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Gravitational self-force theory is the primary way of modelling extreme-mass-ratio inspirals (EM-
RIs). One difficulty that appears in second-order self-force calculations is the strong divergence
at the worldline of the small object, which causes both numerical and analytical issues. Previous
work [Phys. Rev. D 95, 104056 (2017); ibid. 103, 124016 (2021)] demonstrated that this could be
alleviated within a class of highly regular gauges and presented the metric perturbations in these
gauges in a local coordinate form. We build on this previous work by deriving expressions for the
highly regular gauge metric perturbations in both fully covariant form and as a generic coordinate
expansion. With the metric perturbations in covariant or generic coordinate form, they can easily
be expressed in any convenient coordinate system. These results can then be used as input into a
puncture scheme in order to solve the field equations describing an EMRI.

I. INTRODUCTION

Extreme-mass-ratio inspirals (EMRIs) [1] will be a key
source of the gravitational waves that will be detected
by the Laser Interferometer Space Antenna (LISA), a
future space-based gravitational wave detector [2, 3]. An
EMRI features an object of mass m ∼ 1–102M⊙ slowly
spiralling into an object of mass M ∼ 105–107M⊙. The
smaller object is a compact object, such as a black hole or
neutron star, whereas the larger object is a supermassive
black hole, existing in the centre of most galaxies [4–6].

As the mass ratio, ϵ := m/M ∼ 10−5, is very small,
the inspiral occurs over a long timescale, with the smaller
object expected to complete ϵ−1 ∼ 105 intricate orbits
before plunging into the central black hole [7, 8]. Due to
the large number of orbits occurring near to the super-
massive black hole, the gravitational waves emitted are
expected to provide an excellent picture of the geome-
try of the black hole in the strong-gravity regime. This
will allow highly accurate tests of general relativity to be
performed [8–11].

A. Gravitational self-force

The primary method of modelling EMRIs is through
a perturbative method known as gravitational self-force
theory [12–16]. The self-force refers to the process by
which changes in an external field caused by an object’s
dynamics propagate back and affect the motion of the
very same object. This method expands the metric de-
scribing the geometry of the full spacetime, gµν , around
a known, background metric, gµν , with perturbations,
hµν , caused by the presence of the small object. In an
EMRI, the disparate sizes of the small and large object
lead to a natural perturbative parameter, the mass ra-
tio between the two objects, ϵ ≪ 1. One can then write
the full spacetime metric as the sum of the background

spacetime and these perturbations,

gµν = gµν + hµν , (1)

where

hµν =
∞∑

n=1
ϵnhn

µν [γ]. (2)

In the case of an EMRI, the background metric describes
the geometry of the large black hole if it were isolated in
spacetime and is taken to be either the Schwarzschild [17]
or Kerr [18] metric.

At the leading order in the mass ratio, the small ob-
ject’s worldline, γ, is a geodesic of the background space-
time, gµν . The metric perturbations then alter the mo-
tion at higher orders and exert a self-force on the body,
moving it away from a background geodesic. This can be
written as

D2zα

dτ2 = ϵfα
1 + ϵ2fα

2 + O
(
ϵ3)

, (3)

which reduces to the geodesic equation when ϵ → 0. In
Eq. (3), zα are coordinates on the accelerated world-
line, γ, τ is the proper time in the background metric,
gµν , D/ dτ := uµ∇µ is the covariant derivative along the
worldline and is compatible with gµν , uα := dzα/dτ is
the four-velocity and fα

n is the nth-order self-force. The
self-force (or at least part of it) causes the orbit to evolve
at a rate of Ė/E ∼ ϵ, resulting in an inspiral over the ra-
diation reaction time, trr ∼ E/Ė ∼ 1/ϵ [13]. Here, E is
the orbital energy and is one of three constants of motion
that completely describe the geodesic of a test particle in
the background Kerr spacetime; the other two are the
azimuthal angular momentum, Lz, and the Carter con-
stant, Q [19].

One challenge is that we are required to go to second
order in the mass ratio in order to model the waveforms
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accurately. This is a result of the requirement that for us
to extract information from the data gathered by LISA,
the phase of the waveform must be accurate to within a
fraction of 1 radian. A precise argument for the need for
second order was made by Hinderer and Flanagan [20].
The orbital parameters, JB = {E, Lz, Q}, slowly evolve
over the radiation reaction time, trr ∼ 1/ϵ. This motives
the introduction of a “slow time”, t̃ = ϵt, so that JB =
JB(t̃). The orbital frequencies, ΩA = {Ωr, Ωθ, Ωϕ} in
the case of Kerr, are functions of the orbital parameters,
JB(t̃), and have perturbative expansions,

ΩA(JB , ϵ) = Ω(0)
A (JB) + ϵΩ(1)

A (JB) + O
(
ϵ2)

, (4)

where Ω(n≥1)
A are the nth order corrections to Ω(0)

A due
to the conservative part of the self-force. The orbital
frequencies evolve with respect to the time, t, as

dΩA

dt
= ϵF

(1)
A (JB) + ϵ2F

(2)
A (JB) + O

(
ϵ3)

. (5)

where F
(n)
A is constructed from the nth-order dissipative

force. These can then be related to the orbital phases by

φA =
∫

ΩA dt, (6)

so that

φA = 1
ϵ

(
φ

(0)
A (t̃) + ϵφ

(1)
A (t̃) + O(ϵ2)

)
, (7)

where the adiabatic term, φ
(0)
A , is constructed from Ω(0)

A

and F
(1)
A , and the first post-adiabatic (1PA) term, φ

(1)
A , is

constructed from Ω(1)
A and F

(2)
A . One can see this through

noting that an integration over t introduces a factor of 1/ϵ
through dt = dt

/
dt̃ dt̃ = ϵ−1 dt̃. Therefore, to calculate

the orbital phases with an error much less than order-ϵ0

requires the entirety of the first-order self-force and the
dissipative part of the second-order self-force.

It should be stressed that the conservative piece of
the first-order self-force and the dissipative piece of the
second-order self-force are on equal footing: even if one
has the entirety of the first-order self-force (both dissi-
pative and conservative parts), if one does not have the
dissipative piece of the second-order self-force then one
cannot correctly track the motion of the small object.

As to the current status of the self-force field, at first
order, full inspirals driven by the self-force can be com-
puted for generic orbits in the Schwarzschild spacetime
for a spinning small object [21–24]. One can calculate the
full first-order self-force for a non-spinning small object
on any generic bound orbit in Kerr [25]. Adiabatic inspi-
rals in Kerr have been performed for equatorial [26] and
generic [27] orbits with Ref. [28] performing an equatorial
inspiral using the entirety of the first-order self-force.

Second-order calculations are at a much more prelimi-
nary stage but important breakthroughs have been made
in recent years [29–31] with Ref. [32] presenting the first

post-adiabatic waveforms for quasicircular orbits in the
Schwarzschild spacetime. Work has also been undertaken
on incorporating effects of the spin of the small object as
this has an impact at 1PA order on the gravitational-
wave phase [33–45].

B. Local form of the metric perturbations,
puncture scheme and infinite mode coupling

1. Metric perturbations and effective stress-energy tensor

To find the local form of the metric perturbations,
one uses the method of matched asymptotic expansions
(for a general introduction to matched asymptotic ex-
pansions, see, e.g. Refs. [46, 47], and for an introduc-
tion to their use in self-force, see, e.g. Ref. [13]). When
close to the small object, the expansion from Eqs. (1)–
(2) breaks down as the gravitational field from the small
object dominates over that of the background spacetime.
One then introduces a second expansion that focuses in
on the small object and then matches this with the exter-
nal expansion at some appropriate lengthscale. This is
then combined with the vacuum Einstein field equations
to solve for the metric perturbations, hµν .

The metric perturbation can be split into two
fields [48],

hµν = hR
µν + hS

µν , (8)

where hR
µν and hS

µν are the regular field and singular field,
respectively. The regular and singular fields can be ex-
panded in an analogous manner to Eq. (2), as

hR
µν =

∞∑
n=1

ϵnhRn
µν , (9)

hS
µν =

∞∑
n=1

ϵnhSn
µν . (10)

The regular field has the form of a Taylor series cen-
tred on the worldline of the small object and satisfies the
vacuum Einstein field equations,

δGµν [hR1] = 0, (11)
δGµν [hR2] = − δ2Gµν [hR1, hR1], (12)

throughout the entire spacetime. When combined with
the background metric, it forms a smooth, vacuum effec-
tive metric that determines the local geometry that the
small object “feels”,

g̃µν = gµν + hR
µν . (13)

Through second order, the trajectory of the small ob-
ject (assuming zero spin) is governed by the equation of
motion [49, 50]

D2zµ

dτ2 = −1
2(gµα + uµuα)(gα

δ − hRδ
α )

× (2hR
δβ;γ − hR

βγ;δ)uβuγ + O
(
ϵ3)

, (14)
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which can be written as a geodesic in the effective space-
time, g̃µν , as

D̃2zµ

dτ̃2 = O
(
ϵ3)

, (15)

where all quantities with tildes are defined with respect
to g̃µν . This correspondence is known as the generalised
equivalence principle [50], which states that (ignoring
finite-size effects) a compact object immersed in an ex-
ternal gravitational field will follow a geodesic in some
effective metric whose geometry is determined by its own
physical mass.

The remaining part of the metric perturbations, the
singular field, contains information about the small ob-
ject’s multipole structure [48]. Schematically, it has the
form

hS1
µν ∼ m

r
, (16)

hS2
µν ∼ m2 + Mα + Sα

r2 , (17)

where r is the proper spatial distance to γ and Mα/Sα

are the mass/spin dipole terms, respectively. As in previ-
ous work, we enforce that the mass dipole and any higher-
order corrections to it vanish. This ensures that γ tracks
the small object’s centre of mass [50–52].

In certain classes of gauges, the small object also has
the effective stress-energy of a point mass in the effective
spacetime [53, 54].1 Using this effective stress-energy ten-
sor, the field equations can be written in the form

δGµν [ϵh1 + ϵ2h2] + ϵ2δ2Gµν [h1, h1] = 8πT̃ µν + O
(
ϵ3)

,
(18)

where T̃ µν is the Detweiler stress-energy tensor,

T̃ µν = m

∫
γ

ũµũν δ4(x − z)√
−g̃

dτ̃ , (19)

and all quantities with tildes are defined with respect to
the effective metric. The existence of this stress-energy
tensor was first postulated by Detweiler [53] and explic-
itly derived in Ref. [54] (hereafter Paper I). One can also
write the left-hand side of Eq. (18) in terms of effective
quantities as [53, 54]

˜δG
µν [hS] = 8πT̃ µν + O

(
ϵ3)

, (20)

demonstrating that the system can be described as a lin-
ear perturbation of an effective background.

It should be noted that the split into regular and sin-
gular fields is not unique [55], but we choose the split to

1 This has explicitly been shown in the highly regular gauge and
(using a specific distributional definition of the second-order Ein-
stein tensor) in the Lorenz gauge. While it has not been shown,
it is likely to hold true in other gauges as well; see the discussion
in Sec. V E of Ref. [54].

match that of, e.g. Refs. [48–50, 54], ensuring that the
regular and singular fields satisfy the properties listed
above. That is, the regular field is smooth on the world-
line of the small object, forms the effective metric, g̃µν ,
and satisfies the generalised equivalence principle. In ad-
dition to the non-uniqueness of the split, it should be
emphasised that neither hR

µν nor hS
µν represent the true

physical field; only their sum hµν = hR
µν + hS

µν does.
We stress that the results discussed in this section are

all derived from the principle of matched asymptotic ex-
pansions. One does not start by assuming that the small
object is described by a point-particle stress-energy with
some effective equation of motion. Instead, one uses the
matching process at each order in ϵ to rigorously derive
these properties from first principles.

