2 ð0; 1Þ. The relevant condition that we pro-
pose in this article to assess the presence of systemic risk is 

PfYt≤mτ Wt−1; θð Þ jWt−1g>τ; (10) 

at a given time t.1 Importantly, this condition can be interpreted as evidence of misspecifi-
cation of the multivariate quantile process mτðWt−1; θÞ. Similar conditions are tested in a 
univariate setting employing backtesting methods, see Kupiec (1995), Christoffersen 
(1998), as pioneering examples in the literature and, more formally, with specification tests 
for the quantile risk measure as in Engle and Manganelli (2004). Therefore, it is important 
to note that the main difference with this interpretation of the above condition is that we 
identify the presence of systemic risk with the simultaneous occurrence of downside risk 
events that lead to the violation of condition (10) at a given point in time. Therefore, we ex-
pect the multivariate risk model mτðWt−1; θÞ to be correctly specified in general, but at a 
given point in time, if this risk measure fails to report the appropriate coverage probability 
for a sufficiently large number of firms then we claim that there is evidence of systemic risk. 
This is explained in more detail below.

1 Similar measures of systemic risk are proposed in the literature by considering the conditional version of 
Equation (10) in bivariate settings Yt ¼ ðy1t; y2tÞ

0 involving the returns of a potentially systemic firm and the 
market portfolio. For example, the ΔCoVaR measure of Adrian and Brunnermeier (2016) measures systemic 
risk by an increase in the quantile measure m1;βðWt−1; θÞ of the market portfolio return (y1t) conditional on two 
different realizations of the firm’s return given by y2t ¼ m2;αðWt−1; θÞ and y2t ¼ m2;0:5ðWt−1; θÞ, with 
0<α; β<0:5 two potentially different coverage probabilities.
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For simplicity, we assume the risk model mτðWt−1; θÞ proposed by the modeller is obtained 
from the multivariate location-scale distribution (1). In particular, the conditional mean and 
covariance processes are assumed to be correctly specified and the only difference is in the 
choice of the distribution of the error term εt. The presence of downside risk for a given asset 
is due to the inability of the proposed error distribution, denoted as Fo;ið�Þ hereafter, to capture 
the magnitude of the tail event. Aggregation of these downside risk events across firms pro-
vides evidence of systemic risk. More formally, the proposed risk model is given by 

mτðWt−1; θÞ ¼ μtðWt−1; θ1Þþ½ΣtðWt−1; θ2Þ�
1=2F−1

o ðτ�Þ; (11) 

with F−1
o ðτ�Þ ¼ ðF−1

o;1ðτ
�Þ; . . . ;F−1

o;Nðτ�ÞÞ
0 and F−1

o;i ðτ�Þ is the inverse of the cumulative distribu-
tion function of the error term assumed by the modeller for asset i. Using the above algebra, 
we obtain mi;τ� ðWt−1; θÞ ¼ μi;tðWt−1; θ1Þþ~ΣitðWt−1; θ2ÞF−1

o ðτ�Þ that can be interpreted as the 
VaR measure associated to the covariate yit for i ¼ 1; . . . ;N. Similarly, ~mτ� ðWt−1; θÞ ¼
½ΣtðWt−1; θ2Þ�

−1=2
ðmτðWt−1; θÞ−μtðWt−1; θ1ÞÞ such that ~mi;τ� ðWt−1; θÞ ¼ F−1

o;i ðτ�Þ. In this set-
ting, we say that asset i faces downside risk if 

τ� ¼ Pfεi;t≤~qi;τ� ðWt−1; θÞ jWt−1g<Pfεi;t≤ ~mi;τ� ðWt−1; θÞ jWt−1g: (12) 

This condition is equivalent to Pfyi;t≤qi;τ� ðWt−1Þ jWt−1g<Pfyi;t≤mi;τ� ðWt−1Þ jWt−1g and 
implies that the risk measure mi;τ� ðWt−1; θÞ is an under-conservative estimate of the true un-
derlying conditional quantile process qi;τ� ðWt−1Þ. In practice, the latter quantile function is 
not observable, instead, we use a condition equivalent to Equation (12) to monitor the oc-
currence of downside risk for asset i at time t: 

Fεið ~mi;τ� ðWt−1; θÞÞ≤Fo;ið ~mi;τ� ðWt−1; θÞÞ: (13) 

This condition guarantees that the proposed risk model ~mi;τ� is able to capture the underly-
ing tail risk at a fixed coverage probability τ� given that Fo;ið ~mi;τ� ðWt−1; θÞÞ ¼ τ�, by con-
struction. Furthermore, if condition (13) is satisfied by all assets in the cross section, it 
follows that PfYt≤mτðWt−1; θÞ jWt−1g≤τ, for τ ¼ τ�N, and there is no systemic risk. 
Alternatively, if the condition is violated by a significant number of assets then it is likely 
that PfYt≤mτðWt−1; θÞ jWt−1g>τ, entailing the possibility of systemic risk. More formally, 

PfYt≤mτðWt−1; θÞ jWt−1g ¼ ~τ1 � � �~τN; (14) 

with ~τ i ¼ Fεið ~mi;τ� Þ, for i ¼ 1; . . . ;N. Assessing the presence of systemic risk is equivalent to 
assessing if ~τ1 � � �~τN>τ, with τ ¼ τ�N, or alternatively, assessing the condition 

1
N

X

i¼1

N

ln~τ i=τ�>0: (15) 

The above results are presented for a fixed coverage probability τ as is usually the case in 
the risk management literature. This can be easily extended to monitor downside risk uni-
formly over the tail domain. Thus, the relevant condition replacing Equation (13) is 

FεiðxÞ≤Fo;iðxÞ for all x 2 ð−1; q�; (16) 

where q ¼ F−1
o ð�τÞ, with �τ a coverage probability defining the upper limit of the left tail of 

the returns distribution.
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1.2.2 ES-based measures of downside risk
An alternative tail risk measure that has gained popularity for managing downside risk in 
recent years (see Artzner et al. (1999); Rockafellar and Uryasev (2002); Topaloglou, 
Vladimirou, and Zenios (2002); Du and Escanciano (2017); and Patton, Ziegel and Chen 
(2019), among many others) is the ES.

Systemic risk can be defined applying this risk measure in a multivariate setting. Thus, 
we say that the financial market represented by the vector of asset returns Yt does not pre-
sent evidence of systemic risk if 

ESðmi;τ� ðWt−1; θÞÞ≤ESoðmi;τ� ðWt−1; θÞÞ; (17) 

for all i ¼ 1; . . . ;N, with ESðmi;τ� ðWt−1; θÞÞ ¼ E½−yi;t j yi;t≤mi;τ� ðWt−1; θÞ;Wt−1� and 
ESoðmi;τ� ðWt−1; θÞÞ the same expectation but computed under the probability distribution 
Fo;i introduced above. Similarly, let Pof� j yit≤mi;τ� ðWt−1; θÞ;Wt−1g denote the probability 
computed under Fo;i. Applying integration by parts, we note that a sufficient condition for 
the above inequality to be satisfied is 

Pfyit≤x j yit≤mi;τ� ðWt−1; θÞ;Wt−1g≤Pofyit≤x j yit≤mi;τ� ðWt−1; θÞ;Wt−1g;

for x 2 ð−1;mi;τ� ðWt−1; θÞ�. Operating with these expressions and using the location-scale 
specification (1), the above set of conditions can be expressed as 

Fεi ; ~miðxÞ 6 Fo; ~miðxÞ; for x 2 ð−1;mi;τ� ðWt−1; θÞ�; (18) 

with Fεi ; ~miðxÞ ¼ Pfεit≤x j εit≤ ~mi;τ� ðWt−1; θÞ;Wt−1g and Fo; ~miðxÞ the same probability 
distribution but evaluated under the probability distribution Fo;ið�Þ corresponding 
to the risk model ~mi;τ� ðWt−1; θÞ. Systemic risk can be interpreted as the simultaneous 
violation of condition (18) for a significant number of assets in the cross section as 
explained below.

