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Autonomous flying vehicles are becoming more and more prominent nowadays and have

manifold applications, some only about to emerge: collecting traffic data, surveillance

and security, disaster management, wildlife observation, delivery services, and defence.

Providing such vehicles with enough computational intelligence to automatically steer

according to given objectives is a challenging task, only recently tackled with control al-

gorithms working in soft-real time and computationally feasible for the limited on-board

resources. Researchers and practitioners historically address the problem by separately

concentrating on the two sub-problems of vehicle routing (VR) and trajectory optimisa-

tion (TO), often neglecting or oversimplifying vehicles dynamic. In this work we intro-

duce methodologies contributing to the newborn research area unifying the two aspects

in a single Vehicle Routing and Trajectory Optimisation problem (VRTOP), also taking

into account a sufficiently accurate representation of vehicles dynamic and providing

solution algorithms to the overall problem. First, a model for the VRTOP is proposed

where trajectory constraints are linearised through a Taylor expansion around a known

solution to vehicles’ equations of motion within predefined settings. Distance constraints

are also linearised to arrive at a Mixed-Integer Linear Programming formulation of the

VRTOP with prior information. Second, this work provides approximation techniques

to gain valuable insights and find initial trajectory guesses when prior knowledge is not

available, overcoming the local nature of Taylor’s approximation and resulting in en-

hanced and more robust solutions. Finally, a Two Step Solution Algorithm is proposed

to integrate the two phase of the problem, enabling us to solve the VRTOP in absence

of prior information. Numerical results showing the efficacy of the presented approach

are furnished and further research developments are ultimately discussed.
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Chapter 1

Introduction

This manuscript aims at discussing about the development of models and algorithms for

the path planning and optimal control of unmanned aerial vehicles, with particular focus

on routing and trajectory optimisation problems. In this chapter, we provide the reader

with an overview on unmanned aerial vehicles, including their origins and importance for

the society, and we introduce the objectives and structure of the arguments presented.

1.1 Motivation

Unmanned aerial vehicles (UAVs) are defined as aerial vehicles that does not carry a

human operator on-board and that can fly autonomously or can be piloted remotely.

Quadcopters, remote controlled helicopters and unmanned gliders are all examples of

UAVs, the latter differing from the other types due to the absence of on-board propul-

sion (i.e. an electric or combustion engine). Unmanned aerial vehicles made their first

appearance in the late 19th century, as reported in Buckley (1999) and McKenna (2016),

being deployed for offensive military use in naval aviation, when the Austrian armies

used incendiary balloons to carry and drop bombs over the besieged city of Venice.

However, the offensive resulted in an undesired outcome where, due to a reversion in

the wind direction after launch, balloons and bombs missed their target with some of

them being pushed back over the Austrian lines. We need to wait then until 1917,

during World War I, before seeing remotely controlled pilotless aircraft in action, as

recorded by Low (1958). Since then, astonishing advancements have been made, with

the use of unmanned aerial vehicles pervading several applications and areas. Cases

where successful deployment of UAVs show their advantages and versatility have been

already documented in target observation, Rysdyk (2006), traffic monitoring and man-

agement, Kanistras et al. (2013), meteorological sampling, Elston et al. (2015), aerial

surveillance, Ruzgiené et al. (2015), forest fire detection, Yuan et al. (2015), geographic

vigilance, Uysal et al. (2015), data collection, Stöcker et al. (2015), and last mile delivery,

1



2 Chapter 1 Introduction

Wang et al. (2016), as well as disaster assessment and response, Nedjati et al. (2016),

Coutinho et al. (2019), Chowdhury et al. (2017) and Laville et al. (2017), who report

the Grenfell Tower disaster. In addition, Hayat et al. (2016), Farhan et al. (2014) and

Shakhatreh et al. (2019) provide a review of a number of applications of UAV networks.

The interested reader can also refer to extensive surveys on the evolving field of civil

applications for UAVs and possible optimization approaches in Otto et al. (2018) and

Yuan et al. (2015). Finally, future directions predicting the disruptive nature of UAVs

used for last mile delivery are shown in Cornell et al. (2023) and a report on Drone

Industry Insights (2022) claims for 237 applications of unmanned aerial vehicles. In the

latter, UAVs’ commercial market is forecasted to grow at a CAGR of 9.4% until 2026,

where it is expected to generate over 41 billion USD.

However, despite all the innovations, UAVs remain predominantly costly in their present

state and they frequently necessitate the (remote) control of experienced pilots for oper-

ation. Nonetheless, within aerial operations, a fleet of affordable autonomous gliders can

be 3D printed, Keane et al. (2017), equipped with cameras and launched via balloons,

Crispin (2016), potentially eliminating the need for a specialized team to operate them.

This approach can serve as an initial foundation for enabling the utilization of swarms

of autonomous flying vehicles, facilitating efficient, cost-effective and sustainable devel-

opment of future applications. Equipping these swarms with adequate computational

intelligence to autonomously navigate the individual vehicles based on predefined objec-

tives poses a formidable challenge and represents the ultimate objective of our research

project. Developing control algorithms that operate in soft-real time (minutes or sec-

onds, rather than hours) and are computationally viable for the constrained resources of

on-board computational units has only recently become possible. Still, the correspond-

ing mathematical models and algorithms generally fail to provide the UAVs with the big

picture, usually treating vehicle routing (VR) and trajectory optimisation (TO) aspect

of the problem separately, as noted by Coutinho et al. (2018). According to Gasparetto

et al. (2015), it is possible to see the VR as a geometric problem since its objective is to

find a geometric path regardless of any defined time law, while on the other hand, TO

involves the task of assigning a time law to a controlled geometric path. As of today, if

in the routing literature there has been a tendency to overlook constraints arising from

the flight dynamics of UAVs, the field of TO lacks of consideration for routing decisions

and, while it is possible to search for a feasible trajectory for a generic UAV given a set

of ordered waypoints, it remains unclear whether the previously computed sequence of

waypoints is appropriate or optimal. In certain real-world applications involving sophis-

ticated UAV systems, like unmanned gliders and fixed-wing vehicles, it becomes then

crucial to integrate the route definition with the design of flyable trajectories. Failure

to do so can result in inefficient or even infeasible routes for these UAVs. The intricate

question of how to effectively combine routing and trajectory decisions into a unified

optimization problem remains open, yet it is essential to guarantee the quality of the

UAV routes.
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Nowadays research is expanding and starts addressing the problem by leveraging on

the utilisation of mixed-integer linear programming (MILP) and exact methods to find

solutions. Fügenschuh and Müllenstedt (2015) and Schmidt and Fügenschuh (2023)

proposed an integrated model for civil applications, considering vehicles presenting low

flight autonomy. The authors design a way to simultaneously assign targets to an inho-

mogeneous fleet of UAVs, while finding the best trajectories to reduce the consumption

of fuel. However, their approach considers a simplified dynamic and can be computa-

tionally expensive for large problem instances. Therefore, approaches involving the use

of heuristic and metaheuristic algorithms that can provide good quality solutions in a

reasonable amount of time might be sometimes preferred. Probabilistic and machine

learning techniques have also been used to improve the performance of these methods.

Zhang et al. (2012) propose an updatable probabilistic roadmap and a fast heuristic

searching algorithm, emphasising the importance of integrating routing and trajectory

optimization to ensure both the safety of the vehicle and the feasibility of the trajec-

tories. The authors consider a scenario where a UAV is asked to visit a specific set of

targets and once the UAV reaches a predetermined distance from an objective, it needs

to modify its flight attitude to carry out a payload delivery. Following the successful

delivery, the UAV is required to execute an escape maneuver preparing for the next

shipment.

All this considered, embedding routing and UAV dynamic conditions into the planning

process might result in a problem very complicated to solve. The focus of our research

revolves around the modeling and integration of problems related to routing and trajec-

tory optimization specifically for unmanned gliders. Our study involves a fleet of gliders

that need to visit a predefined set of waypoints, while adhering to flight dynamics con-

straints. This problem is known as the Glider Routing and Trajectory Optimization

Problem (GRTOP). The primary motivation for tackling this problem stems from aerial

photographing missions conducted during disaster events. The missions require a fleet

of gliders to capture images of objects located in various points of interest, such as

hospitals, schools, residential areas, and inaccessible regions, in the least possible time.

Nevertheless, the problem can be generalised to other different scenarios. In addition,

the use of gliders is motivated by the implicit difficulties deriving from their dynamic -

not having on board propulsion makes the problem harder to solve since the equations

of motion cannot be reasonably oversimplified - making it also easier to generalise. At

the same time, it is impossible to neglect that gliders might result in a significant help to

the green economy. In this work, we propose a two-step algorithmic formulation where

at first we describe a mixed-integer linear programming (MILP) model for the GRTOP

when an initial trajectory estimate is provided. In a second moment, we provide methods

and problem formulation to find the initial trajectory in a context of reduced informa-

tion. Consequently, we joint the two models in a unique algorithmic formulation that

allows to find paths that simultaneously optimise routes and flight trajectories along

these routes while the flight dynamic of the gliders are modelled in details. Linearising
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and approximating dynamic effects described by the equations of motion, we are able

to circumvent the handling of nonconvex constraints and reduce the problem to two

mixed-integer linear programming subproblems, one utilised to find an initial trajectory

and the second one to refine the initial solution, obtaining dynamically sound and feasi-

ble paths. Along the manuscript, we provide also computational experiments conducted

using a substantial number of randomly generated instances that show the efficacy of

the proposed models and algorithms.

1.2 Thesis Outline and Objectives

In what follows, we dedicate Chapter 2 to a more detailed review of the Vehicle Routing

(VR) and Trajectory Optimisation (TO) Problems, highlighting the main aspects and

possible solution approaches. In addition, we examine some of the methods proposed

so far to tackle the VR and TO simultaneously, also proposing a generic mathematical

formulation of the VRTOP. In Chapter 3, we aim at describing the equations governing

glider’s dynamics in detail, also providing methods used to solve them as well as exam-

ples of generated trajectories. Chapter 4 presents the Glider Routing and Trajectory

Optimisation Problem (GRTOP), including a detailed and precise mathematical MILP

formulation when an initial trajectory is known. A second model is then proposed in

Chapter 5 to manage situations where guesses on the initial trajectory are unavailable.

Along the chapter, we provide the reader with a Two Step Solution Algorithm for the

GRTOP in absence of prior knowledge, integrating the second model into the estab-

lished framework when initial information is available. Numerical examples validating

the procedure and demonstrating the efficacy and reliability of the proposed approach

are then shown in Chapter 6. Finally, Chapter 7 summarises conclusive remarks and

discusses possible future research developments.



Chapter 2

Literature Review

In this chapter, we start examining more in deep the literature about the aforementioned

(i) Vehicle Routing (VR) and (ii) Trajectory Optimisation (TO) problems, the latter

seen as special case of Optimal Control (OC) problems. Here we discuss their typical

mathematical description as well as possible solution approaches that are presented in the

literature. Then, we discuss generic mathematical formulations for the combined Vehicle

Routing and Trajectory Optimisation Problem (VRTOP), merging typical aspects of VR

and TO. Finally, an overview of the newborn and developing research about the joint

problem is provided.

2.1 The Vehicle Routing Problem

The problem of designing optimal delivery or collection routes from one or several depots

to a number of geographically scattered cities or customers, subject to side constraints,

is at the foundation of operational research and combinatorial optimisation and it is

known as the Vehicle Routing Problem (VR or VRP here). The VRP is not only inter-

esting as a mathematical problem per se, but it carries a plethora of possible applications

relevant for businesses, governments and organisations which include cost and risk re-

duction, improvement of the supply chain, also helping the implementation of a ”green”

economy. It is introduced for the first time by the paper of Dantzig et al. (1954), where

the authors study a relatively large scale Travelling Salseman Problem (TSP), a special

case of the VRP, also proposing a possible solution method. From then onwards, many

variants of the TSP are studied until 1972, when the first paper explicitly referring to

the vehicle routing problem appears, see Golden et al. (1972). Many other versions of

the VRP are then proposed between the 1970s and the 1980s, but, due to their com-

putational complexity, they do not raise the deserved interested of the industrial and

scientific communities. In the 1990s however, due to the terrific acceleration of comput-

ers capabilities and availability, researchers reignite the interest towards the problem,

5
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developing and proposing newer formulations and solution algorithms. Heuristic and

metaheuristic methods for the VRP are proposed for the first time in these years, see for

example Osman and Kelly (1996), Aarts and Lenstra (1997) and Cordeau et al. (2022).

Dynamic and Stochastic versions of the VRP (DVRP and SVRP) also receive a boost,

see Gendreau and Potvinm (1998), Larsen (2000), Gendreau et al. (1996) and Yaohuang

et al. (2002). Due to this, it is easy to understand why nowadays the VRP constitutes

a central pillar in operational research and combinatorial optimisation, with its class of

problems presenting an extensive literature, as well as a broad spectrum of proposed so-

lution approaches. We refer the reader to the surveys of Bodin et al. (1983), Christofides

(1985), Laporte and Nobert (1987), Laporte (1990) and Laporte (1992) as well as the

classification scheme introduced by Desrochers et al. (1990) and Eksioglu et al. (2009)

for a more detailed study of the VRP, while in the following sections, we propose some of

its mathematical formulations, also mentioning possible solution techniques frequently

used in the literature.

2.1.1 Mathematical Problem Formulations

To describe the VRP, we can proceed as follows. Let G = (V,A) be a graph where

V = {1, . . . , n} is a set of vertices representing a set of locations and A ⊆ V ×V is a set

of arcs. Lets C = [cij ](i,j)∈A be the matrix representing the non-negative costs cij ≥ 0

required to travel from vertex i to vertex j and associated to arc (i, j). We note here

that sometimes, when C is symmetrical, it is convenient to replace the set A with E,

identifying arcs (i, j) and (j, i) with an undirected edge e, and define the corresponding

cost matrix CE = [ce]e∈E . Assume then that m vehicles based are available at the depot

d ∈ V . It is often reasonable to associate a fixed cost Fg ≥ 0 to the employment of a

vehicle g, especially when some vehicle can remain unused. Then, the vehicle routing

problem can be described as follows.

Definition 2.1. The VRP is the problem of designing a set of least-cost vehicle routes

in such a way that

• all vehicle routes start and end at the depot d ∈ V ;

• each city in V \ {d} is visited exactly once by exactly one vehicle;

With this in mind, the VRP can be clearly associated to the multiple Travelling Salesman

Problem (m-TSP), which is a widely studied problem in the literature, known to be

NP-Hard, and whose mathematical formulations can be as follows. We define binary

variables xij for each arc (i, j) ∈ A, with xij taking value 1 if arc (i, j) is included in a

tour, while xij taking value 0 otherwise. We also define integer variables Oi to denote

the position of vertex i in a tour and we define a value q = 1, . . . , n to be the maximum

number of vertices that can be visited by any vehicle. Thus, considering the number of
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vehicles employed to be fixed and equal to m, the VRP (or m-TSP) can then be written

as

min
∑

(i,j)∈A

cijxij (2.1)

subject to
∑

j∈V :(d,j)∈A

xdj = m (2.2)

∑

j∈V :(j,d)∈A

xjd = m (2.3)

∑

i∈V :(i,j)∈A

xij = 1, ∀j ∈ V \ {d} (2.4)

∑

j∈V :(i,j)∈A

xij = 1, ∀i ∈ V \ {d} (2.5)

Oi −Oj + qxij ≤ q − 1, ∀(i, j) ∈ A, i, j ̸= d, (2.6)

where objective (2.1) requires to minimise the cost of the tours, equations (2.2) and

(2.3) enforce the use of m vehicles starting and ending the tour at depot d, constraints

(2.4) and (2.5) require that a node is visited once by exactly one vehicle and finally,

like proposed in Miller et al. (1960), inequalities (2.6) guarantee that routes presenting

subtours are excluded from the solutions.

It is worth introducing here another possible formulation of the VRP that considers the

case where the number of vehicles employed is not predetermined. Having at disposal

a set of vehicles Υ = {1, . . . ,m}, we define variables xgij equal to 1 if arc (i, j) ∈ A

is included in the tour of vehicle g ∈ Υ, and 0 otherwise. We can note that basically

we split the decision variables xij of the previous formulation to take into account the

vehicle travelling through that road. Then, we can define new variables Yg taking value

1 if vehicle g is used, while taking value 0 otherwise. In this case, since the number of

used vehicles is not predetermined, we consider in the formulation the associated costs

Fg ≥ 0 incurred when vehicle g is utilized. All the rest remaining the same, the VRP

can be formulated as the problem of minimising

∑

g∈Υ



FgYg +
∑

(i,j)∈A

cijxgij



 ,
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called the total travel costs, subject to the following constraints

∑

(i,j)∈A

xgij ≤MYg (2.7)

∑

g∈Υ

Yg ≥ mL (2.8)

∑

i∈V :(i,j)∈A

∑

g∈Υ

xgij = 1, ∀j ∈ V \ {d} (2.9)

∑

j∈V :(i,j)∈A

∑

g∈Υ

xgij = 1, ∀i ∈ V \ {d} (2.10)

∑

j∈V :(d,j)∈A

xgdj = Yg, ∀g ∈ Υ (2.11)

∑

j∈V :(j,d)∈A

xgjd = Yg, ∀g ∈ Υ (2.12)

∑

i∈V :(i,j)∈A

xgij =
∑

i∈V :(j,i)∈A

xgji, ∀j ∈ V, ∀g ∈ Υ (2.13)

Oi −Oj + q
∑

g∈Υ

xgij ≤ q − 1, ∀(i, j) ∈ A, i, j ̸= d, (2.14)

with M a sufficiently large number, possibly equal to the number of arcs, and mL is

a number between 1 and m, the latter representing the minimum number of vehicles

to be used. Again constraints (2.9) and (2.10) require that a node is visited just once

by exactly one vehicle, while inequalities (2.14) ensure the absence of subtours in the

solutions. On the other hand, in place of constraints (2.2)-(2.3), we introduce inequalities

(2.7)-(2.8), ensuring that the unused vehicles remain at the depot and that at least mL

vehicles are used, as well as equations (2.11)-(2.12) asking to the selected vehicles to

start their tour exiting the depot and guaranteeing their return to the initial location.

Finally, constraints (2.13) are defined, imposing the net flow and coherence of the tours:

a vehicle g entering customer location j must also leave it.

The literature include a number of variants of the VRP, all distinguished by the side

constraints required to be satisfied. Typical side conditions are:

• capacity restrictions: here each location i ̸= d is associated with a corresponding

weight (or demand) wi ≥ 0. Each vehicle then has a maximum capacity Q and

it can not satisfy a demand greater than its capacity, meaning that the sum of

weights of any vehicle route may not exceed vehicle’s capacity Q. This problem is

normally referred to as the Capacity-constrained vehicle routing problem (CVRP).

We can also observe that the above VRP can be considered as a special case of

the CVRP where wi = 1 for all i ̸= d and Q = q;
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• total time restrictions: here the length of a route, measured as the sum of travel

times/ costs cij and possibly of stopping times δi at each location i on the route,

is limited by a predefined bound L ≥ 0;

• time windows: here each customer location or node i is required to be visited

within the time interval (or window) [t0,i, tf,i]. Waiting can also be allowed at a

node location;

• precedence relations between pairs of cities : here it is required that some location

i appears in the tour before another location j.

Other interesting variants can be found in Golden and Assad (1988) and Toth and Vigo

(2002). As a last example, we would like to give here a possible integer linear program-

ming formulation for the symmetric CVRP, proposed for the first time by Laporte et al.

(1985). Lets consider C symmetrical and lets indicate with xe the integer variables rep-

resenting the number of times an edge e is included in the solution. Lets then denote

with r(S) the minimum number of vehicles needed to serve the locations in S ⊆ V . Also,

for each S ⊂ V , let δ(S) be the set {(i, j) | (i ∈ S and j /∈ S) or (i /∈ S and j ∈ S)}.

If S is equal to the single location {i}, then we can simply write δ(i) instead of δ({i}).

The proposed CVRP formulation is then

min
∑

e∈E

cexe (2.15)

subject to
∑

e∈δ(i)

xe = 2, ∀i ∈ V \ {d} (2.16)

∑

e∈δ(d)

xe = 2m (2.17)

∑

e∈δ(S)

xe ≥ 2r(S), S ⊆ V \ {d}, S ̸= ∅ (2.18)

xe ∈ {0, 1}, e /∈ δ(d) (2.19)

xe ∈ {0, 1, 2}, e ∈ δ(d), (2.20)

where constraints (2.16) guarantee that each location is visited exactly once, while equa-

tion (2.17) enforces the utilisation of m vehicles. On the other hand, constraints (2.18)

force a sufficient number of edges to enter in S, so ensuring that both subtour elimina-

tion and the vehicle capacity requirements are satisfied. Conditions (2.19) and (2.20)

impose that edges connecting two different locations are used at most once, whereas

edges between the depot d and any other node are used at most twice, with xe being

equal to 2 when a route visiting a single customer is selected. The value of r(S) can be

determined by solving a corresponding Bin Packing Problem (BPP) with item set S and
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bins of capacity Q. However, since the BPP is NP-hard, r(S) may be approximated by

any BPP lower bound.

In light of this broad overview on the VRP and some of its possible formulations, in the

following section we would like to discuss some of the solution approaches commonly

found in the literature.

2.1.2 Solution Approaches

The VRP is usually tackled using two different approaches: by means of exact algo-

rithms, where a proven optimal solution to the (approximated) problem is found, or by

using heuristic or metaheuristic methods, where the quality of the solution in terms of

optimality or feasibility can not be always guaranteed. In fact, when heuristic algorithms

are utilised for solving the VRP, extra care might be necessary to ensure the feasibility

of the generated routes. Hybrid and combined approaches can also be found in the

literature. We present here some of the solution procedures employed, also considering

some of the potential applications stemming from real-life applications.

2.1.2.1 Exact Methods

Following Laporte and Nobert (1987) survey, in the literature it is possible to find many

different exact algorithms solving the VRP that can mainly be classified in the cate-

gories: (i) direct tree search methods, (ii) dynamic programming, and (iii) integer linear

programming. The first one leverages on a VRP formulation allowing the solutions of

the problem to be organised in a tree. Consequently, a tree exploration strategy is de-

ployed. The second one, is a mathematical optimisation method aiming at simplifying a

complicated problem by breaking it down into simpler sub-problems and solving them in

a recursive manner. The last one takes advantage of a mathematical formulation similar

to the one proposed above where (some of) the variables are integers and constraints

can be expressed in a linear form. Regardless the category, common techniques used to

find the optimal solutions include branch-and-bound, branch-and-cut, branch-and-price

or set partitioning with column generation.

Early works on exact methods for the VRP start emerging from the 1960s, when re-

searchers recognised the challenges associated with goods distribution. Notable pioneers

in this field include Balinski and Quandt (1964), proposing a set-partitioning formu-

lation for VRP, and Eilon et al. (1971), who tackle the problem utilising a dynamic

programming approach. Novel branch-and-bound and branch-and-cut approaches are

then introduced by Christofides et al. (1981), Laporte et al. (1985) and Fischetti et al.

(1994) among others. In the late 1990s instead, Applegate et al. (2000) suggest a cutting-

plane method for solving bigger instances of the TSP, a special case of the VRP. The
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authors develop also an open source code, known as the Concorde TSP Solver of Ap-

plegate et al. (2000). In more recent years, Baldacci et al. (2004), Cordeau (2006),

Baldacci et al. (2007) and Baldacci and Mingozzi (2009) propose exact algorithms based

on set partitioning and using branch-and-cut techniques, also exploiting bounds stem-

ming from the LP and Lagrangian relaxation of the VRP. A branch-and-cut-and-price

algorithm is instead deployed by Pessoa et al. (2007), extending the method proposed

for the CVRP by Fukasawa et al. (2006). The computational findings indicate that their

solutions outperform the lower bounds suggested by Golden et al. (1984), Yaman (2006),

and Choi and Tcha (2007) and reach optimality for problem instances with up to 75

vertices. Variants of the VRP flourished from then on, with the above techniques de-

ployed in many different contexts and applications. However, due to their NP-hardness,

VR problems remain challenging to solve exactly at scale. Therefore, heuristic methods

gain popularity and are still at the core of research nowadays.

2.1.2.2 Heuristics

As introduced earlier, a heuristic method refers to any approach to problem solving

that utilizes a practical procedure, which may not guarantee an optimal or feasible

solution, but it is nonetheless effective in providing a prompt and satisfactory result or

approximation. Heuristic algorithms tackling the VRP can be categorized into three

primary classes: (i) two-phase, (ii) construction-based, and (iii) iterative improvement

approaches. Algorithms belonging to the first class, as suggested by the name, typically

divide the problem into two phases: one involves a customer allocation (clustering),

while another phase deals with routes generation (routing), determining the order of the

visit. As an illustration, Beasley (1983) propose a series of routing first and clustering

second methods for the VRP. On the other hand, construction heuristic commence with

an initial empty solution, gradually filled by the evaluation of feasible alternatives. This

type of heuristic encompasses the savings algorithm, introduced by Clarke and Wright

(1964), and insertion heuristics which create a solution by inserting customers who

have not yet been assigned to a route, see Mole and S. Jameson (1976) and Laporte

et al. (2002). Ultimately, iterative improvement heuristics are algorithms starting from

a feasible solution and gradually improving it by applying techniques such as nearest

neighbour, more general local search, hill climbing and many others, see Corona (2005)

for a more detailed description.

Example of real-world problem addressed heuristically can be found in Hadjiconstanti-

nou and Baldacci (1998), where practical issue concerning the provision of maintenance

services are investigated. The authors aim at determining the service boundaries for each

depot, the daily customer visits, and the routes followed by the service crews. They in-

troduced a five-level heuristic for a multi-depot variant of the problem that involves

solving the periodic VRP, i.e. the VRP for each day, a TSP for each route and optimis-

ing the routes. In a similar fashion, Salhi and Sari (1997) propose a multi-level composite
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heuristic that dramatically improves computational times for achieving solutions and, at

the same time, maintains comparable quality with those found in the existing literature.

The authors apply their heuristic also to the problem involving a heterogeneous fleet of

vehicles. Nagy and Salhi (2005) expand the insertion-based heuristic proposed by Salhi

and Nagy (1999), in order to handle scenarios involving pickup and delivery. Helsgaun

(2000) propose a solution approach for the TSP based on a careful implementation of

the Lin and Kernighan (1973) algorithm, an iterative improvement heuristics taking an

Hamiltonian cycle as initial solution, attempting to improve it by neighbourhood search

and repeating the process until a local minimum is found. One such implementation is

now incorporated in the Concorde TSP Solver of Applegate et al. (2000). Chiu et al.

(2006) propose a two-phase heuristic approach to examine the problem with time win-

dows. The authors account for waiting time in the objective function. Waiting time

result in having a substantial impact on the overall distribution time and the number of

vehicles required, particularly in scenarios with tight time windows. The authors carry

out also an empirical investigation by conducting a case study with a logistics company

in Taiwan.

In the literature, we find that direct heuristic methods can sometimes be enhanced by

general higher-level procedures to find, generate or select heuristics, especially in case

of incomplete information or when limited computation capacity is available. These

procedures are known as metaheuristics.

2.1.2.3 Metaheuristics

With the objective of strategically guide the search process and efficiently explore the

search space, metaheuristics select a subset of solutions that would be otherwise imprac-

tical to exhaustively enumerate and handle the optimisation problem without relying

heavily on specific problem assumptions. They are widely and extensively utilised to

address several variants of the VRP, with the most recurring types being simulated an-

nealing, tabu search, genetic algorithms, ant colony optimisation and iterative location

search, among others.

Renaud et al. (1996) are pioneers in proposing metaheuristic for tackling the capac-

itated multi-depot VRP. Authors’ approach involves the utilization of a tabu search

algorithm, incorporating the improved petal heuristic for constructing the initial solu-

tion. Tabu search algorithms are also introduced by Cordeau et al. (1997), Tüzün and

Burke (1999), Cordeau et al. (2001) and Parthanadee and Logendran (2006), the latter

presenting three tabu search heuristics applied to a mixed-integer linear programming

formulation of the VRP. Alongside tabu search metaheuristics, genetic algorithms de-

signed for (multi-depot) capacitated VRP are proposed independently by Filipec et al.

(1997), Salhi et al. (1998) and Skok et al. (2000). Thangiah and Salhi (2001) introduce

an approach nominated ”genetic clustering”, where they deploy genetic algorithms to
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create clusters of clients, while route optimisation is achieved by solving a TSP utilizing

an insertion heuristic. On the other hand, Yücenur and Demirel (2011) propose and

implement genetic algorithms employing a geometric shape-based clustering algorithm,

demonstrating improved clustering performance and computational efficiency compared

to the nearest neighbor algorithm. Aras et al. (2011) provide a supplementary exam-

ple of genetic algorithm, while Vidal et al. (2012) and Vidal et al. (2013) introduce an

iterative metaheuristic based on genetic algorithms to address large scale multi-depot

and periodic VRP. An evolutionary algorithm coupled with a local search heuristic is

introduced by Vianna et al. (1999). Other examples of metaheuristics utilised in the

literature are the simulated annealing algorithm proposed by Lim and Zhu (2006), while

Polacek et al. (2005) and Polacek et al. (2008) introduce variable neighborhood search

procedures. Another approach is suggested in a case study involving waste collection

systems in 202 Portuguese localities and it is presented by Matos and Oliveira (2004),

who propose an ant colony optimisation algorithm. Also, Li and Liu (2008) consider

an ant colony optimisation algorithm for the multi-depot open vehicle routing problem

with replenishment during the execution of routes.

Combined metaheuristic approaches are also present in the literature. Simulated anneal-

ing is combined with tabu search in Wu et al. (2012), where the authors define a novel

approach to simultaneously solve the problems of setting the location of depots, routing

vehicles, and assigning clients to them. A hybrid algorithm coupling multiple ant colony

systems and simulated annealing is introduced by Ting and Chen (2009). Wang et al.

(2011) incorporate simulated annealing and a modified variable neighborhood search in

their algorithm, in addition to a clustering algorithm utilised to allocate customers and

determine the starting solution. Liu and Yu (2013) solve a VRP with an heterogeneous

fleet of vehicles by means of a genetic algorithm and ant colony optimisation procedure.

