
GPU libraries speed performance analysis for RCWA simulation

matrix operations

Jingxiao Xua, Martin D. B. Charltona

aUniversity of Southampton, University Rd, Southampton SO17 1BJ, United Kingdom

ABSTRACT

Rigorous Coupled Wave Analysis (RCWA) method is highly efficient for the simulation of diffraction efficiency and field

distribution patterns in periodic structures and textured optoelectronic devices. GPU has been increasingly used in complex

scientific problems such as climate simulation and the latest Covid-19 spread model. In this paper, we break down the

RCWA simulation problem to key computational steps (eigensystem solution, matrix inversion/multiplication) and

investigate speed performance provided by optimized linear algebra GPU libraries in comparison to multithreaded Intel

MKL CPU library running on IRIDIS 5 supercomputer (1 NVIDIA v100 GPU and 40 Intel Xeon Gold 6138 cores CPU).

Our work shows that GPU outperforms CPU significantly for all required steps. Eigensystem solution becomes 60% faster,

Matrix inversion improves with size achieving 8x faster for large matrixes. Most significantly, matrix multiplication

becomes 40x faster for small and 5x faster for large matrix sizes.

Keywords: GPU computing, RCWA, Matrix operation, eigensystem, MKL library

1. INTRODUCTION

Rigorous Coupled-Wave Analysis (RCWA) is an electromagnetic solver to obtain reflection and transmission of a passive

periodic dielectric structure. This method is widely used to analyze components incorporating photonic crystal (PhC)

structure or diffractive optical elements such as PhC VCSEL, Patterned Sapphire Substrate-LED and solar cells [1][2][3].

RCWA is a Fourier domain method which means the EM fields are solved in Frequency domain space instead of real

space. Dielectric function, Electric and Magnetic fields must be Fourier transformed, and represented as harmonic series.

In order to make computational solution practical the number of harmonics must be truncated meaning the representation

of the structure is approximate, and solution accuracy reduced. Larger and slower matrix calculations will be involved if

the periodic structure has complex geometry or many layers. In practice, researchers require a full spectral system response

as function of angle of incidence / emission. This is achieved by running hundreds of separate simulations sweeping

wavelengths and angle of the incident wave [4]. The RCWA simulation process may last for hours and days depending on

the resolution and range of sweep. The aim of this work is to determine methods and bottlenecks which can be used to

speed up realistic device simulations with required level of accuracy for applications such as Photonic Crystal VCSEL and

Photonic Crystal micro-LED applications.

RCWA algorithm involves numerous matrix operations such as matrix multiplication/inversion, 2D matrix Fast Fourier

Transform, eigensystem etc. Parallel computing is an obvious way of improving speed efficiency of matrix operations.

Many scientific studies have benefited from applying General-Purpose Graphics Processing Units (GPGPU) to their

simulation. Examples include financial applications[5], deep learning Error! Reference source not found. and many

other parallelizable programs. In this paper a GPU accelerated FDTD solver was developed and optimized providing 15X

overall speedup over conventional CPU [6].

Furthermore we investigate the speed performance of commonly available GPU and CPU libraries in resolving each

required matrix operation (Eigensystem solution, Matrix inversion / multiplication etc.)

The Compute Unified Device Architecture (CUDA) programming model is a platform developed by NVIDIA to allow

programmers to easily utilize GPU processing and is optimized for NVIDIA GPU architectures. CUDA provides many

linear algebra computing libraries covering most of the required matrix operations to implement the RCWA algorithm.

However Eigensystem solution is not easily implemented and is often slow and inefficient in CUDA. Consequently other

GPU accelerated libraries have emerged to plug this gap. In particular MAGMA is effectively the GPU implementation of

Physics and Simulation of Optoelectronic Devices XXXI, edited by Bernd Witzigmann,
Marek Osiński, Yasuhiko Arakawa, Proc. of SPIE Vol. 12415, 124150O

© 2023 SPIE · 0277-786X · doi: 10.1117/12.2650112

Proc. of SPIE Vol. 12415 124150O-1

the well established LAPACK maths library. MAGMA is designed for heterogeneous architecture and its routines may

utilize both CPU and GPU resources [8], allowing blended CPU / GPU computing.