2. Puncture scheme

To date, all second-order calculations have involved
the use of a puncture scheme [29, 30, 32]; see, e.g.
Refs. [14, 16, 55, 56] for technical details.2 In this scheme,
one introduces a puncture field, hP

µν ≈ hS
µν , that approxi-

mates the singular field to some sufficient order in r away
from the worldline, and goes to zero beyond that. From
this, one can define a residual field,

hR
µν := hµν − hP

µν , (21)

so that hR
µν ≈ hR

µν near γ. These fields are then ana-
lytically extended down to the worldline, and one solves
for the residual field, hR

µν , with the puncture field as the
source, instead of directly for the physical field, hµν .

We wish to be able to replace hR
µν with hR

µν in the
equation of motion (14). This is possible if hR

µν and its
first derivatives are identical to hR

µν . To ensure this, we
impose the conditions

lim
x→z

(
hP

µν − hS
µν

)
= 0, (22)

lim
x→z

(
hP

µν,ρ − hS
µν,ρ

)
= 0, (23)

where zµ is a point on the worldline. Explicitly, to cal-
culate the second-order self-force, we need to go to order
r in our second-order punctures so that our residual field
is once differentiable.

Substituting Eq. (21) into the field equations and ex-
panding the residual and puncture fields order-by-order,
as in Eq. (2),

hR/P
µν =

∞∑
n=1

ϵnhR/Pn
µν , (24)

2 The first implementations of the puncture scheme were per-
formed at first order in Refs. [57–59] although Ref. [60] originally
suggested its used at second order.
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we get

δGµν [hR1] = − δGµν [hP1], r > 0, (25)
δGµν [hR2] = − δGµν [hP2] − δ2Gµν [h1, h1], r > 0.

(26)

These equations can be promoted to the entire domain,
including r = 0, provided that the puncture field is
known to a sufficiently high order in r; see the discussion
after Eq. (13) of Paper I. Combining the field equations
with the equation of motion (14), one can solve the cou-
pled system of equations and determine how the small
object travels in spacetime.

3. The problem of infinite mode coupling

When implementing the puncture scheme at second
order, one encounters the problem of infinite mode cou-
pling [61]. To take advantage of the symmetries of
the spacetime, one decomposes the metric perturba-
tions into a suitable basis of harmonics.3 For example,
in Schwarzschild, one could choose Barack–Lousto–Sago
tensor spherical harmonics [62, 63], so that the metric
perturbations can be decomposed as

hn
µν =

∑
iℓm

hn
iℓm(tBL, rBL)Y iℓm

µν (θ, ϕ). (27)

With the modes written as such, to calculate a single
mode of δ2Gµν [h1, h1] requires one to calculate the infi-
nite sum of products of first-order modes [61, 64],

δ2Giℓm[h1, h1] =
∑

i1ℓ1m1
i2ℓ2m2

Diℓm
i1ℓ1m1i2ℓ2m2

[h1
i1ℓ1m1

, h1
i2ℓ2m2

],

(28)
where Diℓm

i1ℓ1m1i2ℓ2m2
[hi1ℓ1m1 , hi2ℓ2m2 ] is a certain differen-

tial operator [64]. From Eq. (16), we see that hS1
µν ∼ m/r.

This means that, generically, the second-order Einstein
tensor diverges as ∼ m2/r4 at the worldline of the small
object as it has the structural form, δ2Gµν [h1, h1] ∼
(∂h1)2+h1∂2h1 ∼ m2/r4. After decomposing into modes
and integrating over two of the dimensions, one finds that
Eq. (28) acts as

δ2Giℓm[h1, h1] ∼ m2

r2 . (29)

However, the modes of the first-order field are finite on
the worldline [65, 66], meaning that Eq. (28) is attempt-
ing to reconstruct a divergent function through summing

3 Note that the issue described here cannot be avoided by perform-
ing a full 4D calculation. Instead of having to go to very high
mode numbers in order to obtain convergence of the mode-sum,
one would have to perform a very delicate numerical calculation
between two terms that diverge as 1/r4.

up finite modes. Thus to get convergence requires one
to calculate an arbitrarily large number of modes of the
first-order fields to calculate even one second-order mode.

A way to circumvent this problem was provided by
Miller et al. [61]. Instead of summing over modes, as in
Eq. (28), one expands the first-order field into regular and
singular pieces. After expanding the first-order field, the
second-order Einstein tensor in the source of the second-
order field equations has the form

δ2Gµν [h1, h1] = δ2Gµν [hR1, hR1] + 2δ2Gµν [hR1, hS1]
+ δ2Gµν [hS1, hS1], r > 0. (30)

One then replaces the regular and singular fields in
Eq. (30) with the residual and puncture fields. The
δ2Giℓm[hR1, hR1] and δ2Giℓm[hR1, hP1] terms are suffi-
ciently well-behaved that one may compute the modes
directly from the modes of the first-order residual and
puncture fields. As described in Ref. [61], the problem
is entirely caused by the slow converge of the modes
of δ2Giℓm[hP1, hP1] as this is the term that causes the
non-mode-decomposed second-order Einstein tensor to
diverge as ∼ m2/r4. Instead of summing up the prod-
ucts of the modes of hP1

µν , Miller et al. [61] directly cal-
culate δ2Gµν [hP1, hP1] in four dimensions using the four
dimensional expression for hP1

µν and then decompose this
quantity into modes. Unfortunately, while this makes
the calculation of the modes of the source possible, it
is incredibly computationally expensive and takes up al-
most all the code runtime when implemented (such as in
Ref. [29]). This is due to having to calculate the modes
by numerically integrating the complete four-dimensional
expression on a grid of rBL and r values. This will not be
efficiently extendible when approaching problems involv-
ing more complicated dynamics, such as generic orbits in
Kerr.

C. Highly regular gauge

The highly regular gauge was introduced by Pound [50]
to ameliorate the strong divergences that occur near the
worldline of the small object when in a generic gauge. In
this gauge, the most singular piece of the second-order
perturbation now has the form ∼ m2r0 instead of the
∼ m2/r2 behaviour previously seen; see Refs. [50, 54] for
a full discussion. One can divide the second-order singu-
lar field into two pieces: a “singular times regular” piece,
hSR

µν ∼ mhR1
µν /r, and a “singular times singular” piece,

hSS
µν ∼ m2r0. By simple order counting of m and hR1

µν , we
see that, in the second-order Einstein field equations, hSS

µν

is sourced by δ2Gµν [hS1, hS1], as they both feature terms
∼ m2, and that hSR

µν is sourced by δ2Gµν [hR1, hS1] as both
expressions have terms of the form ∼ mhR1

µν . Although
the hSR

µν term appears more divergent, as discussed in
Paper I, its source, δ2Gµν [hR1, hS1], is well defined as a
distribution. The “singular times singular” term causes
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FIG. 1. Geometric picture of the gauge conditions for the
highly regular gauge. The image features a light cone ema-
nating from the worldline, γ. The null vector, kµ, is tangent
to the light cone along radially outgoing curves, and the basis
vector, eµ

A, is tangent to the light cone along spheres of con-
stant luminosity distance, Sr. Based on Fig. 16 from Ref. [67].

the most issues. Acting on the “singular times singu-
lar” piece with the linearised Einstein operator, we see
that δGµν [hSS] ∼ m2/r2. Therefore, we know that the
most singular piece of the second-order Einstein tensor
can only act as badly δ2Gµν [hS1, hS1] ∼ m2/r2 instead
of ∼ m2/r4 as in a generic gauge. This means that
when decomposing into modes, the individual modes of
the second-order Einstein tensor can behave, at worst, as
δ2Giℓm[h1, h1] ∼ m2 log |r|. While this is still divergent,
it is much weaker than in the Lorenz gauge.

The highly regular gauge enforces that the local light
cone structure around γ is preserved in the perturbed
spacetime. To do so, two gauge conditions are imposed
on the singular field. Firstly, the metric perturbations
vanish when contracted with kµ, the null vector tangent
to the future light cone that emanates from the worldline:

hS
µνkµ = 0. (31)

Secondly, the perturbations are trace-free with respect
to ΩAB , the metric on surfaces of constant luminosity
distance:

hS
µνeµ

Aeν
BΩAB = 0, (32)

where an upper case Latin letter indicates a quantity de-
fined on those surfaces and eµ

A := ∂xµ/∂θA is the basis
vector, where xµ are coordinates in the full spacetime
and θA are coordinates on the surface of constant lumi-
nosity distance. These gauge conditions ensure that the
local background light cone structure is preserved in the
perturbed spacetime and that the background luminosity
distance is an affine parameter on the null rays that gen-
erate the light cones. An image showing the geometric
construction is given in Fig. 1.

When working with a puncture scheme, one can im-
pose different gauge conditions on the residual and punc-
ture fields; see the discussions in Sec. IV A of Ref. [68],

Sec. VII A of Ref. [50] and Sec. VI A of Paper I. There-
fore, to control the singularity structure, one can im-
pose the highly regular gauge conditions on the puncture.
Then, one can impose any convenient gauge conditions
on the residual field that simplify the left-hand side of
the field equations (25)–(26).

Reference [50] only provided the leading-order pieces
of the second-order metric perturbations in this gauge.
Paper I extended this to include all orders needed to per-
form a numerical calculation of the self-force. These ex-
pressions were provided in Fermi–Walker coordinates, a
particular coordinate system that is tethered to an accel-
erated worldline, γ, and is useful for analysing the prop-
erties of fields near to this worldline. However, in order
to use the expressions in a puncture scheme, one needs
to write them in a coordinate scheme specialised to the
problem at hand, such as Boyer–Lindquist coordinates
(tBL, rBL, θBL, ϕBL) [69]. To avoid a potentially compli-
cated coordinate transformation from Fermi–Walker co-
ordinates to the new coordinate system, one can convert
the Fermi–Walker expressions into covariant form. This
can then be written in the chosen coordinate system.

To do so, one can use the method given by Pound and
Miller [55] (hereafter Paper II). This method was de-
veloped in order to transform expressions for the singu-
lar field in the Lorenz gauge into covariant form. These
expressions, after being written in an appropriate coor-
dinate system and decomposed into a suitable basis of
modes, were used as input into the two-timescale expan-
sion [56] that has been used in the only existing calcula-
tions of second-order quantities [29, 30, 32].

The aim in Paper II was the same as the aim here:
to convert expressions for the singular field written in
Fermi–Walker coordinates into fully covariant expres-
sions. This covariant expression can then be used as
input into the previously mentioned puncture scheme.

D. Paper outline

We begin in Secs. II and III by recapping local ex-
pansion methods using bitensors; tensorial functions of
two spacetime points; the construction of Fermi–Walker
coordinates, and the conversion from Fermi–Walker co-
ordinates to covariant form, as introduced by Paper II.
Readers familiar with these concepts should feel free to
skip directly to Sec. IV, where the covariant punctures
for the metric perturbations in the highly regular gauge
are derived. These are displayed in an abridged form due
to their length, but the full expressions are provided in
a Mathematica notebook in the Supplemental Mate-
rial [70].

Section V then re-expands the covariant expressions
from Sec. IV D into a generic coordinate expansion. The
method for re-expanding the various covariant quantities
is detailed in Sec. V A and, as before, readers familiar
with this method can skip directly to Sec. V B where the
generic coordinate expansions are presented. As with the
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covariant expressions, the coordinate punctures are too
lengthy to include fully in this paper and are provided in
the Supplemental Material [70].

Finally, we sum up the findings of this paper in Sec. VI
and discuss potential future avenues for research.