Liu (2013) tackle the classical multi-depot VRP with a combination of genetic algorithm,

bee colony optimisation and simulated annealing. Iterated local search together with

dynamic programming and genetic algorithm is instead proposed by Vidal et al. (2014)

to solve the multi-depot VRP with an unconstrained vehicle fleet.

Finally, we note that a combination of (meta)heuristic and exact methods is also present

in the literature as well as in practice when solving combinatorial optimisation problems

such as the VRP. Examples of hybrid methodology can be found in Özyurt and Aksen

(2007), where the utilisation of a hybrid approach based on Lagrangian relaxation and

tabu search improves the solutions found by Tüzün and Burke (1999), and in Flisberg

et al. (2009), who integrate a mixed-integer linear program and a tabu search procedure

to solve a case study of the VRP with an heterogeneous fleet of vehicles, time window

constraints, pickups and split deliveries. In Escobar et al. (2013), the authors suggest

a two-phase algorithm combining exact and heuristic methods in the first construction

phase with a modified granular tabu search in the second improvement phase.
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The examples mentioned above represent only a fraction of the diverse range of ap-

proaches and algorithms found in the literature for addressing different variations of

the VRP. Nevertheless, it is worth noting that the effectiveness of metaheuristics might

heavily rely on the quality of the initial solutions. Ho et al. (2008) deploy genetic al-

gorithms to solve the VRP and compare solutions found by generating initial solution,

first utilising the savings algorithm proposed by Clarke and Wright (1964), later im-

proved via nearest neighbourhood search, and then randomly. The authors prove that

a thoughtful construction of initial solutions can outperform the random generation in

terms of improving the total delivery time.

Given that our focus is on the modelling side more than on the construction and im-

plementation of new algorithms to solve the vehicle routing and trajectory optimisation

problems, we leave the details of the above mentioned methods to the reader. Nonethe-

less, it is worth recalling here the strong interconnection between the m-TSP and the

(C)VRP, and remember that the m-TSP can be reduced to the (C)VRP if all vehicles

are considered to have infinite capacity. An extensive literature review on models and

algorithms for the m-TSP is then presented by Bektas (2006). As a final remark, we

would like to mention here that the VR problem and the m-TSP are problem widely

studied for terrestrial applications, however, with the development of new technologies,

new variants of these problems are gaining interest among the scientific community. The

problem of routing unmanned aerial vehicle is more complex than the VRP, because it

combines the VR combinatorial characteristics with the complexity of dealing with the

dynamical systems of UAVs (i.e., flight dynamics, battery life, wind conditions), the

latter being usually addressed separately within the so-called trajectory optimisation

and optimal control problems.

2.2 The Trajectory Optimisation Problem

Trajectory optimisation (TO) is the process of designing a system’s trajectory that min-

imises (or maximises) some measure of performance while satisfying a set of constraints,

typically boundary conditions, dynamic constraints as well as path constraints and vari-

able bounds. Trajectory optimisation can also be viewed as a special case of Optimal

Control (OC), which aims at finding control functions or control feedback (inputs) that

minimise an objective function or performance index, respecting differential equation

constraints. OC establishes its roots in the seventeenth century when J. Bernoulli,

together with other famous contemporary mathematicians, argued on the question of

which is the fastest path between two fixed points that a particle under the influence of

gravity can follow, see Bryson (1996) and Sussmann and Willems (1997). Further de-

velopment in the 18th century are due to Euler and Lagrange. In theoretical physics,

astonishing results in connection with Hamilton’s principle or the Principle of Least

Action are also entangled with OC. In the late 1920s, applications of OC in economics
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start to emerge, but the strongest impulse come from military applications during and

after the second world war. It is then with Pontryagin that we have a decisive step

forward, when he and his team formulate and prove the so-called Pontryagin Maximum

Principle, see Pontryagin et al. (1964). The principle provides necessary conditions for

optimal control by deriving and solving the Hamiltonian system that will be introduced

in the following sections. In the late 1950s, Bellman offers a new point of view on OC

with the introduction of what he called Dynamic Programming which allows for reduc-

tion in computational times needed for finding optimal controls, see Kirk (1998). A

further crucial breakthrough is reached with the advent of the computers, enabling a

massive expansion of OC theory and applications to real, and therefore more complex,

problems. Disrupting innovations can be seen in fields ranging from biology, see Joshi

(2002), to economics, see Sun and Li (2008), to robotics and aerospace, see Goh (2008),

to mention a few. Nowadays, there exists a broad OC theory, including many different

solution approaches. In what follows, first we highlight the common aspects of these

approaches, also proposing a general mathematical formulation of the OC problem, and

second, we describe typical solution techniques.

2.2.1 General Formulation of Optimal Control Problems

As mentioned above, optimal control aims at determining the inputs to a dynamical

system such that a specified performance index is minimised (or maximised), while

constraints on the motion of the system are satisfied. Therefore, a typical OC problem

requires the following:

• a time set T = {τ | τ ∈ [τ0, τf ] ⊆ R};

• a set of state variables y(τ) ∈ Y ⊆ R
n;

• a set of control variables (inputs) u(τ) ∈ U ⊆ R
u;

• a vector of parameters p ∈ R
q;

• a performance index or objective functional, J = J(y(τ),u(τ),p).

The main goal consists in finding control functions u(τ) ∈ U , τ0 ≤ τ ≤ τf , and asso-

ciated states y(τ) ∈ Y , such that the objective function J is minimised (maximised).

More precisely we can write a generic OC problem as the problem of finding the

min
y(τ),u(τ)

J(y(τ),u(τ), τ,p) = Φ(y(τ0), τ0,y(τf ), τf ,p) +

∫ τf

τ0

w(y(τ),u(τ), τ,p) dτ, (2.21)
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subject to

ẏ = f(y(τ),u(τ), τ,p) (2.22)

h(y(τ),u(τ), τ,p) ≤ 0 (2.23)

ϕ(y(τ0), τ0,y(τf ), τf ,p) ≤ 0, (2.24)

where the performance index J embodies a boundary penalisation function Φ, discour-

aging non desirable features at the end points, and a path cost function , describing the

price along the chosen trajectory. On the other hand, dynamic constraints (2.22) limit

the manoeuvrability of the vehicle, while path constraints (2.23) and boundary condi-

tions (2.24) are also respected.

Typically, OC problems are formulated as a collection of P different phases, indexed by

k ∈ {1, . . . , P}, and these phases are then meaningfully aggregate or joined. In general,

the independent variable τ is therefore defined in consecutive intervals τ
(k)
0 ≤ τ ≤ τ

(k)
f .

In light of this, we can think of multiple-phase OC problems as follows. Optimise the

total performance index

J =

P
∑

k=1

J (k),

where the performance index of phase k, J (k), can be written as in (2.21), subject to

dynamic constraints

ẏ(k) = f(y(k)(τ),u(k)(τ), τ,p(k)),

path constraints

h(k)(y(k)(τ),u(k)(τ), τ,p(k)) ≤ 0,

boundary conditions

ϕ(k)(y(k)(τ
(k)
0 ), τ

(k)
0 ,y(k)(τ

(k)
f ), τ

(k)
f ,p(k)) ≤ 0,

as well as linkage constraints

Ψ(y(k)(τ
(k)
f ),u(k)(τ

(k)
f ), τ

(k)
f ,p(k),y(k+1)(τ

(k+1)
0 ),u(k+1)(τ

(k+1)
0 ), τ

(k+1)
0 ,p(k+1)) ≤ 0

guaranteeing some regularity of the solution along the different phases. Given this type

of formulations, we can proceed and explore typical approaches to solve optimal control

problems.
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2.2.2 Solution Approaches

Due to their complexity, usually optimal control problems cannot be solved analytically

and need to be solved numerically. Numerical methods for solving OC problems are

divided into two major classes:

• indirect methods and

• direct methods

In an indirect method, first (or higher) order optimality conditions are derived for the

problem at hands through the calculus of variations. Consequently, the stemming (non-

linear) system of equations is then solved, leading to (possibly non unique) candidate

optimal points. Each points is then evaluated to verify if it is indeed a local minimum.

Finally, of the locally optimising solutions, a point associated with the best performance

index is chosen. On the other hand, in a direct method, state and control variables are

somehow discretised and the problem is then converted into a (nonlinear) optimisation

or (nonlinear) programming problem (NLP). The stemming NLP is then solved lever-

aging on well known optimisation techniques.

In light of the this, it is also possible to state that well-founded methods for solving

optimal control problems rely on three fundamental components:

1. methods for solving the differential equations and integrating functions;

2. methods for solving a system of nonlinear algebraic equations;

3. methods for solving a nonlinear optimisation problem.

with all numerical methods in optimal control requiring knowledge and usage of methods

for solving differential equations and integrating functions. Then, while indirect methods

generally combine the numerical solution of differential equations with the numerical

solution of systems of nonlinear equations, direct methods instead integrate numerical

solution of differential equations with nonlinear optimisation.

With this said, numerous advanced algorithms have been developed to address TO

problems. Providing a comprehensive review of these works is beyond the scope of this

thesis, nonetheless we outline below the general structure of these methodologies. For a

more in-depth understanding, the interested reader can always refer to papers by Stryk

and Bulirsch (1992), Betts (1998), Rao (2010) and Rao (2014), or consult books by Kirk

(1998) and Betts (2009), which offer valuable insights on the subject.
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2.2.2.1 Indirect Methods

In indirect methods, first-order optimality conditions of the optimal control problem are

typically derived using the augmented Hamiltonian, H, defined as

H(y,u, λ, µ, τ) = w + λT f + µTh,

where λ(τ) ∈ R
n, µ(τ) ∈ R

c, with c = dim(h) being the number of path constraints.

The first-order optimality conditions of the continuous-time problem are then given by:

ẏ =

(

∂H

∂λ

)T

λ̇ = −

(

∂H

∂y

)T

u∗ = argmin
u∈U

H

0 = ϕ(y(τ0), τ0,y(τf ), τf ,p)

λ(τ0) = −
∂Φ

∂y

∣

∣

∣

τ0
+ νT

∂ϕ

∂y

∣

∣

∣

τ0

λ(τf ) =
∂Φ

∂y

∣

∣

∣

τf
− νT

∂ϕ

∂y

∣

∣

∣

τf

H(τ0) =
∂Φ

∂τ0
− νT

∂ϕ

∂τ0

H(τf ) =
∂Φ

∂τf
− νT

∂ϕ

∂τf

µj(τ) = 0 if hj(y,u, τ,p) < 0

µj(τ) ≤ 0 if hj(y,u, τ,p) = 0,

where ν ∈ R
b. We can notice here that µ and ν can be seen as the Lagrange multipliers

associated with the path constraints and the boundary conditions respectively. The

above reported system of equation is also called Hamiltonian boundary value problem

(HBVP) and it is typically solved numerically, using shooting methods or collocation

methods, see Betts (2009) for reference.

Several difficulties arise when OC problems are solved by indirect methods. Firstly, it

is necessary to calculate the Hamiltonian and the HBVP associated with the problem,

resulting in limited flexibility, since every time a new problem is formulated, a new

derivation is required. In addition, values of λ, µ and ν must be guessed and, due

to their non-intuitive nature, this might lead to ill-conditioning issues. Conversely,

direct methods do not rely on explicit derivation of necessary conditions and therefore,

they gained popularity in solving OC problems over the past decades, especially with

calculation capability advancements of modern computers.
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2.2.2.2 Direct Methods

Direct methods start by transcribing the continuous OC problem into a (nonlinear)

programming problem. Once in this form, it is possible to find solutions by constructing

a sequence of points (y1,u1), (y2,u2), . . . , (y
∗,u∗), such that the objective function J to

be minimised, or an approximation thereof, satisfies the following chain of inequalities:

J(y1,u1) ≥ J(y2,u2) ≥ · · · ≥ J(y∗,u∗). Alternatively, the problem can be passed to

commercial solvers like SNOPT (Gill et al.), IPOPT, FMINCON, or CPLEX (IBM-

ILOG-CPLEX), Gurobi (Gurobi), Xpress if the resulting problem has a limited amount

of nonlinearities, that will construct the above sequence for us. Transcription algorithms

are manifold and generally tailored to the specific problem, nonetheless it is possible to

embed them into two broader classes: (i) shooting methods and (i) simultaneous or

collocation methods. The difference originate from the way of dealing with system’s

dynamic and boundary constraints. In shooting methods, the strategy can be described

as

1. guess initial conditions and control variables;

2. ”shoot” propagating the differential equations from τ0 to τf ;

3. evaluate the error in the final boundary conditions ϕ(y(τf ), τf ,p);

4. derive and solve a (nonlinear) programming problem to adjust the initial guess

and satisfy the final boundary conditions;

5. iterate until a stopping criteria is reached.

From a practical standpoint, the shooting method is widely used primarily because the

transcribed problem has a small number of variables. Unfortunately, shooting methods

also suffers from being extremely sensitive to the initial guess. This can be limited

deploying multiple shooting methods, paying the price in ”shooting” computational time,

especially when the evaluation of the the error in the final boundary conditions depends

on a highly nonlinear function ϕ. On the other hand, collocation methods enforce the

dynamics at a series of points along the trajectory, so avoiding the just mentioned

issues. The idea here is to choose a finite-dimensional space for the candidate solutions,

a number of points in the domain (called collocation points) and then to find a solution

satisfying dynamic’s equation and constraints at the collocation points. Certainly, hybrid

solutions like multiple shooting can also be adopted, where the idea is to choose a set

of collocation points and deploy a single shooting method between them, closing the

gap between the arrival state at a collocation point and the state that would have been

reached if a ”shoot” is conducted from the previous step.

Despite the great variety of direct methods in the literature, all of them rely on dis-

cretisation of the solution space and integration schemes to describe/ solve dynamic
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constraints. The general approach is to partition each phase duration into smaller in-

tervals

τ0 < τ1 < · · · < τN = τf ,

where for simplicity of notation, we drop the superscript highlighting dependency on

phase (k). In addition, we will write yt in place of y(τt), ft for f(y(τt),u(τt), τt,p)

and similarly for the other functions, variables or parameters when necessary, with t

representing the grid point, or time step, of time partition. Defining then variables at

the grid points

xT = (y1,u1, . . . ,yN ,uN )

and defects ζt describing the dynamic equations, the problem can be transcribed to a

(nonlinear) programming problem where the OC constraints are replace by

cL ≤ c(x) ≤ cU ,

with

c(x) = (ζ1, . . . , ζN−1, ϕ0, ϕf ,h1, . . . ,hN ),

cL = (0, . . . , 0,−∞, . . . ,−∞) and

cU = (0, . . . , 0).

We can notice here that the derived boundary conditions and path constraints are im-

posed at every time step, while dynamic constraints can be enforced at grid points as

well as at mid points of the partition, depending on the chosen integration scheme. Be-

low, we report the most commonly used definition of ζt, according to the corresponding

integration scheme.

Euler

ζt = yt+1 − yt − (τt+1 − τt)ft

Runge-Kutta

ζt = yt+1 − yt −
τt+1 − τt

6
(k1 + k2 + k3 + k4),

with

k1 = ft

k2 = f

(

yt +
k1

2
,u

(

τt+1 + τt
2

)

,
τt+1 + τt

2
,p

)

k3 = f

(

yt +
k2

2
,u

(

τt+1 + τt
2

)

,
τt+1 + τt

2
,p

)

k4 = f (yt + k3,ut+1, τt+1,p)



Chapter 2 Literature Review 21

Trapezoidal

ζt = yt+1 − yt −
τt+1 − τt

2
(ft + ft+1)

Hermite–Simpson

ζt = yt+1 − yt −
τt+1 − τt

6
(ft + 4f̄t+1 + ft+1),

with

ȳt+1 =
yt+1 + yt

2
+
τt+1 − τt

8
(ft − ft+1)

f̄t+1 = f

(

ȳt+1,u

(

τt+1 + τt
2

)

,
τt+1 + τt

2
,p

)

.

The design of an appropriate performance index/ objective function J is then necessary

to solve the OC problem and it is usually tailored to the specific problem at hand. It

might be nonetheless useful to write a generic problem formulation in a compact form

as

min J(x)

subject to cL ≤ c(x) ≤ cU ,

with

c(x) = (ζ1, . . . , ζN−1, ϕ0, ϕf ,h1, . . . ,hN ),

cL = (0, . . . , 0,−∞, . . . ,−∞) and

cU = (0, . . . , 0).

A deeper study of the direct collocation methods is not the main aim of this research,

therefore we refer the interested reader to Betts (2009) and Böhme and Frank (2017)

for a more detailed study. Then, having discussed the basic principle of both the vehicle

routing and trajectory optimisation problem, we can now proceed to define the generic

Vehicle Routing and Trajectory Optimisation Problem (VRTOP), integrating aspects

stemming from both of the problems described above.

2.3 The VRTOP

In this section, we aim at giving a generic formulation of the Vehicle Routing and Trajec-

tory Optimisation Problem (VRTOP) by presenting a problem where a fleet of vehicles
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is required to survey a set of point of interest, known as waypoints, also respecting kine-

matics and dynamics constraints. Consequently, recent developments in similar problem

and solution approaches are discussed, highlighting the additional features of the work

presented in the following chapters.

2.3.1 A General Mathematical Formulation

Let Υ be a set representing a fleet vehicles available at a starting point or launching

site d. Let also G = (V,A) be a graph, whose set of vertices V stand for the waypoints

and A is the set of arcs between them. Moreover, let d′ be the arrival or landing site.

If we decide not to fix the number of vehicle used, similarly to before, it is convenient

to introduce a cost Fg for using vehicle g ∈ Υ. At this point, it is worth noting that if

d = d′ and we neglect the dynamic constraints, the problem can be described as a VRP

where the number of used vehicles is not fixed. In fact, we can utilise a notation similar

to the corresponding model presented in section 2.1.1 and, while defining the variables

xgij =







1, if vehicle g travels on arc (i, j)

0, otherwise

Yg =







1, if vehicle g is deployed

0, otherwise

we can also denote the position of node i in a tour with Oi and use the value q repre-

senting the maximum number of waypoints that can be visited by any vehicle. In all

the examples that we consider, q will be equal to the total number of waypoints. We

can then introduce TO features defining

• state variables yg(τ) ∈ Yg ⊆ R
ny , ny ∈ N, describing the complete status (position,

orientation and velocity) of vehicle g travelling at time τ ∈ R
+
0 ; and

• control variables ug(τ) ∈ Ug ⊆ R
nu , nu ∈ N, modelling, for each vehicle g, the

inputs to the system.

In the following chapters, we will see that typical inputs for controlling UAVs can be

the bank angle (needed to change the horizontal flight direction), the angle-of-attack

(AoA) (needed to change the ascending or descending rate), which is directly related

with the coefficient of lift of an aircraft, as well as the thrust when the UAV have an

engine. Depending on the type of vehicle used, inputs can also vary in accordance with

the source generating changes in the external force (for example, a quadcopter will not

require the angle of attack, but on the other hand the thrust can be generated in different

directions). In addition to the above, in order to describe the dynamic equations, we
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need to define parameters pg ∈ R
np , np ∈ N, relative to vehicle g. Typical examples

from the UAV world are the mass, wing area and aerodynamics coefficients.

Having this in mind, we can set the objective of minimising the total costs of travel.

Travel costs typically include time requirements, vehicle performance index, monetary

costs and many others, depending on the problem at end. In particular, we can consider

VR objectives

∑

g∈Υ



FgYg +
∑

(i,j)∈A

cijxgij



 ,

as well as TO ones
∑

g∈Υ

Jg(yg(τ),ug(τ))Yg.

The objective function will then try to minimise all of them at once, summing together

the fixed costs of using a vehicle, additional costs of going from waypoint i to waypoint

j, as well as vehicle-related performance costs described through indices Jg. As previ-

ously mentioned, each performance index Jg can be written as the sum of a boundary

penalisation index

Φg(yg(τ0), τ0,yg(τf ), τf ,pg),

discouraging non desirable features at the end points of the UAVs’ trajectories, and a

routing cost index
∫ τf

τ0

wg(yg(τ),ug(τ), τ,pg) dt.

Undesirable features may include sharp flight angles, prohibited flight speeds and noise

levels, see Vanderbei (2001) and Zhang et al. (2012) among others. It is worth noting

here that the exploration of the full Pareto front for such a multi-objective problem

might be of high interest, possibly giving different weights to the objectives. However,

for simplicity of exposition and for a first comprehension of the problem, we decided to

just sum the different components with equal weight.

Having defined the optimisation goals, we want also to impose requirements in such a

way that

• all vehicle routes start at the launching site d ∈ V ;

• selected vehicle routes terminate at landing site d′ ∈ V ;

• each location in V \ {d, d′} is visited exactly once by exactly one vehicle.
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In a similar fashion of section 2.1.1, we can write these constraints as

∑

(i,j)∈A

xgij ≤MYg (2.25)

∑

g∈Υ

Yg ≥ mL (2.26)

∑

i∈V :(i,j)∈A

∑

g∈Υ

xgij = 1, ∀j ∈ V \ {d} (2.27)

∑

j∈V :(i,j)∈A

∑

g∈Υ

xgij = 1, ∀i ∈ V \ {d} (2.28)

∑

j∈V :(d,j)∈A

xgdj = Yg, ∀g ∈ Υ (2.29)

∑

i∈V :(i,d′)∈A

xgid′ = Yg, ∀g ∈ Υ (2.30)

∑

i∈V :(i,j)∈A

xgij =
∑

i∈V :(j,i)∈A

xgji, ∀j ∈ V, ∀g ∈ Υ (2.31)

Oi −Oj + q
∑

g∈Υ

xgij ≤ q − 1, ∀(i, j) ∈ A, i, j ̸= d, d′. (2.32)

Consequently, we want to impose trajectory constraints. The physical system governing

the flying vehicle g is generally described by a system of Ordinary Differential Equations

(ODE), called Equations of Motion (EoMs). As previously introduced, we can then

enforce dynamic constraints requiring that

ẏg = fg(yg(τ),yg(τ), τ,pg)

for all g ∈ Υ, where functions fg represent then the relation of variables and parameters

with the changes in state of the UAV over time. In addition, we consider the path

constraints

hg(yg(τ),ug(τ), τ,pg) ≤ 0.

These constraints usually model obstacles in the space, collisions avoidance between

UAVs, non desirable flying dynamics and many others, including variable bounds. Fi-

nally, we want to consider boundary conditions

ϕg(yg(τ0), τ0,yg(τf ), τf ,pg) ≤ 0.
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We can finally write the problem in a complete and compact form as

min
∑

g∈Υ



FgYg +
∑

(i,j)∈A

cijxgij + Jg(yg(τ),ug(τ)) Yg



 (2.33)

subject to
∑

(i,j)∈A

xgij ≤MYg (2.34)

∑

g∈Υ

Yg ≥ mL (2.35)

∑

i∈V :(i,j)∈A

∑

g∈Υ

xgij = 1, ∀j ∈ V \ {d} (2.36)

∑

j∈V :(i,j)∈A

∑

g∈Υ

xgij = 1, ∀i ∈ V \ {d} (2.37)

∑

j∈V :(d,j)∈A

xgdj = Yg, ∀g ∈ Υ (2.38)

∑

i∈V :(i,d′)∈A

xgid′ = Yg, ∀g ∈ Υ (2.39)

∑

i∈V :(i,j)∈A

xgij =
∑

i∈V :(j,i)∈A

xgji, ∀j ∈ V, ∀g ∈ Υ (2.40)

Oi −Oj + q
∑

g∈Υ

xgij ≤ q − 1, ∀(i, j) ∈ A, i, j ̸= d, d′ (2.41)

ẏg = fg(yg(τ),yg(τ), τ,pg) Yg, ∀g ∈ Υ, ∀τ (2.42)

hg(yg(τ),ug(τ), τ,pg) Yg ≤ 0, ∀g ∈ Υ, ∀τ (2.43)

ϕg(yg(τ0), τ0,yg(τf ), τf ,pg) Yg ≤ 0, ∀g ∈ Υ, ∀τ, (2.44)

with each variable and parameter living in the appropriate domain. Sometimes it is

also convenient to formulate the problem as a collection of phases, each one representing

the flight of a UAV between two different point of interest, and all linked to guarantee

continuity. Defining variables

• τ0gij , τ
f
gij ∈ R

+
0 the times when vehicle g can respectively start and end phase ij;

• ygij(τ) ∈ Yg ⊆ R
ny , ny ∈ N, describing the complete status (position, orientation

and velocity) of vehicle g travelling from waypoint i to waypoint j at time τ ∈

[τ0gij , τ
f
gij ];

• ugij(τ) ∈ Ug ⊆ R
nu , nu ∈ N, modelling the inputs to the system between waypoint

i and j at time τ ∈ [τ0gij , τ
f
gij ];
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as well as the parameters, pgij , and functions according to the corresponding phase, we

can modify the previous formulation as follows

min
∑

g∈Υ



FgYg +
∑

(i,j)∈A

(cijxgij + Jgij(ygij(τ),ugij(τ)) Ygij)



 (2.45)

subject to
∑

(i,j)∈A

xgij ≤MYg (2.46)

∑

g∈Υ

Yg ≥ mL (2.47)

∑

i∈V :(i,j)∈A

∑

g∈Υ

xgij = 1, ∀j ∈ V \ {d} (2.48)

∑

j∈V :(i,j)∈A

∑

g∈Υ

xgij = 1, ∀i ∈ V \ {d} (2.49)

∑

j∈V :(d,j)∈A

xgdj = Yg, ∀g ∈ Υ (2.50)

∑

i∈V :(i,d′)∈A

xgid′ = Yg, ∀g ∈ Υ (2.51)

∑

i∈V :(i,j)∈A

xgij =
∑

i∈V :(j,i)∈A

xgji, ∀j ∈ V, ∀g ∈ Υ (2.52)

Oi −Oj + q
∑

g∈Υ

xgij ≤ q − 1, ∀(i, j) ∈ A, i, j ̸= d, d′ (2.53)

ẏgij = fg(ygij(τ),ygij(τ), τ,pgij) Yg, ∀g ∈ Υ, ∀τ ∈ [τ0gij , τ
f
gij ] (2.54)

hg(ygij(τ),ugij(τ), τ,pgij) Yg ≤ 0, ∀g ∈ Υ, ∀τ ∈ [τ0gij , τ
f
gij ] (2.55)

ϕgij(ygij(τ0), τ0,ygij(τf ), τf ,pgij) Yg ≤ 0, ∀g ∈ Υ, ∀τ ∈ [τ0gij , τ
f
gij ] (2.56)

(τ0gjl − τ fgij)xgijxgjl = 0, ∀i, j, l ∈ V, ∀g ∈ Υ (2.57)
(

yg(τ
0
gjl)− yg(τ

f
gij)

)

xgijxgjl = 0, ∀i, j, l ∈ V, ∀g ∈ Υ (2.58)
(

ug(τ
0
gjl)− ug(τ

f
gij)

)

xgijxgjl = 0, ∀i, j, l ∈ V, ∀g ∈ Υ, (2.59)

where objective and constraints (2.45)-(2.56) are as in the previously defined models,

while constraints (2.57)-(2.59) ensure continuity of time, states and controls among

the different phases. In light of this, having understood the VRTOP and its possible

mathematical formulations, we present here some problems existent in the literature and

focus on UAVs deployment, along with the methodology used to solve them. We also

highlight here from the very beginning that the above model is just an illustration of

how a generic nonlinear VRTOP model can be described. Our models and approaches

presented along the manuscript differ from this and the other model presented in the

literature for different aspects, of which the main is the way used to handle dynamic

constraints (2.54)-(2.56). While a nonlinear description of the vehicles’ dynamic might

be more precise, it might lead to computational complexities and undesirable solving

times. Therefore, accurate approximations of the dynamic constraints are derived, while
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avoiding oversimplification, allowing us to achieve reliable solutions within a reasonable

time frame.

2.3.2 Research Developments

Interest in the autonomous use of UAVs, and consequently in the vehicle routing and tra-

jectory optimisation problem, is exceptionally increased in the recent literature, where

different and creative approaches and optimisation techniques have emerged to solve the

VRTOP. However, due to the complications arising from embedding flight dynamic con-

ditions into the planning process, the calculation of the related paths and trajectories is

extremely simplified or neglected. The complex nature of the flight dynamic, see Stengel

(2004), leads to nonconvex models and hence several optimisation techniques based on

Optimal Control (OC) and Nonlinear Programming (NLP) have been developed to in-

corporate trajectory optimisation aspects in the problem formulation. As stated in Betts

(2009), Rao (2010) and Rodrigues et al. (2014), NLP-based solutions are known to be

sensitive to initial guesses, i.e. convergence can be only ensured if a proper initialisation

is provided Zhao (2004), and providing those for flying vehicles requires extremely deep

knowledge of flight dynamics. Sometimes, nonlinear dynamics of UAVs can be linearised

and a Mixed-Integer Programming (MIP) formulation can be derived, overcoming such

difficulties, see Stengel (2004), Hajiyev et al. (2015), How et al. (2015) and Harris and

Acikmese (2013). Often however, some prior knowledge is required to perform such lin-

earisation. Alternatively, Dubins curves, see Boissonnat et al. (1992), and Bézier curves,

see Bertka (2008), are also utilized in the literature to represent the UAV dynamics.

For example, Zhen et al. (2018) assign missions to a set of homogeneous UAVs using

ant colony algorithms and generate UAVs trajectories through Dubins curves. In the

authors approach, technical parameters of the UAVs, collision avoidance constraints and

restricted airspaces influence the resulting paths.