To finish the section it is worth noting that the above FSD condition (18) for the 
conditional tail probabilities also implies, for suitable choices of �τ (e.g., 
~mi;�τðWt−1; θÞ ¼ ~qi;�τðWt−1; θÞ ¼ q), the set of conditions in Equation (16). Therefore, it is 
sufficient to test the FSD condition (18) to jointly test the validity of conditions (16) and 
(17) uniformly over the tail domain characterized by the quantile q. Similarly, we can ex-
tend the above systemic risk conditions to make them uniform over the tail domain. Thus, 
condition (10) characterizing systemic risk is replaced by a uniform tail condition given by 

PfYt≤x jYt≤m�τðWt−1; θÞ; Wt−1g>τðxÞ; 8 x 2 ð−1; q�N; (19) 

with x ¼ ðx1; . . . ;xNÞ
0 and τðxÞ ¼ PfYt≤x jYt≤q�τ ðWt−1; θÞ; Wt−1g. Similarly, condition 

(15) for measuring systemic risk is replaced by 

1
N

X

i¼1

N

ln
~τ i xð Þ

�τ�
−ln

τ� xð Þ
�τ�

� �

>0; 8 x 2 −1; qð �
N: (20) 

This condition will be explored further in Section 3 to develop statistical tests of sys-
temic risk.
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2 Testing Downside Risk

This section proposes a statistical test for assessing the existence of downside risk as char-
acterized in expression (18). This condition can be interpreted as a test of FSD: 

H0F : Fεi ;qðxÞ≤Fo;qðxÞ; for all x≤q;

HAF : Fεi;qðxÞ>Fo;qðxÞ; for some x≤q:

8
<

:
(21) 

To obtain the asymptotic distribution of the above test, we consider the worst-case sce-
nario that is characterized by equality between both tail distributions. This condition pro-
vides a conservative test, thus, under the null hypothesis given by the composite hypothesis 
Fεi;qðxÞ ¼ Fo;qðxÞ, for all x≤q, a suitable test statistic is 

Di;TðqÞ ¼
ffiffiffiffi
T
p

supfx≤qgðF̂εi;qðxÞ−Fo;qðxÞÞ; (22) 

where F̂εi;qðxÞ ¼ F̂εiðxÞ=F̂εiðqÞ, with F̂εiðxÞ ¼
1
T

P
t¼1

T 1ðεi;t≤xÞ the empirical distribution 
function and 1ð�Þ an indicator function that takes a value of one if the argument is true and 
zero, otherwise. Under the null hypothesis H0F and assuming that the vector of innovations 
εt ¼ ðε1t; . . . ; εNtÞ

0 is iid, the asymptotic distribution of Di;TðqÞ is given by the distribution 
of the supremum of a Brownian bridge GFo;q . More formally, 

Di;TðqÞ!
d

sup
fx≤qg

GFo;qðxÞ; (23) 

where !
d 

denotes convergence in distribution, see Kolmogorov (1933) and van der Vaart 
(1998). The critical value cαd of the test (22) is obtained under the null hypothesis from the 
condition Pfsupfx≤qgGFo;q>cαdg ¼ αd, with 0<αd<1.

Critical values are obtained under the assumption that the tested distributions are equal. 
Note, however, that if the composite inequality condition characterizing the null hypothe-
sis (21) holds strictly, these asymptotic critical values are conservative choices of the true 
critical values, that is, PfDi;TðqÞ>cαdg≤αd, see Linton, Maasoumi, and Whang (2005), 
Linton, Song, and Whang (2010), Delgado and Escanciano (2013), and Gonzalo and 
Olmo (2014) for a discussion of stochastic dominance tests valid under the boundary of 
the null hypothesis. This choice of critical values implies, under the null hypothesis, that 
the risk model mi;τðWt−1; θÞ may be over-conservative, that is, qi;τðWt−1Þ≤mi;τðWt−1; θÞ<0, 
with the strict inequality condition for some τ≤�τ. This property also implies a loss of power 
under the alternative hypothesis HAF.

The empirical properties of the test are studied in the simulation section below for differ-
ent data-generating processes. The simulation section also discusses a goodness of fit test 
based on a Kolmogorov–Smirnov statistic to assess power losses due to considering the 
composite inequality condition under the null hypothesis.

2.1 Estimation Effects
In the above setting, the iid standardized residuals are obtained from the GARCH-DCC 
model. Let μtðWt−1; θ1Þ be the N×1 location process and ΣtðWt−1; θ2Þ be a N×N matrix 
characterizing the scale function in the multivariate location-scale process 

Yt ¼ μtðWt−1; θ1Þþ½ΣtðWt−1; θ2Þ�
1=2εt;
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with Yt ¼ ðy1t; . . . ; yNtÞ
0 and εt ¼ ðε1t; . . . ; εNtÞ

0. In practice, the parameters characterizing 
the location-scale functions are not known and need to be estimated from the data. Let θ̂ ¼
ðθ̂1; θ̂2Þ

0 be a 
ffiffiffiffi
T
p

−consistent estimator of θ ¼ ðθ1; θ2Þ
0 and assume that 

ffiffiffiffi
T
p
ðθ̂−θÞ ¼

1
ffiffiffiffi
T
p

X

s¼1

T

ψθðYsÞþoPθ ð1Þ; (24) 

with ψθ an influence function such that E½ψθ� ¼ 0 and E½jjψθjj
2
�<1. This property is satis-

fied for the two-stage quasi-maximum likelihood estimator of the DCC-GARCH parame-
ters, see Goncalves et al. (2023).

In this scenario, the convergence result (23) is no longer valid. There is an additional 
term in the asymptotic distribution of the univariate test statistics due to the estimation of 
the model parameters. Let D̂i;TðqÞ ¼

ffiffiffiffi
T
p

supfx≤qgðF̂ei;qðxÞ−F̂o;qðxÞÞ be the modified test sta-

tistic for the FSD hypothesis, with F̂ei;qðxÞ ¼
P

t¼1

T
1ðei;t≤x;ei;t≤qÞ

P
t¼1

T
1ðei;t≤qÞ

the empirical distribution 

function and et ¼ Σ̂
−1=2
t ðYt−μ̂tÞ the vector of residuals et ¼ ðe1;t; . . . ; eN;tÞ

0 of the estimated 
location-scale process (1), with μ̂t ¼ μtðWt−1; θ̂1Þ and Σ̂t ¼ ΣtðWt−1; θ̂2Þ. Similarly, 
F̂o;qðxÞ ¼ F̂oðxÞ=F̂oðqÞ is the estimated parametric conditional distribution function. Under 
these conditions, it is well known that 

D̂i;TðqÞ!
d

sup
fx≤qg

GF̂o;q
ðxÞ; (25) 

with GF̂o;q 
denoting a zero-mean Gaussian process. Applying the results in van der Vaart 

(1998), one can show that this distribution is defined as the supremum of the sum of a cen-
tered Gaussian process GFo;q and the limiting distribution of 

ffiffiffiffi
T
p
ðF̂o;qðxÞ−Fo;qðxÞÞ. The lat-

ter distribution is driven by the asymptotic behavior of the estimator θ̂ and the parametric 
form of the distribution function Foð�Þ. Thus, the distribution GF̂o;q 

cannot be universally 
tabulated. Fortunately, simulation and resampling methods can be applied to approximate 
the critical values in finite samples.