2. RCWA ALGORITHM

RCWA algorithm is to solve Maxwell’s equations in Fourier space. It only solves periodic structure as Fourier transform

assumes the variables to be periodic which makes it perfect to analyze photonic crystal designs. The unit cell in figure 1 is

constructed in RCWA. Firstly, the problem region is divided into three layers which are reflection region, device region

(may contain many layers) and transmission region. In each layer, the light propagation properties are calculated and then

connected via scattering matrix method. Finally, the reflected and transmitted field are obtained given the incident wave

Fourier domain profile.

Figure 1. Schematic of an air hole photonic crystal layer.

2.1 RCWA layer solution

RCWA algorithm start from Maxwell’s equation.

𝛻 × 𝐸 = 𝑘0𝜇𝑟�̃� (1)

𝛻 × �̃� = 𝑘0𝜀𝑟𝐸 (2)

The magnetic field �̃� = 𝑗𝜂0�̃�. Then fields and properties of the material (permittivity and permeability) are transformed

into Fourier space.

 𝐸𝑖(𝑥, 𝑦) = ∑ ∑ 𝑆𝑖𝑒
−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)∞

𝑛=−∞
∞
𝑚=−∞ (3)

 �̃�𝑖(𝑥, 𝑦) = ∑ ∑ 𝑈𝑖𝑒
−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)∞

𝑛=−∞
∞
𝑚=−∞ (4)

 𝜖𝑟(𝑥, 𝑦) = ∑ ∑ 𝑎𝑚,𝑛𝑒𝑗(𝑚𝑇𝑥𝑥+𝑛𝑇𝑦𝑦)∞
𝑛=−∞

∞
𝑚=−∞ (5)

 𝜇𝑟(𝑥, 𝑦) = ∑ ∑ 𝑏𝑚,𝑛𝑒𝑗(𝑚𝑇𝑥𝑥+𝑛𝑇𝑦𝑦)∞
𝑛=−∞

∞
𝑚=−∞ (6)

Where 𝑘𝑖 = 𝑘𝑖
𝑖𝑛𝑐 − 𝑚𝑇𝑖 . 𝑇𝑖 is reciprocal space (Fourier space) lattice unit length. 𝑇𝑖 =

2π

𝛬𝑖
. 𝛬𝑖 is periodicity in 𝑖 direction.

𝑖 represents direction 𝑥 or 𝑦. 𝑚 is any integer. The curl equations in Maxwell’s equations are expanded.

𝜕𝐻�̃�

𝜕𝑦
−

𝜕𝐻�̃�

𝜕𝑧
= 𝑘0𝜖𝑟𝐸𝑥 (7)

𝜕𝐻�̃�

𝜕𝑧
−

𝜕𝐻�̃�

𝜕𝑥
= 𝑘0𝜖r𝐸𝑦 (8)

𝜕𝐻�̃�

𝜕𝑥
−

𝜕𝐻�̃�

𝜕𝑦
= 𝑘0𝜖r𝐸𝑧 (9)

Proc. of SPIE Vol. 12415 124150O-2

𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= 𝑘0𝜇r�̃�𝑥 (10)

𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= 𝑘0𝜇r�̃�𝑦 (11)

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= 𝑘0𝜇r�̃�𝑧 (12)

Two first differential equations are obtained by substitute (3)-(6) into (7)-(12) and eliminate z filed components.

ⅆ

ⅆ�̃�
[
𝒖𝒙

𝒖𝒚
] = 𝑸 [

𝒔𝒙

𝒔𝒚
] (13)

ⅆ

ⅆ�̃�
[
𝒔𝒙

𝒔𝒚
] = 𝑷 [

𝒖𝒙

𝒖𝒚
] (14)

Then a second differential is deduced.

ⅆ2

ⅆ�̃�2 [
𝒔𝒙

𝒔𝒚
] = 𝜴𝟐 [

𝒔𝒙

𝒔𝒚
] (15)

Where Ω2 = PQ .