E. Conventions and definitions

We use metric signature (−, +, +, +) and geometric
units with c = G = 1. Indices using Greek letters run
from 0 to 3 and with lowercase Latin letters run from
1 to 3. Greek/Latin indices are raised and lowered from
the background metric, gµν , and the flat-space Euclidean
metric, δab, respectively.

A primed index on a tensor, Aµ′ , indicates the tensor
is evaluated at x′µ := zµ(τ), where zµ(τ) are coordinates
on the worldline, γ. An unprimed index on a tensor, Aµ,
is used for when the tensor is evaluated away from the
worldline at xµ. An overset bar on a tensorial index,
Aµ̄, is used when a tensor is evaluated at x̄µ. This is a
point on the worldline which is connected to xµ by an
orthogonal geodesic.

A hat on a tensor, T̂ a1...ai , refers to the symmetric
trace-free (STF) part of the tensor with respect to the
flat-space metric, δab. The covariant derivative is given
by ∇ or a semi-colon and is compatible with the back-
ground metric, gµν . The partial derivative is given by ∂
or a comma.

We adopt notation from Ref. [71] for contractions of
uµ′ , σµ′ and ∆xµ′ so that,

Γ∆
u∆,∆ := Γα′

β′µ′,ν′ ∆xα′uβ′
∆xµ′

∆xν′
, (33)

Ṙuσuσ := Rα′β′µ′ν′;γ′σβ′
σν′

uα′
uµ′

uγ′
, (34)

for example. We use analogous notation for contractions
of tensors evaluated at x̄µ, e.g.

Ṙūσ̄ūσ̄ := Rᾱβ̄µ̄ν̄;γ̄σβ̄σν̄uᾱuµ̄uγ̄ . (35)

The calculations in this paper make extensive use of
Wolfram Mathematica [72] and the tensor algebra
package xAct [73–78].

II. LOCAL EXPANSION METHODS

In this section, we recap the methods of performing
covariant and coordinate expansions of tensorial quanti-
ties near the worldline. We also give an overview of the
construction of Fermi–Walker coordinates.

A. Covariant expansions using bitensors

In this section, we outline how one may construct local
covariant expansions of tensor fields. Our explanation of
the method follows that of Refs. [12, 79, 80]. To do this,

we introduce the concept of a bitensor: a tensor which
is a function of two spacetime points. One important
bitensor that we will make extensive use of is Synge’s
world function [12, 79],

σ(x, x′) = ε

2

(∫
β

ds
)2

, (36)

where β is the unique geodesic connecting xµ and xµ′ , s
is an affine parameter and ε = ∓1 for time/spacelike
geodesics (not to be confused with the mass ratio ϵ).
This gives half the geodesic distance squared between
the points xµ and xµ′ . If the two points are connected
by a null geodesic, then σ(x, x′) is identically zero. We
will use λ as a formal order counting parameter to count
powers of spatial distance away from the worldline, γ, so
that σ ∼ λ2.

We denote derivatives of Synge’s world function as
σµ′ := ∇µ′σ(x, x′) = ∂µ′σ(x, x′). Note also that we
may take derivatives of Synge’s world function at the
unprimed coordinates as well, giving σµ := ∇µσ(x, x′) =
∂µσ(x, x′). This can be generalised to higher and higher
derivatives, e.g. σµ′ν′ := ∇ν′∇µ′σ or σµ′ν := ∇ν∇µ′σ.
The indices of σ tell us its tensorial structure at both
xµ and xµ′ , that is, σµ′ν′ is a rank-2 tensor at xµ′ but
a scalar at xµ. Likewise, σµ′ν is a covector at both xµ

and xµ′ . This property demonstrates that we can always
commute primed and unprimed indices as the existence
of one does not affect the tensorial rank at the other
point. Derivatives of Synge’s world function also satisfy
the useful identity

gαβσασβ = gα′β′σα′
σβ′

= 2σ(x, x′). (37)

By taking derivatives of Eq. (37) and then the limit as xµ

goes to xµ′ , one may derive local covariant expansions of
σα′...α... in terms of quantities defined on the worldline.
To see an example, we start by introducing the standard
notation for the coincidence limit [79],

[Aα...α′...
β...β′... ] := lim

xµ→xµ′
Aα...α′...

β...β′...(x, x′). (38)

It immediately follows from Eqs. (36)–(37) that

[σ] = [σα] = [σα′ ] = 0, (39)

as, if the length of β goes to 0, then the integral in
Eq. (36) vanishes. Taking primed derivatives of Eq. (37),
we see

σµ′ = σν′
σν′µ′ , (40)

which implies that

[σµ′ν′ ] = gµ′ν′ . (41)

This can be repeated to find higher and higher derivatives
of σ(x, x′) [80],

[σµ′ν′ρ′ ] = 0, (42)

[σµ′ν′α′β′ ] = 2
3Rµ′(α′β′)ν′ . (43)
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Another object we will make use of is the parallel prop-
agator, gµ′

µ(x, x′) [12, 79, 80]. The parallel propagator
parallel transports a tensor from xµ′ to xµ along β. For
instance, the vector Aµ(x) can be transported from/to
Aµ′(x′) via

Aµ(x) = gµ
µ′(x, x′)Aµ′

(x′), (44)

Aµ′
(x′) = gµ′

µ(x′, x)Aµ(x), (45)

respectively. These expressions hold for covectors as well
and tensors with any number of indices with the inclusion
of an appropriate number of parallel propagators, e.g.

Aαβ
µ

ν(x) = gα
α′gβ

β′gµ′

µgν
ν′Aα′β′

µ′
ν′

(x′). (46)

It also has the properties that when contracted with it-
self, it returns the Kronecker delta,

gµ
µ′gµ′

ν = δµ
ν , (47)

gµ′

µgµ
ν′ = δµ′

ν′ , (48)

and is symmetric in indices and arguments,

gµ
µ′

(x, x′) = gµ′

µ(x′, x). (49)

When contracted with Synge’s world function, it gives

σµ = − gµ′

µσµ′ , (50)
σµ′ = − gµ

µ′σµ, (51)

and its derivative contracted with Synge’s world function
vanishes for all combinations of primed and unprimed
indices, e.g.

gµ′

µ;νσν = 0. (52)

As we did for Synge’s world function with Eq. (37), we
can calculate different covariant expansions by repeatedly
differentiating Eq. (52) and taking the coincidence limit.
For example [80],

[gµ
ν′ ] = δµ′

ν′ , (53)
[gµ

ν′;α′ ] = 0, (54)

[gµ
ν′;αβ ] = − 1

2Rµ′

ν′α′β′ . (55)

Combining the previous definitions, we can then ex-
press an arbitrary tensor Aµ

ν , evaluated at x, in terms
of quantities evaluated at x′ as

Aµ
ν(x) = gµ

µ′gν
ν′

(
A(0)µ′

ν′(x′) + λA(1)µ′

ν′α′(x′)σα′

+ λ2

2 A(2)µ′

ν′α′β′(x′)σα′
σβ′

)
+ O

(
λ3)

, (56)

where λ is a formal order counting parameter to be set
to unity at the end of the calculation. The unknown
coefficients, A(N)µ′

ν′α′1...α′
n
, can be found in the same

manner as before by repeated differentiation and taking
of the coincidence limit. As an example, we seek the co-
variant expansion of σµ′ν′ . We first expand, as in Eq. (56)
but without the need for parallel propagators, as

σµ′ν′ = σ
(0)
µ′ν′ + λσ

(1)
µ′ν′α′σ

α′
+ λ2

2 σ
(2)
µ′ν′α′β′σ

α′
σβ′

+ O
(
λ3)

. (57)

We know from Eq. (41), that A
(0)
µ′ν′ = gµ′ν′ . Taking

primed derivatives and the coincidence limit gives that

σ
(1)
µ′ν′α′ = [σµ′ν′α′ ] = 0, (58)

σ
(2)
µ′ν′α′β′ = [σµ′ν′α′β′ ] = 2

3Rµ′(α′β′)ν′ , (59)

meaning that

σµ′ν′ = gµ′ν′ + λ2

3 Rµ′α′β′ν′σα′
σβ′

+ O
(
λ3)

. (60)

This can be repeated for any required covariant quantity.
Ref. [81] provides a semi-recursive method for calculat-
ing expansions of Synge’s world function and the parallel
propagator, along with many other covariant quantities.

B. Fermi–Walker coordinates

To analyse the properties of the fields near the world-
line of the small object, we introduce Fermi–Walker co-
ordinates, (t, xa), attached to the accelerated worldline,
γ. Our description of Fermi–Walker coordinates sum-
marises that of Refs. [12, 82]. To begin, we introduce an
orthonormal tetrad, (uµ, eµ

a), on γ which is defined at the
point z(τ) so that it satisfies

Deµ
a

dτ
= aνeν

auµ, (61)

gµνuµuν = − 1, (62)
gµνeµ

auν = 0, (63)
gµνeµ

aeν
b = δab, (64)

where uµ = dzµ/dτ is the curve’s four-velocity, aµ =
D2zµ/ dτ2 is the acceleration of γ and δab = diag(1, 1, 1)
is the three-dimensional flat space metric. If γ is a
geodesic then aµ vanishes. Equation (61) ensures that
the tetrad basis is Fermi–Walker transported along γ,
thus keeping it orthogonal to the worldline as it travels
along it. This condition reduces to that of parallel trans-
port when the worldline is a geodesic. Equations (62)–
(64) then ensure that it is orthonormal at all points on
γ. The dual tetrad, (e0

µ, ea
µ), can be defined as satisfying

e0
µ = − uµ, (65)

ea
µ = δabgµνeν

b . (66)
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Equations (62)–(66) then imply that we can write the
metric and inverse metric as

gµν = − e0
µe0

ν + δabea
µeb

ν , (67)
gµν = − uµuν + δabeµ

aeν
b , (68)

respectively.
With the orthonormal tetrad constructed, we may now

create a local coordinate system so that we may derive
the form of the metric near γ. The full technical details
are not considered here (see Ref. [12, Chs. 9.3–9.5] for
more details) but we outline the geometric picture of the
coordinate construction. At a point x̄ := z(t) on γ, where
t is the proper time, we generate a surface orthogonal to
the worldline by emitting spacelike geodesics from z(t)
that are orthogonal to γ. We can then label a point on
this surface with coordinates xa so that we have coordi-
nates, (t, xa), that describe points near to the worldline.
The tetrad can be written in terms of Synge’s world func-
tion as

x0 = t, (69)
xa = −ea

ᾱ(x̄)σᾱ(x, x̄), (70)
σᾱ(x, x̄)uᾱ(x̄) = 0. (71)

As stated previously, Synge’s world function gives half
the geodesic distance squared between two points (up to
a minus sign) meaning that a derivative gives the geodesic
distance. This quantity is then contracted with the spa-
tial Fermi–Walker tetrad leg, ea

ᾱ, to give the Fermi–
Walker spatial distance, xa. The third equation ensures
that σᾱ is always orthogonal to the worldline. Alterna-
tively, we can write xi = rni, with r :=

√
δabxaxb =√

2σ(x, x̄) being the proper distance (along a unique
spacelike geodesic orthogonal to γ) from γ to the point
being considered and ni being a unit vector giving the
direction that the point lies in respective to γ. We note
as well that, as with σα′ , r ∼ λ and so counts powers of
distance from the worldline. A geometric representation
of the Fermi–Walker coordinate construction is given in
Fig. 2.

Using these coordinates, we can write the metric near
γ in the form [50]

gtt = − 1 − 2rain
i − r2(Rtitj + aiaj)nij

− r3

3 (4Rtitjak + Rtitj;k)nijk + O
(
r4)

, (72a)

gta = − 2r2

3 Rtiajnij − r3

12(4Rtiajak + 3Rtiaj;k)nijk

+ O
(
r4)

, (72b)

gab = δab − r2

3 Raibjnij − r3

6 Raibj;knijk + O
(
r4)

, (72c)

where all Riemann terms are evaluated on γ at time t.
When evaluating Eq. (72) on γ, we immediately see that
the metric in Fermi–Walker coordinates reduces to the
Minkowski metric. However, the Christoffel symbols at

FIG. 2. Visualisation of construction of Fermi–Walker coor-
dinates. At the point z(t), we generate an orthogonal surface
and label points on that surface with the coordinate xi. The
quantity r gives the proper distance to xi and ni picks out the
unique orthogonal geodesic that connects xi and γ. Based on
Fig. 6 from Ref. [12].

lowest order are not all zero. Instead, Γt
ta|γ = aa and

Γa
tt|γ = aa; both reduce to 0 if γ is a geodesic.
As we are looking at a vacuum solution with Rµν = 0,

we may use the identities from Appendix D3 of Ref. [83]
to write

Rtatb = Eab, (73a)
Rabct = ϵab

iBic, (73b)
Rabcd = − ϵabiϵcdjE ij (73c)

and the derivatives as

Rtatb;c = Eabc + 2
3ϵci(aḂb)

i, (74a)

Rabct;d = ϵab
i
(4

3Bicd − 2
3ϵdj(iĖj

c)

)
, (74b)

Rabcd;e = − ϵabiϵcdj

(
E ij

e + 2
3ϵek

(iḂj)k
)

. (74c)

The quantities E and B are the tidal moments felt by
an extended body moving on the world line, γ, where
two/three indices refer to the quadrupole/octopole mo-
ments respectively. They are symmetric and trace-free,
with respect to δab, over all indices and only depend on
the proper time, t.

III. CONVERTING FERMI–WALKER
COORDINATES TO COVARIANT FORM

In this section we review the method used in Paper II
to derive the covariant Lorenz gauge puncture. While the
full technical details containing derivations of the various
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FIG. 3. Diagram illustrating the relationship between x, x′

and x̄. The two points x′ and x̄ are points on the worldline, γ,
separated by ∆τ while x̄ and x are connected by the geodesic
that intersects γ orthogonally. Based on Fig. 1 from Paper II.

quantities are contained within that paper, we reproduce
the essential results that we will need to produce the
highly regular gauge puncture. The final results will be
covariant quantities expressed entirely in terms of paral-
lel propagators, the four-velocity, Riemann tensors, and
Synge’s world function.

The idea behind the method from Paper II is to express
the field at a point x in terms of an arbitrary nearby
point on the worldline, x′ = z(τ ′). This is done through
an intermediary point, x̄ = z(τ̄), which lies on γ and is
separated from x′ by the difference in proper time

∆τ := τ̄ − τ ′. (75)

The intermediary point, x̄, is then connected to x by
the unique geodesic that intersects the worldline orthog-
onally. A visual representation is provided in Fig. 3.

As Fermi–Walker coordinates are constructed geomet-
rically, see Sec. II B, there is a very straightforward way
to convert them into covariant form. We know from
Eqs. (69)–(71), that there is a simple correspondence be-
tween Fermi–Walker coordinates and covariant quanti-
ties. As we saw in the text below Eq. (71), we can write
the Fermi–Walker radial distance in terms of covariant
quantities with

r :=
√

δabxaxb =
√

Pᾱβ̄σᾱσβ̄ =
√

2σ̄, (76)

where

σ̄ := σ(x, x̄). (77)

We have added an extra step in Eq. (76), where we have
rewritten the flat-space metric in terms of the projection
operator,

eα
a eaβ = P αβ = gαβ + uαuβ , (78)

which immediately follows from Eq. (68). The radial unit
vector is then given by

na = xa

r
= −ea

ᾱσᾱ

√
2σ̄

. (79)

Additionally, we must replace the Fermi–Walker basis
one-forms, as when written explicitly, the singular field
has the standard form

hS
µν dxµ dxν = hS

tt dt dt + 2hS
ta dt dxa + hS

ab dxa dxb. (80)

These are given in Eqs. (82)–(84) from Paper II by

dt = µσᾱαuᾱ dxα, (81)

dxa = − ea
ᾱ(σᾱ

α + µσᾱ
β̄uβ̄σαγ̄uγ̄), (82)

where

µ = −(σᾱβ̄uᾱuβ̄ + σᾱaᾱ)−1. (83)

Finally, the second-order singular field hSR
µν features

derivatives of the first-order regular field, hR1
µν . Using

Eqs. (122)–(123) of Paper II, these can be written as

∂th
R1
µν = hR1

µ̄ν̄|ᾱuᾱ + O(aµ), (84)

∂ahR1
µν = hR1

µ̄ν̄|ᾱeᾱ
a + O(aµ), (85)

∂t∂th
R1
µν = hR1

µ̄ν̄|ᾱβ̄
uᾱuβ̄ + O(aµ), (86)

∂t∂ahR1
µν = hR1

µ̄ν̄|ᾱβ̄
eᾱ

a uβ̄ + O(aµ), (87)

∂a∂bhR1
µν = hR1

µ̄ν̄|ᾱβ̄
eᾱ

a eβ̄
b + 2Rµ̄

btau(ᾱhR1
β̄)µ̄

− 4
3Rµ̄

(bν̄)aP ν̄
(ᾱhR1

β̄)µ̄
+ O(aµ), (88)

where the bar, |, indicates a covariant derivative at xᾱ

and any acceleration terms can be ignored as they would
belong to the third-order singular field. These expres-
sions can be derived by taking covariant derivatives of
hR1

ᾱβ̄
and calculating the Christoffel symbols constructed

from the FW background metric in Eq. (72).
After rewriting all quantities in terms of x̄, we then re-

expand them in powers of ∆τ , the time difference given
in Eq. (75). For example,

htt(x, x̄) =
∞∑

n=0
∆τn dn

dτ ′n htt(x, x′), (89)

where d
dτ ′ = uα′∇α′ and the expansion in distance of the

difference in proper time is given by

∆τ = λr + λ2raσ + O
(
λ3)

, (90)

originally from Eqs. (97)–(98) in Paper II. Here, λ is our
formal order-counting parameter from Sec. II A, and we
have introduced the quantity,

r := uµ′σµ′
, (91)
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and below we will also use the quantity,

ρ :=
√

Pµ′ν′σµ′σν′ . (92)

for notational simplicity.4 This means that the contrac-
tion of Synge’s world function with itself can be written
as

σµ′
σµ′ = 2σ(x, x′) = ρ2 − r2. (93)

Here, r gives a notion of the difference in proper time
while ρ denotes a difference in proper distance.

We note that we expand all quantities (such as
Eqs. (89)–(90)) through four total orders, but we only
display the leading two orders here to indicate the forms
of the expressions; the full expansions can be found in
Paper II. We may do our series expansions as a normal
power series as all the Fermi–Walker quantities (includ-
ing one-forms) are scalars at x̄. The expansion of Synge’s
world function is given by Eqs. (99)–(101) of Paper II as

σ(x, x̄) = σ(x, x′) + dσ

dτ ′ ∆τ + 1
2

d2σ

dτ ′2 ∆τ2 + 1
6

d3σ

dτ ′3 ∆τ3

+ O
(
λ4)

= 1
2

[
λ2ρ2 + λ3r2aσ

]
+ O

(
λ4)

, (94)

and expansions of the Fermi–Walker basis one-forms are
then given by Eqs. (103)–(106) of Paper II as

dt = − gα′

µ

[
λ0uα′ + λ(raα′ + aσuα′) + O

(
λ2)]

dxµ,

(95)

dxa = gα′

µ

[
λ0ea

α′ + λ(eaβ′
ruα′aβ′) + O

(
λ2)]

dxµ. (96)

In the above expressions, we see that acceleration
terms have appeared. This is a result of taking the deriva-
tives with respect to τ ′. As stated, d/dτ ′ = uα′∇α′ , so
taking multiple τ ′ derivatives results in us taking deriva-
tives of uα′ along the worldline, providing us with accel-
eration terms. These can then be differentiated along the
worldline, giving us terms like ȧα′ , where a dot indicates
a time derivative in the usual manner.

When accounting for these terms, at first order, we
split up hS1

µν into an acceleration-independent and a
linear-in-acceleration piece:

hS1
µν = hS1�aµν + hS1a

µν + O
(
a2)

. (97)

Recall from Eqs. (3) and (14) that each acceleration term
carries an ϵ. This effectively makes hS1a

µν a second-order
term and allows us to ignore any non-linear acceleration
terms that appear in the expansion of hS1

µν . Additionally,
we can ignore any explicit acceleration terms that appear
in both hSR

µν and hSS
µν as these would become third-order

terms.

4 We use r in agreement with Refs. [55, 71, 84] but we use ρ to
match Refs. [66, 85] instead of s as in Paper II.

IV. CREATING THE COVARIANT PUNCTURE

With the methods from Paper II recapped, we can now
proceed to use them to generate our covariant puncture
in the highly regular gauge. We begin in Sec. IV A by re-
viewing the form of the metric perturbations in the highly
regular gauge. Section IV B will provide the components
of the highly regular gauge singular field when evaluated
at x̄ with each being written in covariant form. We then
move to Sec. IV C, which provides the components eval-
uated at x′ before combining this with one-form expan-
sions to find the final, fully covariant form in Sec. IV D.

A. Metric perturbations in the highly regular
gauge

In this section, we review the main results from Pa-
per I. All results in this section are from there but are
reproduced here for convenience.

We write the metric perturbations in the highly regular
gauge as

gµν = g̃µν + hS
µν , (98)

where the singular field is given by

hS
µν = ϵhS1

µν + ϵ2hS2
µν + O

(
ϵ3)

. (99)

The second-order singular field is then split as

hS2
µν = hSS

µν + hSR
µν , (100)

where the “singular times singular” piece, hSS
µν , features

all terms proportional to m2 and the “singular times reg-
ular” piece, hSR

µν , features all terms with the form mhR1
µν .

The full expressions for the first-order singular field in
the highly regular gauge are given in Eq. (56) of Paper I.
We reproduce the two leading orders here:

hS1
tt = 2m

r
+ 11

3 mrEabn̂ab + O
(
r2)

, (101a)

hS1
ta = 2m

r
n̂a + 2

15mr
(
11Eabn̂b + 10Bbcϵacdn̂b

d

+ 15Ebcn̂a
bc

)
+ O

(
r2)

, (101b)

hS1
ab = 2m

3r

(
δab + 3n̂ab

)
+ 1

315mr
(
154Eab

− 168Bd
(aϵb)cdn̂c + 580Ec

(an̂b)c + 15Ecdδabn̂cd

+ 840Bcdϵc
i
(an̂b)di + 105Ecdn̂ab

cd
)

+ O
(
r2)

.