2.2 Bootstrap Approximation
This section introduces a bootstrap approximation of the finite-sample distribution 
of the test (21) under the null hypothesis H0F. The p-value of the test given by 

PH0F D̂i;TðqÞ> supfx≤qgGF̂o;q
ðxÞ

n o
can be approximated in finite samples by PfD̂

�

i;TðqÞ>

D̂i;TðqÞ j fYtg
T
t¼1g. The bootstrap version of the FSD test is D̂

?

i;TðqÞ ¼
ffiffiffiffi
T
p

supfx≤qg

ðF̂e?i ;qðxÞ−F̂
?

o;qðxÞÞ that is obtained from the bootstrap empirical distribution function 

F̂e?i ;qðxÞ ¼
P

t¼1

T
1ðe?iT≤x;e?iT≤qÞ

P
t¼1

T
1ðe?iT≤qÞ

, where e?iT denotes the bootstrap residuals of the estimated 

location-scale process (1) obtained under the null hypothesis H0F. Similarly, F̂
?

o;qðxÞ ¼

F̂
?

oðxÞ=F̂
?

oðqÞ is the estimated parametric distribution function.
Although the distribution of D̂

�

i;TðqÞ is not directly observed, it can be approximated to 
any degree of accuracy by operating conditionally on fYtg ¼ fy1;t; . . . ; yN;tg

T
t¼1. The algo-

rithm to compute the p-value of the test is described below. 
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This algorithm yields a random sample of B observations from the distribution of 
supfx≤qgGF̂oq

ðxÞ. Using the Glivenko–Cantelli theorem and previous assumptions, the 

empirical p-value conditional on fYtg
T
t¼1 defined by p̂?i;TB ¼

1
B

P
b¼1

B 1ðD̂
?ðbÞ
i;T ðqÞ>D̂i;TðqÞÞ

converges, in probability, to the bootstrap distribution PfD̂
?

i;TðqÞ>D̂i;TðqÞ j fYtg
T
t¼1g, as 

B!1. For each asset, the conditional probability converges to the p-value obtained from 
the asymptotic distribution of the test statistic D̂i;TðqÞ, for i ¼ 1; . . . ;N, as T !1.

3 Measuring Systemic Risk

In this section, we propose a novel measure to monitor systemic risk that is based on the in-
dividual downside risk tests introduced above. For illustrative purposes, the exposition fo-
cuses first on the scenario given by μtðWt−1; θ1Þ and ΣtðWt−1; θ2Þ known. A natural strategy 
for testing for systemic risk is to adapt condition (20) by constructing its empirical counter-
part. This condition involves the cross-sectional average of the difference in logs between 
the conditional tail distributions under the probability laws Fo;i and Fεi;q, for i ¼ 1; . . . ;N. 
This condition has to be assessed uniformly over the interval ð−1; q�N. Importantly, the 
distribution of such statistics is not straightforward and requires of suitable normalization 
to obtain a tractable asymptotic distribution for devising a statistical test.

Algorithm: 

1. Estimate the parameter vector θ from the multivariate DCC-GARCH process ap-
plied to Yt ¼ ðy1;t; . . . ; yN;tÞ

0 in Equation (1) using a 
ffiffiffiffi
T
p

− consistent estimation 
procedure. Let μ̂t ¼ μtðWt−1; θ̂1Þ and Σ̂t ¼ ΣtðWt−1; θ̂2Þ denote the corresponding 
estimated conditional mean and covariance processes. 

2. Compute the test statistic D̂i;TðqÞ ¼
ffiffiffiffi
T
p

supfx≤qgðF̂ei;qðxÞ−F̂o;qðxÞÞ for each asset 
in the cross section, where F̂ei ;qð�Þ is the empirical distribution function condi-
tional on the tail event and F̂o;qðxÞ ¼ F̂oðxÞ=F̂oðqÞ, with x≤q, where q ¼ F−1

o ð�τÞ is 
the quantile that defines the tail event. 

3. Generate B bootstrap replicas of the vector fYtg
T
t¼1 under the null hypothesis H0F 

from the location-scale model (1). More specifically, let Y?ðbÞ
t , with b ¼ 1; . . . ;B, 

denote such process obtained as 

Y?ðbÞ
t ¼ μ̂tþΣ̂

1=2
t ε?ðbÞt ; (26) 

where ε?ðbÞt ¼ ðε?ðbÞ1;t ; . . . ; ε?ðbÞN;t Þ
0 is a vector of bootstrap error terms drawn from the 

parametric distribution Fo under H0F. 
4. Estimate the bootstrap conditional mean and covariance processes from the 

bootstrap sequence fY?ðbÞ
t g

T
t¼1, and denote it as μ̂?ðbÞt ¼ μtðWt−1; θ̂

?ðbÞ
1 Þ and 

Σ̂
?ðbÞ
t ¼ ΣtðWt−1; θ̂

?ðbÞ
2 Þ. 

5. Obtain the vector of iid standardized bootstrap residuals e?ðbÞ0t ¼ ½Σ̂
?ðbÞ
t �

−1=2 

ðY?ðbÞ
t −μ̂?ðbÞt Þ under H0F. 

6. Compute the bootstrap test statistic D̂
?ðbÞ
i;T ðqÞ ¼

ffiffiffiffi
T
p

supfx≤qgðF̂e?ðbÞi ;qðxÞ−F̂
?

o;qðxÞÞ
for each asset in the cross section, as defined above. 
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A simpler testing strategy is, instead, to aggregate the outcomes (rejection/nonrejection) 
of the individual downside risk tests with asymptotic distribution in Equation (23) over the 
cross section of assets. This technique takes advantage of the same information as the test 
based on condition (20) but is simpler to implement. It is also similar in spirit to various 
methods used in meta-analysis and, in particular, to Fisher’s p-value combination method, 
see Fisher (1932), which integrates statistical significance from many statistical hypothesis 
tests to examine a joint null hypothesis that is given by an intersection of the individual 
null hypotheses. Let diðqÞ ¼ 1ðDi;TðqÞ>cαdÞ be a binary variable, for i ¼ 1; . . . ;N, that 
takes a value of one if the null hypothesis H0F is rejected and zero, otherwise; N denotes 
the number of firms and cαd is the critical value of the test (23) at an αd significance level. 
The proposed systemic risk indicator is SD

NðqÞ ¼
P

i¼1
N diðqÞ that reports the number of 

institutions for which the null hypothesis H0F is rejected. A large value of this statistic indi-
cates that a significant number of institutions exhibit downside risk.

Under the null hypothesis H0F, the statistic SD
NðqÞ is a binomial random variable 

BinðN; αdÞ, with αd satisfying that limT!1 PH0FfDi;TðqÞ>cαdg≤αd. The corresponding hy-
pothesis test for the presence of systemic risk is 

H0;R1 : E½dðqÞ�≤αd;

HA;R1 : E½dðqÞ�>αd;

8
<

:
(27) 

where the expectation is computed over the cross section of assets. This is a cross- sectional 
test that is repeated at each point t in the evaluation period. Therefore, rejection of the null hy-
pothesis implies that a significant number of firms are at risk of a downside event in period t. 
There is an alternative, more traditional, interpretation that suggests that rejection of the null 
hypothesis provides evidence of misspecification of the risk model for describing the joint tail 
behavior of the vector of assets. The first interpretation gains relevance if the risk model can 
be considered a suitable representation of the dynamics of the quantile process in calm periods 
and only fails during turmoil periods due to an overall increased probability of downside risk.