𝑸 = [
𝑲𝑥[[𝜇𝑟]]

−1
𝑲𝑦 [[𝜀𝑟]] − 𝑲𝑥[[𝜇𝑟]]

−1
𝑲𝑥

𝑲𝑦[[𝜇𝑟]]
−1

𝑲𝑦 − [[𝜀𝑟]] −𝑲𝑦[[𝜇𝑟]]
−1

𝑲𝑥

] (16)

𝑷 = [
𝑲𝑥[[𝜀𝑟]]

−1
𝑲𝑦 [[𝜇𝑟]] − 𝑲𝑥[[𝜀𝑟]]

−1
𝑲𝑥

𝑲𝑦[[𝜀𝑟]]
−1

𝑲𝑦 − [[𝜇𝑟]] −𝑲𝑦[[𝜀𝑟]]
−1

𝑲𝑥

] (17)

Where 𝑲𝒙 and 𝑲𝒚 are diagonal matrices with elements are normalized wave vectors 𝑘𝑥(𝑚, 𝑛)/𝑘0 and 𝑘𝑦(𝑚, 𝑛)/𝑘0 .

𝑘0 is free space wave vector. 𝑘0 =
2𝜋

𝜆0
. [[𝜇𝑟]] and [[𝜀𝑟]] are 2D convolution matrices of permeability and permittivity in

Fourier space. After calculating the eigensystem solution. The general solution of equation (7) is written as

[

𝒔𝒙

𝒔𝒚

𝒖𝒙

𝒖𝒚

] = [
𝑾 𝑾
−𝑽 𝑽

] [𝑒−𝝀�̃� 0
0 𝑒𝝀�̃�

] [𝒄+

𝒄−] (18)

Where 𝑾 and 𝝀𝟐 are eigenvectors and eigenvalues of matrix 𝛺2. 𝑉 is obtained by 𝑽 = 𝑸𝑾𝝀−𝟏. 𝒄+ = 𝑾−𝟏𝒔+ and 𝒄− =
𝑾−𝟏𝒔−. 𝒔+ and 𝒔− are Fourier coefficients of initial electric field amplitudes in forward and backward direction.

2.2 Scattering matrix

To connect solutions of multi layers, scattering matrix method is used for high numerical stability [9]. Scatter matrix is

generally used to connect input and output ports of a system. Each layer 𝑖 has its own scattering matrix 𝑺𝒊 = [
𝑺𝟏𝟏

𝒊 𝑺𝟏𝟐
𝒊

𝑺𝟐𝟏
𝒊 𝑺𝟐𝟐

𝒊
].

To distinguish from the electric field Fourier coefficient s, matrix and submatrix of scattering matrix uses capital S.

S11
i = S22

i = (Ai-XiBiAi
-1XiBi)

-1(XiBiAi
-1XiAi-Bi) (19)

S12
i = S21

i = (Ai-XiBiAi
-1XiBi)

-1Xi(Ai-BiAi
-1Bi) (20)

Where 𝑨𝒊 = 𝑾𝒊
−𝟏𝑾𝟎 + 𝑽𝒊

−𝟏𝑽𝟎, 𝑩𝒊 = 𝑾𝒊
−𝟏𝑾𝟎 − 𝑽𝒊

−𝟏𝑽𝟎 and 𝑿𝒊 = 𝑒−𝝀𝒊𝑘0𝐿𝑖

A global S matrix [S] is used to connect incident, reflected and transmitted waves.

[
cref

-

ctrn
+] = [S] [

cinc
+

0
] (21)

[𝑺] = [𝑺𝒓𝒆𝒇] ⊗ [𝑺𝟏] ⊗ [⋯] ⊗ [𝑺𝒊] ⊗ [𝑺𝒕𝒓𝒏] (22)

Proc. of SPIE Vol. 12415 124150O-3

Then the electric field can be reconstructed using Eqn. (3) with an incident field and connecting multilayer S-matrix with

Redheffer Star Product [9]. The Redheffer Star product is defined as

 [
C11 C12

C21 C22
] = [

A11 A12

A21 A22
] ⊗ [

B11 B12

B21 B22
] (23)

𝑪𝟏𝟏 = 𝑨𝟏𝟏 + 𝑨𝟏𝟐[𝑰 − 𝑩𝟏𝟏𝑨𝟐𝟐]−𝟏𝑩𝟏𝟏𝑨𝟐𝟏 (24)

𝑪𝟏𝟐 = 𝑨𝟏𝟐[𝑰 − 𝑩𝟏𝟏𝑨𝟐𝟐]−𝟏𝑩𝟏𝟐 (25)

𝑪𝟐𝟏 = 𝑩𝟐𝟏[𝑰 − 𝑨𝟐𝟐𝑩𝟏𝟏]−𝟏𝑨𝟐𝟏 (26)

𝑪𝟐𝟐 = 𝑩𝟐𝟐 + 𝑩𝟐𝟏𝟐[𝑰 − 𝑨𝟐𝟐𝑩𝟏𝟏]−𝟏𝑨𝟐𝟐𝑩𝟏𝟐 (27)

The incident field profile is known. Reflected 𝒔𝒓𝒆𝒇 and transmitted 𝒔𝒕𝒓𝒏 waves are easily obtained.

𝒄𝒓𝒆𝒇
− = 𝑺𝟏𝟏𝒄𝒊𝒏𝒄

+ (28)

𝒄𝒕𝒓𝒏
+ = 𝑺𝟐𝟏𝒄𝒊𝒏𝒄

+ (29)

 𝒔𝒓𝒆𝒇 = 𝑾𝒓𝒆𝒇𝒄𝒓𝒆𝒇
− (30)

 𝒔𝒕𝒓𝒏 = 𝑾𝒕𝒓𝒏𝒄𝒕𝒓𝒏
+ (31)

3. METHOD

3.1 Matrix operations

A basic RCWA algorithm was implemented in C++ to investigate time cost of each type of matrix operation. Eigensystem

solution is used in obtaining equation (18). Matrix inversion is calculated in equation (16), (17) and most equations in

scattering matrix method. And matrix multiplication is used all over the algorithm in obtaining single layer solution and

computing scattering matrix. Geometry of the example is the single layer air hole model illustrated in fig 1. The concrete

material has relative permittivity 𝜀𝑟 = 9.0. While other area is air. Periodicities in x and y direction are both 0.6𝜇𝑚.

Diameter of the air hole is 0.3𝜇𝑚. For generality, the data type used in the RCWA program is double complex as

permittivity of materials may have complex value. The CPU version employs industry standard Intel MKL library for

matrix operation. To start off, we benchmark performance of the MKL library for key computational steps (as identified

above) required in the RCWA implementation. Results (figure 2) shows that eigensystem solution, matrix multiplication

and inversion are the most time expensive operations. The eigensystem contributes over 50 percent of total time at high

harmonics. Each of matrix multiplication and inversion takes around 20%. All together the three operations account for

over 90 percent of the total runtime.

Figure 2. Time cost of eigensystem solution, matrix multiplication and inversion. And the sum of these operations against total

runtime represented in percentage.

Proc. of SPIE Vol. 12415 124150O-4

3.2 GPU library

To reduce total RCWA simulation time, we start with the three most time-consuming operations (eigensystem, matrix

multiplication and inversion operations) and compare available GPU library performance against Intel MKL CPU library.

. Experiments are conducted on Iridis 5 supercomputer with 40-cores CPU and 1 NVIDIA Tesla V100 GPU. Details of

routines used and methods are as follows:

Eigensystem: For a matrix A, where there is a number 𝜆 and vector x such that 𝑨𝒙 = 𝜆𝒙, 𝜆 is called the eigenvalue of A,

and the corresponding vector 𝒙 the eigenvector. In MKL and MAGMA LAPACK, the eigensystem is solved using ZGEEV

routine for a general matrix[10]Error! Reference source not found.. For simple real symmetric matrix and Hermitian

matrix, accelerated algorithm DSYEV and ZHEEV can be used. However, CUDA libraries does not support general (dense

non symmetric) matrix eigenvalue calculation as is required for RCWA algorithm[11].

Matrix multiplication: ZGEMM is the routine used to solve general complex matrix multiplication. MKL and CUBLAS

both have routine ZGEMM3M, an optimized routine for complex matrix multiplication which provides 25% speedup

compared with ZGEMM [13]. While MAGMA only have ZGEMM routine.

Matrix inversion: In MKL and MAGMA LAPACK, a matrix is firstly LU factorised with ZGETRF routine. Then it is

inversed using ZGETRI. However, CUSOLVER library does not implement ZGETRI routine. We must use ZGETRS

which solve linear equation 𝐴∗𝑋=𝐵. Let 𝐵 equals to identity matrix. The X is solved to be the inverse of A.