Deploying such a plethora of techniques, quite a few VRTOP problems have been tackled

in the literature. Keviczky et al. (2008) propose a decentralized approach to controlling

the formation of autonomous vehicles based on receding horizon control. The approach

relies on a combination of local sensor measurements and inter-vehicle communication

to achieve a desired formation. On each vehicle, information about neighbors is used

to predict their behavior and plan conflict-free trajectories that maintain coordination

and achieve team objectives. Soler et al. (2014) present an approach for designing flight

trajectories that minimise contrail formation. The approach is based on a mixed-integer

nonlinear programming (MINLP) framework, which includes multiple phases to cap-

ture the different stages of a flight. The paper includes a detailed model of contrail

formation and a comprehensive optimisation formulation that takes into account var-

ious constraints, such as air traffic control requirements, aircraft performance limits,

and weather conditions. Fügenschuh and Müllenstedt (2015) use a mixed-integer linear
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programming (MILP) formulation to optimise the flight plans of UAVs. The MILP for-

mulation includes variables to describe UAV’s dynamic, such as their position, speed,

and altitude at each time step. Constraints accounts for various factors affecting UAV’s

performance, including safety and airspace restrictions. Maolaaisha (2015) develops

an optimisation framework for determining optimal aircraft trajectories from takeoff to

landing in a free-flight environment. The approach uses mixed-integer programming

(MIP) to consider discrete decisions, such as throttle setting and flap deployment, as

well as continuous variables, such as altitude and airspeed, in the trajectory optimisation

process. In Coutinho et al. (2019) a Mixed-Integer Programming (MIP) formulation is

then proposed to solve a special case of the vehicle routing and trajectory optimisa-

tion problem where a fleet of homogeneous gliders is deployed, also known as GRTOP.

The new formulation simultaneously optimises routes and flight trajectories along these

routes. The flight dynamics of the fleet of gliders are modelled with constraints derived

by time discretisation and integration schemes, while distance restrictions are modelled

as second-order cone constraints. Highly nonlinear, nonconvex dynamic constraints are

avoided by linearising the UAVs Equations of Motions (EOMs) around equilibrium flight

conditions or previous trajectory guess, leading to a Mixed-Integer Second-Order Cone

Programming (MISOCP) problem. To allow for a more tractable formulation while

keeping high quality solutions, a relaxation of the resulting linear dynamical constraints

and a corresponding addition of a penalisation term to the objective function has been

made. Nonetheless, a single equilibrium condition is analysed, leading to a limited view

on gliders dynamic considerations, especially when other steady-flight conditions have

to be considered.

Ramirez-Atencia et al. (2017) deploy a genetic algorithm to assign tasks to a fleet of in-

homogeneous UAVs considering the technical parameters of the different types of UAVs,

the possibility of having restricted airspaces and also time windows. Ribeiro et al. (2019)

consider a Mixed Integer Linear Program (MILP) to observe conveyor belts in a mining

site. Authors’ combinatorial approach focuses on energy consumption and the possibil-

ity to place and use charging stations, neglecting the construction of exact trajectories.

A combination of an ant colony algorithm with metropolis criterion was applied by Li

et al. (2020) to find optimal trajectories for a fleet of homogeneous UAVs on a grid

map, including given obstacles and considering safety distance restrictions. Glock and

Meyer (2020) design mission plans to maximise the collection of information after fire

or chemical incidents. They propose a neighborhood search algorithm, translating flight

dynamics, i.e. maximum velocity, acceleration and battery level, into travel times be-

tween target locations. Cheng et al. (2020) consider the problem of multi-trip parcel

delivery and derive a MINLP formulation where the energy consumption is modeled by

a mass-dependent, nonlinear function, and trajectories are given by distances and travel

times. Thibbotuwawa et al. (2020) plan the supply of a set of customers with an in-

homogeneous fleet of UAVs under weather uncertainty, deploying a MILP formulation.

The authors distinguish between several wind zones, each related with corresponding
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energy consumption and collision avoidance. They then compute the sequence of visited

customers, neglecting however the construction of the exact trajectory. Kai et al. (2019)

decide the trajectory of a UAV required to visit a given set of points of interest by

means of a MILP formulation, where a linearised flight dynamic as well as obstacles or

restricted areas are taken into account. The interesting problem of controlling moving

ships using a fleet of UAVs stationed at the coast is investigated by Xia et al. (2019).

The authors propose a comparison between a MILP formulation and its Lagrangian

relaxation. The UAVs are then supposed to meet vessels in the assigned waypoints.

Though, besides the battery level, no flight dynamics are properly taken into account.

Albert et al. (2017) use a fleet of homogeneous UAVs to observe drifting icebergs in

support of shipping. They consider an integer linear optimisation model, with the util-

isation of Dubins curves to compute trajectories and updating the present path during

the mission. However, their approach neglects most of the flight dynamics for the benefit

of the solution process speed. Chen et al. (2016) plan trajectories for a UAV considered

as a particle affected by Newton laws. They use optimal control theory to solve the

problem and, although given obstacles are considered, authors’ approach overlook a de-

tailed flight dynamics and weather conditions. Schmidt and Fügenschuh (2023) consider

the planning problem for an inhomogeneous fleet of unmanned aerial vehicles (UAVs).

The authors present a two-level time grid approach for a mixed integer program formu-

lation. They also consider a three-dimensional mission area, containing convex-shaped

restricted airspaces and convex subareas where the flight trajectories are affected by the

wind. Flight dynamics are described by the equations governing the uniformly acceler-

ated motion, where acceleration and velocity are treated as decision variables. Collision

avoidance is also included in the model.

The above list of works can not be considered exhaustive and a more complete review

on UAVs routing and Trajectory Optimisation (TO) problems is provided in Coutinho

et al. (2018), where the authors introduce an additional Multi-phase Mixed Integer Op-

timal Control formulation for the UAV Routing and Trajectory Optimisation Problem

(UAVRTOP) and a taxonomy devoted to UAV routing, task assignment, path planning

and trajectory optimisation of UAVs. Several directions for future research are also

identified therein, showing that research integrating vehicle routing and trajectory op-

timisation is still in its dawn.

We contribute to the state-of-the-art by considering the mission and flight planning

problem for a fleet of UAVs, specifically gliders, in a mixed-integer linear programming

framework, including detailed flight dynamics, the effect of wind, and extending several

of vehicle routing and trajectory optimisation aspects to enhance the quality of the com-

puted solution. The novelty of our approach is the combination of assigning waypoints

to the participating UAVs and calculating detailed flight trajectories at the same time

by means of a two-stage algorithm, also when prior knowledge of equilibrium or initial
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(steady-state) trajectory guesses are absent or very limited. None of these would be pos-

sible without considering mathematical techniques used to solve (robust) optimisation

problems. Nocedal and Wright (1999) present several techniques used to exactly solve

linear and general nonlinear optimisation problems. On the other hand, the proposed

techniques can be exploited for solving multi-objectives problems, see Miettinen (1999),

as well as optimisation problems with uncertainty, see Ben-Tal et al. (2001), typically

reducing them into a single-objective and deterministic formulation, also known as ro-

bust counterpart.

Having presented a comprehensive formulation of the VRTOP, emphasizing the funda-

mental features and characteristics of the problem derived from both vehicle routing and

trajectory optimisation aspects, in the subsequent chapter, we proceed by describing the

basics of aircraft and gliders dynamics, introducing the necessary tools to understand

and solve the VRTOP considered within this manuscript.
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The Dynamic of Gliders

In this chapter, we explore the domain of gliders dynamics and delve into the funda-

mental equations that dictate the flight of this type of aircraft. Gliders, also known

as sailplanes, offer a unique experience by harnessing the forces of nature to maintain

extended periods of flight without the aid of onboard propulsion or engine utilisation.

Understanding their dynamic is crucial for designing efficient control systems, opti-

mising path planning and flight performances. This chapter begins by exploring the

fundamental principles of flight’s dynamic, including the concepts of forces like thrust,

lift, drag, and weight, continues stating the importance of special aircraft like gliders,

and introduces the equations that describe gliders’ behavior, also know as the equa-

tions of motion (EoMs). In it, we provide the mathematical foundation for analysing

and predicting gliders’ flight characteristics and we guide the readers through possible

techniques for solving the EoMs, with particular focus on the ones used later in thesis.

Some example of flight dynamic and optimal control is finally furnished, comprehensive

of numerical outcomes.

3.1 Basics of Aircraft Motion and the Flight Envelope

The range of static and dynamic conditions within which an aircraft operates is called its

flight envelope. To explore the flight envelope, we first must establish frames of reference

and define basic elements of position, velocity, force, moment, and equilibrium. The de-

fined elements will also be useful to describe aircraft’s equations of motion, presented in

the following section. Whatever the frame of reference, we assume that interactions be-

tween forces, moments and the aircraft can be described by equations of motion (EoMs)

stemming from Newton’s laws. In what follows the aircraft is modelled as a point-mass

moving over a flat Earth. Among different flight conditions, favourable attention is usu-

ally deserved by steady and quasi-steady flight. The first is characterized by constant

velocity and altitude, with unchanging aircraft mass, as in wings-level cruise, where there

31
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is a balance between forces of lift, weight, thrust, and drag that will be accurately defined

later. Being strictly precise, steady flight is possible only if thrust is produced without

changing the aircraft’s mass. Quasi-steady flight, instead, occurs when time variations

in mass or flight condition are slow enough to produce negligible dynamic effects. As

the reader might already point out, due to the absence of onboard propulsion, gliders

cannot generate thrust and therefore cannot be characterised by (quasi) steady flight

conditions. Nevertheless, analogous flight conditions can be considered, characterised

by a constant velocity and constant descent rate, and will also be referred to as (quasi)

steady flight conditions. Along the chapter, we consider a flat-earth assumption that

allows us to neglect the variation of gravitational acceleration with distance from the

centre of the Earth, and to disregard relatively subtle Coriolis and centrifugal effects.

In this way, it is possible to exploit a clearer description of the glider’s motions, useful

for investigating the dynamics and control of flight within the atmosphere at suborbital

speeds and within short-medium distances and periods of time. Four reference frames

can then be considered to describe the aerodynamic forces acting on an aircraft: a basic

inertial1 frame of reference whose origin is fixed at a point on the Earth’s surface and

axes pointing towards the east (x), north (y), up (h) directions. A body-fixed frame

where the origin is at the plane’s center of mass (c.m.) and its axes are aligned with

the nose, the right wing tip, and the upward perpendicular to the plane defined by the

previous two axes. Alternatively, a velocity-axes frame can be considered and it is ob-

tained by translating the origin of the inertial frame to the c.m. while the axis pointing

towards north is then rotated and aligned to the direction of motion. Ultimately, a

wind-axes frame can be obtained from the body-axes frame aligning the axis from the

aircraft’s nose towards the direction of motion. The latter, can also be obtained from

the velocity-axes frame though a rotation about the velocity vector.

Aircraft’s angular orientation with respect to the inertial frame can be expressed in terms

of Euler angles, namely the yaw (ε), pitch (ϑ) and roll (θ) angles. In other words, yaw,

pitch and roll are the angles needed to convert the inertial frame of reference into the

body frame. Analogously, the inertial frame of reference can be converted into the wind-

axes frame by means of rotations described by the heading angle (φ), flight path angle

(γ) and bank angle (µ). While for a more complete description of the reference frames

the reader can refer to Stengel (2004), we depict the just described transformations in

Figure 3.1(a). Subsequently, four basic forces acting on the aircraft can be described

adopting the above reference frames: thrust, drag, lift and weight. Thrust is the force

that propels an aircraft forward through the air. It is generated by by the on-board

propulsion systems of the aircraft itself (for a glider, it is absent since there is no engine

on board). Drag is the resistance encountered by the aircraft as it moves through the air.

Acting upon the airplane’s fuselage and being parallel and opposed to the direction of

motion, drag is mainly caused by air friction, typically reducing the aircraft’s speed and

1Most “inertial” frames are not rigorously inertial, but the degree of error in making that assumption
is, in some sense, acceptable
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(a) Reference frames (b) Forces Acting on the Aircraft

Figure 3.1: Reference Frames and Forces. In (a), the inertial frame (green), the body-
axes frame (yellow) and wind-axes frame (blue) are represented. Angles for transfor-
mations from the inertial frame are depicted using the corresponding colours. In (b),
thrust (T), drag (D), lift (L) and weight (W) forces are reported with the colour of the

reference frame they belong to.

efficiency. Lift is the force generated by airflow through the vehicle’s surfaces, primarily

wings, enabling an aircraft to overcome gravity and stay airborne. Wings’ shape and

configuration determine the pressure difference producing the lift. Being perpendicular

to the velocity vector and to the ”wings axis”, this upward force can be thought as

pertaining to the wind-axes frame, together with the drag. Ultimately, weight is the

force exerted by gravity, pulling the aircraft to the centre of the Earth. In Figure 3.1(b),

all the described forces are depicted, each one within the reference frame they naturally

belongs to.

By activating the control surfaces, pilots (physical, remote or autonomous) can carefully

manage these forces, changing aircraft’s orientation and determining safe and efficient

flight paths. One of the most important features that characterise the control of an

aircraft’s horizontal orientation is the Angle-of-Attack (AoA), see Figure 3.2. The AoA

denotes the angle formed between the wing’s chord line, a straight line connecting the

head and tail edges of the wing, and the vector representing the relative motion between

the aircraft and the surrounding air. In other words, the AoA represents the difference

between aircraft’s pitch angle and the flight path angle and it plays a crucial role in

determining the lift coefficient and hence in controlling the lift force generated by the

aircraft’s wings. It is worth mentioning here that a relation similar to the the pitch and

flight path angle one exists between the yaw and heading angle, while a less straightfor-

ward one describes the transformation between the roll and the bank angle. However, in

typical flight conditions and for the purpose of this document the bank angle µ can be

considered very nearly similar to the roll angle. Once more we refer the interested reader

to the books of Russell (1996) and Stengel (2004) for a more detailed understanding of

the relations between reference frames and their transformations.
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Figure 3.2: Wing section and the angle of attack (AoA).

Other essential primary control inputs for the aircraft dynamic are represented by

ailerons, elevator and rudder, see Figure 3.3. Ailerons are control surfaces located on

the wings that can be moved up or down independently on each wing. Their primary

function is to control the rolling motion of the aircraft. By managing the ailerons, it

is possible to maintain precise command over the lateral movement and attitude of the

aircraft and controlled banked turns can be performed. The elevator instead is a primary

control surface located on the horizontal stabilizer of an aircraft, typically at the rear,

and it is utilised to control the aircraft’s pitch during different flight phases. Similarly,

the rudder is located on the vertical stabilizer at the rear of the aircraft. Its primary

function is to control the aircraft’s yaw during flight and it is particularly important

in situations requiring coordinated turns when the aircraft exhibit the tendency to yaw

in the opposite direction of a roll. In addition to its primary function, the rudder also

plays a role in maintaining directional stability, helping in keeping the aircraft aligned

with the desired flight path. All the just described control surfaces operate together

to exercise a decisive influence in determining the flight direction and provide precise

manoeuvrability of the aircraft.

With the above excursion on the fundamental principles of aircraft motion, we are now

prepared to introduce glider’s characteristics and peculiarities with respect to other

aircraft and to then illustrate the equations that govern their flight dynamic.
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Figure 3.3: Aircraft Control Inputs (excluding engines). Ailerons are controlling

surfaces helping changes in the roll angle, elevators help changes in the pitch angle and

rudder helps changes in the yaw angle. Flaps helps in changing the AoA.

3.2 Gliders Motion

In this section, we delve into the distinctive features of gliders and we introduce the

reader to the the mathematical framework that dictates their dynamics. By doing so,

we aim at providing an essential understanding of the glider motion and the equations

that shape their trajectory.

3.2.1 Gliders Importance and Characteristics

Gliders are aircraft designed for unpowered flight, meaning that, unlike traditional air-

planes, they do not have engines or propulsion onboard and they solely rely on natural

forces to fly. Due to this, gliders are typically designed to have long, slender wings that

provide lift generation and excellent aerodynamic properties, allowing them to mini-

mize drag, maintain efficiency and stay airborne. They can be launched into the air

through various methods, from being towed by a powered aircraft or air-balloons to

being launched from the ground using winches or bungee cords. Then gliders take ad-

vantage of air currents, known as thermals, and other atmospheric phenomena, to gain

altitude and extend their flight time by means of the so-called soaring techniques. His-

torically, the literature distinguishes between dynamic and static soaring. The former

is a nature-inspired powerless flight technique that exploits wind gradients and it has

been first studied by Rayleigh (1883) as an explanation for the flight of pelicans and

other large birds. With the recent developments in UAV technology, this technique has

also become popular for autonomous gliding flight. Among others, Zhao (2004) studies

optimal patterns for dynamic soaring, with a particular focus on traveling and loitering

patterns.
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On the other hand, static soaring relates with methods for extending gliders’ flight by

extracting energy from thermals. In Kagabo (2010) we can find an example of static

soaring and, in addition, the authors show that flight’s duration of multiple gliding

UAVs could be extended through a combination of both dynamic and static soaring

techniques. Thus, glider’ performances are often measured by the glide ratio, which

represents the distance the glider can travel forward compared to the altitude it loses.

Gliders with higher glide ratios are able to cover longer distances during their flights.

Due to their manoeuvrability, they can be used for various purposes including civil

surveillance, military operations, pilots’ training, medicine or goods delivery, as well as

recreational flights and competitive sports. For example, Wu et al. (2012) study the

optimisation of commercial aircraft flight under engine failure and emergency flight.

Authors aim at finding flyable descent trajectory to achieve safe landing, having speed

and flight attitude constraints. Coutinho et al. (2019) utilise a fleet of gliders in the

context of surveillance and disaster assessment. The authors assume unique (quasi)

steady flight conditions to linearise the aircraft dynamic and plan gliders’ routes.

In addition, the utilisation of gliders offers several advantages. First of all they are

environmentally friendly: gliders are silent and emission-free since they do not require

any engine to stay airborne. Second, without the need for fuel or engine maintenance,

the ongoing expenses can be significantly reduced, making gliders a cost-efficient option

compared to powered aircraft. Then, gliders ability to fly quietly and for extended pe-

riods makes them ideal for gathering data without disturbing the natural environment.

This makes them a valuable alternative in the context of scientific research, especially

when dealing with atmospheric and environmental studies. Lastly, gliders do not re-

quire long runways or complex airport infrastructure. They can take-off and land on

grass airstrips or specialized glider launch areas, reducing the need for extensive ground

facilities. Crispin (2016) proposes the use of balloon-launched autonomous gliders in

the context of atmospheric research. The author’s goal is to optimise the trajectory of

multiple gliders in order to achieve uniform air sampling within a specified airspace and

to efficiently map the essential physical and chemical properties of the air.

Having understood the importance of gliders, as well as their advantages and their broad

application range, in the following sections, we introduce the equations governing gliders’

flight dynamics and we propose techniques to solve them that will turn to be useful for

the overall mathematical formulation of the problem considered in this thesis.

3.2.2 Gliders Equations of Motion (EoMs)

The equations of motion (EoMs) play a vital role in capturing the intricate relation-

ship between aerodynamic forces and in describing the behavior of an aircraft during its

flight. By comprehending these equations, we gain a deeper understanding of how these
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forces, control inputs and external influences interact and contribute to the overall dy-

namic as well as the final path planning. As previously stated, influences on the aircraft

dynamic are derived from Newton’s laws. In accounting for weather dependencies when

analysing the performance and behavior of an aircraft, especially a glider, it is often

convenient to express these laws and the resulting equations adopting a wind-axes refer-

ence frame. Gliders’ physical elements employed in this thesis combine aspects derived

from the complementary designs suggested by Bower (2010) and Flanzer (2012). More

precisely, most of the parameters in Table 3.1 are gathered from Bower’s work, whereas

reasonable lower and upper bounds for state and control variables are established based

on Flanzer’s research. Both authors rigorously tested and validated the models in di-

verse real flight conditions. Finally, following Zhao (2004), we can write the system of

ordinary differential equations (ODEs) modelling the motion of aerial gliders based on

the following assumptions:

1. the range of flight is negligible compared to Earth’s circumference (a flat Earth);

2. the air density is constant;

3. the wind is stationary, blowing horizontally and can be described by a linear profile

as a function of the flight altitude;

4. the mass of the glider does not change during the flight.

Then, let us write y(τ) = (x(τ), y(τ), h(τ), v(τ), γ(τ), φ(τ)) to define the variables rep-

resenting the status (or state) of a glider at time τ ∈ [τ0, τf ], with the first three compo-

nents x(τ), y(τ) and h(τ) indicating the position of the UAV with respect to the inertial

reference frame, whereas v(τ), γ(τ) and φ(τ) are quantities referred to the wind-axes

frame representing the velocity of the aircraft with respect to the air (airspeed module),

flight path angle (from horizontal) and the heading angle (from north) respectively.

Given that it is not unrealistic to assume that the primary controls previously described

can arbitrarily influence the aircraft’s lift and banking angle, we consider the control

variables (or input) to the system as described by the vector u(τ) = (CL(τ), µ(τ)),

where CL(τ) is the lift coefficient, while µ(τ) is indeed the bank angle.

With this in mind, omitting the explicit time dependence to simplify the notation, the

EoMs describing the dynamic of a glider can finally be expressed by the following system
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of equations

ẋ = vcos(γ)sin(φ) + U (3.1)

ẏ = vcos(γ)cos(φ) (3.2)

ḣ = vsin(γ) (3.3)

mv̇ = −D −mgsin(γ)−mU̇cos(γ)sin(φ) (3.4)

mvγ̇ = Lcos(µ)−mgcos(γ) +mU̇sin(γ)sin(φ) (3.5)

mvcos(γ)φ̇ = Lsin(µ)−mU̇cos(φ), (3.6)

with

L =
1

2
ρSwCLv

2 (3.7)

D =
1

2
ρSwCDv

2 (3.8)

CD = CD0
+ kAC

2
L (3.9)

kA =
1

π b2

Sw
Of

(3.10)

U = U(β, h) = βh. (3.11)

Here m represents the mass of the UAV, g is the gravity constant and U is the wind

speed, which is assumed to increase linearly with the height, see Zhao (2004). Without

loss of generality (W.L.O.G.), the wind is blowing towards east (x direction) and its

strength coefficient β, sometimes referred to as wind intensity along the manuscript, can

be chosen to linearly approximate the average wind gradient profile in UK, as suggested

in Drew et al. (2013), for a reference altitude of ≃ 500 meters. L and D represents the

lift and drag forces respectively and can be expressed better by equations (3.7)-(3.8),

being CD0
the drag coefficient at zero-lift, ρ the air density and Sw the glider total wings’

area. Finally, b expresses glider’s wing span, while Of is the Oswald efficiency factor

estimated using the Matlab function available in Sartorius (2023). We report in Table

3.1 the values of the EoMs’ constants that will be used in this manuscript.

Constant Value Description Unit

ρ 1.22543 Density of the air at sea level kg/m3

g 9.80665 Gravity of Earth at sea level m/s2

CD0
0.01730 Coefficient of drag at zero-lift dimensionless

kA 0.03200 Aerodynamic coefficient dimensionless

m 1.99000 Mass of the UAV kg

Sw 0.48500 UAV’s total wing area m2

Table 3.1: Environmental and UAV constants
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The Equations of Motion can be expressed in a more concise and compact form using

the following notation

ẏ(τ) = f(y(τ),u(τ),w(τ)),

where f = (f1, . . . , f6) represents the right hand side (RHS) of the equations (3.1)-(3.6),

eventually divided by the terms on the LHS that do not express time derivatives, while

w(τ) = β(τ) can be seen as a term describing the external influences on the glider’s

behaviour. In addition, it is worth noting that the system of equations under consider-

ation is autonomous, meaning that it does not explicitly depend on time. This implies

that the dynamics of the system remain unchanged regardless of the specific moment

at which they are observed and become solely determined by the initial conditions and

the system state, simplifying the analysis and enabling a deeper understanding of its

properties.

3.3 A Direct Collocation Method to Solve Gliders EoMs

As an illustration of how to effectively integrate and solve the aforementioned system

of equations, we will consider it embedded within a specific trajectory optimisation

problem where we require a glider to be guided from an initial state y0 to a desired

final state yf in the minimum amount of time possible. Including the exemplification

within a TO problem will also enable us to observe the corresponding methodology

used in the subsequent chapters, gaining therefore a clearer understanding. It is then

worth mentioning that, despite the great variety of direct methods in the literature, we

chose to deploy a direct collocation method to determine the control inputs allowing

the glider to traverse the desired trajectory efficiently. This example will enable us to

witness practical means to solve complex trajectory optimisation problems, providing

useful insights and a better understanding of glider dynamics.

3.3.1 Nonlinear Programming Problem Derivation

Considering the optimal control problem requiring a glider fly from y0 to yf in the

shortest time:

min
y(τ),u(τ)

J(y(τ),u(τ), τ,p) = τf

subject to ẏ = f(y(τ),u(τ),w(τ))

h(y(τ),u(τ),p) ≤ 0

ϕ(y(τ0),y(τf ),p) ≤ 0,
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with f representing the just introduced EoMs, h describing limitation of state and control

variables of the type

ylb ≤ y(τ) ≤ yub

ulb ≤ u(τ) ≤ uub

and ϕ determining the initial and final conditions

y(τ0) = y0

y(τf ) = yf

as previously stated, we aim at transforming it into a nonlinear programming problem

(NLP) by applying some direct collocation method. To do so, we rely on the discretisa-

tion of the solution time space as well as on an integration scheme to numerically solve

the dynamic constraints described by the above presented system of ODEs

ẏ = f(y,u,w),

where we omit for a moment the time dependency for simplicity of notation. Henceforth,

we start dividing the time interval of interest, [τ0, τf ], into N smaller intervals or time

steps, such that

τ0 < τ1 < · · · < τN = τf ,

where we chose for our example an equally spaced time partition, that is a partition

where every time step has the same length equal to

η = (τt+1 − τt) =
τf − τ0
N

for every t = 0, . . . , N − 1. Subsequently, we want to determine the value of the state

and control variables (y0,u0, . . . ,yN ,uN ) at each time step (collocation point). Note

once again that we write yt for y(τt), ut in place of u(τt), ft for f(y(τt),u(τt),w(τt))

and similarly for the other time-dependent quantities of interest. It is then necessary to

numerically integrate the ODEs and to do so, we decide to deploy an Euler scheme of

integration, where we estimate the next state yt+1 by applying the following approxi-

mation
yt+1 − yt

η
≃ ẏt = ft,

or equivalently, writing yt+1 based on the current state yt and the current derivative

function ft

yt+1 ≃ yt + ηft. (3.12)
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Then, if we define the defects ζt to be

ζt := yt+1 − yt − ηft,

we can specify the aerodynamic constraints relative to the glider motion by simply

equating the defects to zero. In other words, we can write

ζt = 0 ∀t = 0, . . . , N − 1.

It is worth mentioning here that, as seen in the previous chapter, other numerical meth-

ods and defects definitions can be used. However, their investigation falls outside the

scope of this manuscript and we refer the interested reader to the books of Stengel (2004),

Betts (2009) and Hairer et al. (2011), or to the article of Coutinho et al. (2019) where

detailed analyses and comparison of the different integration schemes applied to a glider

routing and trajectory optimisation problem are discussed. Sometimes, it is desirable to

avoid wobbling trajectories and sudden changes in manoeuvrability decisions. For this

reason, it might be convenient to add penalty terms to the objective aiming at reducing

the amount of changes in decision making as well as avoiding sharp turns and direction

adjustments. An example of penalty term can be

ps =

N−1
∑

t=0

(xt+1 − xt)
2. (3.13)

Indicating with S the number of penalty terms, we can finally write the resulting problem

in a compact form as

minimize J ′ = τf +
S
∑

s=1

ps (3.14)

subject to ζt = 0 ∀k = 0, . . . , N − 1 (3.15)

yt = y0 t = 0 (3.16)

yt = yf t = N (3.17)

(yt,ut) ∈ Y × U ∀t = 0, . . . , N, (3.18)

where Y × U ⊆ R
6×2 is the set of admissible states and controls defined by h. Given

the above NLP formulation, it is possible to solve the considered trajectory optimisation

problem by leveraging on state-of-the-art nonlinear solver, like SNOPT (see Gill et al.).

Nonetheless, it is crucial noticing here that solving an optimal control problem, might

lead to further challenges. In particular, the existent nonlinearities can cause the problem

to be potentially nonconvex, high-dimensional, unstable and computationally complex.

The nonconvexity of the problem poses significant difficulties in the identification of
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global optimal solutions. On the other hand, collocation methods require a discretisation

of the time domain and choices of collocation points can impact the accuracy of the

solution as well as the computational complexity. Typically it is possible to observe a

reduction of the discretisation errors and growing computational times as we increase

the number of collocation points and consequently the dimension of the problem. In

addition, depending on the specific solver and the adopted solution technique, it is

possible to encounter convergence and stability issues, including sensitivity to initial

conditions where small changes of y0, initial trajectory guesses or system parameters

can result in significant variations in the optimised trajectory, sometimes leaving the

solver unable to provide a solution. Addressing these difficulties carefully is essential to

the successful construction of the optimal trajectory.

In the following section and in the rest of the manuscript, we propose different techniques

helping in (i) overcoming some of the above challenges and (ii) inserting vehicle routing

characteristics to the problem, to produce sensible and reliable path optimising the given

objectives.

3.3.2 Linearisation of the EoMs

Nonlinear programming formulation of an optimal control problem might lead to several

challenges, some of which have been introduced in the previous section. Linearising the

equations of motion might help overcoming some of them, improving computational

efficiency, reducing the instability in the solutions, while at the same time making easier

to analyse the behavior of the glider. To do so, prior knowledge on the glider and its

flight conditions is usually required. Thus, lets assume first that an initial estimate of

the optimal trajectory (yo(τ),uo(τ)), also known as nominal trajectory, is provided. It

is then possible to express all the variables as resulting from small perturbation ∆(.) of

the initial trajectory. More precisely, we can write

y(τ) = yo(τ) + ∆y(τ)

u(τ) = uo(τ) + ∆u(τ),

or alternatively

∆y(τ) = y(τ)− yo(τ)

∆u(τ) = u(τ)− uo(τ).

Discretising time as before and recalling then that constraints (3.15) are based on an

Euler scheme of integration and are equivalent to the equations

yt+1 = yt + η ft,
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a common practice to linearise the glider’s dynamic is to utilise the first-order Taylor

expansion of ft, enabling to approximate it as follows

ft = f(yt,ut) = f(yot ,u
o
t ) +

∂f

∂y

∣

∣

∣

(yo
t ,u

o
t )
∆yt +

∂f

∂u

∣

∣

∣

(yo
t ,u

o
t )
∆ut + o(∥(∆yt,∆ut)∥),

where we omit ft dependency on external disturbances for simplicity in the notation.