A suitable test statistic for the hypothesis H0;R1 is �S
D
NðqÞ ¼

1
N

P
i¼1

N diðqÞ that reports the 
proportion of institutions for which the null hypothesis H0F is rejected. Thus,

Proposition 1.  Let 0<αd<1 be the significance level of the FSD test (21), and assume 
that the sequence of test outcomes fdiðqÞg

N
i¼1 is iid. Then, under the null 

hypothesis H0;R1 , the test statistic �SD
NðqÞ satisfies that 

ffiffiffiffiffi
N
p �SD

N qð Þ−αd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αd 1−αdð Þ

p

 !

!
d

N 0; 1ð Þ; (28) 

as N;T !1, with N=T ! 0.   

Proof. The proof of this result follows from applying sequential limit theory, see Phillips 
and Moon (1999). First, as T !1, we obtain the asymptotic convergence of the test 
statistics Di;T in Equation (23) for i ¼ 1; . . . ;N. The FSD test is over-conservative due 
to the composite inequality constraint characterizing H0F. More formally, under the 
null hypothesis H0F, we obtain limT!1 PfDi;TðqÞ>cαdg≤αd. In a second step, we note 
that the sequence fdiðqÞg

N
i¼1 is iid. This property is inherited from applying the FSD 

test Equation (18) to the elements of the vector εt obtained from the DCC-GARCH 
model. By construction, this vector is a zero-mean iid error term. Therefore, the con-
ditions in the sequential limit theory developed by Phillips and Moon (1999) are 
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satisfied such that the central limit theory applies to the statistic �SD
NðqÞ for N!1, 

with N=T ! 0, and the asymptotic result in Equation (28) is satisfied. w 

Exceeding the critical value indicating systemic risk may take time to build up. An alter-
native, more sensitive to the presence of financial instability, is obtained by aggregating the 
value of the test statistic Di;T across firms. This systemic risk measure is defined as 
VD

NðqÞ ¼
P

i¼1
N Di;TðqÞ, and the corresponding hypothesis test as 

H0;R2 : E½DTðqÞ�≤ηG;

HA;R2 : E½DTðqÞ�>ηG;

(

(29) 

with ηG the expected value of the distribution of the asymptotic process supfx≤qgGFoqðxÞ in 
Equation (23) obtained under the null hypothesis H0F of no downside risk. The asymptotic 
distribution of the test DTðqÞ is the same for all firms in the cross section if the parameter 
vector θ is known, implying the same value of ηG across firms. A suitable test statistic for 
the hypothesis H0;R2 is �VD

NðqÞ ¼ VD
NðqÞ=N. Intuitively, there is no systemic risk if the aver-

age value of the sequence of test statistics fDi;TðqÞg
N
i¼1 is equal to the mean of the distribu-

tion of the asymptotic process characterizing the null hypothesis H0F. In contrast, if the 
average is significantly larger than ηG then there is evidence of downside risk for some 
stocks. The following result shows how to choose the critical value that determines statisti-
cally the presence of systemic risk under this approach.

Proposition 2.  Let the sequence of test statistics fDi;TðqÞg
N
i¼1 be iid. Then, under the 

null hypothesis H0;R2 , the test statistic �VD
NðqÞ satisfies that 

ffiffiffiffiffi
N
p �VD

N qð Þ−ηG

λG

 !

!
d

N 0; 1ð Þ; (30) 

as T;N!1, with N=T ! 0; ηG and λG are the expected value and standard 
deviation, respectively, of the distribution of the asymptotic 
process supfx≤qgGFoqðxÞ defined in Equation (23).  

Proof. The proof of this result is obtained by applying sequential limit theory 
arguments derived in Phillips and Moon (1999). More specifically, for T !1, the 
asymptotic distribution of Di;T is dominated by the distribution of the supremum of 
a Brownian bridge such that limT!1 E½Di;TðqÞ�≤ηG and limT!1 V½Di;TðqÞ� ¼ λ2

G for 
i ¼ 1; . . . ;N. In a second step, N!1, with N=T ! 0, such that the central limit 
theorem applies to the random sample fD1;TðqÞ; . . . ;DN;TðqÞg to obtain the 
asymptotic result in Equation (30). w   

3.1 Estimation Effects on Systemic Risk Tests
The asymptotic distribution of the test H0F varies when the parameter vector θ and the 
functional form of the parametric distribution Fo are estimated. To obtain valid estimates 
of the corresponding critical values, we apply data-dependent bootstrap procedures. 
Estimation of the model parameters implies that the critical values of the above tests differ 
across assets making the method computationally more demanding.

For the first test of systemic risk H0;R1 the test statistic is constructed from SD?
N ðqÞ ¼P

i¼1
N d?i ðqÞ with d?i ðqÞ ¼ 1ðD̂i;TðqÞ>ĉ?i;αd

Þ, where ĉ?i;αd 
is the bootstrap critical value of the 
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test H0F obtained from a sample fyitg
T
t¼1 as detailed in Section 2.2. More specifically, ĉ?i;αd 

is the dð1−αdÞBe order statistic of the bootstrap sample D̂
�ðbÞ
i;T ðqÞ, where b ¼ 1; . . . ;B and B 

is the number of bootstrap replicas.

Proposition 3.  Let 0<αd<1 be the significance level of the FSD test (21), and assume that 
the sequence of bootstrap test outcomes fd�i ðqÞg

N
i¼1 is asymptotically iid for T !1. 

Then, under the null hypothesis H0;R1 and conditional on the vector of realized 
observations fy1;t; . . . ; yN;tg

T
t¼1, the test statistic �SD?

N ðqÞ ¼ SD?
N ðqÞ=N satisfies that 

ffiffiffiffiffi
N
p
ð

�SD?
N ðqÞ−αd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αdð1−αdÞ

p Þ!
d

Nð0; 1Þ; (31) 

as N;T !1, with N=T ! 0.  

Proof. As shown in Section 2,2 , the bootstrap critical value is obtained conditional 
on the available sample and satisfies, under the null hypothesis H0F, that 
limT!1 PfD̂i;TðqÞ>ĉ?i;αd

j fyi;tg
T
t¼1g≤αd, for i ¼ 1; . . . ;N. Therefore, the indicator 

function d?i ðqÞ is such that limT!1 E½d?i ðqÞ j fyitg
T
t¼1�≤αd for i ¼ 1; . . . ;N. In a 

second step, for N!1, with N=T ! 0, under H0;R1 , and assuming the test 
outcomes fd�i ðqÞg

N
i¼1 are asymptotically iid for T !1, the central limit theorem 

can be applied to the sequence to obtain the asymptotic result in Equation (31). w   

Similarly, we can derive the asymptotic distribution of the systemic risk test based on the 
null hypothesis H0;R2 under parameter estimation. The asymptotic distribution characteriz-
ing the limiting behavior of the test statistics Di;T is replaced by a bootstrap version. Thus, 
η̂?iG and ̂λ

?

iG are the expected value and standard deviation of the bootstrap distributions ap-
proximating the finite-sample distribution of the test H0;R2 under the null hypothesis.

Proposition 4.  Let the sequence of test statistics fD̂i;TðqÞg
N
i¼1 be asymptotically iid 

for T !1. Then, under the null hypothesis H0;R2 and conditional on the vector of 
realized observations fy1t; . . . ; yNtg

T
t¼1, the test statistic VD?