Table 1. The library and routine used for the experiment.

 Eigensystem Multiplication Inversion

CPU MKL(ZGEEV) MKL(ZGEMM3M) MKL(ZGETRF+ZGETRI)

GPU MAGMA(ZGEEV) MAGMA(ZGEMM)

CUBLAS(ZGEMM3M)

MAGMA(ZGETRF+ZGETRI)

CUSOLVER(ZGETRF+ZGETRS)

The number of Fourier coefficients, (also called the harmonics) ℎ, is very important and has huge impact on speed of

RCWA solution. It defines how many frequency components are used to represent the Fourier transformed dielectric

function and EM fields. Consequently it greatly affects the accuracy of solution results. ℎ = 2𝑁 + 1 where 𝑁 is the

maximum value of m or n in equation (3)-(6). The size of matrix to be stored in computer memory is exponentially related

to the number of harmonics. Consequently Eigenvalue solution and matrix multiplication / inversion operations require

solution of matrices of size ℎ2 x ℎ2. Therefore for RCWA simulation with realistic number of harmonics (ranging from 7-

70), matrix operations have size ranging from 100*100 to 10k*10k.

To analyses performance benefits, we test solution speed for the key matrix operation with matrix size ranging from

100*100 to 10k*10k, (step size 100 between 100*100 to 1k*1k and 1000 between 1k*1k to 10k*10k). Matrices values are

initially randomized, but once generated identical matrixes are used to compare libraries.

Proc. of SPIE Vol. 12415 124150O-5

4. PERFORMANCE

4.1 Eigensystem

In RCWA algorithm, the eigen system requires full solution of both eigenvalues and eigenvectors. The matrix is dense and

non-symmetric (the worst type!) and can only be solved on GPU with MAGMA GEEV routines.

Figure 3. Runtime of eigensystem solver for matrix ranging from 100*100 to 10k*10k. The GPU routine speedup is also

shown on the right-y axis.

MAGMA GEEV routine is only partially accelerated and utilizes both CPU and GPU. The speed difference between

MAGAM and MKL is not significant for matrix size smaller than 1k, however as matrix size increases, MAGMA speedup

over MKL shows an increasing trend. For 10k*10k matrix, MAGMA achieved over 60% speed increase. Although modest,

this speed increase is beneficial for RCWA where Eigensystem solution must be performed thousands of times over.

4.2 Matrix multiplication

Matrix multiplication is commonly used in the RCWA algorithm especially in calculating scattering matrix in each layer

and performing Redheffer Star Product. Similar to eigensystem solution, general complex matrix is always used in

multiplication routines.

Figure 4. Runtime of matrix multiplication for matrix ranging from 100*100 to 10k*10k. The right-hand side is the speedup

of CUBLAS and MAGMA over MKL.

Both MAGMA and CUBLAS outperforms MKL significantly. For small size matrices, all CPU and GPU libraries

performs steadily due to runtime being so quick that overhead and non-computational operations dominate the whole

process. When matrix size is greater than 500*500, CUBLAS and MAGMA libraries shows 3-5X speedup over MKL, and

the trend is expected to remain steady. Meanwhile, CUBLAS is found to be 1.5X faster than MAGMA for large matrix.

Interestingly GPU speedup does not keep increasing with matrix size. This may be due to MKL library implementing

Proc. of SPIE Vol. 12415 124150O-6

efficient parallelization / distribution of matrix multiplication operation across the available 40-CPU cores on our IRIDIS

system.

4.3 Matrix inversion

Matrix inversion operation is less frequently used than multiplication. However it has more single operation time than

matrix multiplication. Processing a 10k*10k matrix multiplication requires 0.89s to 3.6s. While inverting a 10k*10k matrix

takes at least 2.5s with MAGMA and 13.2s using MKL library.

Figure 5. a) Total run time comparison between GPU and CPU RCWA programs. b) Speedup comparison between CSOLVER

and MAGMA over MKL.

MAGMA inversion routine achieves a maximum 8X speedup over MKL for 10k*10k matrix. And the speedup is projected

to increase rapidly with matrix size. CUSOLVER speedup over MKL also shows an increasing trend but with a slower

rate. For matrix larger than 2k*2k, MAGMA consumes less time to process inversion than CUSOLVER.