(101c)

Moving to second order, hSR
µν is given in full by Eq. (130)

of Paper I. The two leading orders are

hSR
tt = − m

r

(
2hR1

tt + hR1
ab nab

)
− mr0

2
(
hR1

ab,cnabc

− 4nab∂th
R1
ab + 8na∂th

R1
ta

)
+ O(r), (102a)
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hSR
ta = − m

r

(
2hR1

ta + hR1
tt na − 2hR1

ab nb + 2hR1
bc na

bc
)

− mr0

2
(
2nb

[
2hR1

t[a,b] − ∂th
R1
ab

]
+ 4na

b∂th
R1
tb

− nbc
[
2 0hR1

ab,c + hR1
bc,a

]
− 2na

bc∂th
R1
bc

)
+ O(r),

(102b)

hSR
ab = − m

r

(
4hR1

t(anb) − 4hR1
c(anb)

c + 3hR1
cd nab

cd
)

− mr0

2
(
4hR1

t(a,|c|nb)
c + 4hR1

tc,(anb)
c

− 4hR1
c(a,|d|nb)

cd − 2hR1
cd,(anb)

cd

+ 3hR1
cd,inab

cdi − 4nc
(a∂|t|h

R1
b)c

)
+ O(r). (102c)

Finally, hSS
µν is given by Eq. (131) of Paper I, which we

reproduce here in full as

hSS
tt = − 4m2[

r0Eabnab + r
( 1

3 Ėabnab
{

11 − 6 log( 2m
r )

}
+ 2

3 Eabcnabc
)]

+ O
(
r2)

, (103a)
hSS

ta = − 4m2[
r0Ebcna

bc + r
( 2

9 Ėabnb
{

7 − 3 log( 2m
r )

}
+ 1

6 Eabcnbc − 2
9 Ḃb

dϵacdnbc
{

4 − 3 log( 2m
r )

}
+ 1

9 Ėbcna
bc

{
19 − 12 log( 2m

r )
}

+ 1
2 Ebcdna

bcd

− 2
9 Bbc

iϵadin
bcd

)]
+ O

(
r2)

, (103b)
hSS

ab = − 4m2[
r0(

B(a
dϵb)cdnc − 1

3 Eab + 2
3 Ec(anb)

c

− 1
6 Ecdδabncd − Bc

iϵdi(anb)
cd + 5

6 Ecdnab
cd

)
+ r

( 2
3 Ėab + 4

9 Ėc(anb)
c
{

4 − 3 log( 2m
r )

}
+ 1

3 Ėcdδabncd + 1
9 ncd

(a

{
3Eb)cd − 4Ḃ|c|

iϵb)di

×
[
4 − 3 log( 2m

r )
]}

− 4
9 Bcd

jϵij(anb)
cdi

+ 2
9 Ėcdnab

cd
{

4 − 3 log( 2m
r )

}
+ 1

3 Ecdinab
cdi

)]
+ O

(
r2)

. (103c)

B. Perturbation components expanded about x̄

We begin by calculating the form of the components of
the first-order singular field, hS1

µν , when expanded around
x̄α. To do so, we substitute the appropriate expressions
from Sec. III into Eq. (101). The components of hS1

µ̄ν̄ are
then given by

hS1
tt =

√
2m

λ
√

σ̄
+ 11mλ

3
√

2σ̄
Rūσ̄ūσ̄ + O

(
λ2)

, (104a)

hS1
ta = − meᾱ

a

3σ̄

(
3σᾱ

λ
− λ

[
2
√

2Rᾱσ̄ūσ̄

√
σ̄ − 2Rᾱūσ̄ūσ̄

− 3Rūσ̄ūσ̄σᾱ

])
+ O

(
λ2)

, (104b)

hS1
ab =

meᾱ
a eβ̄

b

12σ̄3/2

(6
√

2σᾱσβ̄

λ
+ λ

[√
2Rūσ̄ūσ̄σᾱσβ̄

− 16
√

σ̄σ(ᾱRβ̄)σ̄ūσ̄ + 8
√

2σ̄σ(ᾱRβ̄)ūσ̄ū

])
+ O

(
λ2)

.

(104c)

We have omitted the highest-order piece of hS1
µ̄ν̄ due to

its length, but it will be used to calculate the covariant
punctures.

This can then be continued at second order for the
singular fields hSR

µ̄ν̄ (102) and hSS
µ̄ν̄ (103). The “singular

times regular” piece is given by

hSR
tt = − m

4
√

2σ̄3/2

[
2
λ

(
hR1

σ̄σ̄ + 4hR1
ūūσ̄

)
− λ0

(
16σ̄ḣR1

σ̄ū

+ hR1
σ̄σ̄|σ̄ + 4

√
2σ̄1/2ḣR1

σ̄σ̄

)]
+ O(λ), (105a)

hSR
ta = − meᾱ

a

4σ̄2

[
2
λ

(
2hR1

ᾱσ̄σ̄ + 2
√

2hR1
ᾱūσ̄3/2 − hR1

σ̄σ̄σᾱ

− hR1
ūūσ̄σᾱ

)
+ λ0

(
σ̄ᾱhR1

σ̄σ̄|σ̄ − 2
√

2σ̄3/2(
hR1

σ̄ū|ᾱ

+ hR1
ᾱū|σ̄ − ḣR1

ᾱσ̄

)
+

√
2σ̄σᾱḣR1

σ̄σ̄ − σ̄
(
hR1

σ̄σ̄|ᾱ

+ 2hR1
ᾱσ̄|σ̄ − 4σᾱḣR1

σ̄ū

))]
+ O(λ), (105b)

hSR
ab = −

meᾱ
a eβ̄

b

16σ̄5/2

[
2
λ

(
3
√

2hR1
σ̄σ̄σᾱσβ̄ − 8

√
2σ̄hR1

σ̄(ᾱσβ̄)

− 16σ̄3/2hR1
ū(ᾱσβ̄)

)
+ λ0

(
4
√

2σ̄
(
hR1

σ̄σ̄|(ᾱσβ̄)

+ 2σ(ᾱhR1
β̄)σ̄|σ̄

)
− 3

√
2σᾱσβ̄hR1

σ̄σ̄|σ̄ + 16σ̄3/2

×
(
hR1

σ̄ū|(ᾱσβ̄) + σ(ᾱhR1
β̄)u|σ̄ − σ(ᾱḣR1

β̄)σ̄

))]
+ O(λ).

(105c)

As in the expression for hS1
µ̄ν̄ , we omit the highest-order

piece of hSR
µ̄ν̄ due to length constraints. Finally, the “sin-

gular times singular” piece is given by

hSS
tt = − 2m2λ0

σ̄
+ 2m2λ

3σ̄

[
2Rūσ̄ūσ̄|σ̄ −

√
2σ̄Ṙūσ̄ūσ̄

×
{

11 − 6 log(
√

2m
λ

√
σ̄

)
}]

+ O
(
λ2)

, (106a)

hSS
ta = m2eᾱ

a

18σ̄3/2

[
18

√
2λ0Rūσ̄ūσ̄σᾱ − λ

(
2
√

2σ̄
[
2Rᾱūσ̄ū|σ

+ Rūσ̄ūσ̄|ᾱ + 4Ṙᾱσūσ̄

{
4 − 3 log(

√
2m

λ
√

σ̄
)
}]

− 4Ṙᾱūσ̄ūσ̄3/2
{

29 − 12 log(
√

2m
λ

√
σ̄

)
}

+ 9
√

2Rūσ̄ūσ̄|σσᾱ −
√

σ̄
[
6Rᾱσūσ̄|σ + 2Ṙūσ̄ūσ̄

×
{

37 − 24 log(
√

2m
λ

√
σ̄

)
}

σᾱ

])]
+ O

(
λ2)

, (106b)
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hSS
ab =

m2eᾱ
a eβ̄

b

18σ̄2

[
3λ0

(
2Rūσ̄ūσ̄gᾱβ̄ σ̄ + 8Rᾱūβ̄ūσ̄2

− 5Rūσ̄ūσ̄σᾱσβ̄ − 12
√

2σ̄3/2Rū(ᾱβ̄)σ + 6
√

2σ̄1/2

× Rσūσ̄(ᾱσβ̄) − 8σ̄Rūσ̄ū(ᾱσβ̄)

)
+ λ

(
6Rūσ̄ūσ̄|σ

× σᾱσβ̄ − 48
√

2Ṙᾱūβ̄ūσ̄5/2 − σ̄1/2
[
2
√

2Ṙūσ̄ūσ̄

×
{

7 − 6 log(
√

2m
λ

√
σ̄

)
}

σᾱσβ̄ + 6
√

2σ(ᾱRβ̄)σūσ̄|σ

]
+ σ̄

[{
64 − 48 log(

√
2m

λ
√

σ̄
)
}

Ṙσūσ̄(ᾱσβ̄)

+ 4
(

2σ(ᾱRβ̄)ūσ̄ū|σ + Rūσ̄ūσ̄|(ᾱσβ̄)

)]
− 4

√
2σ̄3/2

×
[
3Ṙūσ̄ūσ̄gᾱβ̄ +

{
17 − 12 log(

√
2m

λ
√

σ̄
)
}

× σ(ᾱṘβ̄)ūσ̄ū

])]
+ O

(
λ2)

. (106c)

C. Expansion about x′

Accounting for the introduction of acceleration terms
and splitting up hS1

µν as in Eq. (97), we find that the com-
ponents of hS1�aµν , when expanded around x′α, are given
by

hS1�att = 2m

λρ
+ mλ

3ρ3 Ruσuσ(r2 + 11ρ2) + O
(
λ2)

, (107a)

hS1�ata = − meα′

a

36ρ4

[
72ρ2σα′

λ
+ λ

(
12ρ2(

Rα′uσu

× (r2 + 4rρ + 2ρ2) − 2Rα′σuσ(r + 2ρ)
)

+ 24Ruσuσ(r2 + 3ρ2)σα′

)]
+ O

(
λ2)

, (107b)

hS1�a
ab =

meα′

a eβ′

b

3ρ5

[
6ρ2σα′σβ′

λ
+ λ

(
Ruσuσσα′σβ′

× (3r2 + ρ2) − 2ρ2
[
2(r + 2ρ)σ(α′Rβ′)σuσ

− (r2 + 4rρ + 2ρ2)σ(α′Rβ′)uσu

])]
+ O

(
λ2)

.

(107c)

The acceleration terms that appear as a result of our
expansion of the first-order singular field are

hS1a
tt = − mλ0aσr2

ρ3 − mλȧσr3

3ρ3 + O
(
λ2)

, (108a)

hS1a
ta = − meα′

a r

3ρ6

[
3λ0rρ2(aα′ρ2 − 2aσσα′)

+ λr2ρ2(ȧα′ρ2 − 2ȧσσα′)
]

+ O
(
λ2)

, (108b)

hS1a
ab = −

meα′

a eβ′

b r2

3ρ5

[
3λ0(3aσσα′σβ′ − 2ρ2a(α′σβ′))

+ λr(3ȧσσα′σβ′ − 2ρ2ȧ(α′σβ′))
]

+ O
(
λ2)

.

(108c)

As hS1a
µν is a second-order term, we can neglect any terms

of order-λ2 and higher to match the orders required for
hSR

µν and hSS
µν .

Moving to the second-order field, we calculate the SR
components to be

hSR
tt = − m

2ρ3

[ 2
λ

(
hR1

σσ + 2hR1
σur + hR1

uu(r2 + 2ρ2)
)

− λ0(
r(rhR1

uu;σ + 2hR1
σu;σ) + hR1

σσ;σ − (r − 4ρ)
× ḣR1

σσ − 2(r2 − 4rρ − 4ρ2)ḣR1
σu

− r(r2 − 4rρ − 4ρ2)ḣR1
uu

)]
+ O(λ), (109a)

hSR
ta = − mea

α′

2ρ4

[
2
λ

(
2hR1

α′σρ2 + 2hR1
α′uρ2(r + ρ)

−
(
2hR1

σσ + 4hR1
σur + hR1

uu(2r2 + ρ2)
)
σα′

)
− λ0

[
ρ2

(
hR1

σσ;α′ + 2(r + ρ)hR1
σu;α′ + r(r + 2ρ)

× hR1
uu;α′ + 2

(
hR1

α′σ;σ + (r + ρ)(hR1
α′u;σ − ḣR1

α′σ)

− r(r + 2ρ)ḣR1
α′u

))
+ σα′

(
2(r − ρ)ḣR1

σσ

− 2(r2hR1
uu;σ + 2rhR1

σu;σ + hR1
σσ;σ)

+ 2(r2 − rρ − ρ2)(2ḣR1
σu + rḣR1

uu)
)]]

+ O(λ), (109b)

hSR
ab = −

meα′

a eβ′

b

2ρ5

[
2
λ

[
3
(
hR1

σσ + r(2hR1
σu + hR1

uur)
)
σα′σβ′

− 4ρ2hR1
(α′|σ|σβ′) − 4ρ2(r + ρ)hR1

(α′|u|σβ′)
]

− λ0
[
3σα′σβ′

(
hR1

σσ;σ − r
(
ḣR1

σσ − 2hR1
σu;σ

+ r(2ḣR1
σu − hR1

uu;σ + rḣR1
uu)

))
− 2ρ2

(
σ(α′hR1

|σσ|;β′) + 2(r + ρ)σ(α′hR1
|σu|;β′)

+ r(r + 2ρ)σ(α′hR1
|uu|;β′) + 2

(
σ(α′hR1

β′)σ;σ

+ (r + ρ)(σ(α′hR1
β′)u;σ − σ(α′ ḣR1

β′)σ)

− r(r + 2ρ)σ(α′ ḣR1
β′)u

))]]
+ O(λ), (109c)

where, again, we have omitted the highest order term.
The SS components are calculated to be

hSS
tt = − 4m2

3ρ2

[
3λ0Ruσuσ − λ

(
2Ruσuσ;σ − Ṙuσuσ

×
[
r + 11ρ − 6 log

( 2m
λρ

)
ρ

])]
+ O

(
λ2)

, (110a)
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hSS
ta = 2m2eα′

a

9ρ3

[
18λ0Ruσuσσα′ + λ

(
ρ

[
3Rα′σuσ;σ

− Ruσuσ;α′ρ − Rα′uσu;σ(3r + 2ρ) + Ṙα′σuσ

×
(
3r − 4

(
4 − 3 log

( 2m
λρ

))
ρ

)
− Ṙα′uσu

×
(
3r2 − 14rρ − 29ρ2 + 12 log

( 2m
λρ

)
ρ(r + ρ)

)]
− σα′

[
9Ruσuσ;σ − Ṙuσuσ

(
9r + 37ρ

− 24 log
( 2m

λρ

)
ρ

)])]
+ O

(
λ2)

, (110b)

hSS
ab =

2m2eα′

a eβ′

b

9ρ4

[
3λ0

(
ρ2[

Ruσuσgα′β′ + 2Rα′uβ′u

× ρ(3r + ρ) − 6ρRu(α′β′)σ

]
+ 2ρσ(α′

[
3Rβ′)σuσ

− Rβ′)uσu(3r + 2ρ)
]

− 5Ruσuσσα′σβ′

)
+ λ

(
3ρ2[

Ṙuσuσgα′β′(r − 2ρ) + 2Ṙα′uβ′u

× (3r − 2ρ)ρ(r + ρ) − 6rρṘu(α′β′)σ

]
+ σα′σβ′

[
6Ruσuσ;σ − Ṙuσuσ

(
9r + 14ρ

− 12ρ log
( 2m

λρ

))]
− 2ρ

[
3σ(α′Rβ′)σuσ;σ

− 2
(
3r + 8ρ − 6 log

( 2m
λρ

)
ρ

)
Ṙσuσ(α′σβ′)

− (3r + 2ρ)σ(α′Rβ′)uσu;σ +
(
6r2 + 20rρ

+ 17ρ2 − 12 log
( 2m

λρ

)
ρ(r + ρ)

)
Ṙuσu(α′σβ′)

− ρRuσuσ;(α′σβ′)
])]

+ O
(
λ2)

. (110c)

D. Final expressions for the covariant punctures

With all of the individual components of the singular field now expressed as functions of x′α, we now combine them
with the expansions of dt and dxa, given in Eqs. (95)–(96) to find the final form of the covariant punctures. After
contracting with the basis vectors, we obtain the covariant form of hS

µν dxµ dxν , as in Eq. (80). We then read off the
coefficients of dxµ dxν to obtain hS

µν .
The first-order singular field is given by

hS1�a
αβ = − mgα′

αgβ′
β

36ρ5

[
−72ρ2

λ

(
σα′ + (r + ρ)uα′

)(
σβ′ + (r + ρ)uβ′

)
− 12λ

(
Ruσuσ(3r2 + ρ2)σα′σβ′

+ 2Ruσuσr(3r − ρ)(r + ρ)σ(α′uβ′) + Ruσuσ(r − ρ)(r + ρ)2(3r + ρ)uα′uβ′ + 2ρ2(
σ(α′ + (r + ρ)u(α′

)
·
(
Rβ′)σuσ(r − 3ρ) + 2Rβ′)uσu(ρ2 − r2)

))
+ λ2

(
3
(
−3Ṙuσuσr(r2 + ρ2) + Ruσuσ;σ(3r2 + ρ2)

)
σα′σβ′

+ 6
(
Ruσuσ;σr(3r − ρ)(r + ρ) − Ṙuσuσ(3r4 + 2r3ρ + 3ρ4)

)
σ(α′uβ′) + 3

(
Ruσuσ;σ(r − ρ)(r + ρ)2(3r + ρ)

− Ṙuσuσ(3r5 + 4r4ρ − 2r3ρ2 − 6r2ρ3 + 3rρ4 + 14ρ5)
)
uα′uβ′ + 4gα′β′ρ4(3Ruσuσ;σ + 3Ṙuσuσr − 8Ṙuσuσρ)

− 8ρ5(
Ṙα′σβ′σ − Rα′uβ′u;σ(3r + ρ) + Ṙα′uβ′u(9ρ2 + 4rρ − 2r2) + 3Ru(α′β′)σ;σ + (r − 5ρ)Ṙu(α′β′)σ

+ 2ρRσuu(α′;β′)
)

− 2ρ2σ(β′
(
6(2ρ − r)Rα′)σuσ;σ + (3r2 − 24rρ − 32ρ2)Ṙα′)σuσ + 9r2Rα′)uσu;σ

+ 2ρ2Rα′)uσu;σ − 6r3Ṙα′)uσu + 12r2ρṘα′)uσu + 58rρ2Ṙα′)uσu + 8ρ3Ṙα′)uσu + ρ2R|uσuσ|;α′)
)

− 2ρ2u(β′
(
6(4ρ2 + rρ − r2)Rα′)σuσ;σ + (3r3 − 21r2ρ − 44rρ2 − 44ρ3)Ṙα′)σuσ + 9r3Rα′)uσu;σ

+ 9r2ρRα′)uσu;σ − 10rρ2Rα′)uσu;σ − 2ρ3Rα′)uσu;σ − 6r4Ṙα′)uσu + 6r3ρṘα′)uσu + 58r2ρ2Ṙα′)uσu

+ 74rρ3Ṙα′)uσu + 52ρ4Ṙα′)uσu + (r − 7ρ)ρ2R|uσuσ|;α′)
)

+ 24Ṙuσuσ log
( 2m

λρ

)
gα′β′ρ5

+ 48 log
( 2m

λρ

)
ρ4(

Ṙα′uβ′uρ2(r + ρ) − ρ2Ṙu(α′β′)σ − (σ(α′ + (2ρ + r)u(α′)Ṙβ′)σuσ + rσ(α′Ṙβ′)uσu

+ (r + ρ)2u(α′Ṙβ′)uσu

))]
+ O

(
λ3)

. (111)

We have confirmed that this satisfies the Einstein field equations to the appropriate order, i.e.

δGµν [hS1�a] = O(λ), x /∈ γ. (112)
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At second order, the SS piece of the singular field is given by

hSS
αβ = − 2m2gα′

αgβ′
β

9ρ4

[
3λ0

(
Ruσuσ(5r2 + 6rρ + 5ρ2)uα′uβ′ + 5Ruσuσσα′σβ′ + 2Ruσuσ(5r + 3ρ)σ(α′uβ′)

− 2ρu(α′
(
3Rβ′)σuσr − Rβ′)uσu(3r2 + 2rρ + 3ρ2)

)
− 2ρσ(α′

(
3Rβ′)σuσ − Rβ′)uσu(3r + 2ρ)

)
− ρ2(

Ruσuσgα′β′ + 2Rα′uβ′uρ(3r + ρ) − 6ρRu(α′β′)σ

))
+ λ

(
uα′uβ′

[
Ṙuσuσ(r + ρ)

(
9r2 + 11rρ + 38ρ2

− 12 log
( 2m

λρ

)
ρ(r + ρ) − 6Ruσuσ;σ(r + ρ)2)]

+ σα′σβ′
[
Ṙuσuσ

(
9r + 14ρ − 12 log

( 2m
λρ

)
ρ

)
− 6Ruσuσ;σ

]
+ 2u(α′σβ′)

[
Ṙuσuσ

(
9r2 + 17rρ + 20ρ2 − 12 log

( 2m
λρ

)
ρ(r + ρ)

)
− 6Ruσuσ;σ(r + ρ)

]
− 2ρu(α′

[
Ṙβ′)σuσ

(
6r2 + 13rρ + 16ρ2 − 12 log

( 2m
λρ

)
ρ(r + ρ)

)
− 3Rβ′)σuσ;σ(r + ρ) + (r + ρ)

×
(
R|uσuσ|;β′)ρ + Rβ′)uσu;σ(3r + 2ρ) − Ṙβ′)uσu

[
6r2 + 11rρ + 29ρ2 − 12 log

( 2m
λρ

)
ρ(r + ρ)

])]
− 2ρσ(α′

[
R|uσuσ|;β′)ρ − 3Rβ′)σuσ;σ + Rβ′)uσu;σ(3r + 2ρ) + 2Ṙβ′)σuσ

(
3r + 8ρ − 6 log

( 2m
λρ

)
ρ

)
− Ṙβ′)uσu

×
(
6r2 + 20rρ + 17ρ2 − 12 log

( 2m
λρ

)
ρ(r + ρ)

)]
− 3ρ2[

Ṙuσuσgα′β′(r − 2ρ) + 2Ṙα′uβ′u(3r − 2ρ)ρ(r + ρ)

− 6rρṘu(α′β′)σ

])]
+ O

(
λ2)

. (113)

This again satisfies the appropriate Einstein field equations,

δGµν [hSS] + δ2Gµν [hS1�a, hS1�a] = O
(
λ0)

, x /∈ γ. (114)
The first-order singular field with linear acceleration terms is

hS1a
αβ = gα′

αgβ′
β

3ρ5

[
3λ0

(
2rρ2(r + 2ρ)a(α′

(
σβ′) + (r + ρ)uβ′)

)
− aσ

(
3r2σα′σβ′ + 2(3r3 + 2r2ρ − 2rρ2 − 2ρ3)σ(α′uβ′)

+ (r + ρ)(3r3 + r2ρ − 4rρ2 − 4ρ3)uα′uβ′
))

+ λ
(

2ȧ(α′r2ρ2(r + 3ρ)
(
σβ′) + (r + ρ)uβ)′

)
− ȧσr

(
3r2σα′σβ′

+ 2(3r3 + 2r2ρ − 3rρ2 − 6ρ3)σ(α′uβ′) + (r + ρ)(3r3 + r2ρ − 6rρ2 − 12ρ3)uα′uβ′
))]

+ O
(
λ2)

, (115)

while the SR piece of the second-order singular field is

hSR
αβ = − mgα′

αgβ′
β

2ρ5

[
2
λ

[
4ρ2

(
hR1

(α′|σ|σβ′) + (r + ρ)
(
hR1

(α′|u|σβ′) + hR1
(α′|σ|uβ′) + (r + ρ)hR1

(α′|u|uβ′)
))

− hR1
σσ

(
3σα′σβ′ + (r + ρ)(3r + ρ)uα′uβ′ + 2(3r + 2ρ)σ(α′uβ′)

)
− hR1

σu

(
6rσα′σβ′ + 2(r + ρ)