N ðqÞ ¼
P

i¼1
N D̂i;TðqÞ, 

satisfies that 

VD?
N ðqÞ−

P
i¼1

N η̂?iGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i¼1
N λ̂

?2

iG

q !
d

Nð0; 1Þ; (32) 

as N;T !1, with N=T ! 0.   

Proof. The proof of this result is analogous to the proof of Propositions 2 and 3 and 
omitted for space considerations. w

4 Monte Carlo Simulation

This section explores the finite-sample properties of the tests for H0F, H0;R1 and H0;R2 pro-
posed above. We study the empirical size and power of the downside risk tests FSD for the 
univariate case and the extension of these tests to a panel of N firms. Data are simulated 
from the location-scale process (1). For computational tractability, we consider the 
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variables to be cross-sectionally independent such that Σt is the N×N identity matrix.2 

Thus, for the simulation exercise, we obtain N independent location-scale processes 

yi;t ¼ μi;tðθ1Þþ σii;tðθ2Þεi;t; for i ¼ 1; . . . ;N; (33) 

where εii;t � Fεið�Þ is the process of innovations. We consider two models for the data- 
generating process. First, the processes μt and σt are constant parameters μ and σ, and the 
innovations εt are assumed to be iid and driven from a ðiÞ N(0,1) distribution or ðiiÞ tν, 
with ν the degrees of freedom of a Student-t distribution. The second model considers the 
more realistic case of serial dependence in the conditional volatility process. To do this, we 
simulate an EGARCH(1,1) process yi;t ¼ σii;tðθ2Þεi;t characterized by the follow-
ing equation: 

σ2
ii;tðθ2Þ ¼ β0þ β1

jyi;t−1j

σii;t−1
−

ffiffiffi
2
π

r !

þ β2σ2
ii;t−1ðθ2Þþ γ

yi;t−1

σii;t−1
; (34) 

and εi;t � Fεið�Þ is an iid process; θ2 ¼ fβ0; β1; β2; γg denote the model parameters driving 
the constant, ARCH, GARCH, and leverage effects, respectively, of the conditional volatil-
ity process.

As an additional simulation exercise, we explore versions of the above tests that consider 
the goodness of fit of the proposed risk model FoðxÞ in lieu of the FSD hypothesis in 
Equation (18). These tests replace the inequality condition characterizing FSD by the equal-
ity between distribution functions uniformly over the tail domain: 

H0K : Fεi ;qðxÞ ¼ Fo;qðxÞ; for all x≤q;
HAK : Fεi;qðxÞ 6¼ Fo;qðxÞ; for some x≤q:

�

(35) 

A relevant statistic to test the above hypothesis is 

Ki;TðqÞ ¼
ffiffiffiffi
T
p
jjF̂εi ;qðxÞ−Fo;qðxÞjj1; (36) 

where jj � jj1 is the supremum norm defined over the interval ð−1; q�. Under the null hy-
pothesis H0K, and assuming that the innovations εi;t are iid, it follows that 

KTðqÞ!
d
jjGFoq jj1;

(37) 

see Kolmogorov (1933) and van der Vaart (1998). The critical value cαk of the test (35), 
called KS hereafter, is obtained from the condition PfjjGFo;q jj1>cαkg ¼ αk, with 0<αk<1 a 
suitable significance level.

4.1 Simulation Setup
We consider three scenarios for studying the finite-sample properties of the tests. These sce-
narios are ðiÞ model parameters ðμ; σÞ are known so there are no estimation effects on the 
asymptotic distribution of the tests; ðiiÞ model parameters ðμ; σÞ are estimated. The latter 
scenario entails the presence of estimation effects in the relevant asymptotic distributions. 
In this case, the simulation exercise explores the reliability of the bootstrap approxima-
tions; and ðiiiÞ the conditional volatility process follows an EGARCH model. For ðiiÞ and 

2 The empirical application implements the bootstrap method for a fat tailed DCC-GARCH model applied 
to the 68 stocks of the FTSE-100 index that have remained in the index over the 2000–2022 evaluation period.
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ðiiiÞ the asymptotic distributions of the FSD tests need to be corrected for the presence of 
estimation effects when computing suitable critical values

The simulation exercise generates different combinations of the null and alternative hy-
potheses of the FSD test (H0F) and the KS test (H0K) for scenarios ðiÞ and ðiiÞ. The size of 
the test H0K is captured in the combinations ðZ;ZÞ and ðt5; t5Þ, with Z denoting the stan-
dard Normal distribution and t5 a Student-t distribution with five degrees of freedom. The 
power is reflected by the remaining combinations of Fε and Fo. For the FSD test, the null 
hypothesis is given by the inequality FεðxÞ≤FoðxÞ for x≤q ¼ F−1

o ð�τÞ. This condition is natu-
rally satisfied for the combinations ðZ;ZÞ and ðt5; t5Þ. The null hypothesis for the FSD test 
also includes the pair ðZ; t5Þ. In contrast, the combination ðt5;ZÞ is under the alternative 
hypothesis. As discussed above, the critical value for the FSD test is obtained under the as-
sumption Fεqð�Þ ¼ Foqð�Þ implying an over-conservative test for the combination ðZ; t5Þ and 
correct size for the combinations ðZ;ZÞ and ðt5; t5Þ. The top panel focuses on the tests for 
the tail coverage probability �τ ¼ 0:10 and the bottom panel for �τ ¼ 0:05.

Table 1 reports the empirical size and power for each type of test for different simulation 
scenarios. There are three columns θ, θ̂boo and θ̂asy. The first column reports the empirical 

Table 1. Empirical size and power for the location-scale DGP yt ¼ μþσεt , with εt � Fεð�Þ; Fεð�Þ ¼ Z, with Z a 
standard Normal distribution, or Fεð�Þ ¼ t5, with t5 a standardized Student distribution with five degrees 
of freedom

FSD test KS test

T Fε Fo θ θ̂boo θ̂asy θ θ̂boo θ̂asy

�τ ¼ 0:10
100 Z Z 0.064 0.056 0.020 0.068 0.032 0.012
250 Z Z 0.052 0.052 0.028 0.064 0.020 0.012
500 Z Z 0.032 0.048 0.016 0.048 0.036 0.012
100 Z t5 0.020 0.004 0.012 0.088 0.032 0.024
250 Z t5 0.004 0.004 0.004 0.200 0.088 0.084
500 Z t5 0.004 0.000 0.000 0.496 0.420 0.472
100 t5 Z 0.236 0.264 0.200 0.104 0.284 0.184
250 t5 Z 0.372 0.524 0.432 0.252 0.468 0.292
500 t5 Z 0.616 0.744 0.584 0.472 0.704 0.568
100 t5 t5 0.040 0.048 0.060 0.048 0.108 0.076
250 t5 t5 0.064 0.072 0.092 0.060 0.024 0.044
500 t5 t5 0.040 0.048 0.056 0.032 0.036 0.040
�τ ¼ 0:05
100 Z Z 0.076 0.060 0.084 0.100 0.068 0.100
250 Z Z 0.056 0.064 0.072 0.080 0.084 0.104
500 Z Z 0.084 0.060 0.052 0.052 0.040 0.040
100 Z t5 0.080 0.000 0.000 0.384 0.568 0.524
250 Z t5 0.048 0.060 0.060 0.652 0.600 0.584
500 Z t5 0.020 0.016 0.016 0.748 0.784 0.776
100 t5 Z 0.192 0.076 0.112 0.084 0.028 0.08
250 t5 Z 0.332 0.432 0.504 0.228 0.208 0.248
500 t5 Z 0.728 0.704 0.712 0.576 0.588 0.624
100 t5 t5 0.132 0.000 0.000 0.060 0.056 0.036
250 t5 t5 0.064 0.028 0.024 0.068 0.056 0.052
500 t5 t5 0.064 0.048 0.040 0.068 0.060 0.036