5. CONCLUSION

In this paper, the computationally expensive matrix operations in RCWA algorithm are implemented and compared

between CPU and GPU using available high-performance CPU (MKL) and GPU (MAGMA, CUSOLVER, CUBLAS)

linear algebra / maths libraries. Eigensystem solution including eigenvalues and eigenvectors, matrix multiplication and

inversions utilize over 90% CPU time in RCWA simulation. GPU implementation of matrix inversion and multiplication

provide huge speed increase benefits around 4-8x against CPU MKL library. Eigensystem solution achieved 60% increase

in speed utilizing GPU calculation. Overall using GPU libraries is an efficient way to speedup matrix operations and can

be used to reduce RCWA simulation time and could be extended to speedup other simulation algorithms involving large

numbers of matrix operations.

Proc. of SPIE Vol. 12415 124150O-7

REFERENCES

[1] Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N. & Meade, R. D. (2008), Photonic Crystals: Molding the Flow of

Light (Second Edition), Princeton University Press.

[2] Torrijos-Morán, L., Griol, A. & García-Rupérez, J. Slow light bimodal interferometry in one-dimensional

photonic crystal waveguides. Light Sci Appl 10, 16 (2021). https://doi.org/10.1038/s41377-020-00460-y

[3] Sharee J. McNab, Nikolaj Moll, and Yurii A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-

type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003)

[4] Shi, J., Pollard, M.E., Angeles, C.A. et al. Photonic crystal and quasi-crystals providing simultaneous light

coupling and beam splitting within a low refractive-index slab waveguide. Sci Rep 7, 1812 (2017).

https://doi.org/10.1038/s41598-017-01842-w

[5] Scott Grauer-Gray, William Killian, Robert Searles, and John Cavazos. 2013. Accelerating financial applications

on the GPU. In Proceedings of the 6th Workshop on General Purpose Processor Using Graphics Processing Units

(GPGPU-6). Association for Computing Machinery, New York, NY, USA, 127–136.

https://doi.org/10.1145/2458523.2458536

[6] T. Gale, M. Zaharia, C. Young and E. Elsen, "Sparse GPU Kernels for Deep Learning," SC20: International

Conference for High Performance Computing, Networking, Storage and Analysis, Atlanta, GA, USA, 2020, pp.

1-14, doi: 10.1109/SC41405.2020.00021.

[7] Francés, Jorge & Bleda, Sergio & López, M. & Martínez Guardiola, Francisco & Márquez, Andrés & Neipp,

Cristian & Beléndez, Augusto. (2012). Analysis of periodic anisotropic media by means of split-field FDTD

method and GPU computing. Proceedings of SPIE - The International Society for Optical Engineering.

10.1117/12.929545.

[8] Stanimire Tomov, Jack Dongarra, Marc Baboulin, Towards dense linear algebra for hybrid GPU accelerated

manycore systems, Parallel Computing, Volume 36, Issues 5–6,2010, Pages 232-240, ISSN 0167-8191,

https://doi.org/10.1016/j.parco.2009.12.005.(https://www.sciencedirect.com/science/article/pii/S016781910900

1276)

[9] Raymond C. Rumpf, "Improved Formulation of Scattering Matrices for Semi-Analytical Methods That Is

Consistent with Convention," Progress In Electromagnetics Research B, Vol. 35, 241-261, 2011.

doi:10.2528/PIERB11083107, http://www.jpier.org/PIERB/pier.php?paper=11083107

[10] Developer reference for Intel® oneapi math kernel library - C (no date) Intel. Available at:

https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top.html

(Accessed: January 24, 2023).

[11] Nath R, Tomov S, Dongarra J. An Improved Magma Gemm For Fermi Graphics Processing Units. The

International Journal of High Performance Computing Applications. 2010;24(4):511-515.

doi:10.1177/1094342010385729

[12] Using the CUSOLVER API (2022) cuSOLVER API Reference. Available at:

https://docs.nvidia.com/cuda/cusolver/ (Accessed: January 24, 2023).

[13] Using the cuBLAS API (2022) cuBLAS. Available at: https://docs.nvidia.com/cuda/cublas/ (Accessed: January

24, 2023).

Proc. of SPIE Vol. 12415 124150O-8