Therefore, if we define

f̃t = f̃(yt,ut) := f(yot ,u
o
t ) +

∂f

∂y

∣

∣

∣

(yo
t ,u

o
t )
∆yt +

∂f

∂u

∣

∣

∣

(yo
t ,u

o
t )
∆ut,

we have that

ft ≃ f̃t

and we can write the approximated aerodynamic constraints as

yt+1 = yt + η f̃t, (3.19)

where f̃t is finally a linear function of (yt,ut). It is worth noticing here that also (yo,uo)

can depend on time.

Remark 3.1. Strictly speaking, the linearity of constraints (3.19) is reached when also the

time partition length is fixed and η = (τf−τ0)/N does not depend on the arrival time τf ,

now considered as a variable. In the following chapter, we will see how the introduction

of binary variables and upper bounds on the flight time can serve the objective of keeping

the time partition length fixed, avoiding the need of fixing the arrival time τf .

Unfortunately, in facing planning problems such the vehicle routing and trajectory opti-

misation ones, it is often the case that information about an initial (optimal) trajectory

are limited or absent. Nonetheless, with little prior information about the initial and

final conditions and within certain settings of the point of interest, it is possible to con-

struct reasonable nominal trajectories taking advantages of equilibria or (quasi) steady

flight conditions, which are situations characterised by the glider flying at a constant

speed, direction and descent rate. In particular, we can have equilibrium flight condi-

tions when ẏ = f(y,u) = c, with c = (cx, cy, ch, cv, cγ , cφ) ∈ R
6 and

v̇ = cv = 0 (3.20)

γ̇ = cγ = 0 (3.21)

φ̇ = cφ = 0. (3.22)
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Considering then a stable air mass, the absence of wind (β = 0) and assuming moreover

that

• the glider is flying flat, or better stated, the flight path angle γ is reasonably small

and the UAV is not banking, i.e. µ = 0;

• the glider heading angle is aligned with the vector pointing from the starting point

y0 to the final point yf ;

• the value of the lift coefficient CL is fixed;

it is possible to solve the system f(y,u) = c obtaining that

ẋ = f1 = cx, v̇ = f4 = 0,

ẏ = f2 = cy, γ̇ = f5 = 0,

ḣ = f3 = ch, φ̇ = f6 = 0.

In particular, given the small angle assumptions, we have that sin(γ) ≃ γ, cos(γ) ≃ 1,

sin(µ) = 0 and cos(µ) = 1. Then, denoting with φeq the angle such that φ is aligned

with (xf , yf ) − (x0, y0), and with CLeq the chosen value for the coefficient of lift, from

equalities (3.4)-(3.5) we can derive the system of equations

1

2m
ρSw(CD0

+ kAC
2
Leq

)v2 + gγ = 0

1

2m
ρSwCLeqv −

g

v
= 0

and obtain the following initial trajectory

xo(τ) = x0 + vosin(φo)τ (3.23)

yo(τ) = y0 + vocos(φo)τ (3.24)

ho(τ) = h0 + vosin(γo)τ (3.25)

vo(τ) = veq =

√

2mg

ρSwCLeq

(3.26)

γo(τ) = γeq = −
CD0

+ kAC
2
Leq

CLeq

(3.27)

φo(τ) = φeq (3.28)

CoL(τ) = CLeq (3.29)

µo(τ) = µeq = 0. (3.30)

Applying the same principles seen above when prior knowledge on the initial trajectory is

available, we can then linearise the aerodynamic constraints and solve the approximated

trajectory optimisation problem.
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Remark 3.2. Among all the equilibrium flight conditions, it is usually convenient to

exploit a preferred one that, keeping all the other assumptions the same, optimises the

drag to lift ratio (D/L). In particular, equating the derivative ∂(D/L)
∂CL

to zero, we have

that
∂(D/L)

∂CL
=
CD0

C2
L

+ kA = 0,

and solving for CL, we can find the value CLeq =
√

CD0

kA
.

Finally, many situations occur where neither prior knowledge on the initial trajectory

is available, nor clear equilibrium flight conditions can be derived, and addressing the

linearisation challenge necessitates additional efforts and the need for novel tailored

strategies representing one of the main contribution of this work. Therefore, the explo-

ration of alternative approaches that do not rely on prior initial trajectory information

will be undertaken at a later stage in the thesis, particularly in Chapter 5.

In the following section, we provide numerical examples for solving the EoMs by using

instances of the illustrative trajectory optimisation problem described above, also high-

lighting results for the glider flight conditions as well as the (dis)advantages presented

by a nonlinear numerical approach.

3.4 Glider Flight Example

In this section, we present numerical results obtained from solving exemplary instances

of the afore-mentioned trajectory optimisation problem, offering valuable insights into

the performance, stability and control characteristics of the glider. While analysing the

positive outcomes of the solutions obtained via the deployment of the above-mentioned

direct method, we also acknowledge and discuss the limitations and drawbacks that

emerged during the analysis. By providing a comprehensive assessment of both the

benefits and complications of the approach adopted, we aim at gaining deeper under-

standing of the glider’s behavior as well as an enhanced comprehension of the challenges

arising from the inclusion of flight dynamics in practical applications.

3.4.1 NLP solution

At first, we propose a solution to the NLP formulation of the glider trajectory optimi-

sation problem (3.14)-(3.18) described before. In our simulations, we consider a glider

with initial state

y0 = (x0, y0, z0, v0, γ0, φ0) = (0, 0, 261, 7,−0.0274, 0),
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Variable Lower Bound Upper Bound Unit

x −5000 5000 m
y −5000 5000 m
z 0 1500 m
v 5 40 m/s
γ −π

3
π
3 radians

φ −4π 4π radians
CL 0.1 1.17 dimensionless
µ −π

3
π
3 radians

Table 3.2: Glider flight envelope. For each variable, we report here the upper and
lower bounds as well as the unit of measure used.

that is required to reach a final location

(xf , yf , zf ) = (1550, 0, 0),

with a final moderate speed vf ≤ 5.5 m/s and within a time span of [t0, tf ] = [0, 295]

seconds. It is then straightforward to understand that τf ≤ tf . Following Flanzer (2012),

it is possible to determine the glider flight envelope, used for the rest of the manuscript

unless otherwise stated, as in Table 3.2.

Furthermore, as previously mentioned, it is often convenient to require smoothness of

the trajectory. For this reason, we insert some penalty terms: first, we limit abrupt de-

cisions’ changes, possibly avoiding extremely steep turns, by penalising control variables

adjustments

p1 =
N−1
∑

t=0

(CLt+1
− CLt)

2

p2 =
N
∑

t=0

µ2t .

Consequently, we penalise changes in altitude, that will also help the glider to fly suffi-

ciently far from the ground

p3 =

N−1
∑

t=0

(zt+1 − zt)
2.

We also ask to avoid sudden accelerations

p4 =
N−1
∑

t=0

(vt+1 − vt)
2,
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as well as sudden deep dives

p5 =

N
∑

t=0

(γt+1 − γt)
2.

Finally, we want to avoid wobbling trajectories that exhibit continuous heading direction

changes

p6 =
N−1
∑

t=0

(φt+1 − φt)
2.

The other parameters and inputs to the EoMs or their nonlinear programming repre-

sentation are given in Table 3.1. Deploying then a uniform time partition with N = 94

collocation points, it is possible to solve the glider trajectory optimisation problem using

a state-of-the-art nonlinear solver like SNOPT on a Viglen desktop, Intel(R) Core(TM)

i5− 7500 CPU with 3.40GHz and a RAM of 8 GB, running under Windows 10. Figure

3.4 illustrate the optimal trajectory found first considering a scenario in absence of wind

(β = 0), Figure 3.4(a), and then a scenario with typical wind conditions, Figure 3.4(b).

In the latter, the wind strength coefficient β = 0.025 is such that it linearly approximates

the average wind gradient profile for the UK, as suggested by Drew et al. (2013), for a

reference altitude of nearly 500 meters.

(a) β = 0 (b) β = 0.025

Figure 3.4: Optimal glider trajectories seen from above both in absence (a) and in

presence of wind (b).

As expected, it is possible to notice that the wind’s presence forces the glider to fly more

towards east (x direction) and then approach the arrival point from another direction,

being able to adjust its trajectory at lower altitudes. Furthermore, a better understand-

ing of glider performances and its flight conditions can be obtained examining Figure

3.5, where the altitude (h), velocity (v) and flight path angle (γ) are illustrated again for

the case with absence and presence of wind, and Figure 3.6, where the decisions made

in terms of control variables are also examined. As it is possible to notice, the glider

necessitate of an initial adjustment due to the fact that the glider starts with a very
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(a) Altitude (b) Altitude

(c) Velocity (d) Velocity

(e) Flight path angle (f) Flight path angle

Figure 3.5: Some state variables profiles obtained by solving the NLP. Solutions
attained in absence of wind are shown on the left, whereas the ones attained in presence

of wind on the right.

low speed and an attitude close to stalling conditions. Consequently, a sudden change

in γ is required, after which the glider gains a sufficient velocity and tends to descent

at a regular pace, keeping its speed and flight path angle as constant as possible during

the flight and then changing them for the landing period. Nonetheless, although gliders

altitude, speed and flight path angle profiles show a similar behaviour regardless the

presence of wind, it is possible to clearly observe the necessity to adjust the direction of

flight according to it, leading to a significantly different solution in terms of bank angle

choices.
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(a) Lift coefficient (b) Lift coefficient

(c) Bank angle (d) Bank angle

Figure 3.6: Control variables profiles obtained by solving the NLP. Decisions attained
in absence of wind are shown on the left, whereas the ones attained in presence of wind

on the right.

It is worth mentioning once more here that NLP-based solutions are sensitive to model

parameters, time partition and initial guesses, with cases where convergence can be only

ensured if a proper initialisation is provided Zhao (2004). Even in the example just

shown, changing the time partition might lead to significant change in the landing time

of the solution just shown by up to 40%. With this in mind, we provide now the reader

with an example of the same problem where the trajectory is linearised around the found

optimal solution.

3.4.2 Linearised Dynamic and Comparision with NLP

Analogously to the above, in this section we propose a solution to the same instance of

the glider trajectory optimisation problem (3.14)-(3.18) this time considering a linear

formulation where an initial optimal trajectory is provided. We compare then the solu-

tion found with the nonlinear solver, with the one obtained using the linear formulation.

This illustration aims at validating the utilised linearisation method as well as showing

its reliability and potential advantages. We solve the derived glider trajectory optimi-

sation problem using a state-of-the-art linear solver like Gurobi 10.0.1, deployed again

on a Viglen desktop, Intel(R) Core(TM) i5− 7500 CPU with 3.40GHz and a RAM of 8
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GB, running under Windows 10. Similarly to the previous case, Figure 3.7 illustrate an

example of the optimal trajectories found.

(a) β = 0 (b) β = 0.025

Figure 3.7: Comparison of the optimal solutions obtained from the NLP (blue) and

the linearised dynamic (green), both in absence (a) and in presence of wind (b).

Again, a better understanding of glider performances and its flight conditions can be

obtained by examining Figure 3.8 and Figure 3.9, where profiles of states and control

variables stemming from the linearised solution are compared with the ones found by

solving the NLP.

As desired, trajectories stemming from the solutions of the problems with linearised

EoMs, as well as the corresponding variables profiles, result to be close to the ones

found by solving the NLP.

In light of this, it is clear that the inclusion of flight dynamics in practical applications,

as well as its integration within vehicle routing and trajectory optimisation problems,

presents specific challenges that are critical to achieve efficient and reliable operations,

some of which have been just presented. The high dimensionality of the solution space

renders it difficult to exhaustively explore the flight envelope, with nonlinear dynamics

increasing computational complexity and solutions instability. Linearisation of the EoMs

helps in reducing those challenges, but maintain the difficulty of finding sound flyable

trajectories in absence of good initial solutions or insights. Hence, it is indisputable

that a thoughtful approach is required to address these challenges and reach a reliable

and tractable integration of trajectory optimisation within vehicle routing problems. In

the following chapters, we present first a method to solve the VRTOP when some prior

knowledge about the initial trajectory or equilibrium conditions is available. Then, we

discuss the intricate problem of finding optimal trajectories and reliable paths for the

VRTOP, also in cases when prior knowledge is limited or absent.
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(a) Altitude (b) Altitude

(c) Velocity (d) Velocity

(e) Flight path angle (f) Flight path angle

Figure 3.8: State variables profiles obtained by solving the linearised EoMs. Solutions
attained in absence of wind (left) and in presence of wind (right) are compared to the

ones found by solving the NLP.
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(a) Lift coefficient (b) Lift coefficient

(c) Bank angle (d) Bank angle

Figure 3.9: Control variables profiles obtained by solving the linearised EoMs. Deci-
sions made in absence of wind (left) and in presence of wind (right) are compared to

the ones found by solving the NLP.



Chapter 4

The Glider Routing and

Trajectory Optimisation Problem

The primary objective of this chapter is to present the Glider Routing and Trajectory

optimisation Problem (GRTOP) and establish its mathematical formulations. Follow-

ing initially Coutinho et al. (2019), we begin by describing the problem, introducing

a Mixed-Integer Nonlinear Programming (MINLP) formulation, followed by a progres-

sion towards a Mixed-Integer Second Order Cone Programming (MISOCP) description,

where dynamic constraints are linearised assuming prior knowledge of the initial trajec-

tory or of well-defined equilibrium flight conditions. Subsequently, we present a novel

Mixed-Integer Linear Programming (MILP) formulation obtained by changing or ap-

proximating the metric used to compute distances. At the end of the chapter, examples

of glider’s missions are also given, showing the possibility of improving computational

times by means of a two level time partitioning. Glider routing and trajectory optimi-

sation problems in cases where prior information on the initial trajectory or equilibrium

conditions is absent are comprehensively treated through a detailed discussion in the

subsequent chapter.

4.1 Problem Description

The problem under investigation involves the management of a fleet of balloon-lifted

gliders, which are required to navigate the airspace while visiting specific points of

interest, referred to as waypoints, capture images of objects located at these points and

subsequently land safely at designated landing sites. In order to monitor and survey

the objects in the locations of interest, each glider is equipped with a remote camera

fixed to its body and able to take pictures within relative distant ranges. The fleet of

gliders is assumed to be homogeneous and the cameras to have the same specifications.

The primary objective of this mission is to optimise the mission duration, aiming at

53
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completing the required tasks in the shortest amount of time. At the same time, it is

crucial to ensure that the flight dynamics constraints are respected throughout the entire

mission. The problem just described is called the the Glider Routing and Trajectory

optimisation Problem (GRTOP). To provide a precise and exhaustive mathematical

description of the GRTOP, other than gliders’ characteristics and dynamic described in

the previous chapter, it is necessary to further describe its key components, including:

• balloon-lifting techniques;

• camera and photograph geometry;

• waypoints characterisation;

• landing sites description.

By carefully defining and elaborating on these key components, we can then establish

a solid foundation for providing mathematical models, and consequently solutions algo-

rithms, to the problem.

In the considered GRTOP, gliders can be balloon-lifted and launched from launching sites

estimated using the tool “ASTRA High Altitude Balloon Flight Planner” proposed by

Sobester et al. (2013) and available at Zapponi (2013). The provided tool enables users to

simulate the trajectory of a balloon transporting a payload. Users have the flexibility to

choose parameters such as payload weight and balloon type. Utilizing relevant weather

forecasts, the ASTRA tool identifies optimal releasing points and generates potential

flight trajectories for the balloon, allowing to take the gliders to an advantageous position

relative to the waypoints and ensuring a more efficient planning aligned with the mission

objectives. Then, a typical geometry describing the cameras’ field of view is derived by

adopting an inverted conic shape, where we consider its opening angle α equal to 45o

(0.7854 radians). This type of geometry, depicted in Figure 4.1 and adopted also in

Ariyur and Fregene (2008), Roelofsen et al. (2016) and Nedjati et al. (2016) for UAV-

camera systems, enables the definition of conical-section regions that the gliders must

visit in order to reach the corresponding waypoints.

After defining the camera geometry, we can notice that each waypoint i ∈ W can be

entirely described by the tuple (x̄i, ȳi, r̄i, hi, h̄i). Assuming that all the points of interest

lie on the ground, (x̄i, ȳi, 0) represents the position of the i− th waypoint in the space,

while r̄i ≥ 0 represents the radius of a circle in the xy plane that encloses the footprint

of the object to be photographed at i. At the same time, the parameters hi and h̄i,

define and constrain the quality of the pictures, representing respectively the minimum

and maximum heights from which the object can be recorded. Given these assumptions,

a glider g flying at an altitude hg can be deemed to visit waypoint i and take a good

quality picture of it, only if it enters the conic-like region above i at an altitude between
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(a) (b)

Figure 4.1: Representation of gliders’ camera field of view and its possibility of taking
a good quality picture of an object on the ground. In (b), the grey conical-section from

where the glider is able to take good quality pictures.

Figure 4.2: Representation of a landing zone geometry.

hi and h̄i, see Figure 4.1(b). More precisely, the UAV g can visit waypoint i if its height

is between the defined limits, hi ≤ hg ≤ h̄i, and its position satisfies

(xg − x̄i)
2 + (yg − ȳi)

2 ≤ (hgtg(α)− r̄i)
2 = (hg − r̄i)

2,

where the last equality stems from the assumption that α = 45o. Analogously, we can

completely determine the geometry of the landing zone l ∈ L via the tuple (x̃l, ỹl, r̃l),

with the shape of landing site that is supposed to be a half-sphere with center lying on

the ground. Therefore, (x̃l, ỹl, 0) defines the center’s position on the xy plane, while r̃l

represents the radius of the half-sphere enclosing the landing region, see Figure 4.2.

With this in mind, we are able to proceed and provide a first problem formulation

for the GRTOP. In the following section, we introduce the definition of the variables

required to write the GRTOP as a MINLP and we provide a mathematical description

of the latter, also considering the non-linear dynamic constraint derived in the previous

chapter utilising the Euler scheme to integrate the EoMs.
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4.2 A MINLP Formulation

As introduced above, using the ASTRA tool we can assume a fleet of gliders, G, to

be equipped with the remote cameras previously described and available at a known

launching point and known initial state. Let then W be a given set of waypoints that

have to be visited and L be a set of possible landing sites. The mission goal is then

to find optimal routes and trajectories ∀g ∈ G such that the whole set of waypoints is

surveyed and the total mission time is minimised. To do so and simultaneously solve

the (combinatorial) problem of routing while exploiting the previously described direct

collocation method for optimising the trajectory, we start considering a time interval of

interest, [τ0, τf ]. As noted in Remark 3.1, in order to derive a linear formulation of the

problem, it is convenient to deal with constant time partitions. Therefore, we define a

fixed time interval [t0, tf ] such that [τ0, τf ] ⊆ [t0, tf ]. In particular, we can set t0 to be

equal to τ0, which is fixed, whereas tf is defined as the time required to travel along the

most distant points in the space at a moderate speed. More precisely, if we consider B

to be the smallest box containing all the point of interest (launching site, waypoints and

landing site) and if we consider a space buffer enlarging B of about 5% in all the space

directions, we can determine tf as the time required to fly along the diagonal of B, dB,

at the preferred equilibrium velocity, veq, obtained by solving equations (3.23)-(3.30)

while selecting the equilibrium lift coefficient by optimising the drag to lift ratio as in

Remark 3.2. In other words,

tf =
dB
veq

. (4.1)

Partitioning then the time interval [t0, tf ] into N smaller time steps, such that

t0 = τ0 < τ1 < · · · < τN = tf ,

and indicating each time step index with t ∈ T = {0, . . . , N} corresponding to a time

instant τt ∈ [t0, tf ], it is then possible to determine the time in which a glider g is visiting

a waypoint i or landing at landing site l by defining the following binary variables

ag,i,t =







1, if the glider g is visiting waypoint i at time step t

0, otherwise
(4.2)

and

bg,l,t =







1, if the glider g is in the landing site l at time step t

0, otherwise
. (4.3)
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In this way, it is possible to determine the flight time for each glider g as the

min
t∈T

{τt | bg,l,t = 1 for some l ∈ L},

and we can also determine a-posteriori the mission’s end time, τf , as

τf = max
g∈G

{

min
t∈T

{τt | bg,l,t = 1 for some l ∈ L}

}

. (4.4)

With these definitions in mind, we can now proceed and formally write the objective

function, which is the minimisation of the total flight time, described as the sum of

gliders’ flight times. Along the manuscript, we will use equally spaced time partitions

such that each time step length is constant. Other partition techniques might be used,

but they are out of this manuscript’s scope and can the subject for future research

investigations. Then, utilising such a uniform time partition, with time step length

equal to

η = (τt+1 − τt) =
tf − t0
N

,

we require that the number of time steps t in which each glider g is airborne, i.e. bg,l,t = 0

∀l, is minimum. Given that each glider is balloon-launched and starts the mission already

airborne, this is equivalent to require that the number of time step in which the glider

is at a landing site is maximum, leading us to defining the objective function as

min −
∑

g∈G,l∈L,t∈T\{0}

η bg,l,t = −max
∑

g∈G,l∈L,t∈T\{0}

η bg,l,t. (4.5)

After defining the mission goal, we can start defining mission’s constraints. First of all,

we require that all the waypoints must be visited and this involves a series of constraints

commencing with
∑

g∈G,t∈T

ag,i,t ≥ 1, ∀i ∈W.

These indicate that at some point in time t a glider g is actually visiting waypoint i, i.e.

ag,i,t = 1. As such, the visiting glider g must be close enough to the waypoint and able

to take a good quality picture of it. Therefore the distance of g from i on the xy plane

at the time of visit, dg,i,t, must be such that the cone describing the camera’s field of

view is including the object to be photographed. Then, a good quality picture can be

only taken when g falls within the altitude range [hi, h̄i] describing the waypoint. More
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precisely, we require that

d2g,i,t ≥ (xg,t − x̄i))
2 + (yg,t − ȳi)

2, ∀g ∈ G, ∀i ∈W, ∀t ∈ T

dg,i,t ≤ (hg,t − r̄i) +M(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T

hg,t ≤ h̄iag,i,t + hub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T

hg,t ≥ hiag,i,t + hlb(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T.

Here, a comment is required about the “big-M” term in the model definition. The

constant M is a number big enough to make the logic implication

ag,i,t = 1 =⇒ dg,i,t ≤ (hg,t − r̄i)

ag,i,t = 0 =⇒ dg,i,t ∈ R+

always valid and it has been computed as the space diagonal of the smallest cuboid

containing the waypoints, landing sites and launching point, plus buffer. In other words,

M = dB. A similar role is then played by the lower and upper bounds hub and hlb, being

respectively the minimum and maximum flight altitude. In addition to these constraints,

given that the camera is attached to the underside of the glider’ fuselage or its belly, we

require the UAV to fly ”flat” with small bank, µ̂, and flight path, γ̂, angles by writing

γg,t ≤ γ̂ag,i,t + γub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T

γg,t ≥ −γ̂ag,i,t + γlb(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T

µg,t ≤ µ̂ag,i,t + µub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T

µg,t ≥ −µ̂ag,i,t + µlb(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T.

Ultimately, the glider needs to to avoid blurred pictures by flying at a moderate speed

at the time of visit:

vg,t ≤ v̂ag,i,t + vub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T.

In a similar manner, each glider g is then required to land before the final mission time

tf . In other words, we request that bg,l,t = 1 for some time step t ≤ N and landing site

l. Consequently, modelling again the logical implication through ”big-M” constraints,

at time of landing we ask the glider g to be within the half sphere determined by l:

∑

l∈L,t∈T

bg,l,t ≥ 1, ∀g ∈ G

r2g,l,t ≥ (xg,t − x̃l)
2 + (yg,t − ỹl)

2 + h2g,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ T

rg,l,t ≤ r̃l +M(1− bg,l,t), ∀g ∈ G, ∀l ∈ L, ∀t ∈ T,
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with rg,l,t representing the distance of the glider from the landing site’s center. Fur-

thermore, we require that each glider lands only after its visit (if any) to the waypoints

writing constraints

∑

t̃≤t

bg,l,t̃ ≤ N(1− ag,i,t), ∀g ∈ G, ∀l ∈ L, ∀i ∈W, ∀t ∈ T.

Finally, after defining mission’s objectives and targets, we proceed by considering UAVs’

dynamic. Recalling that the motion of each glider is described by the system of ODEs

ẏg(τ) = f(yg(τ),ug(τ),wg(τ), τ),

where yg(τ),ug(τ),wg(τ) represent respectively the six state variables, the control vari-

ables and external disturbances (i.e. the wind strength parameter β in our case) for

glider g at time τ , and deploying the forward Euler integration scheme described in the

previous section to solve the EoMs, it is possible to write dynamic constraints

yg,t+1 = yg,t + ηf(yg,t,ug,t,wg,t), ∀g ∈ G, ∀t ∈ T \ {N} (4.6)

yg,0 = y0, ∀g ∈ G (4.7)

ylb ≤ yg,t ≤ yub, ∀g ∈ G, ∀t ∈ T (4.8)

ulb ≤ ug,t ≤ uub, ∀g ∈ G, ∀t ∈ T (4.9)

determining, at each collocation point τt, the decisions and state of the glider during

the flight, (4.6), indicating its initial conditions, (4.7), and defining its flight envelope

bounds, (4.8)-(4.9). It is worth noting again that other integration schemes are also pos-

sible, leading to different equations describing constraints (4.6). We refer the interested

reader to Coutinho et al. (2019) where a detailed analyses and comparison of the differ-

ent methods is discussed in the context of the GRTOP. Within our formulation, it is also

possible to contemplate an extended set of possible solutions, by enlarging the trajecto-

ries satisfying dynamic constraints (4.6). More precisely, we admit some deviations from

the original equations penalising deviation from them in the objective. Consequently,

instead of considering constrains (4.6), we can write the following inequalities

yg,t+1 ≤ yg,t + ηf(yg,t,ug,t,wg,t) + εg,t, ∀g ∈ G, ∀t ∈ T \ {N} (4.10)

yg,t+1 ≥ yg,t + ηf(yg,t,ug,t,wg,t)− εg,t, ∀g ∈ G, ∀t ∈ T \ {N}, (4.11)

where εg,t = (εx, εy, εh, εv, εγ , εφ)g,t ≥ 0 represents the deviation from the equation de-

scribing the dynamic of g at time step t.Thus, as just mentioned, we consider inserting

these terms εg,t in the objective function with the intention of minimising such diver-

gences. Indicating the set of state variables with S = {x, y, h, v, γ, φ}, we can then write
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a new objective as

min − w1 ∗
∑

g∈G,l∈L,t∈T\{0}

η bg,l,t

+ w2

∑

s∈S,g∈G,t∈T

η
εs,g,t
κs

+ w3

∑

s∈S,g∈G

tf
ϵs,g
κs

(4.12)

where we specify convenient weights for the objectives, w1, w2, w3 (see also Miettinen

(1999) for weights role in multiobjective optimisation problems), and where we con-

sider a further penalisation term to minimise the maximum deviation from the dynamic

constraints (4.6) by defining variables ϵg = (ϵx, ϵy, ϵh, ϵv, ϵγ , ϵφ)g ≥ 0 and inserting con-

straints

εg,t ≤ ϵg, ∀g ∈ G, ∀t ∈ T. (4.13)

Each deviation term is then appropriately scaled via the factors κs depending on the

state variable’s magnitude. With this in mind, a complete mixed-integer nonlinear

programming (MINLP) formulation of the problem can then be derived as in (4.14)-

(4.39).

min − w1 ∗
∑

g∈G,l∈L,t∈T\{0}

η bg,l,t

+ w2

∑

s∈S,g∈G,t∈T

η
εs,g,t
κs

+ w3

∑

s∈S,g∈G

tf
ϵs,g
κs

(4.14)

subject to
∑

g≤i,t∈T

ag,i,t ≥ 1, ∀i ∈W (4.15)

d2g,i,t ≥ (xg,t − x̄i))
2 + (yg,t − ȳi)

2, ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.16)

dg,i,t ≤ (hg,t − r̄i) +M(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.17)

hg,t ≤ h̄iag,i,t + hub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.18)

hg,t ≥ hiag,i,t + hlb(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.19)

γg,t ≤ γ̂ag,i,t + γub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.20)

γg,t ≥ −γ̂ag,i,t + γlb(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.21)

µg,t ≤ µ̂ag,i,t + µub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.22)

µg,t ≥ −µ̂ag,i,t + µlb(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.23)

vg,t ≤ v̂ag,i,t + vub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.24)
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∑

l∈L,t∈T

bg,l,t ≥ 1, ∀g ∈ G (4.25)

r2g,l,t ≥ (xg,t − x̃l)
2 + (yg,t − ỹl)

2 + h2g,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ T (4.26)

rg,l,t ≤ r̃l +M(1− bg,l,t), ∀g ∈ G, ∀l ∈ L, ∀t ∈ T (4.27)
∑

t̃≤t

bg,l,t̃ ≤ N(1− ag,i,t), ∀g ∈ G, ∀l ∈ L, ∀i ∈W, ∀t ∈ T (4.28)

yg,t+1 ≤ yg,t + ηf(yg,t,ug,t,wg,t) + εg,t, ∀g ∈ G, ∀t ∈ T \ {N} (4.29)

yg,t+1 ≥ yg,t + ηf(yg,t,ug,t,wg,t)− εg,t, ∀g ∈ G, ∀t ∈ T \ {N} (4.30)

yg,0 = y0, ∀g ∈ G (4.31)

ylb ≤ yg,t ≤ yub, ∀g ∈ G, ∀t ∈ T (4.32)

ulb ≤ ug,t ≤ uub, ∀g ∈ G, ∀t ∈ T (4.33)

εg,t ≤ ϵg, ∀g ∈ G, ∀t ∈ T (4.34)

ag,i,t ∈ {0, 1}, ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.35)

bg,l,t ∈ {0, 1}, ∀g ∈ G, ∀l ∈ L, ∀t ∈ T (4.36)

dg,i,t, rg,i,t ∈ R+, ∀g ∈ G, ∀i ∈W ∪ L, ∀t ∈ T (4.37)

yg,t ∈ R
6,ug,t ∈ R

2, ∀g ∈ G, ∀t ∈ T (4.38)

εg,t, ϵg ∈ R
6
+, ∀g ∈ G, ∀t ∈ T, (4.39)

where, as previously described, objective (4.14) requires to minimise the time of flight

as well as the scaled deviations from the linearised dynamic. It is worth mentioning

here that, although a similar goal as in Coutinho et al. (2019) is presented, the differ-

ent formulation of the objective as the maximisation of landing time, combined with

constraint (4.25), the separation of penalty terms by state as well as their scaling allow

solvers for a more reliable selection of the trajectory and provide more meaning to the

dynamic after landing. Then, constraints (4.15)-(4.24) ensure the correct visit of the

waypoints, also respecting camera’s and glider dynamic limitations, while constraints

(4.25)-(4.28) ensure a correct glider landing. Finally, constraints (4.29)-(4.34) describe

gliders’ dynamic restrictions throughout the flight, whereas the rest of the constraints

define variables domains.

With this in mind, if on one side a MINLP formulation is extremely useful to accurately

describe the glider routing and trajectory optimisation problem, on the other hand

finding solutions to such problem formulation can be computationally expensive and, in

the context of dealing with UAVs’ dynamic constraints, can carry all the disadvantages

highlighted in the previous chapter. Therefore, in the following sections, we devote our

efforts in deriving approximation of nonlinear constraints in order to overcome such

difficulties and to boost computational efficiency.
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4.3 Approximation Techniques for a MILP Formulation

In the previous section, we derive a nonlinear model formulation for the glider routing

and trajectory optimisation problem. However, this model might be difficult to handle

and carries in it all the difficulties stemming from the nonlinearities of a trajectory

optimisation problem, such as instability of the optimal solution, high dependence on

initial conditions and high computational times. When some prior knowledge on an

initial trajectory, equilibria or (quasi) steady-state flight conditions is available, it is

always advisable to follow the techniques proposed in the previous chapter and reach a

linearised formulation of the glider dynamic. Doing so, leveraging on the approximation

f̃ of f , it is possible to replace constraints (4.10) and (4.11) with the linear ones

yg,t+1 ≤ yg,t + ηf̃(yg,t,ug,t,wg,t) + εg,t, ∀g ∈ G, ∀t ∈ T \ {N} (4.40)

yg,t+1 ≥ yg,t + ηf̃(yg,t,ug,t,wg,t)− εg,t, ∀g ∈ G, ∀t ∈ T \ {N}. (4.41)

In addition to this, to increase the reliability of the flight dynamic and ensure the

representativeness of the dynamic constraints, also overcoming the local nature of Tay-

lor’s approximation, we decide to require the glider to fly as close as possible to the

initial trajectory or equilibrium points. More precisely, we define further variables

λg,t = (λx, λy, λh, λv, λγ , λφ)g,t ≥ 0, Λg = (Λx,Λy,Λh,Λv,Λγ ,Λφ)g ≥ 0 as well as

Λu
g = (ΛuCL

,Λuµ)g ≥ 0, helping in penalising such deviations from the initial nominal

trajectories (yog,t,u
o
g,t). We then insert the following penalties in the objective function

w4

∑

s∈S,g∈G,t∈T

η
λs,g,t
κs

(4.42)

w5

∑

s∈S,g∈G

tf
Λs,g
κs

(4.43)

w6

∑

c∈C,g∈G

tf Λuc,g, (4.44)

with C = {CL, µ} indicating the set of control variables, as well as constraints

(yg,t − yog,t) ≤ λg,t, ∀g ∈ G, ∀t ∈ T (4.45)

(yog,t − yg,t) ≤ λg,t, ∀g ∈ G, ∀t ∈ T (4.46)

λg,t ≤ Λg, ∀g ∈ G, ∀t ∈ T (4.47)

(ug,t − uog,t) ≤ Λu
g , ∀g ∈ G, ∀t ∈ T (4.48)

(uog,t − ug,t) ≤ Λu
g , ∀g ∈ G, ∀t ∈ T. (4.49)

In this way, by transforming the equations of motion into their linearised form, and

inserting proper penalties to ensure model reliability, we reach a formulation of the
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GRTOP as a mixed-integer second-order cone programming (MISOCP), which help us

handling the problem with linear and convex quadratic constraints efficiently. However,

while the current formulation can already serve our purpose of solving the GRTOP

with prior information, in order to further boost efficiency and computational speed and

render the problem more scalable, we aim at enhancing our approach by transitioning to

a completely linear formulation, improving even further Coutinho et al. (2019) approach

to the GRTOP with prior information.

4.3.1 Linear Approximation for Distance Constraints

After a closer examination, we can identify that the solely remaining source of nonlin-

earity emerges from Euclidean norms and distance constraints (4.16)-(4.17) and (4.26)-

(4.27). Thus, to render the optimisation problem more menageable and exploit the

potentialities of the state-of-the-art optimisation algorithms, we decide to linearise dis-

tance constraints by deploying a different norm that can be indeed easily linearised.

More precisely, we can define a p-ball of radius r and centered in x0 as

Bp(x0, r) = {x ∈ R
d | ∥x− x0∥p ≤ r},

where ∥x∥p =
p

√

d
∑

i=1
|xi|p is the Lp norm in R

d for 1 ≤ p < ∞, while ∥x∥∞ = max
i=1,...,d

|xi|

represents the L∞ norm when p = ∞. An illustration of the unitary balls (r = 1) for

p = 1, 2 and ∞ is depicted in Figure 4.3.

Figure 4.3: Unitary balls defined using different norms. In black we see the Euclidean

ball, B2(x0, r), in red we depict the unitary ball determined by the L1 norm, B1(x0, r),

while the ball stemming from the L∞ norm, B∞(x0, r), is represented in blue.
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It is then possible to observe that B1(x0, r) can be described by 2d+1 linear inequalities

(actually 2d given that it is the intersection of 2d half-spaces) and the simplest approach

to do so is to introduce new variables yi ∈ R+, i = 1, . . . , d and write the following

system of inequalities

x0,i − xi ≤ yi

xi − x0,i ≤ yi

d
∑

i=1

yi ≤ r.

We can then rewrite inequalities (4.16)-(4.17) as

dxg,i,t ≥ xg,t − x̄i, ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.50)

dxg,i,t ≥ x̄i − xg,t, ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.51)

dyg,i,t ≥ yg,t − ȳi, ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.52)

dyg,i,t ≥ ȳi − yg,t, ∀g ∈ G, ∀i ∈W, ∀t ∈ T (4.53)
∑

j∈{x,y}

djg,i,t ≤ (hg,t − r̄i) +M(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ T, (4.54)

and obtain a linear formulation of the constraints. Noting that B1(x0, r) ⊆ B2(x0, r), we

can state that these inequalities produce a set of more conservative constraints, meaning

that if (4.50)-(4.54) are valid inequalities for the current solution, then (4.16)-(4.17) are

also valid inequalities for it, whereas the converse is not necessarily true. Analogously,

we can rewrite constraints (4.26)-(4.27) as

rxg,i,t ≥ xg,t − x̃l, ∀g ∈ G, ∀l ∈ L, ∀t ∈ T (4.55)

rxg,i,t ≥ x̃l − xg,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ T (4.56)

ryg,i,t ≥ yg,t − ỹl, ∀g ∈ G, ∀l ∈ L, ∀t ∈ T (4.57)

ryg,i,t ≥ ỹl − yg,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ T (4.58)

rhg,i,t ≥ hg,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ T (4.59)

rhg,i,t ≥ −hg,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ T (4.60)
∑

j∈{x,y,h}

rjg,l,t ≤ r̃l +M(1− bg,l,t), ∀g ∈ G, ∀l ∈ L, ∀t ∈ T, (4.61)

reaching a linear and more conservative version of the GRTOP.

As an alternative and less conservative approach, it is possible to leverage on an approx-

imation of the Euclidean norm proposed by Rhodes (1995). In particular, the L2 norm
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can be approximated by a convex combination of the L1 norm and L∞ norm by writing

∥x∥2 ≃ λd∥x∥1 + (1− λd)∥x∥∞ (4.62)

for d = 2, 3, x ∈ R
d and constants λ2 = 0.3364 or λ3 = 0.2980. A comparison between

the Euclidean norm and its just presented approximation in two dimensions is shown in

Figure 4.4.

Figure 4.4: Euclidean ball approximation. The Euclidean ball is depicted in black,

B2(x0, r), in red the unitary ball determined by the L1 norm, B1(x0, r), while the ball

stemming from the L∞ norm, B∞(x0, r), is represented in blue. Ultimately, in green is

shown the convex approximation of the Euclidean norm determined by equation (4.62).

To determine the corresponding linear constraints, similarly to the above, we can define

auxiliary variables yi, i = 1, . . . , d such that

x0,i − xi ≤ yi

xi − x0,i ≤ yi.

Then, recalling that ∥x∥∞ = max
i=1,...,d

|xi|, we can define ȳ such that

yi ≤ ȳ, ∀i = 1, . . . , d,

and we can consider the Euclidean norm approximation ξd(x) as

ξd(x) = λd

d
∑

i=1

yi + (1− λd)ȳ, for d = 2, 3.
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Consequently, B2(x0, r) can be approximated as

B2(x0, r) = {x ∈ R
d | ξd(x) ≤ r},

where ξd(x) ≤ r is now a linear inequality.

It is worth mentioning here that despite we decide not to use such an approximation at

this stage, and to deploy a more conservative description of distance constraints, equa-

tion (4.62) approximating the Euclidean norm will be extremely useful in the following

chapter, helping us to find valuable initial trajectory guesses without the need of solving

the nonlinear glider’s dynamic.

4.4 A Two Time Level Approach to Solve the MILP

Although we have already achieved a linear formulation for the GRTOP with prior

information, in our continuous pursuit of efficiency and improvement of computational

times, we enhance the model further by reducing the number of binary variables and

defining a two time step level approach following Schmidt and Fügenschuh (2023). This

approach suggests dividing the optimisation procedure into two distinct time partitions.

Each time partition may be used to address specific aspects of the problem, allowing for

a more organised and efficient computation, while a mapping between the two partition

is then defined to unify the problem requirements. More precisely, considering the time

interval [t0, tf ] we can define the two partition as follows. Let N denote the number

of time steps of a first uniform partition and η the length of each time step, such that

[t0, tf ] = [t0, ηN ]. Then, we can define a second refined partition by adding nf points in

between two adjacent time steps ti, tj ∈ T = {0, . . . , N}. To easily define the mapping

between the two time partitions it might be useful to redefine the index set for them. In

particular, Tc = {0, nf +1, . . . , N(nf +1)} is the set of indices corresponding to the first

and coarse time partition, whereas Tf = {0, 1, . . . , N(nf+1)} ⊇ Tc is relative to the finer

time partition. It is also convenient to remember that |Tc| = |T | does not depend on nf

and therefore the time step length of the first partition is equal to η, whereas the length

of the time step relative to the finer time partition is given by ηf = η
nf+1 . In Figure 4.5,

we can see a succinct illustration of the two time level partition just described.

· · ·

· · ·

0 nf + 1 2(nf + 1) N(nf + 1) Tc

0 1 2 ..nf + 1 ... 2(nf + 1) N(nf + 1) Tf
ηf

η

Figure 4.5: Illustration of the two time level partition.
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In light of this, the idea is then to consider the continuous variables of the problem as

defined on the finer time partition, allowing a better precision of the computed trajec-

tories by the control of nf , while the binary variables are only defined on the coarse

one, so that their number is limited and hence the computational speed is enhanced.

To describe constraints established on the finer time partition Tf and including both

continuous and binary variables in the model, a function between the two partition par-

tition indices can be introduced. More precisely, we define the function

π : Tf −→ Tc

t 7−→

⌊

t

nf + 1

⌋

(nf + 1)

to map the time indices belonging to the finest partition to indices belonging to the coarse

counterpart, always rounding down. It is worth noting here that the just-described

approach will be used to boost the efficiency of all the models and algorithms presented

further in the thesis. With all this in mind, it is then possible to rewrite the full model

for the GRTOP when prior information is available as

Model I - GRTOP with Prior Information

min − w1 ∗
∑

g∈G,l∈L,t∈Tc\{0}

η bg,l,t

+ w2

∑

s∈S,g∈G,t∈Tf

ηf
εs,g,t
κs

+ w3

∑

s∈S,g∈G

tf
ϵs,g
κs

+ w4

∑

s∈S,g∈G,t∈Tf

ηf
λs,g,t
κs

+ w5

∑

s∈S,g∈G

tf
Λs,g
κs

+ w6

∑

c∈C,g∈G

tf Λuc,g

(4.63)

subject to
∑

g≤i,t∈Tc

ag,i,t ≥ 1, ∀i ∈W (4.64)

dxg,i,t ≥ xg,t − x̄i, ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.65)

dxg,i,t ≥ x̄i − xg,t, ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.66)

dyg,i,t ≥ yg,t − ȳi, ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.67)

dyg,i,t ≥ ȳi − yg,t, ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.68)
∑

j∈{x,y}

djg,i,t ≤ (hg,t − r̄i) +M(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.69)
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hg,t ≤ h̄iag,i,t + hub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.70)

hg,t ≥ hiag,i,t + hlb(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.71)

γg,t ≤ γ̂ag,i,t + γub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.72)

γg,t ≥ −γ̂ag,i,t + γlb(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.73)

µg,t ≤ µ̂ag,i,t + µub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.74)

µg,t ≥ −µ̂ag,i,t + µlb(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.75)

vg,t ≤ v̂ag,i,t + vub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.76)
∑

l∈L,t∈Tc

bg,l,t ≥ 1, ∀g ∈ G (4.77)

rxg,i,t ≥ xg,t − x̃l, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (4.78)

rxg,i,t ≥ x̃l − xg,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (4.79)

ryg,i,t ≥ yg,t − ỹl, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (4.80)

ryg,i,t ≥ ỹl − yg,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (4.81)

rhg,i,t ≥ hg,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (4.82)

rhg,i,t ≥ −hg,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (4.83)
∑

j∈{x,y,h}

rjg,l,t ≤ r̃l +M(1− bg,l,t), ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (4.84)

∑

t̃≤t

bg,l,t̃ ≤ N(1− ag,i,t), ∀g ∈ G, ∀l ∈ L, ∀i ∈W, ∀t ∈ Tc (4.85)

yg,t+1 ≤ yg,t + ηf f̃(yg,t,ug,t,wg,t) + εg,t, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (4.86)

yg,t+1 ≥ yg,t + ηf f̃(yg,t,ug,t,wg,t)− εg,t, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (4.87)

yg,0 = y0, ∀g ∈ G (4.88)

ylb ≤ yg,t ≤ yub, ∀g ∈ G, ∀t ∈ Tf (4.89)

ulb ≤ ug,t ≤ uub, ∀g ∈ G, ∀t ∈ Tf (4.90)

εg,t ≤ ϵg, ∀g ∈ G, ∀t ∈ Tf (4.91)

(yg,t − yog,t) ≤ λg,t, ∀g ∈ G, ∀t ∈ Tf (4.92)

(yog,t − yg,t) ≤ λg,t, ∀g ∈ G, ∀t ∈ Tf (4.93)

λg,t ≤ Λg, ∀g ∈ G, ∀t ∈ Tf (4.94)

(ug,t − uog,t) ≤ Λu
g , ∀g ∈ G, ∀t ∈ Tf (4.95)

(uog,t − ug,t) ≤ Λu
g , ∀g ∈ G, ∀t ∈ Tf (4.96)

ag,i,t ∈ {0, 1}, ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (4.97)

bg,l,t ∈ {0, 1}, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (4.98)

djg,i,t ∈ R+, ∀g ∈ G, ∀i ∈W ∪ L, ∀j ∈ {x, y}, ∀t ∈ Tc (4.99)

rjg,i,t ∈ R+, ∀g ∈ G, ∀i ∈W ∪ L, ∀j ∈ {x, y, h}, ∀t ∈ Tc (4.100)

yg,t ∈ R
6,ug,t ∈ R

2, ∀g ∈ G, ∀t ∈ Tf (4.101)

εg,t, ϵg,λg,t,Λg ∈ R
6
+,Λ

u
g ∈ R

2
+, ∀g ∈ G, ∀t ∈ Tf . (4.102)
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It is worth saying here that, objective (4.63) requires to minimise the time of flight as well

as the scaled deviations from the linearised dynamic, and it also includes scaled penalty

terms improving the stability of states as well as control variables. At the same time,

the now linear constraints (4.64)-(4.76) ensure the correct visit of the waypoints, also

respecting camera’s and glider dynamic limitations, while linear constraints (4.77)-(4.85)

ensure a correct glider landing. Finally, constraints (4.86)-(4.96) describe the linearised

dynamic of each glider throughout its flight, as well as its stability limitations, whereas

the rest of the constraints define variables domains.

4.5 Flight Examples

To show the efficacy of the proposed MILP formulation and examine the influence of

fine time steps on the solution quality and computational times, we decided to solve

several instance of the GRTOP problem using Gurobi 10.0.1 as a solver on a Viglen

desktop, Intel(R) Core(TM) i5−7500 CPU with 3.40GHz and a RAM of 8 GB, running

under Windows 10, with all the parameters set to their standard configurations. More

precisely, we created 50 instances of the problem, where one glider is required to survey

4 waypoints randomly located in a space of 2× 2 km2 and land in a predefined landing

site, in absence of wind (β = 0). Then, assuming to know an initial trajectory for each

of the instances, we compare the computational times for a given level of detail in the

absence and presence of fine time steps. Therefore, each instance was solved utilising a

fine partition with |Tf | = 90 time steps and a time step length of ηf ≃ 3s, whereas the

coarse partitions possess |Tc| =
⌊

|Tf |
(nf+1)

⌋

time steps, where the number of fine time steps

may vary, nf = 0, 2, 4, as well as the time step length η = (nf +1)ηf . Other parameters

used in this section are reported in Table 4.1, and we recall also that the flight envelope

for the variables not specified here is defined in Table 3.2.
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Parameter Value Unit

w1 0.6 -

w2 0.7 -

w3 0.9 -

w4 1.1 -

w5 1.1 -

w6 1.1 -

κx, κy, κh 100 m

κv
3
5(vub − vlb) m/s

κγ
3
5γub radians

κφ
1
6π radians

γ̂ 0.03 radians

µ̂ 0.03 radians

v̂ 14.75 m/s

Table 4.1: Objective function weights and other model’s parameters.

(a) CPU Usage (b) Landing Times

Figure 4.6: Distribution of computational times (a) and landing times (b), in seconds,

needed for solving the same problems while considering different number of fine time

steps.

As it is possible to notice in Figure 4.6, increasing the number of fine time steps brings

a clear benefit in reducing computational times required to solve the GRTOP, while

keeping landing times substantially unchanged. Nonetheless, the advantage it is less

pronounced after a certain number of fine time steps, nf = 2 in the examined cases.

Other than the overall mission and computational times, we examine the quality of

the solution found with the insertion of fine time steps by comparing the trajectories

obtained solving only one of the instances of the GRTOP first as is, i.e. with nf = 0, and

then utilising nf = 2 fine time steps. To keep the same resolution quality we consider

for the first case, nf = 0, a time partition Tc = Tf with 90 time steps and a time step

length of ηf = 2.97s. Instead, in the case where we insert fine time steps, nf = 2, we

consider Tf to be the same as before, 90, whereas we reduce the coarse time partition to
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obtain |Tc| =
⌊

|Tf |
(nf+1)

⌋

and η = (nf +1)ηf . The results obtained with these settings are

shown in Figure 4.7, Figure 4.8 and Figure 4.9, where first the trajectory and second

the state and control variables profiles are compared.

(a) nf = 0 (b) nf = 2

Figure 4.7: Glider trajectories, fine time step partition comparison. Green lines show

gliders’ trajectories seen from above for the solutions without fine time steps (a) and

with nf = 2 fine time steps (b). Red stars indicate the launching point, while blue dots

represent the waypoints and green dots show the landing site’s location. Camera’s field

of view while visiting the waypoints is also shown.

It is possible to observe that, even though both trajectories show a similar landing time,

the solution is found utilising much more computational time, 76.3s for the case with

nf = 0 while 8.6s for the case with nf = 2. In addition, we can observe that the two

solutions exhibit almost identical trajectories, altitude profiles and heading angles, see

Figure 4.7, Figure 4.8(a) and Figure 4.8(d) respectively. They also show similar patterns

in terms of bank angles see Figure 4.9(b), with some differences in the times in which they

visit the waypoints due to the definition of variables ag,i,t on a different time partition.

Due to constraints (4.70)-(4.76), this is reflected into differences in velocity and flight

path angle profiles, see Figure 4.8(b) and Figure 4.8(c), as well as in the lift coefficient,

see Figure 4.9(a). Nonetheless, we can consider those discrepancies negligible, especially

considering the benefit obtained in the time required to find the solution. In light of

this, in the rest of the discussion we prefer to consider GRTOP models that account for

fine time steps.

Up to this point, our focus has been on scenarios where some knowledge about an initial

trajectory, equilibrium or (quasi) steady-state flight conditions is assumed to exist and

be available. However, a central innovation and primary contribution of our research

is the exploration and analysis of situations where this prior knowledge is absent. By

exploring these scenarios, our work aims to advance the field by providing insights and

solutions for cases where conventional trajectory knowledge may not be sufficient, thus

expanding the scope and applicability of our research.
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(a) Altitude (b) Velocity

(c) Flight path angle (d) Heading angle

Figure 4.8: State variables profiles obtained by solving the GRTOP without fine time
steps (blue) and utilising 2 fine time steps (green).

(a) Lift coefficient (b) Bank angle

Figure 4.9: Control variables profiles obtained by solving the GRTOP without fine
time steps (blue) and utilising 2 fine time steps (green).



Chapter 5

Two-Step Algorithm for the

GRTOP

Having prior information regarding an initial trajectory, equilibrium or (quasi) steady

flight conditions is not guaranteed in many practical scenarios. Consequently, the in-

vestigation and scrutiny of situations where such knowledge is limited or absent hold

primary importance and constitute a pivotal aspect of our research. In this chapter, we

start by introducing techniques to linearly approximate the Pythagorean trigonometric

identity, as well as bilinear terms, that allow us to handle nonlinearities stemming from

the EoMs and to gain valuable insights useful for the construction of initial trajectory

guesses. Subsequently, we provide ways to integrate these methodologies and insights

into the previously presented GRTOP framework, with the purpose of finding potential

solutions and flyable paths in a wider array of scenarios by means of a two-step solution

algorithm. Finally, we provide the reader with examples of glider missions, illustrating

algorithm’s ability to find flyable trajectories in absence of prior information.

5.1 Construction of initial trajectory

Complex aerodynamic interactions lead to the highly nonlinear equations (3.1)-(3.6)

governing gliders’ dynamics which are difficult to solve, especially when prior knowledge

is unavailable. Therefore, a simplification strategy for obtaining some primary informa-

tion about an initial trajectory or equilibrium conditions is deemed to be necessary. To

do so, the first step involves the identification and scrutiny of the nonlinear elements in

the EoMs, which can be problematic to directly estimate or approximate, such as

• trigonometric functions; and

• bilinear and polynomial terms.

73
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Thus, in the rest of this section we discuss how to manage trigonometric functions

when a small angle approximation is not possible, as well as how to handle bilinear and

polynomial terms, rendering all elements linear in our model formulation. Note that in

what follows, even if all the existing and newly defined variables refer to a specific glider

at a specific time step, for simplicity of notation we omit the subscripts g and t, unless

it is strictly necessary for the discussion and the reader’s understanding.

5.1.1 A Linear Model for Trigonometric Functions

In order to eliminate trigonometric functions from the model constraints, we can observe

first that normal flight conditions implies that the flight path angle γ and the bank angle

µ are relatively small. Therefore, we can directly adopt a small angle approximation

and for each small angle ω = γ, µ write

sin(ω) ≃ ω

cos(ω) ≃ 1.

However, such an assumption turns out to be false for the heading angle φ which can

assume any value within 0 and 2π. Thus, an alternative approach becomes essential to

overcome this challenge and handle trigonometric functions of φ. The main idea is then

to define new variables representing the sin(φ) and cos(φ), that respect the Pythagorean

trigonometric identity expressing the fundamental relation between sine and cosine, i.e.

sin2(φ) + cos2(φ) = 1. (5.1)

Then, approximating equation (5.1) through linear constraints, it is possible to remove

trigonometric functions from the model formulation for the price of introducing new

variables and constraints. To do so, we first define

ψx := sin(φ)

ψy := cos(φ)

and, for reasons that will be clearer later in the discussion, we decompose them into

their positive and negative parts, introducing the variables

ψ+
x := max{ψx, 0} (5.2)

ψ−
x := max{−ψx, 0} (5.3)

ψ+
y := max{ψy, 0} (5.4)

ψ−
y := max{−ψy, 0}, (5.5)
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so that

ψx = ψ+
x − ψ−

x

ψy = ψ+
y − ψ−

y

Substituting then the sin(φ) and cos(φ) with the just-introduced variables into the

EoMs, we are able us to avoid trigonometric functions in the model formulation. How-

ever, a direct insertion of such variables is not sufficient, given that at this stage all

of them can be chosen independently and their dynamic laws stemming from equation

(3.6) are not taken into account. Therefore, we first ensure that only one between ψ+
x

and ψ−
x , and similarly only one between ψ+

y and ψ−
y , can be greater than 0 by defining

the binary variables

ϕx =







1, if ψ+
x ≥ 0

0, otherwise
(5.6)

ϕy =







1, if ψ+
y ≥ 0

0, otherwise
(5.7)

and constraining ψ+
x , ψ

−
x , ψ

+
y , ψ

−
y via the inequalities

ψ+
x ≤ ϕx (5.8)

ψ−
x ≤ 1− ϕx (5.9)

ψ+
y ≤ ϕy (5.10)

ψ−
y ≤ 1− ϕy (5.11)

It is worth noting that in this way we also ensure that the variable range is respected, i.e.

sin(φ), cos(φ) ∈ [−1, 1]. Sine and cosine, and consequently the new variables, are then

tied together by their fundamental relation (5.1), and hence we can direct our attention

to model a linear description of the latter. To do so, we can observe that equation (5.1)

is nothing other than requiring that ∥ψ∥22 = 1, where ψ = (ψx, ψy). We can then think

of taking advantage of the Euclidean norm approximation as derived before in equation

(4.62), i.e.

∥ψ∥2 ≃ λ2∥ψ∥1 + (1− λ2)∥ψ∥∞. (5.12)

Yet, when dealing with equality constraints of the type ∥ψ∥22 = 1, upper bound strategies

adopted in section 4.3.1 are not sufficient to approximate the border of the unit ball,

and hence the need of a dedicated approach become apparent. Therefore, we first have

to find a way to correctly retrieve the value for the module and maximum function. For
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the former, we can observe that the absolute value of a number x can be obtained by

leveraging on its decomposition into his positive and negative parts as |x| = x+ + x−.

Consequently, we can write

|ψx| = ψ+
x + ψ−

x (5.13)

|ψy| = ψ+
y + ψ−

y , (5.14)

obtaining that

∥ψ∥1 = |ψx|+ |ψy| = ψ+
x + ψ−

x + ψ+
y + ψ−

y . (5.15)

On the other hand, ∥ψ∥∞ = max{|ψx|, |ψy|} can be described by first defining a variable

ψmax representing it, also noting that

ψmax ≥ |ψx| (5.16)

ψmax ≥ |ψy|, (5.17)

and second by establishing a further binary variable

ϕmax =







1, if |ψx| ≥ |ψy|

0, otherwise
, (5.18)

as well as constraints

ψmax ≤ |ψx|+ (1− ϕmax) (5.19)

ψmax ≤ |ψy|+ ϕmax. (5.20)

Once a complete representation of ∥ψ∥1 and ∥ψ∥∞ is given, we are ready to linearly

approximate the fundamental trigonometric relation (5.1) by defining the variable ξ,

constrained by

ξ = λ2(|ψx|+ |ψy|) + (1− λ2)ψ
max (5.21)

ξ = 1, (5.22)

and to find sensible values for ψx, ψy, and hence for sin(φ) and cos(φ). Although,

without further requirements, at this point these values result to be independent at each

time step, given the absence of their time law description. To limit then the nonphysical

behaviours of the gliders, as a final passage for getting rid of the trigonometric functions

and obtain a reasonable basic approximation of the corresponding EoMs, we decide to

define empirical bounds and restrict the changes on ψx, ψy. In particular, we aim at

finding an upper bound ψ ≥ 0 on |ψ̇x| and |ψ̇y| such that
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(i) the implied rate of heading angle changes, φ̇, allows for appreciable direction

changes and feasible fast turns;

(ii) the bank angle µ required for such turns is generally not too steep;

(iii) starting the turn with such a bank angle results in a reasonable sink rate without

significant changes in flight path angle and in sudden losses of altitude. In other

words, with all the other variables being the same, we require that γ̇µ, the infinites-

imal changes of flight path angle when deploying bank angle µ, does not differ too

much from γ̇0, the infinitesimal changes of flight path angle without turning, i.e.

when µ = 0.

To do so, we start noting that

−ψ ≤ ψ̇x =
dsin(φ)

dτ
= cos(φ)φ̇ = ψyφ̇ ≤ ψ (5.23)

−ψ ≤ ψ̇y =
dcos(φ)

dτ
= −sin(φ)φ̇ = −ψxφ̇ ≤ ψ. (5.24)

Then, we utilise a simulation approach to find values of ψ that respect the conditions

(i)-(iii). More precisely, with a fixed value for ψ, we repeat the following steps 300000

times

1. we generate glider’s quasi-steady flight conditions by generating random values for

the lift coefficient and direction of flight, CLeq ∼ U(0.1, 1.17) and φeq ∼ U(0, 2π);

2. we compute the sine and cosine of φeq to find ψx and ψy, and we apply equations

(3.26)-(3.27) to find the equilibrium velocity and flight path angle, veq and γeq;

3. considering a glider flying within the so-found quasi-steady flight conditions and

given the fixed value of ψ, we observe that the maximum change of φ is limited by

φ̇ ≤
ψ

|ψy|

φ̇ ≤
ψ

|ψx|

therefore, we set a target turning rate at its maximum, i.e. φ̇max = min{ ψ
|ψy |

, ψ
|ψx|

};

4. inverting equation (3.6), we can find the corresponding bank angle µmax required

to start the turn at the specified rate φ̇max;

5. with all the other variables being the same, we evaluate γ̇max and γ̇0, being re-

spectively the variation of flight path angle obtained from equation (3.5) when the

glider starts turning at µ = µmax, and when it is not turning, i.e. µ = 0;



78 Chapter 5 Two-Step Algorithm for the GRTOP

6. we collect the values of φ̇max, µmax, γ̇max and γ̇0.