FSD denotes the First-order Stochastic Dominance test H0F and KS denotes the Kolmogorov–Smirnov test H0K. The 
rejection rates are obtained from 250 simulations. Columns θ report the rejection rates for the simulated test 
distributions where the model parameters μ and σ are known. Columns θ̂asy report the tests’ rejection rates using 
simulated critical values from the asymptotic distribution not considering estimation effects. This is corrected in columns 
θ̂boo that report the rejection rates using bootstrap critical values obtained from B ¼ 500 bootstrap replications; �τ is the 
threshold value that characterizes the domain of the tail of the distribution. T denotes the sample size.
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size and power for scenario ðiÞ. The second column θ̂boo reports the results when the pa-
rameter vector θ is estimated and the critical values of the test are obtained using bootstrap 
methods. Column θ̂asy reports the results when the parameter vector θ is estimated but one 
erroneously uses the asymptotic critical values as in column θ. In the bootstrap case, each 
generated sample Yt entails a different bootstrap critical value that is conditional on the 
available sample. The empirical size is close to the nominal size across simulation experi-
ments and coverage probabilities. Size improves as the sample size grows. For the FSD test, 
the empirical rejection rates are close to zero for the pair ðZ; t5Þ, as expected. In contrast, 
the rejection rates are higher than 0.20 and increase with the sample size for the pair 
ðt5;ZÞ. Similar results are obtained for the coverage probability �τ ¼ 0:05. In this case, the 
empirical power is slightly higher than for �τ ¼ 0:10. The results for the KS test are also 
according to theory and similar to the FSD tests. The only significant difference is that the 
pair ðZ; t5Þ is now under the alternative hypothesis yielding rejection probabilities around 
0.5 for T ¼ 500. There are no significant differences in the finite-sample properties of the 
tests between the bootstrap method (θ̂boo) and the asymptotic one (θ̂asy).

Table 2. Empirical size and power for the location-scale DGP yt ¼ σtðθ2Þεt , with σtðθ2Þ an EGARCH process 
as in Equation (34) with β0 ¼ 0:05, β1 ¼ 0:1; β2 ¼ 0:85 and γ ¼ 0:1

FSD test KS test

T Fε Fo θ̂boo θ̂asy θ̂boo θ̂asy

�τ ¼ 0:10
100 Z Z 0.064 0.076 0.052 0.076
250 Z Z 0.040 0.044 0.052 0.056
500 Z Z 0.072 0.06 0.072 0.072
100 Z t5 0.016 0.016 0.116 0.656
250 Z t5 0.004 0.000 0.244 0.908
500 Z t5 0.000 0.000 0.572 0.996
100 t5 Z 0.200 0.264 0.192 0.244
250 t5 Z 0.320 0.320 0.260 0.228
500 t5 Z 0.656 0.652 0.520 0.500
100 t5 t5 0.040 0.080 0.044 0.300
250 t5 t5 0.016 0.016 0.064 0.380
500 t5 t5 0.040 0.008 0.068 0.536
�τ ¼ 0:05
100 Z Z 0.048 0.052 0.048 0.056
250 Z Z 0.072 0.072 0.076 0.088
500 Z Z 0.064 0.076 0.068 0.076
100 Z t5 0.004 0.072 0.192 0.640
250 Z t5 0.024 0.024 0.288 0.732
500 Z t5 0.008 0.016 0.536 0.892
100 t5 Z 0.228 0.348 0.188 0.276
250 t5 Z 0.364 0.420 0.296 0.268
500 t5 Z 0.680 0.648 0.576 0.588
100 t5 t5 0.016 0.144 0.040 0.344
250 t5 t5 0.052 0.108 0.016 0.336
500 t5 t5 0.036 0.040 0.072 0.324

The innovations to the volatility process are εt � Fɛð�Þ, with Fεð�Þ ¼ Z, where Z is a standard Normal 
distribution, or Fεð�Þ ¼ t5, with t5 a standardized Student-t distribution with five degrees of freedom. FSD 
denotes the First-order Stochastic Dominance test H0F and KS denotes the Kolmogorov–Smirnov test H0K. The 
rejection rates are obtained from 250 simulations. Columns θ̂asy report the tests’ rejection rates using simulated 
critical values from the asymptotic distribution not considering estimation effects. This is corrected in columns 
θ̂boo that report the rejection rates using bootstrap critical values obtained from B ¼ 500 bootstrap replications; 
�τ is the threshold value that characterizes the domain of the tail of the distribution. T denotes the sample size.
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Table 2 reports the empirical size and power for the EGARCH simulation exercise. The 
simulation setting is the same as the preceding exercise. Estimation effects are, however, 
more important in this setting because of the heavily parameterized structure of the condi-
tional volatility model. The conditional mean process is zero and the conditional variance 
is driven by the parameters β0 ¼ 0:05, β1 ¼ 0:1, β2 ¼ 0:85 and γ ¼ 0:1. The empirical 
results are similar to the simple location-scale model in Table 1. Importantly, the test based 
on asymptotic critical values and estimated parameters (θ̂asy) reports very biased estimates 
of the test size for the pair ðt5; t5Þ for both coverage probabilities.

The empirical properties of the tests of systemic risk are studied in Table 3 for different 
combinations of the null and alternative hypotheses for the above tests. The column %HA 
reports the null and alternative hypotheses considered for the simulation exercise. The 
data-generating process under the null hypothesis is ðZ;ZÞ and under the alternative is 
ðt5;ZÞ. Thus, the first case is given by 0% of variables generated from the Student-t distri-
bution with five degrees of freedom. This scenario corresponds to a full cross section of as-
set returns driven by a Normal distribution. The other three scenarios are given by 25, 
75%, and 100% of asset returns generated by a t5 distribution, respectively, in a setting 

Table 3. Empirical size and power for the location-scale DGP yt ¼ μþσεt , with εt � Fεð�Þ; Fεð�Þ ¼ Nð0; 1Þ under 
H0K and H0F and Fεð�Þ ¼ t5 under HAK and HAF

FSD test KS test

H0;R1 H0;R2 H0;S1 H0;S2

N/T % HA θ̂boo θ̂asy θ̂boo θ̂asy θ̂boo θ̂asy θ̂boo θ̂asy

�τ ¼ 0:10
30/100 0% 0.072 0.012 0.048 0.004 0.044 0.000 0.024 0.000

25% 0.432 0.252 0.512 0.332 0.340 0.016 0.400 0.004
75% 0.96 0.700 0.996 0.992 0.920 0.340 0.984 0.716
100% 0.996 0.936 1.000 1.000 0.968 0.632 0.996 0.912

60/250 0% 0.076 0.004 0.048 0.012 0.092 0.000 0.044 0.000
25% 0.972 0.784 0.976 0.92 0.936 0.344 0.948 0.068
75% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100/500 0% 0.056 0.000 0.052 0.004 0.08 0.000 0.056 0.000
25% 1.000 1.000 1.000 1.000 1.000 0.992 1.000 0.852
75% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

�τ ¼ 0:05
30/100 0% 0.04 0.148 0.000 0.112 0.056 0.112 0.000 0.136

25% 0.092 0.508 0.000 0.52 0.048 0.244 0.000 0.244
75% 0.264 0.836 0.004 0.968 0.116 0.268 0.000 0.316
100% 0.364 0.756 0.000 1.000 0.116 0.312 0.000 0.344

