TrendLSW: Wavelet methods for analysing locally stationary time series
TrendLSW: Wavelet methods for analysing locally stationary time series
McGonigle, Euan T.
1eec7a96-1343-4bf5-a131-432fe50842cd
Killick, Rebecca
40e5e896-56f4-4cbe-a376-d24efaea2dfc
Nunes, Matthew
906e9edc-1059-4234-994a-56ab886e4c8b
30 April 2024
McGonigle, Euan T.
1eec7a96-1343-4bf5-a131-432fe50842cd
Killick, Rebecca
40e5e896-56f4-4cbe-a376-d24efaea2dfc
Nunes, Matthew
906e9edc-1059-4234-994a-56ab886e4c8b
(2024)
TrendLSW: Wavelet methods for analysing locally stationary time series.
[Software]
This record has no associated files available for download.
More information
Published date: 30 April 2024
Identifiers
Local EPrints ID: 490022
URI: http://eprints.soton.ac.uk/id/eprint/490022
PURE UUID: 4caadeb5-7dd7-43b2-b185-ad4b1d2a8bc2
Catalogue record
Date deposited: 13 May 2024 17:01
Last modified: 30 May 2024 02:05
Export record
Contributors
Author:
Euan T. McGonigle
Author:
Rebecca Killick
Author:
Matthew Nunes
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics