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Abstract 

In this work, a physically based self-consistent model is developed and employed to examine the 

microscopic lattice response of pre-strained Type 316H polycrystalline austenitic stainless steel 

subjected to uniaxial tensile and compressive loading. The model is also used to explain the 

Bauschinger effect observed at the macroscopic length-scale. Formulated in a crystal based plasticity 

framework, the model incorporates detailed strengthening effects associated with different 

microstructural elements such as forest dislocation junctions, solute atoms and precipitates on 

individual crystallographic slip planes of each individual grain within the polycrystal. The 

elastoplastic response of the bulk polycrystal is obtained by homogenizing the response of all the 

constituent grains using a self-consistent approach. Micro-plasticity mechanisms and how these 

influence the Bauschinger effect are illustrated in terms of the role of residual stresses at different 

length-scales. Overall, predictions are in good agreement with experimental data of the Bauschinger 

effect and the corresponding meso-scale lattice response of the material, with the latter measured by 

neutron diffraction. The results demonstrate that transient softening of the material is related to 

residual stresses at different length scales. In addition, the (Type III) residual stress at the micro-scale 

slip system level extends the strain range over which the tensile and compressive reloading curves of 

the pre-strained material merge.  

 

Keywords:  Bauschinger effect, Austenitic stainless steel, Self-consistent model, Multi-scale 

residual stress, microstructure 
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Nomenclature 

T Absolute temperature, or the orientation matrix for individual grains 

G Shear modulus 

b Length of the Burgers vector 

d ,
p ,

s  
Internal resistance associated with forest dislocation junctions, precipitates 

(Orowan strength) and solute atoms 

, ,d p s    Obstacle strength of forest dislocation junctions, precipitates and solute atoms 

cr  Overall internal resistance or critical resolved shear strength (CRSS) 

dL ,
pL , sL  

Mean spacing between forest dislocation junctions, precipitates and solute atoms 

on individual slip planes 

dN ,
pN  

Number density of forest dislocation junctions per unit area and of precipitates per 

unit volume  

,self latentN N   Increment of dislocation segments on self- and latent- hardened slip planes 

lN  Increment of number of secondary dislocation loops or segments 

,s lj j  Self- and latent- hardening coefficient 

,v Af f  Volume and area fraction of precipitates 

pr  Mean size (radius) of precipitates 

,r r

m p   Type III internal stress in the matrix and precipitates 

0  Reference shear strain rate 

  Number of slip system 

R  Rotational matrix 

,a a   Stress-strain field in individual grains 

,a aL C  Stiffness and compliance matrix of an anisotropic grain 

,i iL C  Stiffness and compliance matrix of the isotropic polycrystal 

*,ta t   
Misfit strain (mismatch) in the real inhomogeneous inclusion and equivalent 

homogeneous inclusion 

iS  Eshelby shape tensor 

aX  Type II internal stress in individual grains 

c
 

Solute concentration in the matrix 
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1. Introduction 

 

The detailed way that a polycrystalline metal or alloy strain hardens, namely how the flow stress 

evolves with inelastic deformation, has been of continuous interest for over a century. Mechanisms 

vary with temperature and stress as demonstrated by the Ashby type deformation-mechanism maps 

(Frost and Ashby, 1982). Many constitutive models have been proposed or developed in an attempt 

to understand the underlying mechanisms of strain hardening, such as the unified viscoplasticity 

model and its extensions (Chaboche, 1986; Chaboche et al., 2013; Hu et al., 1992), and the unified 

phenomenological models proposed by Miller and co-workers (Miller, 1976). These models have 

seen successful applications in a variety of problems, such as cyclic uniaxial and multi-axial loading 

of different materials (Abdel-Karim and Ohno, 2000; Chaboche et al., 2013; Taleb et al., 2014). 

However, the main drawback associated with the development of macroscopic polycrystal models of 

these types is that there are many empirical extensions and a large number of fitting parameters, 

which may limit the ability to understand the role of different underlying physical deformation 

mechanisms (Hu, 2015). More recently, crystal based plasticity models combined with the finite 

element method (CP-FEM) have been proposed and developed extensively to study plastic 

deformation arising from slip on different slip systems (see, e.g. (Lee et al., 2010; Li and O'Dowd, 

2011; Li et al., 2014; Neil et al., 2010)). However, the work hardening behaviour in these 

approaches is generally only described empirically. The development of physically based 

deformation models based on an in-depth understanding of the internal processes that give rise to 

plastic deformation still remains a significant challenge (Chen et al., 2015a; Pham et al., 2013). 

A material’s internal state is understood to be related to the distribution or density of different 

microstructural elements, such as forest dislocations, dislocation cell structure, solute atoms and 

precipitates, where precipitates have been identified to play multiple roles to strain hardening 

(Ashby, 1966; Fribourg et al., 2011; Han et al., 2006; Hu and Cocks, 2015). From a more 

macroscopic, mechanistic perspective, the internal state has been classified into internal resistance 

and internal stress (Chen et al., 2015a). The internal resistance has been identified as the intrinsic 

resistance to dislocation motion provided by different obstacles (Pham et al., 2013), and is expressed 

in terms of the critical resolved shear strength (CRSS) of a slip system in the crystal plasticity 

framework (Hu and Cocks, 2016b). The internal stress has been demonstrated to be equivalent to 

the residual stress that helps maintain internal equilibrium within a stress-free body, which is 

heterogeneous and kinematic (directional) (Chen et al., 2015a; Pham et al., 2013). In the following 

context, we use “residual stress” instead of “internal stress”. The residual stresses are generally 
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classified as Type I, II and III (Withers and Bhadeshia, 2001a, b). Type I self-equilibrate over a 

length scale comparable to the macroscopic dimension of the component. Type II self-equilibrates 

over a length scale comparable to crystallographic grains. This type of meso-scale residual stress is a 

result of strain incompatibility between grains, created by the orientation dependent elastic and 

plastic anisotropy (Clausen et al., 1998; Daymond and Bouchard, 2006; Pham et al., 2013; 

Withers and Bhadeshia, 2001b). A Type III residual stress is associated with the mismatch between 

the soft matrix and different microstructural elements (in particular, hard precipitates or dislocation 

cell walls) at the micro-scale, which decreases rapidly with distance but still satisfies the self-

equilibrium condition. (Kim et al., 2012) describe Type III residual stresses as arising from a 

composite effect. 

The motivation of this work is to develop a robust physically based state variable model with 

limited fitting parameters. A suitable candidate is the self-consistent model established in our 

previous work (Hu and Cocks, 2016b), which takes into account forest dislocation (self- and latent) 

hardening and solute strengthening on individual slip planes in a rate-dependent crystal plasticity 

framework, the elasto-plastic anisotropy of the individual grains and the development of Type II 

residual stresses. The model has been shown to be broadly consistent with predictions from advanced 

dislocation dynamics (DD) simulations, but provides a much simpler structure for capturing the 

essential physics at the length-scale of individual grains and dealing with their interactions to model 

the polycrystalline response. In this paper, we further develop the model by incorporating multiple 

aspects of precipitation strengthening, in particular, the development of Type III residual stresses.  

The advantage of a physical based model is that parameters and state variables in the model relate 

to physically measureable quantities. Any physically based crystal plasticity model must therefore be 

able to predict the observed macroscopic response and the development of the internal state and 

internal residual stresses within differently orientated grains. Techniques such as neutron diffraction 

have been developed in recent years that allow lattice strain and residual lattice strain to be measured 

directly. By conducting experiments in-situ within a neutron beamline, extensive multi-scale 

information can be generated for the validation of constitutive models. 

A straightforward loading history in which the internal state can evolve rapidly is uniaxial cyclic 

loading, and a simple yet important evaluation of the predictive capability of a model is its ability to 

predict the Bauschinger effect (i.e. after straining a material in the forward direction, either in tension 

or compression, it can be deformed plastically at a lower stress level in the reversed direction 

experienced under these types of loading histories (Chen et al., 2015a; Orowan, 1966; Sleeswyk et 

al., 1978). In this paper we evaluate the response of an ex-service Type 316H FCC polycrystalline 

austenitic stainless steel used in Advanced Gas Cooled nuclear reactors in the UK. Advanced neutron 
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diffraction techniques are used to measure the evolution of lattice strain (and hence residual stress 

state) as the material is deformed. We demonstrate that the extended Hu-Cocks model predicts both 

the macroscopic response during reversed loading and the evolution of Type II and Type III residual 

stresses. We also evaluate how changes in microstructure, such as volume fraction of precipitates, 

influence each of these features of the material response. 

   Macroscopically, the Bauschinger effect is often characterized by two distinct phenomena: 

transient softening ( , the offset during the early stage of plastic deformation) and permanent 

softening ( , the offset at large strains) (Chen et al., 2015c; Yoshida et al., 2002), usually 

measured at different strain offsets as shown schematically in Fig. 1. Permanent softening is 

described practically as the difference between the compressive and tensile strengths at a strain offset 

of about 10% (Wilson, 1965). However, whether a material exhibits permanent softening has been 

disputed (Sleeswyk et al., 1978). In this study the emphasis is placed on understanding the role of the 

development of multi-scale residual stresses in interpreting the extent and details of any transient and 

whether permanent softening occurs for the 316H stainless steel considered here.  

 

Fig. 1. Schematic diagram of Bauschinger effect, showing the prior tensile deformation history (loaded along 

the curve OA and unloaded along the curve AO’), together with the continued (tensile, curve O’B) and 

reversed (compressive, curve O’C re-plotted as O’D in absolute magnitude) straining of the material.  

 

The layout of the paper is as follows: Section 2 describes the framework of the multi-scale self-

consistent model, with precipitates and associated multiple strengthening effects incorporated (e.g. 

Type III residual stress). Section 3 describes a series of experiments on 316H stainless steel in which 

the development of elastic lattice strains during tensile/compressive loading in different grain 

ts

ps
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families are measured using neutron diffraction and related to measurements of the macroscopic 

Bauschinger effect. The roles of Type II and III residual stresses are examined separately in Sections 

4 and 5, together with comparisons of experiments with model predictions of the macroscopic stress-

strain curves and the evolution of lattice strain and residual lattice strain during both tensile and 

compressive reloading of tensile pre-strained specimens. Concluding remarks are given in Section 6. 

 

2. Self-consistent model for polycrystals 

 

The general framework of the self-consistent model developed by (Hu and Cocks, 2016b) 

consists of three sub-models, namely: dislocation link length, crystal plasticity and continuum models 

from micro- to the macro-scale. Here we briefly review the framework, with the main focus on the 

additional micromechanics elements introduced here to describe precipitation strengthening.  

 

2.1. Dislocation link length model for individual slip planes 

 

2.1.1. The internal resistance—critical resolved shear strength (CRSS) 

 

Within an engineering alloy, microstructural elements such as forest dislocation junctions, solute 

atoms and precipitates block the motion of dislocation and divide the dislocations into segments. The 

internal resistance is defined as the shear stress required for a dislocation to propagate through an 

array of obstacles across a slip plane, which is equivalent to the classical definition of the critical 

resolved shear strength (CRSS). (Foreman and Makin, 1966) and (Dong et al., 2010) have 

formulated the CRSS for a single type of obstacle in the form τ=αGb/L, where α is a dimensionless 

constant,  L is a characteristic mean spacing between obstacles on the slip plane (see section 2.1.2), 

G is the shear modulus of a single crystal and b is the length of the Burgers vector. Combination of 

any two types of obstacle (which give rise to independent CRSSs τ1 and τ2) leads to a joint CRSS τt, 

given by (Dong et al., 2010; Kocks, 1985; Picu et al., 2009) 

                                                                                                               (1) 

where q is an exponent between 1 and 2. (Dong et al., 2010) have shown that the linear 

superposition rule or additive strengthening (q=1) is valid when the number densities of the two 

obstacles differ by more than a factor of three, otherwise the geometric mean or quadratic rule (q=2) 

prevails. For Type 316H austenitic stainless steels employed in this work, the combined effect of 

forest dislocation junctions and solute atoms has been described and evaluated in our previous work 

1 2

q q q

t   
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(Hu and Cocks, 2016b), where q=1. For 316H the contributions from forest and precipitation 

hardening are comparable to each other and an appropriate way to formulate the overall CRSS can be 

written as 

 

22

2 2 pd s
cr d p s

d p s

GbGb Gb

L L L

 
   

  
         

   

                                 (2) 

Parameters with subscripts “d, p, s” are associated with dislocation junctions, precipitates and solid 

solution respectively. This form of relationship has also been used by (Deschamps and Brechet, 

1998) and confirmed by dislocation dynamics studies (Queyreau et al., 2009, 2010).  

 

2.1.2. The state variables—mean spacingＬ 

 

For forest dislocation strengthening, given a random distribution of Nd, junctions per unit area on 

each elementary slip plane, the mean spacing of the junctions on the slip plane, dL in Eq.(2), can be 

written as . It has been shown that the random distribution of forest dislocation junctions is 

equivalent to the distribution of connected dislocation segments (Hu and Cocks, 2016b). All the 

segments in a network can be considered as immobile and held-up at obstacles at any instant 

(Lagneborg and Forsen, 1973). Free and fast glide motion of dislocations between obstacles occurs 

on the slip plane once the resolved shear stress (RSS) approaches the critical value τd. As a result, a 

shear strain increment is generated on the slip plane until these activated segments are blocked 

and partitioned into shorter segments by other pre-existing or newly created junctions and become 

immobile again. Further glide occurs when the RSS increases and mobilizes more segments. 

Throughout this process, dislocations multiply and new segments or junctions are generated on each 

slip plane (Alankar et al., 2012). Strain hardening can then be characterised by the increase of the 

number of dislocation segments (junctions) or the decrease of mean spacing. Note strain hardening 

varies on different slip planes according to the above description of the multiplication process. (Hu 

and Cocks, 2016b) have identified three sub-processes, namely (i) multiple releases, (ii) expansion, 

and (iii) mutual partitioning or network refinement. Self-hardening involves all three sub-processes 

while latent hardening only involves the last of these. Therefore, a plastic shear strain increment  

on a single active slip plane leads to non-identical increase of the number of junctions on the self-

hardened plane ( ) and latent hardened planes ( ), which has been formulated by two 

independent relationships (Hu and Cocks, 2016b) 

1/2

d dL N 





selfN latentN
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                                                                                                        (3a) 

                                                                                                       (3b) 

where are regarded respectively as self-hardening and latent hardening coefficients. Eqs. (3a) 

and (3b) update the total number of junctions Nd after an increment of plastic strain and thus give rise 

to the evolution of mean spacing dL on self- and latent- slip planes. This approach in determining 

self- and latent hardening has been shown to be consistent with dislocation dynamics (DD) 

simulations (Hu and Cocks, 2016b) which describe self- and latent hardening by distinguishing the 

strength of individual junctions on different slip planes using an interaction coefficient matrix 

(Devincre et al., 2006; Groh and Zbib, 2009). It is important to note that this model contains a 

number of simplifying assumptions in order to limit the number of parameters that are needed to 

describe the material response. The most important of these is that, as in most models of this type, 

we express the response associated with a given slip plane in terms of the average number of 

dislocation link lengths and that there is a given stress, the CRSS, at which a dislocation glides 

across a slip plane. In practice, a slip plane will contain a distribution of link lengths (Lagneborg 

and Forsen, 1973) and there is a gradual increase in shear strain as the stress is increased and more 

and more links are released.  The effect of this process on the constitutive response is discussed by 

Hu, (2015). We discuss this further in section 4 when we evaluate the experimental results. 