For each fixed value of ψ, it is then possible to construct empirical distributions for

the collected values. Noting then that the higher the value of ψ the higher the bank

angle required for the maximum turn and hence the higher the sudden loss of altitude,

we decide to start focusing on condition (iii). Knowing that a typical safe descent rate

is reached with flight path angles between 3o and 5o, see International Civil Aviation

Organisation (2018), we require that an acceptable value for ψ is such that 90% of

the maximum turns are obtained with a sink rate that does not increase more than 5o

per second with respect to the non-turning flight conditions. In other words, the 10th

percentile of γ̇max− γ̇0 distribution, called pγ10, should not be less than −5o. Noting that

pγ10 is a decreasing function of ψ, as we can observe in Figure 5.1, we can make ψ vary

and find the

sup{ψ | pγ10(ψ) ≥ −5o}. (5.25)

Figure 5.1: 10th percentile of the sink rate difference as a function of ψ. Threshold

level at −5o is also shown as well as the corresponding ψ value.

Doing so, we obtain that a value of ψ ≃ 0.265 serves the objective. We would like now to

observe if conditions (i) and (ii) are respected for such a value of ψ, otherwise we would

need to find a trade-off between those. Luckily, we can observe that such ψ results in

an average target turn rate of 17o per second, which would allow the glider to reach a

180 degrees turn in roughly 10.5 seconds, and in a maximum target turn rate of 21.5o

which would allow the glider to reach a 180 degrees turn in roughly 8 seconds. This rate

of turn can be considered acceptable when observing flight data available at Skylines

Flight Data, where many manned aerobatic glider flights are recorded. Consequently,

we consider a value of ψ equal to 0.265 acceptable for attaining condition (i). Finally,
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in Figure 5.2(a), we can observe the bank angle µmax distribution corresponding to the

same value of ψ.

(a) Turns start from steady flight conditions (b) Turns start from general flight conditions

Figure 5.2: Target bank angle distribution when the glider is requested to turn at a

rate of change corresponding to φ̇max for a value of ψ = 0.265. In (a) the distribution

of µmax when the turn starts from some (quasi) steady flight conditions. In (b) its

distribution when the turn starts from more generic flight conditions.

It is possible to observe that all the simulated turns happen within a bank angle µmax

of roughly 70 degrees and that 90% of them falls within 32.8 degrees. Knowing that

typical airline operations require a bank angle of 25 degrees, or bank angle giving a rate

of turn of 3 degrees per second, see International Civil Aviation Organisation (2018),

and that the gliding community considers steep bank angles as the ones above 30o or

40o, see British Gliding Association (2017) and Aviation Security Service, we consider

those values acceptable for respecting the required conditions. Nonetheless, it is worth

noting here that by increasing the above thresholds, it is possible to determine more

aggressive values of ψ and pushing glider performances to the limit. Conversely, it is

also possible to obtain more mild turns by reducing threshold values, reaching then safer

flight decisions.

In addition to the above, knowing that a glider is not always flying at equilibrium, we

further verify the validity of our limitations by perturbing the (quasi) steady-state flight

conditions. More precisely, keeping ψ = 0.265, in step 2 of our simulation approach we

decided to use velocity and flight path angle values equal to v′ = veq+ν and γ′ = γeq+υ

respectively, where ν ∼ N(0, 0.75) and υ ∼ N(0, 0.017). As before, we then evaluate the

bank angle µmax attained to perform the targeted maximum turn starting from the so-

obtained flight conditions, as well as the changes in sink rate and altitude losses. First,

it is possible to observe that sometimes a greater bank angle is necessary to perform

the required turns, as we can see from Figure 5.2(b) where we depict the new bank

angle distribution, and second it is also possible to notice that now 90% of altitude

losses happen within a slightly bigger change of flight path angle, that is 5.2o instead

of the 5o threshold of before. Nonetheless, these changes in bank angle distribution and
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increase of sink rate changes are not deemed to be significant. Once again we remind he

reader that it is always possible to tighten or loose the threshold on pγ10 to reach more

conservative or aggressive flight turns.

In light of this, we are now able to reasonably limit heading angle variation by writing

the following constraints

ψxt+1 − ψxt = ψ+
x t+1 − ψ−

x t+1 − ψ+
x t + ψ−

x t ≤ ηψ, ∀t (5.26)

ψxt − ψxt+1 = ψ+
x t − ψ−

x t − ψ+
x t+1 + ψ−

x t+1 ≤ ηψ, ∀t (5.27)

ψyt+1 − ψyt = ψ+
y t+1

− ψ−
y t+1

− ψ+
y t

+ ψ−
y t

≤ ηψ, ∀t (5.28)

ψyt − ψyt+1 = ψ+
y t

− ψ−
y t

− ψ+
y t+1

+ ψ−
y t+1

≤ ηψ, ∀t. (5.29)

Utilising the just described approach and techniques, we are then able to get rid of the

trigonometric functions present in the nonlinear constraints stemming from the EoMs.

Nonetheless, nonlinearities still occur in the EoMs, requiring further approximation ef-

forts.

5.1.2 Approximation Strategies for Bilinear and Power Terms

Although in the previous section we free the equations of motion from trigonometric

terms, nonlinearities are still present in the newly approximated EoMs. More precisely,

excluding the wind effect on v̇ since its values are generally negligible unless the wind is

blowing at an extremely high gradient, and ignoring the equation governing the changes

of flight path angle γ, we currently have that

ẋ = vψ+
x − vψ−

x + βh (5.30)

ẏ = vψ+
y − vψ−

y (5.31)

ḣ = vγ (5.32)

v̇ = −
1

2m
ρSw(CD0

+ kAC
2
L)v

2 − gγ. (5.33)

Focusing first on equations (5.30) and (5.31), each bilinear term can be linearly ap-

proximated following techniques similar to the construction of McCormick envelopes,

see McCormick (1976). More precisely, for bounded real variables x ∈ [xL, xU ] and

y ∈ [yL, yU ], it is possible to linearly approximate their product xy by defining a new
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variable w = xy and noting that it must satisfy the following inequalities

w ≥ xLy + xyL − xLyL (5.34)

w ≥ xUy + xyU − xUyU (5.35)

w ≤ xUy + xyL − xUyL (5.36)

w ≤ xLy + xyU − xLyU . (5.37)

Considering now for example the product vψ+
x , and noting that v ∈ [vlb, vub], while

ψ+
x ∈ [0, 1], we can define a new variable v+x = vψ+

x and readjust McCormick inequalities

(5.34)-(5.37) to write the following constraints

vlbψ
+
x ≤ v+x ≤ vubψ

+
x (5.38)

vub(ψ
+
x − 1) ≤ v+x − v ≤ vlb(ψ

+
x − 1). (5.39)

Similarly, we can determine new variables and constraints for the other bilinear terms.

It is worth noting here that the decomposition of sine and cosine variables into their

positive and negative parts helps also here in reaching better approximations, since

tighter bounds can be obtained.

On the other hand, although it is possible to apply the McCormick envelope technique

to equation (5.32), we decide to appriximate the product by utilising the linearisation

technique introduced in Chapter 3. This will help in avoiding the definition of new binary

variables to create tighter bounds, here necessary to evaluate the climbing or descending

conditions of the glider. Thus, we decide to linearise vγ using a Taylor expansion around

points (vo, γo), obtaining the approximation

vγ ≃ voγo + vo(γ − γo) + γo(v − vo). (5.40)

Now, in order to choose sensible values for (vo, γo), we turn our attention to equation

(5.33) first, with a special focus on the nonlinear term v2. Following the same Taylor

expansion, it can also be linearised as

v2 ≃ (vo)2 + 2vo(v − vo). (5.41)

From this, and by choosing different values voi , it is possible to construct a linear envelope

for v2, as it is depicted in Figure 5.3(a).

If on one hand the linear envelope approximates well v2, on the other hand, the util-

isation of several values voi would lead to an increased problem complexity due to the

necessity of introducing different binary variables to help the selection of the right line

that approximate v2 at a specific time step. Hence, we decide that two velocity regimes
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(a) Linear envelope with 10 lines (b) Linear envelope with 2 lines

Figure 5.3: Linear approximation of v2 (thick blue curve). In (a), 10 lines are forming
a linear envelope for v2, while in (b) only 2 lines are chosen to form the linear envelope.

might suffice to find reasonable approximation for v2 and consequently help the lineari-

sation of equations (5.32) and (5.33). A first possible choice for values of voi is using

the preferred equilibrium flight conditions of Remark 3.2, where the glider is flying at a

moderate speed of v↓ = 9.45m/s. Consequently, as second point must be such that the

glider is flying at a higher velocity. Considering then that a steep descend rate of −15o

and a minimum lift coefficient of 0.1 lead to a maximum velocity of around 31m/s, and

having selected as a first equilibrium point the one at roughly 9.5m/s, we decided to

set the second equilibrium velocity at an intermediate value of v↑ = 20.25m/s. Utilising

these values for voi , it is possible to approximate v2 as depicted in Figure 5.3(b). We can

notice that, although we have reduced the goodness of the approximation, we start hav-

ing a significant divergence for limit flight conditions with velocity higher than 30m/s.

Moreover, we reduced to the bare minimum the number of binary variables necessary

for a good v2 approximation. Now, knowing the equilibrium velocities v↓ and v↑, it is

possible to invert equation (3.26), find the corresponding value of the lift coefficient at

equilibrium, C↓
L and C↑

L, and then, using equality (3.27), derive the relative value for

γ↓ and γ↑. With this in mind, we are able to reasonably approximate the bilinear term

vγ by using only two hyperplane defined by the pairs (v↓, γ↓), (v↑, γ↑) through Taylor

expansion (5.40), as shown in Figure 5.4(a). The idea is then that these hyperplane are

sufficient for a good approximation because, a part from very edge cases, a glider neces-

sitate lower flight path angles (γ ≃ γ↑) to fly fast (v ≃ v↑), while higher angles (γ ≃ γ↓)

to fly slow (v ≃ v↓). Conversely, if a glider modify its flight path angle, it is possible

to show that it reaches the corresponding equilibrium speed fairly quickly. Therefore, it

is rarely the case where we observe fast velocities (v ≃ v↑) and small descending angles

(γ ≃ γ↓), or slow speed (v ≃ v↓) and big descending angles (γ ≃ γ↑) for long time

periods. In light of this, as it is possible to observe in Figure 5.4(b), we can choose the
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(a) Full flight envelope for vγ (b) Two regimes flight envelope for vγ

Figure 5.4: Linearisation of vγ (blue surface). In (a) we observe the approximating

hyperplane corresponding to (v↓, γ↓) (orange), and (v↑, γ↑) (green) on the entire flight
envelope for vγ. In (b) it is possible to see the same hyperplane depicted within typical
flight domain, excluding edge cases where v ≃ v↑ and γ ≃ γ↓, or v ≃ v↓ and γ ≃ γ↑.

best approximation of vγ in most of the flight conditions, by defining binary variables

χ↑ =







1, if the glider is flying in a fast regime

0, otherwise
(5.42)

and constraints

v ≤
v↓ + v↑

2
+ vubχ

↑ (5.43)

v ≥
v↓ + v↑

2
+ vub(1− χ↑) (5.44)

γ ≤ γ↓ + γub(1− χ↑), (5.45)

with the latter constraint (5.45) helping in avoiding edge cases by ensuring that a glider

cannot fly at a high speed without a sufficiently steep flight path angle. It is also worth

mentioning here that, while other variables such directional changes might require re-

sponsive adjustments, the range of different velocity regimes is wide enough to permit us

to define the binary variables χ↑ on a coarse time partition, so improving computational

speed for the initial trajectory problem.

We are now able to approximate equations (5.32)-(5.33) as

vh := ḣ ≤ v↑γ↑ + v↑(γ − γ↑) + γ↑(v − v↑) +M(1− χ↑) (5.46)

vh := ḣ ≥ v↑γ↑ + v↑(γ − γ↑) + γ↑(v − v↑)−M(1− χ↑) (5.47)
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vh := ḣ ≤ v↓γ↓ + v↓(γ − γ↓) + γ↓(v − v↓) +Mχ↑ (5.48)

vh := ḣ ≥ v↓γ↓ + v↓(γ − γ↓) + γ↓(v − v↓)−Mχ↑ (5.49)

z := v̇ ≤ −
1

2m
ρSw(CD0

+ kAC
↑
L

2
)
(

v↑
2
+ 2v↑(v − v↑)

)

− gγ +M(1− χ↑) (5.50)

z := v̇ ≥ −
1

2m
ρSw(CD0

+ kAC
↑
L

2
)
(

v↑
2
+ 2v↑(v − v↑)

)

− gγ −M(1− χ↑) (5.51)

z := v̇ ≤ −
1

2m
ρSw(CD0

+ kAC
↓
L

2
)
(

v↓
2
+ 2v↓(v − v↓)

)

− gγ +Mχ↑ (5.52)

z := v̇ ≥ −
1

2m
ρSw(CD0

+ kAC
↓2)

(

v↓
2
+ 2v↓(v − v↓)

)

− gγ −Mχ↑, (5.53)

where tighter bounds can be found by choosingM = vub. Deploying then the usual Euler

scheme, it is possible to translate the inequalities above into valid linear constraints.

Finally, we decide to ignore in this phase constraints stemming from the equation of

motion relative to γ̇ because it is unreasonable to impose rough, worst case limitations

on its changes since they can be very rapid also in normal flight conditions, and also

because a more detailed inclusion might complicate the problem and its solving times

substantially. For example, considering a glider flying at the preferred (quasi) steady

flight conditions of Remark 3.2, it is sufficient to choose a lift coefficient equal to 0.1 that

in one second it is possible to experience a variation of γ of ≃ 0.9 radians which is very

close to the flight envelope limits. Worse changes are possible at slightly lower speeds.

Strictly speaking, we are actually allowed to insert such worse case limitation on changes

of flight path angle, however, in all gliders’ flights that we show during the manuscript,

they will never be active constraints due to the fact that our time partitions generally

present a length η greater than 1s. Nonetheless, in this phase we restrict bounds on γ

to ensure a reduction of extreme flight conditions. Then, ignoring also control variables,

assuming that with the new given constraints there exist always CL and µ such that the

glider can fly close to the newly found initial trajectory, we are now ready to write a

complete formulation of the problem and determine such initial trajectory.

Remark 5.1. It is also possible to consider in the model an average wind effect on v̇ and

on the changes of ψx (respectively ψy), consequently on φ̇, by looking at equations (3.4)

and (3.6). However, the effect is often negligible with respect to the other terms, and

therefore we omit its estimate for simplicity and brevity of the model and manuscript.

5.1.3 A MILP Formulation for the Initial Trajectory Problem

Deciding to deploy the same logic and notation adopted before in Chapter 4 when

defining a two time level partition, and smoothing the trajectory by inserting penalties

for limiting its sudden changes1, we can provide the reader with a complete compact

formulation for the problem of finding the initial trajectory as follows

1We used the same variable terminology and variables’ notation for the penalties on state changes
as we used for the penalties of deviations from the initial trajectory in Chapter 4.
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Model 0 - Initial Trajectory for the GRTOP

min − w1 ∗
∑

g∈G,l∈L,t∈Tc\{0}

η bg,l,t

+ w2

∑

s∈S,g∈G,t∈Tf

ηf
εs,g,t
κs

+ w3

∑

s∈S,g∈G

tf
ϵs,g
κs

+ w4

∑

s∈S,g∈G,t∈Tf

ηf
λs,g,t
κs

+ w5

∑

s∈S,g∈G

tf
Λs,g
κs

(5.54)

subject to
∑

g≤i,t∈Tc

ag,i,t ≥ 1, ∀i ∈W (5.55)

dxg,i,t ≥ xg,t − x̄i, ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (5.56)

dxg,i,t ≥ x̄i − xg,t, ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (5.57)

dyg,i,t ≥ yg,t − ȳi, ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (5.58)

dyg,i,t ≥ ȳi − yg,t, ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (5.59)
∑

j∈{x,y}

djg,i,t ≤ (hg,t − r̄i) +M(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (5.60)

hg,t ≤ h̄iag,i,t + hub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (5.61)

hg,t ≥ hiag,i,t + hlb(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (5.62)

γg,t ≤ γ̂ag,i,t + γub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (5.63)

γg,t ≥ −γ̂ag,i,t + γlb(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (5.64)

vg,t ≤ v̂ag,i,t + vub(1− ag,i,t), ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (5.65)
∑

l∈L,t∈Tc

bg,l,t ≥ 1, ∀g ∈ G (5.66)

rxg,i,t ≥ xg,t − x̃l, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (5.67)

rxg,i,t ≥ x̃l − xg,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (5.68)

ryg,i,t ≥ yg,t − ỹl, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (5.69)

ryg,i,t ≥ ỹl − yg,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (5.70)

rhg,i,t ≥ hg,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (5.71)

rhg,i,t ≥ −hg,t, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (5.72)
∑

j∈{x,y,h}

rjg,l,t ≤ r̃l +M(1− bg,l,t), ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (5.73)

∑

t̃≤t

bg,l,t̃ ≤ N(1− ag,i,t), ∀g ∈ G, ∀l ∈ L, ∀i ∈W, ∀t ∈ Tc (5.74)
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ψ+
x g,t ≤ ϕxg,t, ∀g ∈ G, ∀t ∈ Tf (5.75)

ψ−
x g,t ≤ 1− ϕxg,t, ∀g ∈ G, ∀t ∈ Tf (5.76)

ψ+
y g,t

≤ ϕyg,t, ∀g ∈ G, ∀t ∈ Tf (5.77)

ψ−
y g,t

≤ 1− ϕyg,t, ∀g ∈ G, ∀t ∈ Tf (5.78)

ψmaxg,t ≥ ψ+
x g,t + ψ−

x g,t, ∀g ∈ G, ∀t ∈ Tf (5.79)

ψmaxg,t ≥ ψ+
y g,t

+ ψ−
y g,t

, ∀g ∈ G, ∀t ∈ Tf (5.80)

ψmaxg,t ≤ ψ+
x g,t + ψ−

x g,t + (1− ϕmaxg,t ), ∀g ∈ G, ∀t ∈ Tf (5.81)

ψmaxg,t ≤ ψ+
y g,t

+ ψ−
y g,t

+ ϕmaxg,t , ∀g ∈ G, ∀t ∈ Tf (5.82)

ξg,t = λ2(ψ
+
x g,t + ψ−

x g,t + ψ+
y g,t

+ ψ−
y g,t

) + (1− λ2)ψ
max
g,t , ∀g ∈ G, ∀t ∈ Tf (5.83)

ξg,t = 1, ∀g ∈ G, ∀t ∈ Tf (5.84)

ψ+
x g,t+1 − ψ−

x g,t+1 − ψ+
x g,t + ψ−

x g,t ≤ ηfψ, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.85)

ψ−
x g,t+1 − ψ+

x g,t+1 − ψ−
x g,t + ψ+

x g,t ≤ ηfψ, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.86)

ψ+
y g,t+1

− ψ−
y g,t+1

− ψ+
y g,t

+ ψ−
y g,t

≤ ηfψ, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.87)

ψ−
y g,t+1

− ψ+
y g,t+1

− ψ−
y g,t

+ ψ+
y g,t

≤ ηfψ, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.88)

vg,t ≤
v↓ + v↑

2
+ vubχ

↑
g,π(t), ∀g ∈ G, ∀t ∈ Tf (5.89)

vg,t ≥
v↓ + v↑

2
+ vub

(

1− χ↑
g,π(t)

)

, ∀g ∈ G, ∀t ∈ Tf (5.90)

γg,t ≤ γ↓ + γub

(

1− χ↑
g,π(t+1)

)

, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.91)

v+i g,t ≥ vlbψ
+
i g,t, ∀g ∈ G, ∀t ∈ Tf , ∀i ∈ {x, y} (5.92)

v+i g,t ≤ vubψ
+
i g,t, ∀g ∈ G, ∀t ∈ Tf , ∀i ∈ {x, y} (5.93)

v+i g,t − vg,t ≥ vub(ψ
+
i g,t − 1), ∀g ∈ G, ∀t ∈ Tf , ∀i ∈ {x, y} (5.94)

v+i g,t − vg,t ≤ vlb(ψ
+
i g,t − 1), ∀g ∈ G, ∀t ∈ Tf , ∀i ∈ {x, y} (5.95)

v−i g,t ≥ vlbψ
−
i g,t, ∀g ∈ G, ∀t ∈ Tf , ∀i ∈ {x, y} (5.96)

v−i g,t ≤ vubψ
−
i g,t, ∀g ∈ G, ∀t ∈ Tf , ∀i ∈ {x, y} (5.97)

v−i g,t − vg,t ≥ vub(ψ
−
i g,t − 1), ∀g ∈ G, ∀t ∈ Tf , ∀i ∈ {x, y} (5.98)

v−i g,t − vg,t ≤ vlb(ψ
−
i g,t − 1), ∀g ∈ G, ∀t ∈ Tf , ∀i ∈ {x, y} (5.99)

xg,t+1 ≤ xg,t + ηf (v
+
x g,t − v−x g,t + βhg,t) + εxg,t, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.100)

xg,t+1 ≥ xg,t + ηf (v
+
x g,t − v−x g,t + βhg,t)− εxg,t, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.101)

yg,t+1 ≤ yg,t + ηf (v
+
y g,t

− v−y g,t) + εyg,t, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.102)

yg,t+1 ≥ yg,t + ηf (v
+
y g,t

− v−y g,t)− εyg,t, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.103)

vhg,t ≤ v↑γ↑ + v↑(γg,t − γ↑) + γ↑(vg,t − v↑) + vub

(

1− χ↑
g,π(t)

)

, ∀g ∈ G, ∀t ∈ Tf (5.104)

vhg,t ≥ v↑γ↑ + v↑(γg,t − γ↑) + γ↑(vg,t − v↑)− vub

(

1− χ↑
g,π(t)

)

, ∀g ∈ G, ∀t ∈ Tf (5.105)
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vhg,t ≤ v↓γ↓ + v↓(γg,t − γ↓) + γ↓(vg,t − v↓) + vubχ
↑
g,π(t), ∀g ∈ G, ∀t ∈ Tf (5.106)

vhg,t ≥ v↓γ↓ + v↓(γg,t − γ↓) + γ↓(vg,t − v↓)− vubχ
↑
g,π(t), ∀g ∈ G, ∀t ∈ Tf (5.107)

hg,t+1 ≤ hg,t + ηfvhg,t + εhg,t, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.108)

hg,t+1 ≤ hg,t + ηfvhg,t − εhg,t, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.109)

zg,t ≤ C↑
v

(

v↑
2
+ 2v↑(vg,t − v↑)

)

− gγg,t + vub

(

1− χ↑
g,π(t)

)

, ∀g ∈ G, ∀t ∈ Tf (5.110)

zg,t ≥ C↑
v

(

v↑
2
+ 2v↑(vg,t − v↑)

)

− gγg,t − vub

(

1− χ↑
g,π(t)

)

, ∀g ∈ G, ∀t ∈ Tf (5.111)

zg,t ≤ C↓
v

(

v↓
2
+ 2v↓(vg,t − v↓)

)

− gγg,t + vubχ
↑
g,π(t), ∀g ∈ G, ∀t ∈ Tf (5.112)

zg,t ≥ C↓
v

(

v↓
2
+ 2v↓(vg,t − v↓)

)

− gγg,t − vubχ
↑
g,π(t), ∀g ∈ G, ∀t ∈ Tf (5.113)

vg,t+1 ≤ vg,t + ηf zg,t + εvg,t, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.114)

vg,t+1 ≥ vg,t + ηf zg,t − εvg,t, ∀g ∈ G, ∀t ∈ Tf \ {N(nf + 1)} (5.115)

yg,0 = y0, ∀g ∈ G (5.116)

ylb ≤ yg,t ≤ yub, ∀g ∈ G, ∀t ∈ Tf (5.117)

εg,t ≤ ϵg, ∀g ∈ G, ∀t ∈ Tf (5.118)

(yg,t − yg,t−1) ≤ λg,t, ∀g ∈ G, ∀t ∈ Tf \ {0} (5.119)

(yg,t−1 − yg,t) ≤ λg,t, ∀g ∈ G, ∀t ∈ Tf \ {0} (5.120)

λg,t ≤ Λg, ∀g ∈ G, ∀t ∈ T (5.121)

ag,i,t ∈ {0, 1}, ∀g ∈ G, ∀i ∈W, ∀t ∈ Tc (5.122)

bg,l,t ∈ {0, 1}, ∀g ∈ G, ∀l ∈ L, ∀t ∈ Tc (5.123)

djg,i,t ∈ R+, ∀g ∈ G, ∀i ∈W ∪ L, ∀j ∈ {x, y}, ∀t ∈ Tc (5.124)

rjg,i,t ∈ R+, ∀g ∈ G, ∀i ∈W ∪ L, ∀j ∈ {x, y, h}, ∀t ∈ Tc (5.125)

ψji g,t ∈ [0, 1], ∀g ∈ G, ∀t ∈ Tf , ∀i ∈ {x, y}, ∀j ∈ {+,−} (5.126)

ψmaxg,t ∈ [0, 1], ∀g ∈ G, ∀t ∈ Tf (5.127)

ϕig,t, ϕ
max
g,t ∈ {0, 1}, ∀g ∈ G, ∀t ∈ Tf (5.128)

ξg,t, zg,t ∈ R+, ∀g ∈ G, ∀t ∈ Tf (5.129)

χ↑
g,t ∈ {0, 1}, ∀g ∈ G, ∀t ∈ Tc (5.130)

vji g,t ∈ [0, vub], ∀g ∈ G, ∀t ∈ Tf , ∀i ∈ {x, y}, ∀j ∈ {+,−} (5.131)

vhg,t ∈ [−vub, vub], ∀g ∈ G, ∀t ∈ Tf (5.132)

yg,t ∈ R
6, ∀g ∈ G, ∀t ∈ Tf (5.133)

εg,t, ϵg,λg,t,Λg ∈ R
6
+, ∀g ∈ G, ∀t ∈ Tf , (5.134)

where C↑
v = − 1

2mρSw

(

CD0
+ kAC

↑
L

2
)

and analogously C↓
v = − 1

2mρSw

(

CD0
+ kAC

↓
L

2
)

,

also recalling that π : Tf −→ Tc is the map from the finer time partition to the coarse

one.
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It is worth recalling here that, objective (5.54) requires to minimise the time of flight

as well as the scaled deviations from the approximated gliders’ dynamic, and it also

includes scaled penalty terms improving the stability of states variables. At the same

time, linear constraints (5.55)-(5.65) ensure the correct visit of the waypoints, always re-

specting camera’s and glider dynamic limitations, while linear constraints (5.66)-(5.74)

ensure a correct glider landing. Then, as previously introduced during the chapter,

constraints (5.75)-(5.121) ensure that each glider respects the approximated flight’s dy-

namic. More precisely, constraints (5.75)-(5.88) define the horizontal direction of flight

and constraints (5.89)-(5.91) determine the velocity regime of each glider. At the same

time, constraints (5.92)-(5.103) help identifying a correct horizontal velocity and conse-

quent positional changes and similarly, constraints (5.104)-(5.109) describe the vertical

movement. Finally, while constraints (5.110)-(5.115) determine the acceleration magni-

tude and the consequent velocity changes, constraints (5.116)-(5.121) ensure that initial

position, variable bounds and penalties’ ranges are respected. The rest of the constraints

are used to define variables domains.

5.2 Integration within the GRTOP

Having defined a model for finding initial insights and trajectories for the GRTOP, we

examine here the integration of its solution into our well-established model’s framework

for the GRTOP with prior information described in Chapter 4. By incorporating the

so-found initial trajectory into the existing model, we consolidate the reliability of the

final solution and we unleash the potential of solving the GRTOP without the necessity

of some form of prior knowledge.

5.2.1 Linear Interpolation and Nominal Trajectory Definition

After having constructed an initial trajectory by solving model (5.54)-(5.134), our next

step involves the integration of such a trajectory within the existing GRTOP formulation

(4.63)-(4.102). To do so, we start by noting that in the well-established Model I we tend

to use a finer time partition, due to the fact that we require more precision and the

presence of binary variables is more limited, making the problem ”easier” to solve.

Thus, our next effort involves the implementation of a linear interpolation technique

to synchronize the initial trajectory found via Model 0 within the finer time partition

deployed for the existing GRTOP model. Let then {yt}t∈Tf = (xt, yt, ht, v, γt, ϕt)t∈Tf
be the state variables of the initial trajectory of some glider obtained as a solution of

problem (5.54)-(5.134), with Tf = {0, . . . , Nf} be the set of fine time steps used and

Tf = {τ0, . . . , τNf
} the ordered set of the corresponding times. Consider now a finer

set of time steps T ′
f = {0, . . . , N ′

f}, with N
′
f ≥ Nf , and T ′

f = {τ ′0, . . . , τ
′
N ′

f
} ⊇ Tf , with

τ0 = τ ′0 and τNf
= τ ′N ′

f
, the ordered set of times corresponding to the finer partition.
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Indicating with |Tf | and |T ′
f | the respective cardinality of the two sets, we then construct

a map

Λ : R
6|Tf | → R

6|T ′

f
|

{yt}t∈Tf 7→ {y′
s}s∈T ′

f

that extend the first initial trajectory into a corresponding trajectory defined on the

finer time partition T ′
f and determined by

y′
s =







yt, if τ ′s = τt for some t ∈ Tf

yt +
τ ′s−τt
τt+1−τt

(yt+1 − yt), if τt ≤ τ ′s ≤ τt+1 for some t ∈ Tf \ {Nf}
. (5.135)

At this point we have defined the states variables describing the refined initial trajectory,

but what can the control variables be? Recalling that we did not use them to find the

initial solution, we must follow a different road. Therefore, we decide to utilise the most

up to date information as well as equilibrium flight conditions to determine a complete

initial trajectory {yos,u
o
s}s∈T ′

f
that can be deployed in the existing GRTOP Model I.