60/250 0% 0.088 0.108 0.056 0.108 0.096 0.204 0.048 0.088
25% 0.764 0.944 0.896 0.984 0.552 0.688 0.648 0.684
75% 1.000 1.000 1.000 1.000 0.992 0.992 1.000 1.000
100% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100/500 0% 0.068 0.044 0.032 0.028 0.072 0.044 0.056 0.020
25% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
75% 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.996
100% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T denotes the time series dimension and N the number of variables. Column % HA denotes the percentage of 
variables generated under the alternative hypothesis given by t5. Column θ̂boo reports the rejection rates using 
bootstrap critical values obtained from B ¼ 500 replications and Column θ̂asy reports the rejection rates using 
simulated critical values from the asymptotic distribution assuming θ known. The rejection rates are obtained 
from 250 simulations. �τ is the threshold value that characterizes the domain of the tail of the distribution.
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where the benchmark distribution is Gaussian. There are two columns for each test; each 
column reports the test statistic using the bootstrap correction (θ̂boo) and the asymptotic 
critical values (θ̂asy). The results show strong performance of both tests to reject the null hy-
pothesis of Gaussianity in the tails. Empirical power increases when the proportion of firms 
with Student-t distributed tails increases, and with the sample size. These results are robust 
to the choice of critical values. Importantly, though, the rejection rates reflecting the empir-
ical size slightly underestimate the nominal size for the coverage probability �τ ¼ 0:10 and 
overestimate it for �τ ¼ 0:05. Size distortions are less significant as the sample size increases.

Table 4 repeats the simulation exercise for the tests of systemic risk for the EGARCH(1,1) 
process. The results are very similar to those obtained in Table 3. Both tests report strong 
power when the proportion of variables driven by a Student-t distribution is as small as 
25%. The results improve as the proportion increases to 100%. The power of the test also 
increases with the sample size N and T, with N=T ! 0. We observe significant biases in the 
empirical size of the tests that use the asymptotic critical values. These deviations of the nom-
inal size are corrected for larger sample sizes and when the bootstrap tests are used instead.

Table 4. Empirical size and power for the location-scale DGP yt ¼ σtðθ2Þεt , with σtðθ2Þ an EGARCH process 
as in Equation (34) with β0 ¼ 0:05, β1 ¼ 0:1; β2 ¼ 0:85 and γ ¼ 0:1

FSD test KS test

H0;SR1 H0;SR2 H0;SR1 H0;SR2

N/T % HA θ θ̂asy θ̂boo θ θ̂asy θ̂boo θ θ̂asy θ̂boo θ θ̂asy θ̂boo

�τ ¼ 0:10
66/200 0% 0.140 0.216 0.050 0.068 0.420 0.015 0.116 0.116 0.045 0.128 0.456 0.030

25% 0.720 0.720 0.390 0.788 0.836 0.130 0.408 0.456 0.290 0.556 0.828 0.110
75% 0.980 0.976 0.920 1.000 1.000 0.845 0.948 0.916 0.865 0.996 1.000 0.635

100% 1.000 1.000 1.000 1.000 1.000 1.000 0.988 0.988 1.000 1.000 1.000 1.000
100/500 0% 0.192 0.136 0.090 0.084 0.228 0.050 0.116 0.048 0.090 0.052 0.172 0.010

25% 0.980 0.956 0.966 1.000 0.984 0.445 0.924 0.836 0.875 0.976 0.916 0.190
75% 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000 0.995
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100/1000 0% 0.076 0.032 0.066 0.052 0.036 0.056 0.072 0.024 0.068 0.108 0.060 0.057
25% 1.000 1.000 1.000 1.000 1.000 1.000 0.984 0.984 1.000 1.000 0.996 1.000
75% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100% 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000 0.996 1.000
�τ ¼ 0:05
66/200 0% 0.236 0.304 0.065 0.148 0.228 0.035 0.424 0.340 0.065 0.392 0.488 0.050

25% 0.800 0.816 0.420 0.816 0.816 0.325 0.648 0.656 0.290 0.716 0.824 0.225
75% 1.000 0.992 0.965 0.988 0.992 0.885 0.984 0.972 0.850 0.988 0.992 0.790

100% 1.000 1.000 1.000 0.992 1.000 1.000 0.992 0.988 1.000 0.992 1.000 1.000
100/500 0% 0.068 0.068 0.110 0.104 0.120 0.010 0.084 0.068 0.140 0.068 0.160 0.025

25% 0.980 0.968 0.975 0.988 0.964 0.885 0.964 0.944 0.920 0.988 0.956 0.615
75% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100/1000 0% 0.016 0.012 0.046 0.032 0.012 0.042 0.028 0.012 0.044 0.028 0.020 0.046

25% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.992 1.000
75% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100% 1.000 1.000 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000 0.992 1.000

The innovations to the volatility process are εt � Fεð�Þ, with Fεð�Þ ¼ Nð0; 1Þ or a standardized Student-t5 
distribution. T denotes the time series dimension and N the number of variables. % HA denotes the percentage 
of variables generated under the alternative hypothesis given by t5. Column θ̂boo reports the rejection rates using 
bootstrap critical values obtained from B ¼ 500 replications and Column θ̂asy reports the rejection rates using 
simulated critical values from the asymptotic distribution assuming θ known. The rejection rates are obtained 
from 250 simulations. �τ is the threshold value that characterizes the domain of the tail of the distribution.
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5 Empirical Application

The procedures developed above are applied in this section to assess the presence of finan-
cial instability to a vector of N ¼ 68 stock returns Yt ¼ ðy1t; . . . ; yNtÞ

0 containing the con-
stituents of the FTSE-100 index that have remained in the UK financial index during the 
whole evaluation period from January 2000 to July 2022. The remaining companies have 
entered and exited the index during the period under consideration. The left panel in  
Figure 1 presents the evolution of the overall index over the evaluation period and the right 
panel the dynamics of log returns. There are periods of significant market turbulence and 
financial distress between 2006 and 2009. Other periods exhibiting strong price fluctua-
tions are 2012–2015 that correspond to the sovereign bond market crisis, the period 2016– 
2017 corresponding to Brexit, and the period 2020–2021 driven by the outbreak of the 
COVID-19 pandemic.

Systemic risk is usually interpreted as evidence of market distress spreading over the 
cross section of firms in the financial system. To monitor the occurrence of this phenome-
non, we fit a fat-tailed DCC-GARCH model with Student-t innovations introduced in 
Equations (3)–(5) to the vector Yt ¼ ðy1t; . . . ; yNtÞ

0, with N ¼ 68. To compute the proba-
bility of tail events we consider a benchmark model given by a multivariate Student-t dis-
tribution with five degrees of freedom, which seems a conservative measure of risk in calm 
periods. The parameters of the DCC model are estimated using the shrinkage estimator 
proposed in Ledoit and Wolf (2004) although (unreported) results based on the sample 
covariance matrix yield similar findings. The dynamics of the correlation parameters ψ1 
and ψ2 obtained from the estimation of the DCC-GARCH model for the vector of 68 
stocks are reported in Figure 2. Interestingly, the contribution of past dynamics, given by 
ψ1þψ2, to predict the present correlation is not larger than 0.7 in most periods. This gives 
more importance to the contribution of the unconditional covariance matrix �Σ in 
Equation (5), or its correction ��Σ in Equation (6), for predicting the conditional covari-
ance process.3

The aim of this empirical exercise is to assess statistically if this multivariate model is 
able to capture the underlying tail risk across assets or if there is statistical evidence of 

Figure 1. Left panel reports the price dynamics of the FTSE100 index over the period January 4, 2000 to July 
22, 2022 (5755 observations). Right panel reports the corresponding log returns over the same period.