For solid solution strengthening, the mean spacing Ls (Eq. 2) between randomly distributed solute 

atoms on each slip plane can be expressed as (Hirth and Lothe, 1982; Pham et al., 2015) 

 
1/2

sL cb


                                                                                                           (4) 

where c is the solute concentration or number density of all the solute atoms in the material, which 

can be calculated from the given chemical composition, and (cb) is the projection on a slip plane. In 

contrast to the approach adopted for forest dislocation strengthening, the state variable Ls has been 

simplified to be identical on all slip planes, i.e. variations of the distribution of solute atoms on 

different slip planes is ignored. Ls varies with chemical composition, which could change if the body 

is at a temperature where continued precipitation occurs. 

In this paper we consider the additional effect of precipitation strengthening. All precipitates are 

idealized as spherical and non-deformable particles (Hu, 2015). The mean spacing between 

randomly distributed precipitates on a given slip plane can be expressed as a function of the volume 

fraction of precipitates fv and the mean radius rp based on Friedel’s theory (Friedel, 1964) 

self sN j   

latent lN j   

,s lj j
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          and              
34

3
v p pf r N                                                (5) 

where Np is the number density of precipitates in the material. Similar to solid solution strengthening, 

we do not distinguish between distributions of precipitates on different slip planes, thus the state 

variable Lp is identical on all slip planes.  

 

2.1.3. The role of precipitates—Orowan loops and micro-Type III internal stress 

 

Here the emphasis is put on roles that precipitates can play in strengthening a material, depending 

on the nature of the dislocation-precipitate interactions. The first effect is its contribution to CRSS 

(Eq. 2). The dislocations bypassing precipitates via the classical Orowan bowing process (Fig. 2) and 

is also called Orowan strength for pairs of precipitates (Argon, 2008; Foreman and Makin, 

1966; Pham et al., 2015). The second effect is derived from the closed loops formed around 

precipitates as dislocations bypass them (Chang et al., 2012; Hirsch and Humphreys, 1969). These 

loops, often regarded as geometrically necessary dislocations, can enhance the forest dislocation 

strengthening as additional links or junctions, as described in section 2.1.2. The loops shown in Fig. 

2 are often called Orowan or primary loops, and the corresponding plane is called the primary plane.  

 
Fig. 2. The Orowan bowing bypassing mechanism, leaving loops encircling each precipitate (Hirsch and 

Humphreys, 1969) 

 

 

(Ashby, 1966) and (Brown and Stobbs, 1971) demonstrated that the Orowan loops only occur for 

the first two or three dislocations that bypass a precipitate. It then becomes more energetically 

favourable for plastic flow to be accommodated by the punching out of prismatic loops from 

precipitates on secondary slip planes, with a schematic shown in Fig. 3 (Ashby, 1966; Hirsch and 

Humphreys, 1969). Experimental support of this mechanism has been provided by (Calhoun and 

2

3
p p

v

L r
f




p
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Mortensen, 1999). These prismatic loops consist of “interstitial” loops (equivalent to those produced 

by condensation of interstitial atoms) and “vacancy” loops (equivalent to those produced by 

condensation of vacancies). A simple quantitative analysis of this and the contribution to additional 

forest dislocation junctions is given in Appendix A.  

 
Fig. 3. A schematic illustration of the generation of primary and secondary loops. (a) Shear in the primary slip 

system has left primary Orowan loops around the precipitate. The primary slip plane is horizontal and 

perpendicular to the page. (b) Secondary slip has occurred by the nucleation and glide of secondary prismatic 

loops (interstitial and vacancy).  

 

While the above two aspects of precipitate strengthening provide contributions to the internal 

resistance, another consequence of the development of the dislocation structures around the 

precipitates is that it increases the stress carried by the precipitate and therefore generates a residual 

state of stress in the material. We are primarily interested in the residual stress in the matrix, as it is 

this that determines the extent of any further dislocation motion and plastic deformation. For a slip 

plane containing an area fraction fA of intersecting precipitates (identical to the volume fraction fv for 

a random distribution of precipitates (Argon, 2008)), the stress balance on the slip plane in the 

stress-free state is 

                                                                                          (6) 

where and are internal/residual stresses respectively in the precipitates and matrix (Han et al., 

2004). According to the definition described in section 1, and are Type III microscopic residual 

stresses. A simple analytical solution of this Type III residual stress is given in Appendix B, 

following (Ashby, 1966) and (Kroupa, 1962), where it is shown that the residual stress state is 

equivalent to a pure shear stress state and is a function of fA and the total accumulated plastic shear 

strain on the slip plane:  

(1 ) 0r r

m A p Af f   

r

p
r

m

r

p
r

m


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                                                                                        (7) 

However, it should be noted that different slip planes are not perpendicular to each other, thus the 

Type III residual stress generated by slip on a particular active slip plane will also have resolved 

components on other slip planes in the crystal. Thus the Type III residual stress on a given slip 

system is determined by the amount of slip on all slip systems in the crystal. This will be illustrated 

in the next section. Also, it is interesting to note that this residual stress only depends on the area (or 

volume) fraction of particles. It does not depend independently on the size and spacing of the 

particles. The residual stress depends on the number of prismatic loops punched out from the 

particles (that scales with the size of the particles for a given plastic strain) and the distance that the 

loops are punched out away from the particles (which scales with their spacing). The residual stress 

increases with increasing number of loops (i.e. size of particles) and decreasing distance that they are 

punched out (i.e. spacing of particles). These two effects combine to give a residual stress that 

depends on the ratio of particle size to spacing, i.e. the area fraction of particles, as illustrated in 

Appendix B. 

 

2.2 Crystal plasticity framework for individual grains 

 

The crystal plasticity framework combines the responses for each slip plane in a grain to describe 

the overall crystal response. The approach adopted is fully described by (Hu and Cocks, 2016b). 

Here we provide the major relationships and new contributions that arise from the consideration of 

precipitate hardening. For F.C.C. materials, each individual grain contains four {111} slip planes and 

each slip plane has three <110> slip directions, giving a total of twelve slip systems. Following 

(Asaro and Needleman, 1985), (Hutchinson, 1976), and (Anand and Kothari, 1996), a simple 

rate-dependent power-law relationship is employed between the plastic shear strain increment  

and the current values of the resolved shear stress (RSS)  and overall internal resistance or CRSS 

on a given slip system  ( ), within a prescribed time step  

                                                          (8) 

where p is a rate sensitivity exponent and is a reference shear strain increment. Coplanar 

systems belonging to the same slip plane are understood to have identical CRSS and experience the 

same hardening (Bronkhorst et al., 1992; Hu and Cocks, 2016b; Kocks, 1970). Thus there are 

3/20.7r

m d AG f   





cr

  1~12  t

 
  0 sgn

p
r

m r

m

cr





 



 
   




   

0 0 t   
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only four independent CRSS terms and in Eq. (3) is simply the absolute sum of all on the 

slip plane. Further, if the overall stress in a crystal is denoted as , and is the normal 

to a slip plane and  is one of the slip directions associated with the slip system , is 

given by  

                                                                                 (9) 

where is the Schmid factor of slip system and  represents the dyadic product. 

The inclusion of precipitation hardening requires the specification of an additional term compared to 

the equations presented by (Hu and Cocks, 2016b), i.e. the Type III residual stresses  on each 

slip system  (Aghababaei et al., 2011; Han et al., 2004; Kim et al., 2012; Liu et al., 2011; Yu et 

al., 2014). The way of calculating is as follows: firstly, micro-scale residual stress  (Eq. 7, 

details in Appendix B) on each slip system is resolved onto the single crystal (grain) Cartesian co-

ordinate system and summed to calculate a nominal residual stress term   

                                                                           (10) 

Then, can be calculated in a way similar to Eq. (9) (resolving back onto individual slip systems) 

(Aghababaei et al., 2011) 

                                  (11) 

Finally, by adding all the shear strain increments  calculated from Eq. (8) on all slip systems 

within each individual grain, the total nominal plastic strain increment for the grain can be 

obtained (Asaro and Needleman, 1985; Kocks and Mecking, 2003): 

                                                                             (12) 

 

2.3. Self-consistent scheme for polycrystal aggregate 

 

Response of a macroscopically isotropic polycrystalline aggregate, (with random distribution of 

grain orientations) can be characterized by a self-consistent scheme or a homogenization method 
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equivalent to that originally proposed by (Budiansky and Wu, 1962; Kroner, 1961). Full details of 

the approach adopted here are given by (Hu and Cocks, 2016b). Each individual anisotropic 

grain/crystal is assumed to be spherical. Given a macroscopic stress , the response of each 

inhomogeneous grain can be given by  

                                          (13) 

where are respectively the elastic stiffness matrices for the isotropic bulk polycrystal and the 

individual anisotropic grain; is a shape tensor only dependent on the geometry of the grain and 

Poisson’s ratio of the isotropic polycrystal (Eshelby, 1957; Mura, 1982). The detailed form of these 

and subsequent matrices can be found in (Hu and Cocks, 2016b). and are respectively the 

plastic misfit strain in a grain and the equivalent homogeneous inclusion, where is an important 

intermediate term that can be used to determine the stress in inhomogeneous/homogeneous 

inclusions (Mura, 1982). I is the unity matrix and R is the orientation matrix of the grain in terms of 

the outward normal to the faces of the unit cell with respect to a local co-ordinate system (Hu, 2015; 

Hu and Cocks, 2016b). Eq. (13) is applicable to both macroscopic elastic ( ) and plastic 

( ) deformation. During elastic deformation 

           (14a) 

             (14b) 

where and are the quantities in the brackets. During plastic deformation, increments of 

stress/strain are used and change of the plastic mismatch ( ta ) between each individual grain and 

the surrounding isotropic matrix has been expressed by (Budiansky and Wu, 1962; Kroner, 1961) 

as 

                                                                                        (15) 

where is the macroscopic plastic strain increment of the bulk polycrystal with respect to the 

global co-ordinate system, which can be determined using the principle of virtual work (Hu and 

Cocks, 2016b). p  is the nominal plastic strain increment obtained from Eq. (12). Use of the 

matrix   is due to the transformation between the mathematical strain and the engineering strain 
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(Hu, 2015). Here it is emphasized that ta would give rise to an intragranular residual stress field 

 in each inhomogeneous grain, as can be obtained at the macroscopic unloading state (  in 

Eq. 13) 

                            (16) 

According to the definition in section 1, is a Type II meso-scale residual stress field at the grain 

level, not to be confused with the Type III residual stress  as described in section 2.1.3 

associated with mismatch between precipitates and matrix at the slip system level. Finally, 

( p ) can be added to Eqs. (14a) and (14b) to further update the total stress  and strain in each 

grain at each step during plastic deformation: 

                                                                                      (17a) 

a a pK R                                                                                             (17b) 

The RSS is then updated using Eqs. (9) and (17a) at each time step. 

 

3. Experimental measurement and simulation procedure 

 

3.1 Material condition and experimental measurements 

 

The material of interest in this study was obtained from an ex-service Type 316H F.C.C austenitic 

stainless steel header from a UK Advanced Gas Cooled Reactor (AGR) with the chemical 

composition given in Table 1. The thermal-mechanical history of this initially solution-treated 

material includes in-service operation of 65,015 h at an internal pressure of 40~50 MPa and 

temperatures of 763~803 K and an additional thermal ageing in the laboratory at 823 K for 22,100 h. 

The designation “EXLA” is used to describe this “Ex-service plus Laboratory Ageing” material 

condition. The crystallographic texture in this and similar header steels employed in this study was 

measured to be weak (Chen et al., 2015b; Clausen et al., 1999). The material can therefore be 

approximated to be isotropic. Both inter- and intra-granular carbide precipitates were present in the 

material. The mean size (radius of equivalent spherical precipitates) and volume fraction of 

intragranular precipitates were estimated to be 60 nm and 0.009 based on relevant simulation and 

experimental work in the literature (Chen et al., 2011; Faulkner, 2002; National Institute of 
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Materials Science, 2003). The very small volume fraction of intragranular precipitates indicates that 

the material is essentially a single phase F.C.C. polycrystalline stainless steel. The intergranular 

precipitates can be ignored since they do not obstruct dislocation motion within the matrix (Chen et 

al., 2011).  

A residual stress field was introduced in the specimens by initially pre-straining each specimen at 

823 K up to a stress of 250 MPa at a constant strain rate of 610
-6

 s
-1

. The specimens were cooled to 

room temperature and unloaded. They were then subjected to either uniaxial tensile reloading 

(corresponding specimen designated EXLA1) or uniaxial compressive reloading (corresponding 

specimen designated EXLA2) at ambient temperature to assess the effect of prior deformation 

history on the subsequent macroscopic behaviour and associated micro-plasticity. The macroscopic 

deformation data employed was generated using a strain gauge and the load cell on the loading rig, 

while the averaged lattice response was measured using in situ neutron diffraction (ND). The 

measured change in the lattice spacing of different crystallographic planes {hkl} compared with the 

stress-free lattice spacing were transformed to give the change of elastic lattice strain. Different 

families of grains were measured such that the members in each family had diffracting planes with 

the same Miller indices {hkl}. The uniaxial tensile tests were conducted on the ENGIN-X instrument 

at ISIS, UK, while the uniaxial compressive tests were conducted using the POLDI instrument at PSI, 

Switzerland. A detailed description of the experimental procedure can be found in (Chen et al., 2014; 

Chen et al., 2015c). An incremental loading history was used in the experiments with alternative 

loading and unloading steps adopted to measure the evolution of both the elastic lattice strain during 

loading and residual elastic lattice strain after unloading (Chen et al., 2014; Clausen et al., 1999; 

Clausen et al., 1998; Daymond and Bouchard, 2006). This provides enriched data for the 

evaluation of residual stresses. In the present work, we focus on the axial response (diffracting planes 

with Miller indices parallel to the loading direction) on three major grain families - {220}, {111} and 

{200}. 

 

Table 1. Chemical composition (wt.%) of Type 316H stainless steel 

C  Si  Mn  P S Cr Mo Ni Cu N Fe 

0.07 0.61 1.65 0.025 0.007 16.6 2.33 13.6 0.26 0.025 Bal. 