(
(3r − 2ρ)

× (r + ρ)uα′uβ′ + 2(3r − ρ)σ(α′uβ′)
))

− hR1
uu

(
3r2σα′σβ′ + (r + ρ)

(
(r + ρ)(3r2 − 2rρ − 2ρ2)uα′uβ′

+ 2(3r2 − rρ − ρ2)σ(α′uβ′)
))]

+ λ0
[
hR1

σσ;σ
(
−3σα′σβ′ − (r + ρ)(3r + ρ)uα′uβ′ − 2(3r + 2ρ)σ(α′uβ′)

)
+ rḣR1

uu

(
3r2σα′σβ′ + (r + ρ)(3r3 + r2ρ − 6rρ2 − 8ρ3)uα′uβ′ + 2(3r3 + 2r2ρ − 3rρ2 − 4ρ3)σ(α′uβ′)

)
+ ḣR1

σu

(
6r2σα′σβ′ + 2(r + ρ)(3r3 + r2ρ − 4rρ2 − 4ρ3)uα′uβ′ + 4(3r3 + 2r2ρ − 2rρ2 − 2ρ3)σ(α′uβ′)

)
− hR1

uu;σ
(
3r2σα′σβ′ + (r + ρ)(3r3 + r2ρ − 4rρ2 − 4ρ3)uα′uβ′ + 2(3r3 + 2r2ρ − 2rρ2 − 2ρ3)σ(α′uβ′)

)
− 2hR1

σu;σ

(
3rσα′σβ′ + (r + ρ)

(
(3r − 2ρ)(r + ρ)uα′uβ′ + 2(3r − ρ)σ(α′uβ′)

))
+ ḣR1

σσ

(
3rσα′σβ′ + (r + ρ)

(
(3r − 2ρ)(r + ρ)uα′uβ′ + 2(3r − ρ)σ(α′uβ′)

))
+ 2ρ2(

σ(α′hR1
|σσ|;β′) + 2(r + ρ)σ(α′hR1

|σu|;β′) + r(r + 2ρ)σ(α′hR1
|uu|;β′) + 2σ(α′hR1

β′)σ;σ + 2(r + ρ)σ(α′hR1
β′)u;σ

− 2(r + ρ)σ(α′ ḣR1
β′)σ − 2r(r + 2ρ)σ(α′ ḣR1

β′)u + (r + ρ)u(α′hR1
|σσ|;β′) + 2(r + ρ)2u(α′hR1

|σu|;β′)

+ r(r + ρ)(r + 2ρ)u(α′hR1
|uu|;β′) + 2(r + ρ)u(α′hR1

β′)σ;σ + 2(r + ρ)2u(α′hR1
β′)u;σ − 2(r + ρ)2u(α′hR1

β′)σ;u

− 2r(r + ρ)(r + 2ρ)u(α′ ḣR1
β′)u

)]]
+ O(λ). (116)

These need to satisfy

δGµν [hSR] + δGµν [hS1a] + 2δ2Gµν [hR1, hS1�a]
= O

(
λ0)

, x /∈ γ. (117)

We have successfully checked that the covariant punc-
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tures for hSR
µν and hS1,a

µν satisfy Eq. (117) through the
leading two orders, λ−3 and λ−2. However, we have not
been able to verify this at the highest order we have cal-
culated, order λ−1. This is due to the complexity and
length of the expressions when taking multiple different
combinations of derivatives. Despite this, we provide all
orders of the covariant punctures for the different sin-
gular field terms in a Mathematica notebook in the
Supplemental Material [70].

Comparing the covariant puncture for hS1
µν from

Eq. (111) to the Lorenz gauge version of the puncture
from Eq. (127) of Paper II,

hS1�a,Lor
αβ = 2m

λρ
gα′

αgβ′

β(gα′β′ + 2uα′uβ′) + O(λ), (118)

we see that the highly regular gauge puncture has a more
complicated form. This continues at higher order with
the Lorenz gauge puncture being substantially simpler
and shorter at all orders. The more complex form re-
sults from the highly regular gauge conditions that seek
to preserve the background light cone structure emanat-
ing from the worldline in the perturbed spacetime; see
Sec. I C for further discussion. This has the knock-on ef-
fect that the coordinate expansion in the highly regular
gauge will be much more complicated than the Lorenz
gauge one as we are introducing more and more terms,
and more quantities will need to be expanded. Thus,
if we wanted to perform a mode decomposition of the
singular field in the highly regular gauge, we would find
that the process is likely to be more complicated than
in the Lorenz gauge due to an increase in the number
of quantities that need to be decomposed into modes.
However, we believe that the benefits of the highly reg-
ular gauge outweigh any disadvantages that may come
from the metric perturbations having a more complicated
structure. Merely eliminating the two leading orders of
hSS

µν in Eq. (113) has dramatic consequences as it allevi-
ates the problem of infinite mode coupling [61] that was
discussed in the introduction. This should allow one to
much more efficiently calculate modes of the second-order
source.

V. COORDINATE EXPANSION

In order to implement the covariant expansions in a
specific calculation, one must first write them in a chosen
coordinate system. This necessitates re-expanding all the
covariant quantities in terms of coordinate differences,

∆xα′ := xα − xα′
, (119)

where ∆xα′ ∼ λ. A derivative of ∆xα′ at xµ′ then gives

∆xα′

,β′ = −δα′

β′ . (120)

This leaves us with coefficients evaluated at xµ′ , as in
Eq. (56), contracted into certain combinations of ∆xα′ .

A. Expanding Synge’s world function and the
parallel propagator

In this section, we generate generic coordinate expan-
sions of the covariant quantities appearing in the punc-
tures from Sec. IV D. We begin by expanding Synge’s
world function, σµ′ , and then use that to find expansions
for r and ρ. We then move on to find the coordinate
expansion for the parallel propagator.

To find a coordinate expansion of Synge’s world func-
tion, we exploit the fact that it satisfies the identity from
Eq. (37). We make the following ansatz as an expansion
for Synge’s world function,

σ =
∞∑

n=2
λnA

(n−1)
α′

1...α′
n
(x′) ∆xα′

1 · · · ∆xα′
n

= λ2A
(1)
∆∆(x′) + λ3A

(2)
∆∆∆(x′) + λ4A

(3)
∆∆∆∆(x′)

+ λ5A
(4)
∆∆∆∆∆(x′) + O

(
λ6)

; (121)

see Refs. [84, 86] for similar expansions but with differ-
ent conventions for ∆xα′ . The primed derivative is then
given by

σµ′ = − 2λA
(1)
µ′∆ + λ2(

A
(1)
∆∆,µ′ − 3A

(2)
µ′∆∆

)
+ λ3(

A
(2)
∆∆∆,µ′ − 4A

(3)
µ′∆∆∆

)
+ λ4(

A
(3)
∆∆∆∆,µ′ − 5A

(4)
µ′∆∆∆∆

)
+ O

(
λ5)

. (122)

We then substitute Eqs. (121)–(122) into the identity
for Synge’s world function from Eq. (37) and solve order-
by-order. The expressions for A

(n)
α′1···α′n are

A
(1)
α′β′ = 1

2gα′β′ , (123a)

A
(2)
α′β′γ′ = 1

2gδ′(α′Γδ′

β′γ′), (123b)

A
(3)
α′β′γ′δ′ = 1

72
(
Rα′[γ′δ′]β′ + 3gα′ι′Γι′

γ′δ′,β′

+ 9gι′(β′Γι′

γ′δ′),α′ + 9gι′µ′Γι′

α′(β′Γµ′

γ′δ′)

+ 6gµ′(α′Γµ′

β′)ι′Γι′

γ′δ′ + 6gµ′(γ′Γι′

δ′)β′Γµ′

α′ι′

)
,

(123c)

A
(4)
α′β′γ′δ′ι′ = 1

120
(
5g(α′|ρ′|Γρ′

δ′ι′,γ′β′)

+ 5Γρ′

(α′β′gγ′|κ′|Γκ′

ι′|ρ′|,δ′)

+ 10Γρ′

(α′β′g|ρ′κ′|Γκ′

δ′ι′,γ′)

+ 10Γρ′

(α′|κ′|gβ′|ρ′|∂γ′Γκ′

δ′ι′)

+ 3Γρ′

(α′β′Γκ′

γ′δ′Γµ′

ι′)ρ′gκ′µ′

+ 7Γρ′

(α′β′Γκ′

γ′δ′Γµ′

ι′)κ′gρ′µ′

+ 5Γρ′

(α′β′Γκ′

γ′|µ′|Γ
µ′

δ′|ρ′|gι′)κ′
)
. (123d)

These are similar to the expansions appearing in
Eq. (2.10) of Ref. [86] and Eq. (3.10) of Ref. [84], but
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here, we have a slightly different definition for ∆xα′ and
we take the derivatives at xµ′ instead of xµ. Taking the
primed derivative of the appropriate quantities and then
substituting these and Eq. (123) into Eq. (122) gives
us the final expression for the coordinate expansion of
Synge’s world function,

σα′ =
∞∑

n=1
λnσ

(n)
α′ , (124)

where the first four orders are given by

σ
(1)
α′ = − ∆xα′ , (125a)

σ
(2)
α′ = − 1

2gα′δ′Γδ′

∆∆, (125b)

σ
(3)
α′ = − 1

6
(
gα′ι′Γι′

∆∆,∆ + gα′µ′Γι′

∆∆Γµ′

∆ι′

)
, (125c)

σ
(4)
α′ = − 1

24
[
Γν′

∆∆
(
gα′µ′Γκ′

∆ν′Γµ′

∆κ′ + gα′κ′Γκ′

∆ν′,∆

− Rα′∆∆ν′
)

+ gα′ν′
(
2Γν′

∆κ′Γκ′

∆∆,∆ + Γν′

∆∆,∆∆
)]

.

(125d)

To check these expressions, one can substitute Eq. (125)
into Eq. (37) to demonstrate they satisfy the identity for
Synge’s world function.

We also require the expansions of r and ρ from
Eqs. (91)–(92) which can be performed by substituting in
Eqs. (124)–(125). The expression for r is trivial as it just
requires us to contract the four-velocity into Eq. (124),
so that, at leading order,

r = −λr0 + O
(
λ2)

, (126)

where, in analogy with Eq. (91), we define the four-
velocity contracted with the coordinate difference as

r0 := uµ′ ∆xµ′
, (127)

We write the expansion of ρ as a power series,

ρ =
∞∑

n=1
λnρ(n), (128)

and define

ρ0 :=
√

Pµ′ν′ ∆xµ′ ∆xν′ . (129)

We then proceed to substitute our coordinate expansion
for σα′ from Eq. (124) into the definition for ρ from
Eq. (128) and collect terms at each order in λ. The first
four orders of the expansion are given by

ρ(1) = ρ0, (130a)

ρ(2) = 1
2ρ0

(
Γ∆

∆∆ + Γu
∆∆r0

)
, (130b)

ρ(3) = − 1
8ρ3

0

(
Γ∆

∆∆ + Γu
∆∆r0

)2 + 1
24ρ0

(
3Γu

∆∆
2

+ 4Γ∆
∆∆,∆ + 4Γu

∆∆,∆r0 + 4r0Γα′

∆∆Γu
α′∆

+ 4Γα′

∆∆Γ∆
α′∆ + 3gα′β′Γα′

∆∆Γβ′

∆∆
)
, (130c)