More precisely, at time step s, we consider the glider flying with a bank angle of µos = 0,

and to determine the nominal lift coefficient CoLs we decide to invert equation (3.26). To

be precise, to ensure that the so found nominal lift coefficient is within the admissible

flight envelope, we specify it as

CoLs =



















0.1, if 2mg
v′2s ρSw

≤ 0.1

2mg
v′2s ρSw

, if 0.1 ≤ 2mg
v′2s ρSw

≤ 1.17

1.17, if 1.17 ≤ 2mg
v′2s ρSw

. (5.136)

With these definitions, we can finally write the ultimate initial nominal trajectory

(yos,u
o
s) at time step s as

xos = x′s (5.137)

yos = y′s (5.138)

hos = h′s (5.139)

vos = v′s (5.140)

γos = γ′s (5.141)

φos = φ′
s (5.142)
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CoLs =



















0.1, if 2mg
v′2s ρSw

≤ 0.1

2mg
v′2s ρSw

, if 0.1 ≤ 2mg
v′2s ρSw

≤ 1.17

1.17, if 1.17 ≤ 2mg
v′2s ρSw

(5.143)

µos = 0. (5.144)

It is worth mentioning here that we decided v′s to be the most influential factor to

determine the initial lift coefficient at time step s, also because the flight path angle γ′

was found ignoring constraints stemming from dynamic’s equation (3.5).

Interpolating and constructing the initial trajectory as just described, we are now ready

to deploy Model I and ultimately solve the GRTOP in absence of prior knowledge on

gliders’ flight. In particular, in the following section we define an integrated algorithm to

solve the GRTOP that not only refines our initial trajectory and facilitates a smoother

transition between the different time scales, but also provides a more detailed view of the

underlying dynamics within the model, consequently leading to more reliable solutions.

5.2.2 A Two-Step Solution Algorithm

In the endeavor of solving the GRTOP and finding flyable trajectories, we acknowledge

that while our initial trajectory served as a valuable starting point, we can reach a more

accurate representation of the glider’s dynamic by incorporating the full set of linearised

EoMs. Thus, enhanced and reliable trajectories solving the GRTOP can be found by

adopting a Two Step Solution Algorithm, as defined in algorithm 1.

The idea of the framework for solving the GRTOP in absence of prior information is

to proceed by steps. In the first step, we define a possibly coarse initial time partition

Tf with nf number of fine time steps as in Step 1-(i) and, in Step 1-(ii), we solve a

simpler approximated problem as the one described by Model 0, so constructing an initial

trajectory defined on Tf for each glider. Consequently, in the second step, we improve

the initial trajectory solution solving a more precise, though still linear, GRTOP model,

encoded in Model I. Here we improve the precision by defining a finer time partition

T ′
f , Step 2-(i), and extending the initial trajectories to it via linear interpolation, Step

2-(ii) and Step 2-(iii). Dynamic constraints are then linearised around this enlarged

initial trajectory, Step 2-(iv), and the GRTOP defined by Model I is solved, Step 2-(v),

providing the final (sub) optimal solution. Deploying the Two Step Solution Algorithm,

it is therefore possible to find solutions to the GRTOP that are sound, reliable and

that can guarantee (sub) optimal path planning for gliders’ missions. In the rest of the

chapter, we provide first methodologies to assess the quality of the resulting solution

and then an example of mission, helping the reader in getting valuable understanding

of algorithm1 and its effectiveness.
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Algorithm 1 - Two Step Algorithm for the GRTOP

STEP 1:

(i) - Select a time partition Tf = {τ0, . . . , τNf
} with nf fine time steps

(ii) - For each glider, construct initial state variables’ trajectories, {yt}t∈Tf , by
solving Model 0 (5.54)-(5.134)

STEP 2:

(i) - Select a finer time partition T ′
f = {τ ′0, . . . , τ

′
N ′

f
} ⊇ Tf with n′f fine time steps

(ii) - For each glider, linearly interpolate the corresponding initial states {yt}t∈Tf to
find {y′

s}s∈T ′

f
following definition (5.135)

(iii) - For each glider, construct complete initial trajectories {yos,u
o
s}s∈T ′

f
by exploit-

ing equations (5.137)-(5.144)

(iv) - Linearise the EoMs and dynamic constraints around {yos,u
o
s}s∈T ′

f
as described

in Chapter 3 and equation (3.19)

(v) - Given the newly linearised dynamic’s constraints, solve Model I (4.63)-(4.102)

5.3 Error Analysis and Validation Methods

One key question to be addressed in order to validate our model and Two Step Algorithm,

is to understand how to measure the error committed while deploying the linearisation

approach and the subsequent approximations. To do so, two ways can be followed:

1. solve the NLP-based GRTOP and compare the trajectories found;

2. define (local) error measures to evaluate the difference with respect to the nonlinear

dynamic in a single or limited amount of time steps.

Following the first approach, the problem is solved by deploying algorithm 1. Conse-

quently, when possible, the NLP-based GRTOP is solved, utilising the two-step algo-

rithm solution as initial guess, and possibly penalising the deviation from the initial

trajectory. Finally, it is possible to measure:

• the ability to find an optimal solution to the NLP, i.e. if the solver is able to return

an optimal solution; as well as

• the relative distance between the NLP-based solution and the trajectory found

deploying algorithm 1.
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More precisely, given an optimal solution to the GRTOP {y∗
t ,u

∗
t } stemming from algo-

rithm 1, we can observe if we are able to find an optimal solution stemming from the

NLP problem with initial guesses and penalties, and consequently, given a solution of

the latter {ŷt, ût}, we can measure the relative distance, δt, between the trajectories at

time step t as

δt =
|(y∗

t ,u
∗
t )− (ŷt, ût)|

ηD
, (5.145)

where D = (D(x),D(y),D(h),D(v),D(γ),D(φ),D(CL),D(µ)) represents the range (or

domain) of the corresponding variables, η is the time partition length, and the differences

and ratio have to be intended variable wise. To express a global performance measure,

it is also possible to define an average relative distance, δ, as the average of the relative

distances across all the time steps δt.

On the other hand, computing NLP-based solutions for multiple gliders’ flights in a

complete mission setting is not always possible or practical. Nonetheless, it is possible

to define measures of trajectories’ quality by observing first the penalty terms ε in the

objective function of Model I, indicating the deviations from the linearised dynamic,

and second by defining a local error measure to capture ”errors” committed in the

linearisation process, by comparison with the nonlinear dynamic. More precisely, we

can introduce the following

Definition 5.2. Given an optimal solution to the GRTOP {y∗
t ,u

∗
t }t∈T ′

f
obtained via

algorithm 1, we can define the Local Error Measure at time step t ≥ 1 as

Et = |y∗
t − ŷt|,

where

ŷt = y∗
t−1 +

∫ τt

τt−1

f(y∗(s),u∗(s))ds ≃ y∗
t−1 + ηf(y∗

t−1,u
∗
t−1),

with η = (τt − τt−1), f representing the EoMs (3.1)-(3.6), and the last approximation

obtained by deploying an Euler scheme of integration, imposing that y∗(s) = y∗
t−1 and

u(s) = u∗
t−1 ∀s ∈ [t− 1, t].

In other words, the local error measure represents the local deviation of the optimal

solution {(y∗
t ,u

∗
t )}t∈T from the trajectory obtained by applying the true dynamic equa-

tions in the time period between τt−1 and τt, keeping variables constant.

To have a better comparative measure, it is often convenient to consider a relative error

measure. More precisely, the local error measure might be related to the length of the

time step as well as to the magnitude of the corresponding variables. This leads to the

following
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Definition 5.3. Given an optimal solution to the GRTOP {y∗
t ,u

∗
t }t∈T ′

f
obtained via

algorithm 1, we can define the Relative Local Error Measure at time step t ≥ 1 as

Rt =
Et

ηDS
,

where DS = (D(x),D(y),D(h),D(v),D(γ),D(ϕ)) represents the range (or domain) of

the corresponding state variables, and the ratio has to be intended variable wise.

In this way, we are able to get a more comprehensible and significant measure of the error

we commit by making linear approximations and deploying the Two Step Algorithm for

the GRTOP, while evaluating the validity of our methodology.

5.4 Flight Examples

In this section we present flight examples showing the efficacy of our Two Step Algorithm

and demonstrating how the just presented techniques can help in finding flyable paths

in absence of prior information. Once more, models and solutions are implemented

utilising the AMPL modelling language and solved using Gurobi 10.0.1 on a Viglen

desktop, Intel(R) Core(TM) i5−7500 CPU with 3.40GHz and a RAM of 8 GB, running

under Windows 10. As illustrative examples, we require a glider to start at the launching

point (x0, y0, h0) = (1967, 430, 1010) and initial state

y0 = (x0, y0, h0, v0, γ0, φ0) = (1967, 430, 1010, 7.1,−0.07, π),

to visit the three waypoints at sparse locations and then land in the predefined landing

site in (xf , yf , hf ) = (1034, 1572, 0), in scenarios where no wind is blowing as well as in

ones where it blows towards east (x direction) at its average intensity in UK (β = 0.025).

Applying the two step algorithm 1 with N = 18 coarse time steps in Model 0, N = 54

coarse time steps in Model I and nf = n′f = 2, and utilising the other model parameters

as determined by Table 5.1, within the flight envelope described by Table 3.2, we can

obtain the following results.

As reported in Figure 5.5, we are able to find reasonable trajectories and complete

the mission in both scenarios. Nonetheless, it is possible to notice that the resulting

trajectories can be very different. In fact, in presence of wind (β = 0.025), the glider

decides to start visiting a different waypoint to prevent to be pushed too much towards

east and so that the greatest distance, i.e. going from western waypoints to the eastern

one, can be travelled in favour of wind. In addition, although the glider is flying to

the landing point against the wind, it is doing so at a lower altitude, so that the wind

speed, U = βh, is less pronounced. In fact, after the last waypoint visit, it tries to
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Parameter Value Step 1 Value Step 2 Unit

N 18 54 -
nf 2 2 -
w1 0.6 0.6 -
w2 0.7 0.7 -
w3 0.9 0.9 -
w4 0.1 1.1 -
w5 0.07 1.1 -
w6 - 1.1 -

κx, κy 100 100 m
κh 15 100 m
κv

3
5(vub − vlb)

3
5(vub − vlb) m/s

κγ
3
5γub

3
5γub radians

κφ
1
6π

1
6π radians

γ̂ 0.03 0.03 radians
µ̂ 0.03 0.03 radians
v̂ 14.75 14.75 m/s

Table 5.1: Parameters of the models for the Two Step Algorithm.

(a) β = 0 (b) β = 0.025

Figure 5.5: Example of glider’s optimal trajectories in absence of wind (a) and in the
presence of wind (b).

reduce its altitude faster to diminish the resistance of the wind, as it is possible to

observe by comparing Figure 5.6(a) and Figure 5.6(b). Analogously, looking at Figure

5.6 and Figure 5.7 where we report the obtained state and control variables profiles,

we can observe that in presence of wind, the glider is flying against the latter at the

beginning of the flight, while trying to loose altitude (steeper values of γ are reached) and

increase its velocity, in order to overcome wind effects. Nevertheless, in both situations,

the glider tries to fly as fast as possible between waypoints’ visits, while it reduces

its speed for landing. Moreover, time steps where the glider is visiting a waypoint

are clearly recognisable by the fact that, by regulating its lift coefficient, it adjust its

velocity and flight path angle according to the requirements of flying flat at a moderate

speed. Conditions on the bank angle are also respected, although less evident given

that the glider is trying to fly straight most of the time. At the same time, turns are
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(a) Altitude (b) Altitude

(c) Velocity (d) Velocity

(e) Flight path angle (f) Flight path angle

Figure 5.6: Optimal state variables profiles in absence of wind (left) and in the
presence of wind (right).

also completed within reasonable states and controls, with the steepest one executed

with an average bank angle of around 0.6 radians, corresponding to roughly 35o, in

absence of wind. Once again, it is possible to observe that with blowing wind the glider

counterbalance its effects by executing a steeper turn at around 0.8 radians, roughly 45o,

when it is close to the last waypoint visit, before directing itself toward the landing point.

Finally, we note that this bank angle attitude is not kept for extended periods of time

and it falls well within glider’s flight envelope. It is worth recalling here that whenever

milder bank angles are required, it is always possible to increase the limitations, or

penalties, for changes of heading angle.
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(a) Lift coefficient (b) Lift coefficient

(c) Bank angle (d) Bank angle

Figure 5.7: Optimal control variables profiles in absence of wind (left) and in the
presence of wind (right).

With this in mind, we are able to examine more numerical results, also validating our

two step algorithmic approach by a thorough error analysis and showing its efficacy.



Chapter 6

Numerical Results

In this chapter, we present some numerical results obtained by solving the GRTOP

problem utilising the Two Step Algorithm presented in the previous chapter. We start

by examining trajectory optimisation problems, also comparing the solutions with tra-

jectories found solving the NLP counterparts. In this way, we show the validity of our

approach in finding reliable and feasible trajectories to accomplish the mission at hand.

We also show the robustness of the model by showing the sensitivity of the solutions

with respect to some of the model’s parameters. It is possible to see that, even though

trajectories can be highly affected by the latter, our approach is able to return flyable

trajectories most of the times. Then we continue our analyses by investigating cases of

multiple gliders flights, also introducing new methods for the evaluation of trajectories’

goodness when a direct comparison with their NLP counterpart is not possible or not

practical. Finally, we investigate algorithm 1 scalability, first by comparing the perfor-

mances of different commercial solvers, and second by varying the size of the inputs to

the GRTOP problem.

Unless stated otherwise, along the chapter, models and solutions are again implemented

utilising the AMPL modelling language and solved using Gurobi 10.0.1 as a solver on a

Viglen desktop, Intel(R) Core(TM) i5− 7500 CPU with 3.40GHz and a RAM of 8 GB,

running under Windows 10. We also remind the reader that we decided to use a two

time level partition, as described in Chapter 4, with parameters stated in Table 6.1 or

specified in due course, also respecting glider’s flight envelope as per Table 3.2. With

this in mind, we can then proceed by examining the trajectories found within several

flight conditions.

97
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Parameter Value Step 1 Value Step 2 Unit

N 18 54 -

nf 2 2 -

w1 0.6 0.6 -

w2 0.7 0.7 -

w3 0.9 0.9 -

w4 0.1 1.1 -

w5 0.07 1.1 -

w6 - 1.1 -

κx, κy 100 100 m

κh 15 100 m

κv
3
5(vub − vlb)

3
5(vub − vlb) m/s

κγ
3
5γub

3
5γub radians

κφ
1
6π

1
6π radians

γ̂ 0.03 0.03 radians

µ̂ 0.03 0.03 radians

v̂ 14.75 14.75 m/s

Table 6.1: Parameters of the models used along the chapter, unless otherwise stated.

6.1 Glider Flight Validation

In this section we aim at validating our Two Step Algorithm reliability and efficacy.

Through illustrative examples, we explore how the just presented techniques can help in

finding flyable paths, possibly close to optimal, in absence of further prior information.

To do so, we examine the trajectory optimisation problem illustrated in Chapter 3

comparing then the results obtained by deploying algorithm 1, with the ones obtained

by solving the NLP formulation of the problem utilising SNOPT as nonlinear solver.

More precisely, we consider a glider with initial state

y0 = (x0, y0, h0, v0, γ0, φ0) = (0, 0, 261, 7,−0.0274, 0),

that is required to reach a final location

(xf , yf , hf ) = (1550, 0, 0),

with a moderate speed vf ≤ 5.5 m/s and within a time span of [t0, tf ] = [0, 290] seconds,

also considering two different scenarios: one in absence of wind (β = 0) and one with

typical wind conditions with the wind strength coefficient approximating the average

wind gradient profile for the UK (β = 0.025). Solving the problem using algorithm 1,
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we find a trajectory {y∗
t ,u

∗
t }, that we can compare to the solution obtained by solving

its NLP counterpart defined by problem (3.14)-(3.18). To be reasonably comparable

though, this time the latter is solved by deploying the same uniform time partition used

within Model I of algorithm 1 until the landing time, so that decisions are made within

the same time frame. Moreover, we provide to the nonlinear solver {y∗
t ,u

∗
t } as an initial

trajectory guess. Results are reported in Table 6.2, where we compare the flight and

computational times, in Figure 6.1, where we illustrate the found optimal trajectories,

and in Figure 6.2 and Figure 6.3, where a comparison between state and control vari-

ables profiles is also investigated.

Type
Flight Time (s) Total CPU (s)

No Wind Wind No Wind Wind

Algorithm 1 114.10 114.10 17.53 17.22

NLP Solution 108.4 108.4 2.98 4.21

Table 6.2: Flight and computational times comparison between the solution attained

via algorithm 1 and the one attained solving the corresponding NLP with initial guess.

(a) In absence of wind (b) In presence of wind

Figure 6.1: Comparison of the optimal trajectories found via algorithm 1 (in green)

and by solving the corresponding NLP with initial guess (in blue), in scenarios with (a)

and without (b) the presence of wind.

As before, in both cases the wind’s presence forces the glider to fly more towards east

(x direction) and then approach the landing point from a different direction. However,

we can notice that trajectories can be quite different. In particular, in both solutions

the glider tends to descent at a regular pace adjusting its velocity and attitude from the

beginning, keeping it as constant as possible during the flight and then changing it for

the landing period. Although, NLP solutions tend to be more responsive, enabling the

glider to adjust its state and decision to face difficult situations like at the beginning of

the flight when low speed oblige the glider to dramatically reduce its flight path angle.
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(a) Altitude (b) Altitude

(c) Velocity (d) Velocity

(e) Flight path angle (f) Flight path angle

Figure 6.2: Comparison of the state variables profiles found via algorithm 1 (in green)
and by solving the corresponding NLP with initial guess (in blue), in scenarios with (a)

and without (b) the presence of wind.

In addition, as one can expect, NLP solutions tends to be smoother, see especially the

different choices of bank angle µ.

As mentioned in Chapter 3, in general it is difficult to guarantee the optimality of

the solution, given that we are in presence of nonconvex problems with the resulting

trajectories and flight times being affected by the chosen time partition as well as model

parameters and initial guesses, see Zhao (2004), Betts (2009), Rao (2010) and Rodrigues

et al. (2014). Nonetheless, we can ask if the (sub) optimal trajectories stemming from

algorithm 1 are actually flyable. If so, we have found another possible path from the
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(a) Lift coefficient (b) Lift coefficient

(c) Bank angle (d) Bank angle

Figure 6.3: Comparison of the control variables profiles found via algorithm 1 (in
green) and by solving the corresponding NLP with initial guess (in blue), in scenarios

with (a) and without (b) the presence of wind.

initial state to the final one that can serve our purposes. To answer such a question, in

the NLP model and solution, we decide to penalise deviations from position variables of

the initial trajectory guess by inserting the following terms in the objective function

px =

NL
∑

k=0

(xk − x∗k)
2

py =

NL
∑

k=0

(yk − y∗k)
2

ph =

NL
∑

k=0

(hk − h∗k)
2.

As hoped, we can see that we are able to find trajectories very close to the one found

with algorithm 1, both in presence and absence of wind, see Table 6.3 and Figure 6.4.

Once again, control variables, and consequently altitude, velocity and flight path angle

profiles are examined. A part from an initial adjustment due to the fact that the glider

starts with an attitude close to stalling conditions, which are difficult to prevent by our

linear approximations, this time states and control variables result to be much closer to

the one stemming from algorithm 1 as it is possible to see in Figure 6.5 and Figure 6.6.
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Type
Flight Time (s) Total CPU (s)
No Wind Wind No Wind Wind

Algorithm 1 114.10 114.10 17.53 17.22
NLP Solution 114.10 114.10 0.57 2.2

Table 6.3: Flight and computational times comparison between the solution attained
via algorithm 1 and via the corresponding NLP with initial guess and penalties.

(a) β = 0 (b) β = 0.025

Figure 6.4: Comparison of the optimal trajectories found via algorithm 1 (in green)
and by solving the corresponding NLP (in blue) with initial guess and penalties, in

scenarios with (b) and without (a) the presence of wind.

With this example, we show our ability to find flyable trajectories as well as some model

limitations, where the linearised dynamic and initial trajectory approximations are not

able to perfectly handle extreme flight conditions. Nonetheless, it is possible to show

that with different initial conditions closer to an equilibrium point, such adjustments

are not required. For instance, if the glider starts with an attitude close to the preferred

equilibrium conditions of Remark 3.2, we obtained similar trajectories between algorithm

1 solution and the NLP-based solution, with variables’ profiles comparison shown in

Figure 6.7 and Figure 6.8. Here it is possible to observe that such initial adjustments are

indeed no more required and even more similar decisions as well as variable trajectories

are established. It is worth recalling here that thanks to the approach “ASTRA High

Altitude Balloon Flight Planner” proposed by Sobester et al. (2013) and available at

Zapponi (2013), it is possible to lift gliders to optimal releasing points, possibly close

to equilibrium flight conditions, allowing to take them to advantageous positions that

ensure a more efficient trajectory planning, also avoiding the necessity of managing

extreme flight conditions.

As a further validation of our solutions and dynamic approximations, we decide to repeat

the process and generate 50 instances where one glider is required to go from an initial

state A to a final landing position B. The position of A is a point (0, 0, hA), with hA

chosen randomly between 100m and 300m, whereas point B lays on the ground with its

xy coordinates that can vary between 0 and 1500m. An initial velocity between 7.5m/s

and 11m/s and orientation are also chosen randomly, instead the lift coefficient is chosen



Chapter 6 Numerical Results 103

(a) Altitude (b) Altitude

(c) Velocity (d) Velocity

(e) Flight path angle (f) Flight path angle

Figure 6.5: Comparison of state variable profiles found via algorithm 1 (in green) and
by solving the corresponding NLP (in blue) with initial guess and penalties, in scenarios

with (right) and without (left) the presence of wind.
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(a) Lift coefficient (b) Lift coefficient

(c) Bank angle (d) Bank angle

Figure 6.6: Comparison of control variable profiles found via algorithm 1 (in green)
and by solving the corresponding NLP (in blue) with initial guess and penalties, in

scenarios with (right) and without (left) the presence of wind.

by inverting equation (3.26). Then, to validate our model and Two Step Algorithm, we

solve first the problem deploying algorithm 1 and consequently we solve the NLP with

the so-found solution as initial guess, in scenarios of absent wind as well as the wind

blowing at the average UK speed. We again penalise the deviation from the initial

trajectory and we measure

• the frequency with which we are able to find an optimal solution to the NLP; and

• the average relative distance between the NLP solution and the trajectory found

deploying algorithm 1.

More precisely, given an optimal solution to the GRTOP {y∗
t ,u

∗
t } stemming from al-

gorithm 1, we can count the number of times in which we are able to find an optimal

solution stemming from the NLP with initial guesses and penalties, and consequently,

given a solution of the latter {ŷt, ût}, we can measure the relative distance, δt, between

the trajectories at time step t as defined in equation (5.145). Then, we also measure the

average relative distance, δ, as the average of δt by time steps and instances. Results are

then reported in Table 6.4, where it is possible to see that we are always able to solve the

NLP problem to optimality and within an average relative distance of less than 1.5% for
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(a) Altitude (b) Altitude

(c) Velocity (d) Velocity

(e) Flight path angle (f) Flight path angle

Figure 6.7: Comparison of state variable profiles found via algorithm 1 (in green)
and by solving the corresponding NLP (in blue) with initial guess and penalties, when
the glider starts with flight conditions close to an equilibrium point, in scenarios with

(right) and without (left) the presence of wind.
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(a) Lift coefficient (b) Lift coefficient

(c) Bank angle (d) Bank angle

Figure 6.8: Comparison of control variable profiles found via algorithm 1 (in green)
and by solving the corresponding NLP (in blue) with initial guess and penalties, when
the glider starts with flight conditions close to an equilibrium point, in scenarios with

(right) and without (left) the presence of wind.

Type
NLP

Optimality
Average Relative Distance (%)

δx δy δh δv δγ δφ δCL
δµ

β = 0 100% 0.1 0.1 0.4 1.4 1.1 1.0 5.0 10.6
β = 0.025 100% 0.1 0.1 0.5 1.4 1.3 1.2 5.8 10.4

Table 6.4: Frequency of initial trajectory stemming from algorithm 1 leading to an
optimal solution to the corresponding NLP and average relative distance between the
trajectories. Quantities are measured in scenarios of presence and absence of wind.

all the states variables, and of less than 10.5% for all the controls. Despite bank angle

decisions exhibit more pronounced discrepancies of about 10%, we consider the model

valid since in the majority of the cases these differences are not dramatic in terms of

flight impact, i.e. glider position and attitude are not significantly affected.

Having shown our ability to find flyable trajectories for several different flight conditions,

we proceed here with the investigation of the dependency of model outcomes from our

models’ parameters.
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6.2 Sensitivity to Model Parameters

In this section, we examine the impact of some parameters on the optimal solutions,

especially in terms of trajectory reliability, trajectory shape and landing times. We

focus especially on the selection of time partition, penalty weights in the initial trajectory

model, as well as the effect of wind strength on the final path. For the former cases,

unless otherwise stated, we will consider the same trajectory optimisations flights used

at the end of previous section, in absence of wind.

6.2.1 Time Partition Sensitivity

To test the influence of the time partition on the optimal solution, we decide to vary

the coarse time steps N between 8 and 18 for the first step of algorithm 1, whereas in

the second step we use triple the number of time steps, with a minimum of 33 coarse

time steps. We then solve the 50 trajectory optimisation instances defined at the end of

section 6.1 deploying our Two Step Algorithm and we compare the so-found trajectories

with the NLP solutions with initial guess and penalties for deviating from the initial

trajectory, to evaluate path feasibility. It is possible to observe in Table 6.5 that almost

regardless the number of time step chosen, we are able to solve to optimality the NLP

with initial guess and, looking at the relative distances, find an optimal trajectory fairly

close to the initial guess. This indicates the ability of our model to produce (sub) optimal

flyable trajectories.

On the other hand, in Figure 6.9 we report the results relative to the changes in landing

time distribution as well as CPU usage to solve Model 0 of our algorithm (it is possible to

show that similar CPU behaviour, although of different magnitude, can be observed in

solving Model I). Landing and computational times can be indeed significantly affected

by the number of time step used. As expected, computational times can worsen signifi-

cantly as we increase the number of time steps whilst the solution quality remains under

investigation: if on one side we start observing a possible improvement and convergence

of landing times, with the landing time distribution that seems to start stabilising after

N = 24, on the other side we have a significant increase of the average relative distance

for decisions made about the bank angle. All the other average relative distances stay

fairly stable.
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N
NLP

Optimality

Average Relative Distance (%)

δx δy δh δv δγ δφ δCL
δµ

8 96.7% 0.1 0.2 0.7 1.9 1.1 1.7 5.9 13.3

10 100% 0.1 0.2 0.7 2.0 1.2 1.4 5.7 12.7

12 100% 0.2 0.2 0.7 2.0 1.5 1.8 6.1 14.2

16 100% 0.1 0.1 0.6 2.2 1.5 1.0 4.6 14.9

20 100% 0.1 0.1 0.5 3.0 1.6 1.2 4.3 17.6

24 100% 0.1 0.1 0.6 2.9 1.8 1.3 4.3 20.3

28 100% 0.1 0.1 0.6 2.9 2.1 1.3 4.6 23.1

32 100% 0.1 0.2 0.7 2.8 2.4 1.7 4.7 25.1

Table 6.5: Sensitivity of the solution with respect to time step partition. The ability to

solve the corresponding NLP problems and the average relative distance from the initial

trajectory is shown as the number of coarse time steps of the first step of algorithm 1

(N) varies.

(a) Landing Time (b) CPU(s) - Model 0

Figure 6.9: Distribution of landing and computational times for solving Model 0 as

the number of coarse time steps for the model in the first step of algorithm 1 varies.

In addition to this, we show in Figure 6.10 the optimal trajectories and state variable

profiles found solving a single instance and deploying algorithm 1 using different number

of time steps. It is possible to observe that increasing the number of time steps, and

consequently having the possibility to adjust the trajectory more frequently, the glider

is able to better control its flight path angle and to reach higher velocities and descent

rates. In this way, it is able to land earlier and complete the mission within less time

and possibly with a smoother trajectory.
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(a) Trajectory (b) Altitude

(c) Velocity (d) Flight path angle

Figure 6.10: Trajectories and variables profiles as the number of coarse time steps for

the model in the first step of algorithm 1 varies among N = 8 (blue), N = 16 (green),

N = 24 (orange), N = 32 (red).

6.2.2 Weights Sensitivity

Similarly to the examination about the effects of the time partition on the solution, we

want to evaluate the sensitivity of the latter with respect to the some of the models’

weights. It is understandable that Model 0 and the first step of algorithm 1 have huge

repercussions on the final optimal trajectory. Consequently, weights chosen in it play a

vital role and one of the highest impact is due to the weight on the penalisation on state

changes, w4. Therefore, we decide to analyse consequences of changing it by making it

vary between 0.05 and 0.6, and by solving the problems via our two step algorithm as

well as their NLP counterparts. At this stage, we decide to utilise N = 12 coarse time

steps, to maintain a balance between the quality of the trajectory and computational

times. Analogously to what reported above, in Table 6.6 and in Figure 6.11 we represent

the corresponding results where once again we can observe our ability in finding flyable

trajectories for most of the instances. However, it is possible to observe higher average

relative distance, lower ability in solving the corresponding NLP to optimality, and an

increase in landing times as we require smaller state changes between time steps. The

intuition behind the latter is that, increasing the importance of having smaller changes,
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the glider aims at flying at moderate velocities, limiting variations between v0 and vf ,

and therefore leading to a longer flight. It is also possible to observe that computational

times can be significantly affected by the weight chosen, meaning that the solver might

not know which objective must be prioritised most.

w4

NLP

Optimality

Average Relative Distance (%)

δx δy δh δv δγ δφ δCL
δµ

0.05 100.0% 0.1 0.1 0.6 2.1 1.5 1.2 5.4 13.0

0.1 100.0% 0.1 0.1 0.5 1.9 1.2 1.1 5.0 10.7

0.2 98.1% 0.1 0.2 0.5 1.8 1.0 1.7 5.9 13.6

0.3 100.0% 0.2 0.2 0.5 1.7 1.1 2.7 7.2 23.1

0.4 96.2% 0.2 0.2 0.5 1.6 1.1 3.3 7.4 23.7

0.5 92.3% 0.2 0.2 0.5 1.6 1.1 3.6 8.0 23.7

0.6 96.7% 0.2 0.2 0.6 1.6 1.2 3.1 6.6 19.2

Table 6.6: Sensitivity of the solution with respect to Model 0 weight w4. The ability

to solve the corresponding NLP problems and the average relative distance from the

initial trajectory is shown as w4 varies.