 

3.2. Simulation procedure  

 

The response of a polycrystal to the above loading/temperature cycles was simulated using the 

model described in section 2. At the beginning of high temperature (HT) pre-straining, we assume 
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that a specimen is initially free of residual stresses and the distribution of all microstructure elements 

are such that the CRSS is initially identical on all slip systems in the body (identical mean spacing Ld, 

Ls and Lp in Eq. 2). This is reasonable since any variation of CRSS between different slip systems 

after service and ageing history described in section 3.1 is expected to be overwhelmed by that which 

can be induced by HT pre-straining. Both τs and τp were assumed to be constant throughout the 

simulation since the change of the population of intragranular precipitates was negligible due to the 

short duration of the test, which would not provide sufficient time for further nucleation, growth and 

coarsening of precipitates to occur. Therefore, the hardening or increase of the CRSS τcr on 

individual slip systems was only given by the increase of τd through the evolution of forest 

dislocation junctions (self- and latent hardening, Nself, Nlatent in Eq. 3), taking into account the 

additional contribution from secondary prismatic dislocation loops punched out from the precipitates 

(Np in Eq. A4). The computational procedure for each loading process is shown in Fig. 4 (only 

shows procedure after micro-yielding). During unloading, the CRSS and all residual stresses remain 

the same. Further, regarding the temperature change during high temperature (HT) pre-straining and 

subsequent room temperature (RT) reloading, it should be noted that the shear modulus is 

temperature-dependent (Frost and Ashby, 1982; Lagneborg and Forsen, 1973). According to 

(Frost and Ashby, 1982) 

                                   (18) 

where T is the current temperature (823 K), G0 is the shear modulus at 300 K, TM is the melting 

temperature and Y is a temperature-dependence factor. For AISI 316 stainless steels, TM=1810 K and 

Y= -0.81 thus G=0.766G0 (Frost and Ashby, 1982). All elastic moduli follow similar temperature 

dependence. Since all contributions to the CRSS are proportional to the shear modulus (Eq. 2), the 

CRSS needs to be scaled with the temperature-dependent modulus when the temperature changes. 

Similarly, all the different types of residual stress need to be scaled in a similar way with temperature. 

Note that additional dislocation mechanisms could occur at elevated temperatures, such as 

dislocation climb-controlled recovery. However, in the current problem with only short-term HT pre-

straining to a small strain level, these mechanisms are expected to have minor influence on the 

material internal state and are not taken into account. We assess the effect of dislocation climb and 

recovery on the constitutive response and development of internal residual stress state for extended 

periods at temperature elsewhere (Hu and Cocks, 2016a). 
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Fig. 4. Computational procedure of the self-consistent model during plastic deformation 

 

3.3. Material parameter identification 

 

The values of the material parameters used in the simulation are listed in Table 2, many of which 

have been reported and used in our previous work (Hu and Cocks, 2016b). Most parameters were 

determined from geometric or physical requirements. The three elastic constants and of a 

single F.C.C. crystal are measured with respect to the local co-ordinate system, and provide the 

individual elements of the stiffness matrix C
a
 in Eq. (13) and can be used to calculate the stiffness 

matrix C
i
 (Young’s modulus E, Poisson’s ratio  and bulk shear modulus G in Table 2) for the bulk 

polycrystal by the self-consistent procedure (Hu and Cocks, 2016b). Poisson’s ratio further 

determines the shape tensor S
i
 in Eq. (13) for spherical grains (Mura, 1982). The obstacle strength 

constants are as follow: αd = 0.35 for forest dislocation junctions, as reported by many studies such as 

(Madec et al., 2002); αp = 0.84 for a random distribution of spherical precipitates (Foreman and 

Makin, 1966; Kocks, 1966); αs = 0.00457 for solute atoms (Hu and Cocks, 2016b). Further, the 

11 12,C C 44C
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mean inter-precipitate spacing Lp was calculated from the estimated volume fraction (0.009) and 

mean radius (60 nm) of precipitates using Eq. (5). A value of 28 MPa was then obtained for at 

room temperature. The mean spacing between solute atoms Ls was calculated from the chemical 

composition of the material (all mass percent data transformed to number densities) in Table 1 using 

Eq. (4), assuming all elements act as weak obstacles. Depletion of solute atoms by the limited 

precipitation in the material has been found to be negligible. A value of 37 MPa was then obtained 

for τs at room temperature. The mean spacing Ld for forest dislocation junctions evolves during 

plastic deformation. Three parameters (the initial number of forest dislocation junctions on each slip 

plane N0, the self-hardening coefficient js and the latent hardening coefficient jl) were selected to fit 

the macroscopic pre-straining stress-strain curve at 823 K. All subsequent responses for room 

temperature reloading (in tension and compression) were then predicted by the model.  

 

Table 2. Material parameters of 316H austenitic stainless steel single crystals used in the simulation (RT 

refers to room temperature) 

Parameter Value Ref. Parameter Value Ref. 
 198 GPa (RT) Kamaya, (2009)

 
 0.35 Madec et al., (2002) 

 
125 GPa (RT) Kamaya, (2009)

 
 0.84 

Ashby, (1969); Foreman and 

Makin, (1966); Kocks, (1966) 

 
122 GPa (RT) Kamaya, (2009)

 
 0.00457 Hu and Cocks, (2016) 

 101.3 GPa (RT)  js 4.010
14

 m
-2

 Hu and Cocks, (2016) 

 0.39  jl 2.010
15

 m
-2

 Hu and Cocks, (2016) 

 122 GPa (RT)  N0 2.210
13

 m
-2 Hu and Cocks, (2016) 

 
2.510

-10
 m  

 
37 MPa (RT) Hu and Cocks, (2016) 

 1 Hu and Cocks, (2016)
 

 28 MPa (RT)  

 600 Hu and Cocks, (2016)    

 

 

4. Effects of Type II meso-scale intragranular residual stress on lattice deformation and the 

Bauschinger effect in the pre-strained specimens 

 

4.1. Macroscopic response of the bulk polycrystal 

 

Fig. 5 compares the measured and predicted results of the macroscopic response of the specimens 
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subjected to room temperature (RT) uniaxial reloading in tension (EXLA1) and compression 

(EXLA2), following tensile pre-straining at 823 K (data extracted from (Chen et al., 2015c)). For 

comparison, the compression data is shown using absolute values. The sharp increase of the initial 

yield stress observed in the RT tensile stress-strain curve (red line in Fig. 5), compared with the HT 

pre-straining stress-strain curve (black line in Fig. 5), is due to rescaling of the CRSS through the 

temperature-dependent shear modulus. These results and the predicted lattice responses (to be shown 

in section 4.2) are similar when we ignore the contribution of the precipitates to the constitutive 

response (Chen et al., 2015c), indicating the weak contribution from the precipitates due to the small 

volume fraction in these samples. The difference between the tensile (red line) and compressive 

(blue line) stress-strain curves is due to different roles of the developed Type II meso-scale residual 

stresses from high temperature tensile pre-straining in these two specimens. In the next section, we 

interpret the role of Type II residual stresses in conjunction with both the development of lattice and 

residual lattice strains in different grain families. 