ρ(4) = 1
16ρ5

0

(
Γ∆

∆∆ + Γu
∆∆r0

)3 − 1
48ρ3

0

(
Γ∆

∆∆ + Γu
∆∆r0

)
×

(
3Γu

∆∆
2 + Γα′

∆∆
[
4Γ∆

α′∆ + 3gα′β′Γβ′

∆∆

+ 4Γu
α′∆r0

]
+ 4

[
Γ∆

∆∆,∆ + Γu
∆∆,∆r0

])
+ 1

24ρ0

(
2Γu

∆∆Γu
∆∆,∆ + 2Γα′

∆∆,∆Γ∆
α′∆ + Γ∆

∆∆,∆∆

+ 2Γα′

∆∆,∆Γu
α′∆r0 + Γu

∆∆,∆∆r0

+ Γα′

∆∆
[
2Γu

α′∆Γu
∆∆ + Γ∆

∆α′,∆ + 2gα′β′Γβ′

∆∆,∆

+ Γu
∆α′,∆r0 + Rα′∆u∆r0

]
+ Γα′

∆β′Γβ′

∆∆
[
Γ∆

α′∆

+ 2gα′γ′Γγ′

∆∆ + Γu
α′∆r0

])
. (130d)

To calculate the coordinate expansion of gν′
µ, we pro-

ceed in a similar way to that of σα′ . To begin, we use the
ansatz

gν′

µ = δν′

µ′ + λG(1)ν′

µ′∆ + λ2G(2)ν′

µ′∆∆

+ λ3G(3)ν′

µ′∆∆∆ + O
(
λ4)

(131)

and substitute this into the identity for the derivative
of the parallel propagator contracted into a derivative of
Synge’s world function from Eq. (52). We proceed to
solve this order-by-order to find

G(1)α′

β′γ′ = Γα′

β′γ′ , (132a)

G(2)α′

β′γ′δ′ = 1
2

(
Γα′

β′ι′Γι′

γ′δ′ + Rα′

(γ′δ′)β′ + Γα′

γ′δ′,β′

)
,

(132b)

G(3)α′

β′γ′δ′ι′ = 1
6 Sym

γ′δ′ι′

(
Γς′

γ′δ′

[
3Rα′

(ς′ι′)β′ + Γα′

ι′ς′,β′

]
+ Γα′

β′ς′

[
Γς′

γ′κ′Γκ′

δ′ι′ + Γς′

γ′δ′,ι′

]
− Γς′

β′γ′R
α′

ι′ς′δ′ + Rα′

δ′γ′β′;ι′

+ Γα′

γ′ς′Γς′

δ′ι′,β′ + Γα′

γ′δ′,β′ι′

)
. (132c)

As with Eq. (123), similar expansions of the parallel prop-
agator have been done previously in Eqs. (3.10)–(3.12) of
Ref. [87]. We have checked our expressions by substitut-
ing them into Eq. (52) and have verified that they satisfy
the identity to the appropriate order in λ.

B. Coordinate expansions of the covariant
punctures

With our covariant punctures derived, we can proceed
to write them as a generic coordinate expansion using
the techniques discussed for the singular scalar field in
Sec. V A. This will allow them to be easily written in any
desired coordinate system.

To do so, we substitute our coordinate expansion for
σα′ from Eqs. (124)–(125), ρ from Eqs. (128)–(130) and
gµ′

µ from Eqs. (131)–(132) into the expression for hS
µν

from Sec. IV D. Doing so results in expressions that
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are written in terms of the coordinate difference, ∆xµ′

and the four-velocity, uµ′ along with hR1
µ′ν′ , Γµ′

ν′ρ′ , and
Rα′β′µ′ν′ and their respective derivatives. The final ex-
pressions are incredibly long and, as such, we only display
them through order λ0 (except for hSR

µν , for which we just
display the leading-order term). The higher order terms
are available in the Supplemental Material in a Mathe-
matica notebook [70].

The coordinate expansion of the first-order singular
field, with no acceleration, in the highly regular gauge is
given by

hS1�aµν = 2m

λρ3
0

(
∆xµ′ + uµ′(r0 − ρ0)

)(
∆xν′ + uν′(r0 − ρ0)

)
− mλ0

ρ5
0

[
uµ′uν′(r0 − ρ0)

(
3r0(Γ∆

∆∆ + Γu
∆∆r0)

− (Γ∆
∆∆ + Γu

∆∆r0)ρ0 − 2Γu
∆∆ρ2

0
)

+ 3∆xµ′∆xν′

× (Γ∆
∆∆ + Γu

∆∆r0) + 2
(
Γ∆

∆∆(3r0 − 2ρ0)
+ Γu

∆∆(r0 − ρ0)(3r0 + ρ0)
)
u(µ′∆xν′)

− 2u(µ′
(
2Γ∆

ν′)∆ + gν′)α′Γα′

∆∆ + 2Γu
ν′)∆(r0 − ρ0)

)
× (r0 − ρ0)ρ2

0 − 2∆x(µ′ρ2
0
(
2Γ∆

ν′)∆ + gν′)α′Γα′

∆∆

+ 2Γu
ν′)∆(r0 − ρ0)

)]
+ O(λ). (133)

Moving to second order, the first-order singular field
with acceleration is

hS1a
µν = − mλ0

ρ5
0

[
a∆uµ′uν′(3r3

0 − r2
0ρ0 − 4r0ρ2

0 + 4ρ3
0)

(ρ0 − r0) − 3∆xµ′∆xν′a∆r2
0 + 2

(
r0(r0 − 2ρ0)

× ρ2
0∆x(µ′aν′) + a∆(2r2

0ρ0 + 2r0ρ2
0

− 2ρ3
0 − 3r3

0)∆x(µ′uν′) + r0(r0 − 2ρ0)
(r0 − ρ0)ρ2

0a(µ′uν′)
)]

+ O(λ). (134)

The “singular times singular” piece is given by

hSS
µν = − 2m2λ0

3ρ4
0

[
6ρ3

0R(µ′|∆|ν′)u + 2(3r0 − ρ0)ρ3
0

× R(µ′|u|ν′)u + R∆u∆u

(
5∆xµ′∆xν′ − gµ′ν′ρ2

0

+ uµ′uν′(5r2
0 − 6r0ρ0 + 5ρ2

0) + (10r0 − 6ρ0)
× ∆x(µ′uν′)

)
− 6ρ0∆x(µ′Rν′)∆∆u + 2ρ0

× (2ρ0 − 3r0)∆x(µ′Rν′)u∆u − 6r0ρ0u(µ′Rν′)∆∆u

− 2ρ0(3r2
0 − 2r0ρ0 + 3ρ2

0)u(µ′Rν′)u∆u

]
+ O(λ).

(135)

Finally, the “singular times regular” piece is

hSR
µν = m

λρ5
0

[
4ρ2

0∆x(µ′hR1
ν′)∆ + 4(r0 − ρ0)ρ2

0∆x(µ′hR1
ν′)u

− hR1
∆u

(
6∆xµ′∆xν′r0 + 2uµ′uν′(r0 − ρ0)2

× (3r0 + 2ρ0) + 4(r0 − ρ0)(3r0 + ρ0)∆x(µ′uν′)
)

− hR1
∆∆

(
3∆xµ′∆xν′ + uµ′uν′(r0 − ρ0)(3r0 − ρ0)

+ 2(3r0 − 2ρ0)∆x(µ′uν′)
)

− hR1
uu

(
3∆xµ′∆xν′r2

0

+ uµ′uν′(r0 − ρ0)2(3r2
0 + 2r0ρ0 − 2ρ2

0)
+ 2(r0 − ρ0)(3r2

0 + r0ρ0 − ρ2
0)∆x(µ′uν′)

)
+ 4(r0 − ρ0)ρ2

0u(µ′(hR1
ν′)∆ + (r0 − ρ0)hR1

ν′)u)
]

+ O
(
λ0)

. (136)

VI. CONCLUSION AND APPLICATIONS

The main result of this paper is the conversion of the
local coordinate form of the metric perturbations given
in Paper I into fully covariant form using the methods
of Paper II. These were provided in truncated form in
Sec. IV D and in full form in the Mathematica notebook
in the Supplemental Material [70].

We have then re-expanded these covariant expressions
and written them as a generic coordinate expansion that
is valid in any desired coordinate system. As with the
covariant expressions, abridged forms were presented in
Sec. V B, with the full expressions appearing in the Sup-
plemental Material [70]. By providing the metric per-
turbations in these forms, we have enabled them to be
written in any desired coordinate system without neces-
sitating the use of a potentially complicated coordinate
transformation from Fermi–Walker coordinates.

One useful immediate extension of this work would be
to calculate the modes of the punctures to see how well
the highly regular gauge alleviates the problem of infinite
mode coupling. For quasicircular orbits in Schwarzschild,
for example, one could decompose the punctures into
modes using the methods of Ref. [66]. From this, one
could use the mode coupling formula from Eq. (28) to ex-
plicitly calculate the behaviour of the second-order Ein-
stein tensor near to the worldline of the small object.

An interesting property of the highly regular gauge to
note is that, following from the gauge conditions given
in Sec. I C, one can write the singular field metric per-
turbations in terms of null vectors. For example, if one
defines

kα = gα′
α√
2

(
uα′ + Pα′β′σβ′

ρ

)
= gα′

α√
2ρ

(
σα′ + (r + ρ)uα′

)
, (137)

so that kαkα = 0, one can write the first-order singular
field from Eq. (111) as

hS1�aµν = 4m

λρ
kµkν + O(λ). (138)
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One can then write Eq. (1) in terms of these null vectors
as

gµν = gµν + ϵ(hR1
µν + hS1�aµν ) + O

(
ϵ2)

,

= gµν + ϵλ−12V kµkν + O
(
ϵλ0, ϵ2)

, (139)

where V = 2m/(ρ). This has the form of a Kerr–Schild
perturbation [88, 89] on the background spacetime. How-
ever, this correspondence is broken in the singular field at
order λ through the introduction of Riemann tidal terms
in hS1

µν . Additionally, hR1
µν kµkν ̸= 0 due to the regular

field being in a generic gauge.
It would be interesting to further explore the connec-

tion between the highly regular gauge and Kerr–Schild
gauges, potentially drawing on previous work by Harte
[90] and Harte and Vines [91].
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Appendix A: Quasi-Kerr–Schild form of the metric
perturbations

In this section, we derive the leading-order form of the
second-order metric perturbations when written in the
quasi-Kerr–Schild form discussed in Sec. VI.

We begin with the first-order singular field with accel-
eration. This now takes the form

hS1a
µν = λ0V√

2ρ2

[
2a(µkν)rρ(r + 2ρ)

+
{

ak(r − ρ) + aN (r + ρ)
}

×
{

2kµkν(r2 − rρ − ρ2)
− k(µNν)(r2 + 2rρ + 2ρ2)

}]
+ O(λ), (A1)

where we have contracted in the parallel propagators and
introduced the auxiliary null vector

Nα = gα′
α√
2

(
uα′ − Pα′β′σβ′

ρ

)
= − gα′

α√
2ρ

(
σα′ + (r − ρ)uα′

)
(A2)

that is normalised so that kαNα = −1. Moving on to
the “singular times singular” piece, after substituting in
Eqs. (137) and (A2), we see that

hSS
µν = λ0ρ2V 2

6
[
4Rµkνk − 2Rk(µν)N − 2RµNνN

+ 2(4k(µ − N(µ)Rν)kNk − 2(k(µ − 2N(µ)RνNkN

+ (gµν − 8kµkν − 2NµNν)RkNkN

]
+ O(λ).

(A3)

Finally, the “singular times regular” piece is now given
by

hSR
µν = V

2λ

[
8k(µhR1

ν)k +
(
hR1

kk + 6hR1
kN − 3hR1

NN

)
kµkν

+ 4hR1
kk k(µNν)

]
+ O

(
λ0)

. (A4)

These calculations can be extended to higher order in λ
by continuing to replace uα′ and σα′ with kα and Nα

through the use of Eqs. (137) and (A2).
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