(a) Landing Time (b) CPU(s) - Model 0

Figure 6.11: Distribution of landing and solving times as the weight relative to the

penalty on state changes (w4) varies for the first step of algorithm 1.

In addition, similarly to what previously done, in Figure 6.12 we show a comparison of

the optimal trajectories and some state variable profiles found solving a single instance

via algorithm 1 using different weights. It is possible to observe that a moderate weight

let more freedom to the glider that in this way it is able to reach the target faster.

On the other hand, higher weights penalising the changes of state lead to more rigid

trajectories and prevent the glider to reach higher velocities and land faster.
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(a) Trajectory (b) Altitude

(c) Velocity (d) Flight path angle

Figure 6.12: Trajectories and variables profiles as the weight of penalties on state

changes varies among w4 = 0.1 (blue), w4 = 0.3 (green) and w4 = 0.5 (orange).

6.2.3 Wind Sensitivity

Ultimately, we would like to examine the effect of the wind on the choice of trajectory.

In this occasion however, given the assumption of an altitude dependent wind profile, we

create 50 instance of a TO problem where a glider is required to fly at higher altitudes.

More precisely, a glider is required to fly from a point A = (0, 0, hA) to a point B =

(xB, yB, hB), where hA is chosen randomly between 550m and 750m, whereas xB, yB

vary between 0m and 1500m and hB = 450m. Moreover, the glider starts with an initial

velocity chosen randomly between 8.5m/s and 11m/s, orientation also chosen randomly

within the flight envelope, while the lift coefficient is selected by inverting equation

(3.26). With this in mind, keeping the same time partition with N = 12 coarse time

steps, we solve the instance making the wind intensity β vary between 0.0 and 0.1 passing

from its average value 0.025. The results are reported in Table 6.7 and in Figure 6.13.
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β
NLP

Optimality

Average Relative Distance (%)

δx δy δh δv δγ δφ δCL
δµ

0.0 100.0% 0.1 0.1 0.3 2.4 1.1 1.3 5.5 7.4

0.025 100.0% 0.1 0.1 0.3 2.2 1.3 2.0 5.4 9.3

0.05 86.7% 0.5 0.3 3.0 3.4 4.0 1.9 6.2 12.0

0.075 56.7% 1.2 0.5 5.4 4.2 4.0 2.3 4.0 20.5

0.1 16.7% 2.0 0.6 8.1 4.9 3.8 2.4 3.2 20.9

Table 6.7: Sensitivity of the solution with respect to the wind strength β. The ability

to solve the corresponding NLP problems and the average relative distance from the

initial trajectory is shown as β varies.

(a) Arrival Time (b) CPU(s) - Model 0

Figure 6.13: Distribution of flight (arrival) and solving times as the wind strength

(β) varies.

It is possible to observe that, despite the flight time and computational time are less

affected by the wind (consider the different time scales of Figure 6.13 with respect to

the other parameters’ analyses), the quality of the solution can be strongly affected. In

fact, a much stronger wind can lead to our inability to solve the NLP counterparts to

optimality, also increasing the average relative distance especially for the height h, as

reasonable, given the assumption on the wind profiles. However, the fact that we do

not find NLP-based optimal solution, does not mean that this does not exist and that

it is impossible for us to find it, but just that we are not sure that we can do it like for

the other cases, since the NLP solver ends in a different status, meaning that it is not

able to find an optimal solution. Anyway, extra care is required while planning missions

when a strong wind is blowing.

As before, we show here examples of optimal trajectories that might help the reader

to understand the wind effects on glider’s dynamic. In Figure 6.14, it is possible to see

that the wind plays a crucial role in determining the final trajectory. In particular, while

absent or moderate wind can lead to similar variables profiles, glider positions can vary
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significantly with the UAV approaching the arrival point B from a different position and

a different attitude. On the other hand, when the wind blows intensely, β = 0.075, the

glider decides to loose altitude faster and to fly aggressively at higher speed against the

wind, in order to counteract its strength and avoid being blown over the target point B.

(a) Trajectory (b) Altitude

(c) Velocity (d) Flight path angle

Figure 6.14: Trajectories and variables profiles as the wind strength varies between

β = 0.0 (blue), β = 0.025 (green) and β = 0.075 (orange).

With all this in mind, we are ready to examine other flight missions involving actual

waypoint vists in combination with the utilisation of multiple UAVs.

6.3 Multiple UAVs

Being able to find (sub) optimal flyable trajectories deploying our Two Step Algorithm

for the GRTOP, and knowing the effect of (some of) the parameters involved as well as

of the weather conditions, we can now proceed to investigate multiple gliders’ flights.

Similarly to what shown in the flight illustration at the end of the Chapter 5, we start

by examining the flight of two gliders launched from the same site and required to visit

three waypoints before landing in a predefined landing region. Deploying once again

algorithm 1, with N = 10 and w4 = 0.1, it is possible to obtain the following results in
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scenarios where no wind is blowing as well as in ones where it blows around its average

intensity in UK.

(a) β = 0 (b) β = 0.025

Figure 6.15: Optimal trajectories of two gliders (blue and green) found via algorithm

1 and in scenarios of absence of wind (a) as well as in its presence (b).

It is possible to notice from Figure 6.15 that in both scenarios we are able to find sound

trajectories and complete the mission, with the wind being decisive in determining the

final path. More precisely, it is possible to observe that each glider is forced to fly almost

against it at the beginning when the altitude is still significant, see for example in the

zoomed image of Figure 6.15(b). On the other hand, when the gliders reach more mod-

erate altitudes, they can harness the wind by adjusting their flight attitude and reach

faster the landing zone, thus reducing the total mission time, see Table 6.8.

Type Total CPU (s)
Flight Time (s)

Green Glider Blue Glider

β = 0 253.64 431.40 369.79

β = 0.025 490.81 415.99 369.79

Table 6.8: Flight and computational times for the solution attained in the presence

and absence of wind.

In Figure 6.16, it is possible to observe some state variables profiles that help with the

understanding of the overall mission. Gliders tend to move as fast as possible to the

next target, whilst reducing their altitude if necessary and adjusting their attitude while

visiting a waypoint or while landing, as can be clearly seen from velocity and flight path

angle profiles. It is also possible to observe that these variables remain similar despite

the different scenarios, adjusting solely the direction of flight to counterbalance the wind.

After a graphical verification of the sensibleness of the found optimal trajectories, we

would like to investigate better measures to understand their quality and reliability.
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(a) Altitude (b) Altitude

(c) Velocity (d) Velocity

(e) Flight path angle (f) Flight path angle

Figure 6.16: State variable profiles for the optimal trajectories found via algorithm

1, in scenarios with (right) and without (left) the presence of wind. Colours refer to

the corresponding glider depicted in Figure 6.15.

6.3.1 Error Analysis

As previously stated, while examining multiple gliders’ flights in a complete mission

setting, it is not possible to have a complete evaluation of the goodness of the trajectory

by comparing it with the corresponding NLP-based solution. Indeed the latter would

present instabilities and in most of the instances would neither be able to return sensible

trajectories nor to find them within a reasonable time. Nonetheless, it is possible to
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(a) Glider 1 - β = 0 (b) Glider 1 - β = 0.025

(c) Glider 2 - β = 0 (d) Glider 2 - β = 0.025

Figure 6.17: Relative deviations from the linearised dynamic during the flight for
each glider and in both wind scenarios. Vertical red dashed lines indicate the moment

of landing for the respective glider.

measure the quality of the trajectory found via algorithm 1 by observing first the penalty

terms ε in the objective function of Model I, indicating the deviations from the linearised

dynamic, and second by deploying local error measures to capture ”errors” with respect

to the nonlinear dynamic as described in definitions 5.2 and 5.3. In this way, we are

able to get a more comprehensible and significant measure of the error we commit by

making linear approximations and deploying the Two Step Algorithm for the GRTOP.

If we apply these definitions to the flight example just shown, and if we get a relative

measure, analogous to the one in definition 5.3, for the penalty term ε expressing the

deviation from the linearised dynamic, it is possible to observe in Figure 6.17 that the

latter is in general small, even close to zero for most of the time and for most of the

variables. Only some adjustment on the flight path angle γ are required, but only for

a short period of time, typically few time steps. At the same time, we can observe in

Figure 6.18 that the relative local error measure is also small for the majority of the flight

with some speed and flight path angle adjustments required especially during waypoint

visits and while landing, but never exceeding 10%.
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(a) Glider 1 - β = 0 (b) Glider 1 - β = 0.025

(c) Glider 2 - β = 0 (d) Glider 2 - β = 0.025

Figure 6.18: Relative local error measure for each glider and in both wind scenarios.
Vertical red dashed lines indicate the moment of landing for the respective glider.

To further analyse the reliability of our model and the Two Step Algorithm for the

GRTOP, we prepare more flight simulations and we measure the relative deviation from

the linearised dynamic as well as the relative local errors in all of them. In particular,

we consider 120 medium range instances where one to three gliders are required to

visit some waypoints, from 2 to 6, and land in a predefined landing sites, maximum 2.

As usual, we investigate scenarios where the wind is absent or blowing at the average

UK speed at 500m. Gliders start at an altitude between 120m and 1500m, then the

waypoints and the landing site are randomly located within an area of 5× 5km2 around

the starting position. Collecting the interested quantities for each flight simulation, we

can compute the distributions of the deviations from the linearised dynamic, as well as

the distributions of the relative local errors. The results are then reported in Figure 6.19

and Figure 6.20 respectively.

As it is possible to notice, the relative error term as well as the relative divergence from

the linearised dynamic can be considered small, with some sporadic circumstance where

deviations from both the linearised and/ or the true dynamic is deemed necessary by

the solver. Nonetheless, these situations are limited and the vast majority of the relative
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(a) β = 0 (b) β = 0.025

Figure 6.19: Distribution of relative deviations from the linearised dynamic for 120
flight simulations within different wind scenarios.

(a) β = 0 (b) β = 0.025

Figure 6.20: Distribution of the relative local errors for 120 flight simulations within
different wind scenarios.

local errors and deviation from the linearised dynamic falls within 5%, reinforcing the

validity of our model formulation.

After analysing multiple gliders’ flights, we proceed by investigating first the alternative

solvers available in the market, and second by examining the scalability of our Two Step

Algorithm for the GRTOP when we deploy the best identified solver.

6.4 Comparison between solvers

Mixed-Integer Linear Programming (MILP) formulations of an optimisation problem

offer the indisputable advantage of being solvable by leveraging on powerful and readily

available commercial solvers. Therefore, common solvers among the research community,

see Mittelmann (2017), like CPLEX, version 22.1.1.0, Xpress, version 9.0.3, and Gurobi,

version 10.0.1, can be deployed to solve instances of Model 0 and Model I, and the

stemming GRTOP solutions can be compared. Thus, we observe the performances

obtained on 50 instances randomly generated where a glider starting at an altitude

between 250m and 500m is required to visit 3 waypoints and land in a single predefined
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(a) Model 0 (b) Model I

Figure 6.21: A comparison of computational times necessary to solve the correspond-
ing instances of Model 0 (left) and Model I (right) within algorithm 1, using different
commercial solvers. In blue the distribution of computational times relative to CPLEX,

in orange the one corresponding to Xpress and in green the one for Gurobi.

landing zone, with the mission taking place in a radius of 1500m, this time only in

absence of wind, β = 0. We solve each of the instances by deploying N = 10 coarse

time steps in Model 0 of algorithm 1, and N = 27 coarse time steps for Model I, while

choosing w4 = 0.1. Other parameters are chosen like in Table 6.1. Results are reported

in Figure 6.21, where computational times’ distributions are compared for both the first

step (Model 0) of the algorithm as well as the second one (Model I).

For the chosen instances, all the commercial solvers are able to find an optimal solution

although with different solving times. As it is possible to observe, while CPLEX and

Xpress show similar behaviour, especially in the first step of algorithm 1, Gurobi is able

to outperform the other solvers significantly in each step. It is worth noting here that

from this analysis it is also possible to deduce that generally it is easier to solve the

second step of the problem, with all of the computational times necessary to solve it

below 20s. This seems indeed reasonable, given that an initial trajectory is provided

and deeper exploration is therefore rarely required. Finally, we report here one instance

where the found optimal trajectories and variable profiles, Figure 6.22, mission’s times

and average deviation from the linearised dynamic, Table 6.9, and relative local error

measures, Figure 6.23, are also compared for the three solvers.

Solver Flight Time (s) Total CPU (s) εx εy εh εv εγ εϕ

CPLEX 191.26 9.79 0.1% 0.1% 0.0% 0.5% 3.2% 0.0%

Xpress 191.26 16.14 0.1% 0.1% 0.0% 0.5% 2.7% 0.0%

Gurobi 191.26 8.42 0.2% 0.1% 0.0% 0.5% 2.8% 0.0%

Table 6.9: Comparison of flight times, computational times and average deviations

from the linearised dynamic for the solutions of the instance attained using different

commercial solvers.
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(a) Trajectory (b) Altitude

(c) Velocity (d) Flight path angle

(e) Lift coefficient (f) Bank angle

Figure 6.22: Comparison of trajectories and variables profiles obtained using CPLEX
(blue), Xpress (orange) and Gurobi (green) as solver.

(a) CPLEX (b) Xpress (c) Gurobi

Figure 6.23: Comparison of the relative local error measure for the solution attained
using different commercial solvers. Vertical red dashed lines indicate landing times.
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It is possible to observe that all the three solvers return a similar solution, with moderate

error terms. Different decisions are made regarding the bank angle which lead, in case of

Gurobi and CPLEX to a similar solution, whereas Xpress decide for a opposite direction

of landing, creating a symmetrical path. Due to the absence of wind, solvers decisions

are completely legitimate, and in fact irrelevant for determining the flight time. On the

other hand, CPLEX solution opts for a separate visit to the three waypoints, whereas

Xpress and Gurobi decide to visit two waypoints simultaneously, photographing the

remaining object in a separate moment. As before, this decision does not influence the

overall mission times. In light of this, given the similarity of solution quality and the

substantial differences in computational time performances, we consider Gurobi as the

state-of-the-art solver for tackling this type of problems and it has indeed been chosen

for the computational experiments presented in this manuscript. With this in mind, we

can proceed by examining the computational efficiency and scalability of our GRTOP

formulation in terms of number of gliders, number of waypoints, as well as number of

landing points.

6.5 Problem Scalability

In this section we investigate one fundamental aspect of solving the GRTOP: its scalabil-

ity, i.e. how efficiently we can compute optimal solutions as the problem size increases.

To address this question, we explore the the performance of our numerical model and op-

timisation algorithm, with particular focus on its behaviour when the number of glider,

waypoints and landing sites vary. Thus, a number of test instances are generated at first.

The instances considered have between 2 and 7 waypoints and a maximum of 2 landing

regions. The number of available gliders is chosen between 1 and 3, with special interest

in situations where the number of waypoints is at least double the one of gliders. Target

objects and landing areas are scattered over an area of 5× 5km2. Then, for each combi-

nation of number of gliders, waypoints and landing sites, we create 5 random instances.

Finally, gliders can initiate the mission from a randomly generated launching site within

the area, at an altitude varying between 100 and 1500m, and a moderate initial velocity.

Then, we solve each GRTOP instance by deploying algorithm 1, with N = 10 coarse

time steps in its first step and 54 in its second step, for the usual cases where the wind

is respectively absent or blowing at average UK intensity. All the other parameters are

once again specified like in Table 6.1 and a CPU limit of 1h (3600s) for solving the

corresponding problem is imposed to both steps of the algorithm. Ultimately, results

relative to interesting instances (instances of lower size were all solved to optimality)

are reported in Table 6.10 and Table 6.11. It is possible to observe that for instances

with less than 6 waypoints, we are generally able to solve the problem to optimality or

we reach a small relative optimality gap, at least in one of the two steps of algorithm 1.

The resulting relative local error is also small on average with higher maximum values,
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Name #G #W #L
CPU(s) Gap (%) R(%)

Step 1 Step 2 Step 1 Step 2 Mean Max

grtop 261 1 2 6 1 901.51 189.81 0.0% 0.0% 0.52% 17.72%
grtop 261 2 2 6 1 134.91 127.55 0.0% 0.0% 0.42% 16.47%
grtop 261 3 2 6 1 340.66 100.19 0.0% 0.0% 0.74% 17.22%
grtop 261 4 2 6 1 720.01 191.78 0.0% 0.0% 0.71% 13.78%
grtop 261 5 2 6 1 120.75 262.11 0.0% 0.0% 0.56% 18.75%

grtop 262 1 2 6 2 812.23 159.08 0.0% 0.0% 0.26% 4.59%
grtop 262 2 2 6 2 1599.2 275.89 0.0% 0.0% 0.28% 6.64%
grtop 262 3 2 6 2 144.0 211.55 0.0% 0.0% 0.35% 3.71%
grtop 262 4 2 6 2 530.39 133.28 0.0% 0.0% 0.29% 7.86%
grtop 262 5 2 6 2 625.91 122.53 0.0% 0.0% 0.38% 5.63%

grtop 351 1 3 5 1 1005.78 270.7 0.0% 0.0% 0.55% 13.28%
grtop 351 2 3 5 1 420.03 629.39 0.0% 0.0% 0.6% 20.51%
grtop 351 3 3 5 1 2354.16 197.69 0.0% 0.0% 0.94% 20.42%
grtop 351 4 3 5 1 3600 3433.81 3.0% 0.0% 0.47% 18.45%
grtop 351 5 3 5 1 3130.27 798.53 0.0% 0.0% 0.52% 11.8%

grtop 352 1 3 5 2 3600 1236.0 16.0% 0.0% 0.43% 15.62%
grtop 352 2 3 5 2 3600 361.03 21.0% 0.0% 0.27% 4.17%
grtop 352 3 3 5 2 3600 412.97 16.0% 0.0% 0.33% 11.02%
grtop 352 4 3 5 2 3600 522.89 17.0% 0.0% 0.35% 6.0%
grtop 352 5 3 5 2 3600 477.86 13.0% 0.0% 0.37% 5.8%

grtop 361 1 3 6 1 3600 691.42 25.0% 0.0% 0.53% 12.9%
grtop 361 2 3 6 1 3600 453.28 38.0% 0.0% 0.32% 17.93%
grtop 361 3 3 6 1 3600 1210.2 33.0% 0.0% 0.45% 19.3%
grtop 361 4 3 6 1 3177.49 579.61 0.0% 0.0% 0.5% 12.44%
grtop 361 5 3 6 1 1776.84 309.97 0.0% 0.0% 0.53% 14.4%

grtop 362 1 3 6 2 3600 2287.36 21.0% 0.0% 0.41% 4.77%
grtop 362 2 3 6 2 3600 1040.58 19.0% 0.0% 0.46% 6.5%
grtop 362 3 3 6 2 3470.95 1416.52 0.0% 0.0% 0.32% 4.68%
grtop 362 4 3 6 2 3600 1080.69 10.0% 0.0% 0.33% 6.77%
grtop 362 5 3 6 2 3600 1993.38 25.0% 0.0% 0.38% 7.82%

grtop 371 1 3 7 1 3600 3600 34.0% 1.0% 3.14% 18.35%
grtop 371 2 3 7 1 3600 3600 18.0% 5.0% 1.72% 30.05%
grtop 371 3 3 7 1 3600 3600 124.0% 3.0% 2.64% 29.9%
grtop 371 4 3 7 1 3600 3600 9.0% 2.0% 2.58% 30.11%
grtop 371 5 3 7 1 3600 1345.8 10.0% 0.0% 2.41% 25.13%

grtop 372 1 3 7 2 1758.28 1542.7 0.0% 0.0% 0.48% 9.32%
grtop 372 2 3 7 2 3600 3007.3 45.0% 0.0% 0.88% 15.53%
grtop 372 3 3 7 2 3600 1719.72 68.0% 0.0% 0.51% 11.48%
grtop 372 4 3 7 2 3600 3600 75.0% 5.0% 0.68% 35.24%
grtop 372 5 3 7 2 3600 3600 43.0% 3.0% 1.16% 22.71%

Table 6.10: Computational results for a number of instances with absent wind.

indicating that for short period of time an adjustment might be required for some of the

variables. Furthermore, it is also possible to observe some effect of the wind, helping

sometimes to improve the solvability in the first step of the algorithm, while increasing

the difficulties in the second step, see for examples the instances ”grtop 352”. On the

other hand, instances with 7 or more waypoints become complicated to solve, showing

a higher optimality gap. At the same time, apart from very few instances, we observe

higher average and maximum relative local errors, suggesting that feasibility of the tra-

jectory remains to be proven.

We have seen here that our Two Step Algorithm can successfully can return sound
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mission plans and flyable trajectories for many reasonable size real-world instances of

the GRTOP. Nevertheless, when dealing with larger instances, we are unable to always

demonstrate optimality of the path chosen. Further improvements might then be nec-

essary to continuously advance this challenging and fascinating research area.

Name #G #W #L
CPU(s) Gap (%) R(%)

Step 1 Step 2 Step 1 Step 2 Mean Max

grtop 261 1 2 6 1 1168.78 354.97 0.0% 0.0% 0.51% 9.66%

grtop 261 2 2 6 1 289.17 619.14 0.0% 0.0% 0.37% 8.31%

grtop 261 3 2 6 1 90.09 327.38 0.0% 0.0% 0.42% 8.71%

grtop 261 4 2 6 1 896.62 324.56 0.0% 0.0% 0.82% 18.44%

grtop 261 5 2 6 1 278.75 182.89 0.0% 0.0% 0.51% 8.82%

grtop 262 1 2 6 2 593.59 937.64 0.0% 0.0% 0.25% 7.29%

grtop 262 2 2 6 2 1824.03 505.2 0.0% 0.0% 0.37% 7.62%

grtop 262 3 2 6 2 190.83 674.19 0.0% 0.0% 0.65% 11.64%

grtop 262 4 2 6 2 970.08 409.33 0.0% 0.0% 0.27% 4.06%

grtop 262 5 2 6 2 206.67 643.38 0.0% 0.0% 0.36% 7.61%

grtop 351 1 3 5 1 739.09 2723.27 0.0% 0.0% 0.81% 20.26%

grtop 351 2 3 5 1 541.31 1484.72 0.0% 0.0% 0.45% 17.4%

grtop 351 3 3 5 1 537.98 1525.56 0.0% 0.0% 0.61% 18.09%

grtop 351 4 3 5 1 1707.86 3600 0.0% 3.0% 0.63% 14.61%

grtop 351 5 3 5 1 1162.95 3600 0.0% 2.0% 0.43% 12.44%

grtop 352 1 3 5 2 3600 2129.09 22.0% 0.0% 0.42% 10.72%

grtop 352 2 3 5 2 1779.8 2236.69 0.0% 0.0% 0.33% 15.7%

grtop 352 3 3 5 2 1511.17 811.52 0.0% 0.0% 0.35% 12.58%

grtop 352 4 3 5 2 3515.55 913.44 0.0% 0.0% 0.41% 13.59%

grtop 352 5 3 5 2 1257.12 1242.12 0.0% 0.0% 0.48% 15.73%

grtop 361 1 3 6 1 3600 3600 24.0% 3.0% 0.56% 14.85%

grtop 361 2 3 6 1 3235.72 3600 0.0% 9.0% 0.69% 16.75%

grtop 361 3 3 6 1 3600 3507.8 36.0% 0.0% 0.46% 10.74%

grtop 361 4 3 6 1 2361.02 948.5 0.0% 0.0% 0.67% 14.9%

grtop 361 5 3 6 1 1421.59 2625.45 0.0% 0.0% 0.86% 17.01%

grtop 362 1 3 6 2 3600 1995.03 25.0% 0.0% 0.67% 14.64%

grtop 362 2 3 6 2 3600 2725.67 19.0% 0.0% 0.59% 12.57%

grtop 362 3 3 6 2 3600 2608.51 16.0% 0.0% 0.54% 14.1%

grtop 362 4 3 6 2 3600 1302.58 8.0% 0.0% 0.51% 17.06%

grtop 362 5 3 6 2 3600 3600 28.0% 2.0% 0.47% 10.64%

grtop 371 1 3 7 1 3600 3600 62.0% 5.0% 3.74% 33.95%

grtop 371 2 3 7 1 3600 3600 273.0% 3.0% 2.5% 35.69%

grtop 371 3 3 7 1 3600 3600 285.0% 9.0% 2.44% 37.21%

grtop 371 4 3 7 1 3600 3600 37.0% 3.0% 3.25% 41.71%

grtop 371 5 3 7 1 3600 3600 38.0% 12.0% 4.03% 36.42%

grtop 372 1 3 7 2 3600 3600 26.0% 20.0% 0.6% 22.4%

grtop 372 2 3 7 2 3600 3600 82.0% 4.0% 0.94% 37.83%

grtop 372 3 3 7 2 3600 3600 79.0% 9.0% 0.62% 36.49%

grtop 372 4 3 7 2 3600 3600 110.0% 16.0% 1.69% 35.79%

grtop 372 5 3 7 2 3600 3600 41.0% 14.0% 1.0% 21.88%

Table 6.11: Computational results for a number of instances with blowing wind.





Chapter 7

Conclusions and Directions for

Future Research

This chapter marks the culmination of our journey into the optimal control and routing

of autonomous flying vehicles. We describe here the core findings of our research and

their implications. As we summarise these discoveries, we also look forward, outlining

directions for further research and identifying unexplored avenues that promise further

innovation and understanding of vehicle routing and trajectory optimisation problems.

7.1 Research Findings

In this thesis, motivated by several real-world applications like environmental control,

distribution and delivery services, surveillance and security among many others, we

address the intricate problem of Vehicle Routing and Trajectory Optimisation, also

known as the VRTOP. This problem is notably complex due to the aggregation of

combinatorial optimisation challenges, routing, and the involvement of nonlinearities

and nonconvexities stemming from the equations governing vehicles dynamic that need

to be solved to find the best trajectories and paths. During our literature review, it

became apparent that definitions and solution techniques for the VRTOP are at their

dawn, with previous research often making simplifying assumptions that did not capture

the complications of the real world. In particular, when dealing with Unmanned Aerial

Vehicles, several challenges emerge with the most prominent being the the development

of models and scalable solution algorithms that are capable of solving the above problem

within reasonable computing times, also taking into account the equations governing the

dynamic of the UAVs within a certain degree of accuracy. These issues formed the core

focus of our research efforts.
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Considering special UAVs like gliders, i.e. aircraft without propulsion onboard, we

develop techniques to simultaneously find optimal routes and trajectories for fleets of

these vehicles, by first describing methodologies to produce fast and accurate solutions

when prior knowledge of initial trajectories and/ or steady flight conditions is known,

reducing the model to a Mixed-Integer Linear Programming Problem (MILP). More

precisely, given the complexity of gliders’ dynamic, we introduce techniques to linearise

it as well as to reach the linearisation of distance constraints. We further enhance

model’s computational capabilities by means of a two time level partition, where binary

variables are defined on a fewer number of time steps. Consequently, we presented the

main contribution of our research that is a model enabling us to find initial trajectories

and insights also in case of absent prior information on gliders dynamic. We introduce

then a Two Step Solution Algorithm for the Glider Routing and Trajectory Optimisation

Problem (GRTOP) able to integrate the initial trajectory model into the well-established

MILP describing the problem when prior information is available.

With this novel methodology, we were able to find relatively quickly (sub) optimal re-

liable trajectories for small-medium sized problems by leveraging on state-of-the-art

solvers like CPLEX, Gurobi or Xpress. We validate our results by comparing our so-

lutions, where possible, with the ones obtained by solving a corresponding NLP where

exact nonlinear glider’s dynamic is taken into account. This shows our ability to find

flyable paths in many different circumstances. On the other hand, our model presents

some limitations that can be the base for future work. In particular, we show that opti-

mality of the solutions in terms of mission’s time might depend on the time partition as

well as from other model parameters. In addition, despite our ability of finding flyable

trajectories, extreme flight conditions might require adjustments that our model is not

able to accurately identify. Nevertheless, we are able to suggest a viable planning that

can be adjusted by the nonlinear onboard controls on the UAVs and classical control

algorithms.

Other future directions are then discussed in the following section.

7.2 Future Research

We believe that this research project has contributed to the existing literature and could

have a tremendous impact to future applications. Nonetheless, our methodology is de-

pendent on (quasi) steady-state flight conditions and equilibria, hence suggesting that

this research can be extended by enlarging these conditions for example considering sit-

uations of wind-driven (quasi) steady flight or situations of constant turn in order to

perfect the choice of bank angles. In addition, extreme flight conditions can be inves-

tigated to accurately handle all flight situations. An even more complete exploration

of the model’s parameters space can be conducted along with wiser time partitioning
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that is denser close to adjustment points, i.e. the moment where a significant change of

(quasi) steady-state flight is made.

Furthermore, alternative mission’s goals and objectives can be considered such as the

optimisation of the fleet size and mission costs as well as different type of functions like

minimising the flight time of the latest landing glider. Thus, the launching position of

the gliders can as well be optimised as it might affect decisions and the optimal plan.

Further security requirements can also be inserted like collision avoidance for example.

The GRTOP presented in this thesis can be easily adapted to other types of vehicles,

such as a non homogeneous fleet of glider, powered UAVs, unmanned underwater ve-

hicles and powered UAVs, by simply replacing gliders’ dynamics with the appropriate

equations and applying the presented methodology to the new class of autonomous ve-

hicles. It can also be extended to be integrated as a part of broader missions, where for

instance several GRTOP must be solved simultaneously and cooperating or competing

fleet of gliders or UAVs are involved at different locations and can fight or collaborate to

reach overall missions’ goals. Finally, enlarging the set of weather’s scenarios and insert-

ing uncertainties in the problem formulation (for example regarding weather conditions,

waypoint positions, etc.), we believe that the proposed model can have astounding im-

plications in helping addressing many real-world problems and challenges.





Bibliography

E. Aarts and J. K. Lenstra. Local search in combinatorial optimization. Chichester,

England: Wiley., 1997.

A. Albert, F.S. Leira, and L. Imsland. Uav path planning using milp with experiments.

Modeling, Identification and Control., 38(1):21–32, 2017.
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