 

Fig. 5. Comparison of experimental data and model prediction in terms of macroscopic stress-strain 

relationship for EXLA specimens; the figure shows the high temperature (HT, 823 K) tensile pre-straining and 

the subsequent reloading in tension (EXLA1) and compression (EXLA2) at room temperature (RT). Data 

were extracted from (Chen et al., 2015c) and the prediction for EXLA2 is shown in terms of absolute stress 

and strain. 
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4.2. Microscopic lattice response of individual grain families 

 

Fig. 6 compares the measured and predicted results of the evolution of the lattice strain during 

loading and the corresponding residual lattice strain upon unloading for the three grain families of 

interest {220}, {111} and {200} for the EXLA1 (subjected to RT uniaxial tension) and EXLA2 

(subjected to RT uniaxial compression) specimens. The residual lattice strain is plotted against the 

macroscopic plastic strain. In these plots the reference state is that created following HT deformation 

and cooling to RT, thus each of the plots give the change of lattice strains with respect to this 

reference state. Data and predicted results for the EXLA2 specimen are again shown using absolute 

values to compare with those for the EXLA1 specimen. Both the data and predictions are for the 

response averaged over all members (with the same Miller indices) of each given family. The general 

experimental trends for all three grain families are predicted by the model. The model predicts an 

identical lattice response for all members of each family, and discontinuous changes in the slopes of 

the lattice response illustrated in Fig. 6 (a)-(c) indicate the occurrence of micro-yielding.  

 

4.2.1 The role of Type II residual stress 

 

For the tensile loaded specimen EXLA1, in Fig. 6 (a)-(c), both the measurement and prediction 

show an almost linear lattice strain response and small values of the residual elastic lattice strain, Fig. 

6 (d)-(f) (red lines), for all three families after macroscopic yield. This indicates that a steady state 

Type II residual stress field has been achieved ( in Eqs. 16 and 17a) after the high 

temperature (HT) pre-straining that results in all the grains yielding simultaneously followed by 

compatible plastic deformation of the grains during RT reloading. A consequence of this is that there 

is a sharp change in slope of the macroscopic stress-strain curve at yield, as shown in Fig. 5 (red line).  

In contrast, for the compressive loaded specimen EXLA2, the Type II residual stress state 

established during HT tensile pre-straining is significantly different from that required for all grains 

to deform plastically in a compatible way (the distribution and magnitude of the residual stresses are 

appropriate, but they have the opposite sign). Plastic flow therefore occurs much earlier in some 

grains than in others. The Type II residual stresses redistribute as the number of yielded grains 

gradually increases, leading to a gradual change in slope of the macroscopic stress-strain curve after 

initial yield, as shown in Fig. 5 (blue line). The lattice response for all three grain families exhibits 

similar features regarding the transitions in slope compared to the initial elastic portion of the curve. 

The first transition (the small increase in slope) suggests the onset of micro-yielding in grains 

0aX 
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favourably orientated for slip prior to yielding in the specific grain families considered in the figure. 

This occurs at a macroscopic stress of 200 MPa. As these early yielding grains deform plastically, 

load is transferred to those that have not yet yielded (e.g. the {220}, {111} and {200} grain 

families). This incompatible strain mismatch gives rise to a tensile Type II residual stress and 

residual lattice strain in all three grain families (Eq. 16), Fig. 6 (d)-(f). This residual stress within a 

given grain family gradually increases until slip occurs in members of this family, resulting in a 

sharp decrease in the residual lattice strain as stress is transferred to other grains within the body 

which are yet to yield. This first occurs in the {220} grain family, then the {111} and finally the 

{200}. For the first two of these families, the residual lattice strain rapidly reduces to a negative 

value, while that for the {200} family drops less steeply and remains positive.   

 

 

                                          (a)                                                                             (d)  

 

                                           (b)                                                                             (e) 
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                                           (c)                                                                              (f) 

Fig. 6. Measured and predicted averaged results of (a)-(c) lattice strain and (d)-(f) residual lattice strain of 

tensile/compressive loaded EXLA1/EXLA2 specimens (ND refers to neutron diffraction): (a) and (d) are for 

{220} grain family; (b) and (e) are for {111} grain family; (c) and (f) are for {200} grain family. Data and 

predictions for EXLA2 specimen (blue) are shown in the absolute value. The residual lattice strain is plotted 

against the macroscopic true plastic strain measured by the strain gauge at each unloading step. 

 

4.2.2 The discrepancy between measurements and prediction 

 

While the general trends observed in the experiment are captured by the model, there are 

discrepancies between the model predictions and the measurements. Firstly, for EXLA1, 

experimentally there is evidently a more distinct increase in the slope for the {200} family in Fig. 6 

(c) and a sharper decrease in slope for the {220} family in Fig. 6 (a) compared with the model 

predictions. These differences are also reflected in the residual lattice strain response in Fig. 6 (f) and 

(d). This may be attributed to a number of related physical processes, such as the relaxation of the 

Type II residual stress field and/or creep during HT tensile pre-straining, as described by (Chen et 

al., 2015c; Wilson, 1965). Thus, the Type II meso-scale residual stress field generated by the pre-

straining may differ from the model prediction. The residual stresses therefore redistribute during the 

initial stages of plastic deformation towards what are required to ensure compatibility of plastic 

deformation, resulting in a more gradual macroscopic yielding process, Fig. 5, than the model 

prediction (i.e. there is a less sharp definition of yield). 

Secondly, for EXLA2, it is observed that the data for all the grain families shown in Fig. 6 

provides smoother transitions in slope following initiation of yield in that family compared with the 

predicted results. (Hu and Cocks, 2016b) have identified four potential aspects that may explain this, 

which have not been incorporated in the present model:  

 The neutron diffraction technique measures specimens with a small spread of orientations when 

determining the lattice response of each grain family. 
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 The self-consistent model gives the average responses in a grain family. In practice there will be 

some variation due to each grain in the family having differently oriented neighbours which 

deform plastically at different stages of the process. However, such an effect is expected to be 

minor since the extent of the difference is reduced experimentally by averaging over each grain 

family of a full range of members with a small spread of orientation; 

 The latent hardening coefficient is not constant, but evolves with plastic strain as reflected in the 

interaction coefficient matrix determined from discrete dislocation simulations;  

 There might be a residual stress state in the specimen initially introduced by pre-processing or 

preloading histories applied before the high temperature pre-straining. However, the pre-straining 

tends to remove any pre-existing residual stresses and set up a new residual stress state, so that 

the subsequent response will be insensitive, or weakly sensitive, to the original residual stress 

state.  

 A fifth effect is the effect of a distribution of link lengths on a slip plane, which can further 

smooth the development of residual stresses associated with different slip planes, both during 

tensile and compressive loading. Also, as noted by Sleeswyk et al., (1978), there can be an 

element of back flow of dislocations held up at obstacles as the stress is reversed, before they are 

arrested by another set of obstacles.  

The simulations can be refined to take some of these effects into account, which would result in 

smoothing of the transitions, but the general trends represented by Figs. 5 and 6 would remain 

unaltered. The form of the compressive curve in Fig. 5, particularly the onset of plastic flow where 

effects such as distribution of link length and back flow of dislocations are most likely to play a role, 

is well described by the model however.  

 

4.3. The Bauschinger effect 

 

Fig. 5 shows the phenomenon of transient softening (defined in Fig. 1) which is attributed to the 

development of Type II meso-scale residual stress fields, as discussed above. The experiments were 

terminated at relatively small strains, and did not allow the extent of the transient to be determined. 

The simulations can be extended to larger strains, as shown in Fig. 7, where the compressive curve 

asymptotes towards the tensile curve within an accumulated strain of 10%, indicating the absence of 

permanent softening in compression compared with tensile loading.  
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Fig. 7. Model predicted extended macroscopic stress-strain curves subjected to tensile or compressive 

reloading at ambient temperature. Result of the EXLA2 specimen (blue line) is shown in the absolute value. 