3 Unreported simulations show that for a smaller number of assets in the cross section ðN ¼ 5; 10;20Þ the es-
timation of the DCC parameters is Ψ1 2 ð0:05; 0:10Þ and Ψ2 2 ð0:85; 0:90Þ.
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systemic risk during specific periods. To do this, we apply the FSD and KS tests to each ele-
ment of the vector of residuals of the fitted DCC-GARCH model. The second step consists 
of collecting the outcomes of the individual downside risk tests and the values of the test 
statistics to implement the systemic risk tests H0;Ri , for i ¼ 1; 2. For completeness, we also 
compute the tests of systemic risk based on aggregating information from the marginal KS 
tests. The asymptotic theory is not reported but is analogous to the tests H0;Ri . These tests 
of systemic risk based on the KS statistics are denoted as H0;Si , for i ¼ 1; 2.

The empirical exercise is repeated over rolling windows of 1000 observations moving in 
time steps of 66 observations corresponding to three months of data, that is, the first win-
dow covers the period January 3, 2000 to October 30, 2003; the second window covers 
the period April 1, 2000 to January 31, 2004 and so on such that the evaluation exercise 
contains 5754 observations split into 72 rolling windows. The dates in the x axes of  
Figures 3 and 5 correspond to the terminal dates of each rolling window.

We focus first on testing for systemic risk at moderate tail quantiles given by a coverage 
probability of �τ ¼ 0:10. Figure 3 reports the dynamics of the FSD tests �SD

NðqÞ for the null 
hypothesis H0;R1 and �VD

NðqÞ for the hypothesis H0;R2 , respectively. The results show similar 
dynamics across systemic risk measures with regards to the presence of periods of financial 
instability. There is a steady increase in the value of the test statistics from 2006 to 2008, 
which starts to sharply decline afterward. We should note that the benchmark risk model is 
given by a fat-tailed DCC-GARCH model with Student-t innovations with five degrees of 
freedom. The period between 2009 and mid-2012 witnessed a strong drop in the value of 
the systemic risk statistics. However, from 2013 (2010–2013 evaluation period), these val-
ues increase quite sharply and remain high for the rest of the evaluation period. The period 
2019–2022 reports low values of the statistics that signal a period of financial stability. 
The outbreak of the COVID-19 pandemic does not seem to have a strong effect at a �τ ¼
0:10 coverage tail probability. Figure 4 reports the evolution of the analogous systemic risk 
tests based on the marginal KS statistics. In this case, the tests are based on testing the 
goodness of fit of a multivariate Student-t distribution with five degrees of freedom for the 
68 stocks under investigation. As expected, the results are more informative than in the 
previous case. This is because the tests based on the FSD hypothesis are very conservative 
whereas the tests based on the goodness of fit use the correct critical values. The dynamics 
are similar to the patterns observed for the FSD tests; however, the results are more 

Figure 2. Dynamics of DCC parameters ψ1 and ψ2 for DCC-GARCH model (3)–(5) estimated by quasi- 
maximum likelihood for the vector of 68 stocks remaining in the FTSE-100 index over the period January 4, 
2000 to July 22, 2022 (5754 × 68 observations). The estimates are obtained from rolling windows of 66 
observations with an in-sample estimation period of T ¼ 1000 observations.
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statistically significant than in the top two panels. There is strong evidence of systemic risk 
during the 2006–2009 interval and after 2012. The indicators drop after 2018 but rise 
again to alert of the presence of financial instability at the start of 2020.

Figure 3. Evolution of systemic risk statistics for coverage probability �τ ¼ 0:10 and FSD-based test statistics 
�S

D
NðqÞ and �V D

NðqÞ. The cross section of stocks is comprised by N ¼ 68 assets of the FTSE-100 index 
computed over 72 rolling windows of T ¼ 1000 in-sample observations. The red flat line denotes the 
Gaussian critical value of the systemic risk tests at an α ¼ 0:05 significance level. The evaluation period is 
October 2003 to July 2022.
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Figures 5 and 6 report the same exercise to detect financial instability and systemic risk 
for the coverage probability �τ ¼ 0:05. In this case, the results are more prominent in show-
ing the presence of systemic risk in the extreme left tail during the periods highlighted 

Figure 4. Evolution of systemic risk statistics for coverage probability �τ ¼ 0:10 and KS -based test statistics 
i ntroduced in Equation (36). The cross section of stocks comprised N ¼ 68 assets of the FTSE-100 index 
computed over 72 rolli ng w indows of T ¼ 1000 in-sample observations. The red flat line denotes the 
Gaussian critica l value of the systemic risk tests at an α ¼ 0:05 significance level. The evaluation peri od is 
October 2003 to July 2022.
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above. The probability of joint extreme losses for �τ ¼ 0:05 is well above the predictions of 
the benchmark model, in particular during the 2007–2009 financial crisis and the interval 
2013–2018. There is a short period of financial stability until May 2020 that finishes with 
the outbreak of the COVID-19 pandemic. All of the statistics report similar results and 
highlight the severity of the 2007–2009 financial crisis but also of several turmoil periods 
in the UK stock market during the interval 2013–2018.

Figure 5. Evolution of systemic risk statistics for coverage probability �τ ¼ 0:05 and FSD-based test statistics 
�S

D
NðqÞ and �V D

NðqÞ. The cross section of stocks comprised N ¼ 68 assets of the FTSE-100 index computed 
over 72 rolling windows of T ¼ 1000 in-sample observations. The red flat line denotes the Gaussian critical 
value of the systemic risk tests at an α ¼ 0:05 significance level. The evaluation period is October 2003 to 
July 2022.
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Figure 6. Evolution of systemic risk statistics for coverage probability �τ ¼ 0:05 and KS-based test statistics 
introduced in Equation (36). The cross section of stocks comprised N ¼ 68 assets of the FTSE-100 index 
computed over 72 rolling windows of T ¼ 1000 in-sample observations. The red flat line denotes the 
Gaussian critical value of the systemic risk tests at an α ¼ 0:05 significance level. The evaluation period is 
October 2003 to July 2022.
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6 Conclusion

The purpose of this study is to measure the probability of systemic risk using information 
from the cross section of stock returns. Financial instability is defined as the occurrence of 
simultaneous downside risk for a large proportion of firms in the financial system. This 
definition is made operational through a bootstrap test of FSD that corrects for estimation 
of the risk model parameters. Rejection of the null hypothesis implies that the downside 
probability of the underlying process driving financial returns is larger than the downside 
probability of the proposed model for, at least, some values of the tail domain. Using a pro-
cedure similar in spirit to statistical meta-analysis, the outcomes of these individual tests 
are aggregated to construct tests of financial instability or systemic risk.

These methods are illustrated by fitting a fat-tailed DCC-GARCH model with Student-t 
innovations applied to daily data for a cross section of 68 stock returns containing the con-
stituents of the FTSE-100 index that have remained in the index during the evaluation pe-
riod 2000–2022. The results obtained from the analysis evaluated at different tail coverage 
probabilities provide overwhelming evidence of financial instability in the UK stock market 
during the period 2006–2009, 2012–2018, and 2020–2021 due to the occurrence of differ-
ent crises. The sensitivity of the different proposed tests to detect systemic risk is more pro-
nounced for tests based on goodness of fit hypotheses than on FSD and also depends on 
the coverage probability characterizing the tail events.
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