 

The corresponding extended microscopic lattice responses are shown in Fig. 8. The lattice 

response of each of the three families of the EXLA1 specimen varies only slightly from the initial 

elastic lines up to large strains, while those predicted for the EXLA2 specimen eventually evolve to 

become parallel to the original elastic lines indicating that the Type II residual stress field has 

reached a steady state during which all the grains deform plastically in a compatible manner. In 

terms of the terminology used in the Introduction in relation to Fig 1, this result suggests that the 

development of Type II residual stress results in transient, and not permanent, softening.  

  

                                            (a)                                                                             (b) 
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(c) 

Fig. 8. Model predicted extended microscopic response subjected to uniaxial tensile or compressive reloading; 

(a) {220} grain family; (b) {111} grain family; (c) {200} grain family. Predictions of the EXLA2 specimen 

(blue lines) are shown in the absolute value. 

  

5. Effects of Type III micro-scale residual stress on the Bauschinger effect of pre-strained 

specimens 

 

 This section evaluates the role of the Type III micro-scale residual stresses associated with 

precipitates and prismatic dislocation loops on the Bauschinger effect. According to Eqs. (7) and (11), 

the Type III residual stresses developed are a function of the volume fraction of intragranular 

precipitates and the total plastic shear strain on all the active slip systems. Therefore, the Type III 

residual stresses would become more significant as the volume fraction of precipitates and/or the pre-

strain level is increased. Here we only focus on the macroscopic behaviour. 

 

5.1. Effects of different volume fractions of intragranular precipitates 

 

The Type 316H stainless steel specimens used in the experiment have been estimated to contain 

only 0.009 volume fraction of intragranular carbides with an average radius of 60 nm. In practice, 

long-term creep deformation or thermal ageing of solution-treated 316H stainless steels at elevated 

temperatures can result in precipitation of a range of complex phases  (Lai et al., 1981; National 

Institute of Materials Science, 2003; Yang and Busby, 2014). Depending upon the specific 

composition of the stainless steel and the exposure temperature and time, a combination of 

intragranular precipitates can be observed including intermetallic Laves and Chi phases together with 

M23C6 carbides. The equilibrium or maximum volume fraction of these two phases, together with 
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that of carbides, was calculated using the thermodynamics software Thermo-Calc, with the input of 

alloying elements shown in Table 1 and the phase diagram for stainless steels (detail is not shown 

here). Accordingly, two values of volume fraction were chosen in this section, respectively 0.05, 

referring to the total potential volume fraction of intragranular carbide and Laves phase, and 0.1, 

referring to a heavily aged material with complete precipitation of carbide and Laves plus a small 

amount of Chi phase. All these precipitates were treated as rigid and spherical with a size that 

resulted in the same spacing as in the original specimen considered above. The contributions to the 

internal resistance from the precipitates, including that from Orowan bowing and the punching out of 

prismatic loops (Appendix B), are therefore identical at the same strain level for all cases. Depletion 

of solute atoms in the austenite matrix was also calculated according to the Thermo-Calc results. The 

associated reduction of solute strengthening by the precipitation in these two cases was found to be 

less than 2 MPa and was neglected. 

In both cases, following the original experimental procedure, the materials were initially pre-

strained at 823 K up to the same strain level as the experiment (~2%). All the parameters remained 

the same as shown in Table 2, except the initial number of pinning points on each slip plane N0, 

which was changed to provide a similar macroscopic stress-strain curve during high temperature (HT) 

pre-straining as the original EXLA specimen (Fig. 5). The resulting model was then used to predict 

the uniaxial tensile and compressive responses at room temperature and the Bauschinger effect, as 

shown in Fig. 9. Compared with the original results, as the volume fraction of intragranular 

precipitates increases, one notable observation is that the slope of both tensile and compressive 

stress-strain curves in the plastic region increases, indicating an increasing resistance to plastic flow 

by the increase of Type III micro-scale residual stress. This is because the precipitates carry an 

increasing proportion of the applied stress as their volume fraction is increased, thus reducing the 

stress carried by the matrix.  The net effect is that a higher applied stress is required for dislocations 

to glide at a given plastic strain level. Note that the position of the sharp change in the slope of the 

stress-strain curve at yield during tensile reloading remains similar in all cases, since the set of 

assumptions employed here result in the same internal resistance or CRSS in all specimens. However, 

it is evident from Fig. 9 that, the Bauschinger effect, including both transient and permanent 

softening, becomes more and more pronounced as the volume fraction of precipitates is increased. 

Compared with the original result (solid blue and red curves in Fig. 9), a larger population of 

precipitates has resulted in a larger value of Type III micro-scale residual stress generated during HT 

tensile pre-straining, thus some grains start to deform plastically earlier during reverse compressive 

loading. A further consequence of this is that the larger Type III micro-scale residual stresses 

influence the evolution of the Type II residual stress field resulting in higher levels of plastic strain 
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being required before a steady state is achieved. However, the model always predicts a compressive 

curve that asymptotes to the tensile curve. The matching is delayed by an increase in population of 

intragranular precipitates.  

 

Fig. 9. Model predicted macroscopic stress-strain curves of materials with different initial volume fractions of 

intragranular precipitates, subjected to reloading in tension and compression at RT after HT tensile pre-

straining; Predictions of the original specimen are also shown. The inter-precipitate spacing is identical for all 

the cases. Predictions for the compressive curves are shown in the absolute value. 

 

5.2. Effects of different high temperature pre-strain levels 

 

In this section, the volume fraction of intragranular precipitates is fixed at an intermediate level 

(e.g. 0.05) and the material is subjected to pre-strains of 2%, 4% and 6% at 823 K. The newly 

predicted macroscopic behaviour during subsequent tensile and compressive reloading at room 

temperature is shown in Fig. 10. The slope of both tensile and compressive curves in the plastic 

region remains almost the same, independent of the HT pre-strain level. This is because at a fixed 

volume fraction of precipitates, the ratio of load carried by the precipitates and that carried by the 

matrix remains constant. In addition, as the pre-strain level increases, the initial macroscopic yield 

strength increases in tension, but decreases in compression. This is due to the increase in Type III 

micro-scale residual stresses with increasing plastic strain, which contributes to hardening in tension, 

but promotes earlier plastic flow in compression. The generation of the Type III residual stress 

delays the onset of a steady state in the Type II residual stress, with the consequence that the strain 

level at which the compressive and tensile curves asymptote increases with increasing pre-strain 

levels.  
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Fig. 10. Model predicted macroscopic stress-strain curves of materials with different high temperature pre-

strain levels, subjected to reloading in tension and compression at room temperature after high temperature 

pre-straining (823 K). The volume fraction of the intragranular precipitates is fixed at 0.05. Predictions for the 

compressive curves are shown in the absolute value. 

 

Further, to understand whether the enhanced softening or delayed matching between the tensile-

compressive curves observed in Figs. 9 and 10 has a direct relationship to the Type II meso-scale 

residual stress, here we examine a material with a very large volume fraction (0.1) of intragranular 

precipitates. In this case, the Type III micro-scale residual stress was deactivated throughout the 

simulation. The material was initially pre-strained at 823 K up to a strain level of 6%, followed by 

the same unloading and subsequent reloading procedure as before. The result is shown in Fig. 11. No 

clear enhancement in the softening is observed since the two curves meet at a small strain level. Thus 

the Type II meso-scale residual stress field is related only to the transient softening while the Type 

III micro-scale residual stress field both contributes to the transient softening and delays the 

matching between the tensile- and compressive curves. 
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Fig. 11. Model predicted macroscopic stress-strain curves of a material with 0.1 volume fraction of 

intragranular precipitates and a high temperature (823 K) pre-strain level of 6%, during subsequent room 

temperature reloading in tension and compression. The micro-scale residual stress is ignored in the simulation. 

Predictions for the compressive curves are shown in the absolute value. 

 

Lastly, it is worth noting that the findings described above for Type 316H austenitic stainless steel, 

i.e. asymptotic matching, has been reported by Sleeswyk et al., (1978) on another Type 310 stainless 

steel. No obvious permanent softening was observed in the material, provided a phenomenological 

reversible strain is deducted (interpreted as the plastic strain experienced before dislocations 

encounter and held up again by obstacles). Further, the distinct roles of Type II and III residual 

stresses on the Bauschinger effect identified in this study, seem to be similar to the findings in dual-

phase ferritic steel investigated by Kim et al., (2012), with the precipitates replaced by a hard phase 

in the dual-phase system. While these observations further validate the results of the present model in 

capturing the development material internal state at room temperature, they also indicate that any 

material with similar microstructural features to Type 316H austenitic stainless steel will exhibit a 

similar Bauschinger effect.  

 

6. Concluding remarks 

 

In this paper we have presented a self-consistent model for the plastic deformation of 316H 

stainless steel. The model takes into account the contributions of solute atoms, precipitates and forest 

dislocations on the plastic response and on the development of Type II meso-scale and Type III 

micro-scale residual stresses. The model has been used to evaluate the macroscopic Bauschinger 
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behaviour and its relationship to the development of residual stresses at the different scales. The 

predictions are compared with and help to explain the microscopic lattice response measured by 

neutron diffraction for an ex-service 316H stainless steel subjected to uniaxial tensile or compressive 

reloading at ambient temperature, following tensile pre-straining at 823 K. These experiments also 

serve to validate the model, which has been used to explore the effect of different thermal treatments 

(giving rise to different distributions of precipitates) and different pre-strain histories on the 

macroscopic Bauschinger effect. The main results and findings for polycrystalline 316H austenitic 

stainless steel are summarised as follows: 

1. The development of Type II meso-scale residual stresses during high temperature pre-straining 

leads to transient softening of the material. It also explains the evolution of, and difference in, the 

lattice response of the three selected grain families during tensile and compressive reloading. 

2. The increase in the volume fraction of intragranular precipitates and/or the pre-strain level in the 

material enhances the accumulation of Type III micro-scale residual stresses and delays the 

asymptote of the macroscopic compressive curve towards the tensile curve during reloading. This 

will apply to any material with microstructural features similar to 316H austenitic stainless steel. 
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Appendix A. Contribution to the internal resistance by the secondary dislocation loops 

surrounding the precipitates 

 

A qualitative analysis is presented here of the development of secondary prismatic dislocation 

loops around precipitates and how these influence further plastic flow on the different slip planes in 

the material. As is shown in Fig. A1, a plastic shear strain increment   (tensile and compressive 

has the same effect) on a given slip plane in a slab of material corresponding to the precipitate 

diameter  is achieved by the passage of n primary dislocations. From the geometry of this process 2rp
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2 pnb r                                                                                                         (A1)                                                                                            

(Ashby, 1966) demonstrated that this can be accommodated by punching out n* prismatic loops 

from the precipitate in each of the four secondary slip directions (Fig. 3), where, 

*
4 2

prn
n

b


                                                                                                   (A2)                                                                              

We further assume that once generated, a loop contributes to the forest of dislocations, i.e. 

interactions between dislocations prevent it from flowing back to the precipitate and being recovered 

when the direction of shear is reversed. Therefore, the total number of additional prismatic loops per 

unit volume associated with slip on this slip plane is 

3 2 2

2 33
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where Np and Lp are given by Eq. (5). Further, if each prismatic loop is simplified as one dislocation 

segment, the number of additional segments lN  on this slip plane is just the two-dimensional 

projection of Eq. (A3) 

2 2
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l
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b
bL L

N
 


 

  

                                                                                                         

 (A4) 

Note that lN  is considered simply as the number of additional pinning points on the slip plane 

according to section 2.1.2. In addition, statistically a prismatic loop provides equal number of 

additional pinning points on all the slip planes within a grain. Therefore, Eq. (A4) is further extended 

as  

2

p

l
L

N





                                                                                                                        

 (A5) 

where the summation is over all plastic shear strain increments on all the slip planes. Finally, these 

additional pinning points contribute identically to the internal resistance (CRSS) on all the slip planes. 
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Fig. A1. A shear strain increment  on a pack of slip planes deposits n primary dislocation loops around the 

precipitate of radius rp 

 

Appendix B. Contribution to the Type III micro-scale residual stress associated with 

precipitates 

 

Eq. (6) describes the stress balance on the slip plane in the unloaded state, containing an area 

fraction (equal to the volume fraction fv) of intersecting precipitates 

                                                                                      (B1) 

We can determine the stress carried by the precipitate  by determining the stress exerted on them 

by the prismatic loops. Since the stress close to a loop resembles that from a straight dislocation and 

falls off rapidly with distance (Ashby, 1966; Kroupa, 1962), we can reasonably assume that exerted 

on each precipitate, 
 
, is dominated by that from the nearest loop. is analysed here based on the 

work of (Kroupa, 1962), who took into account the average force exerted by one prismatic loop 

opposing the glide of a straight dislocation in its slip plane.  

(Ashby, 1966) states that the secondary slip extends outward from one precipitate to a distance 

comparable to inter- precipitate spacing. Each new loop punched out forces the existing loops closer 

to each other. Consider a stack of n
*
 loops, as shown in Fig. B1, the outermost of which is fixed 

because it has reached the mid-point between precipitates or because of an earlier intersection with a 

gliding dislocation. The mean spacing between loops, Ll, scales with the distance between 

precipitates (see Eqs. 5 and A2) 

                                               (B2) 
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Fig. B1. A stack of prismatic loops exerts a stress in the precipitate-matrix interface which opposes the 

creation of another loop. This stress is roughly equal to that exerted by the nearest loop.  

 

The stress exerted by the nearest prismatic loop is expressed by (Kroupa, 1962) as 

                                                                            (B3) 

where  is a constant (assumed here to be equal to the average strength  for forest dislocation 

junctions in Eq. 2). According to (Ashby, 1966) and (Kroupa, 1962), each stack of loops behaves 

like a spring, opposing interstitial loops (tension) and attracting vacancy loops (compression). 

Therefore, if all the four directions with punched-out loops are considered, the stress state at 

precipitate-matrix interface described by Eq. (B3) is illustrated in Fig. B2 (a), which is equivalent to 

the pure shear stress state shown in Fig. B2 (b).  

 

Fig. B2. The stress state of a single precipitate; (a) Attractive and repulsive stresses associated with different 

types of dislocation loops; (b) The equivalent pure shear stress state of the precipitate 
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Therefore, can be determined by substituting Eq. (B3) into Eq. (B2).  

                            (B4) 

Considering that 
 
in stainless steel, can be simplified as 

                                                                                              (B5) 

Eq. (B5) indicates that  on a single slip plane is linearly proportional to the plastic shear strain  

on the same plane. This can be used to calculate the overall Type III residual stress on individual slip 

planes caused by the accumulation of plastic shear strain on all the active slip planes within the 

crystal plasticity framework (Eq. 11).  
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