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Gravitational self-force theory is the primary way of modeling extreme-mass-ratio inspirals (EMRIs).
One difficulty that appears in second-order self-force calculations is the strong divergence at the worldline
of the small object, which causes both numerical and analytical issues. Previous work [Phys. Rev. D 95,
104056 (2017); Phys. Rev. D 103, 124016 (2021)] demonstrated that this could be alleviated within a class
of highly regular gauges and presented the metric perturbations in these gauges in a local coordinate form.
We build on this previous work by deriving expressions for the highly regular gauge metric perturbations in
both fully covariant form and as a generic coordinate expansion. With the metric perturbations in covariant
or generic coordinate form, they can easily be expressed in any convenient coordinate system. These results
can then be used as input into a puncture scheme in order to solve the field equations describing an EMRI.
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I. INTRODUCTION

Extreme-mass-ratio inspirals (EMRIs) [1] will be a key
source of the gravitational waves that will be detected by
the Laser Interferometer Space Antenna (LISA), a future
space-based gravitational wave detector [2,3]. An EMRI
features an object of mass m ∼ 1–102M⊙ slowly spiralling
into an object of massM ∼ 105–107M⊙. The smaller object
is a compact object, such as a black hole or neutron star,
whereas the larger object is a supermassive black hole,
existing in the centre of most galaxies [4–6].
As the mass ratio, ϵ ≔ m=M ∼ 10−5, is very small, the

inspiral occurs over a long timescale, with the smaller object
expected to complete ϵ−1 ∼ 105 intricate orbits before
plunging into the central black hole [7,8]. Due to the large
number of orbits occurring near to the supermassive black
hole, the gravitational waves emitted are expected to provide
an excellent picture of the geometry of the black hole in the
strong-gravity regime.Thiswill allowhighly accurate tests of
general relativity to be performed [8–11].

A. Gravitational self-force

The primary method of modeling EMRIs is through a
perturbative method known as gravitational self-force

theory [12–16]. The self-force refers to the process by
which changes in an external field caused by an object’s
dynamics propagate back and affect the motion of the very
same object. This method expands the metric describing
the geometry of the full spacetime, gμν, around a known,
background metric, gμν, with perturbations, hμν, caused by
the presence of the small object. In an EMRI, the disparate
sizes of the small and large object lead to a natural per-
turbative parameter, the mass ratio between the two objects,
ϵ ≪ 1. One can then write the full spacetime metric as the
sum of the background spacetime and these perturbations,

gμν ¼ gμν þ hμν; ð1Þ
where

hμν ¼
X∞
n¼1

ϵnhnμν½γ�: ð2Þ

In the case of an EMRI, the background metric describes
the geometry of the large black hole if it were isolated in
spacetime and is taken to be either the Schwarzschild [17]
or Kerr [18] metric.
At the leading order in the mass ratio, the small object’s

worldline, γ, is a geodesic of the background spacetime,
gμν. The metric perturbations then alter the motion at higher
orders and exert a self-force on the body, moving it away
from a background geodesic. This can be written as

D2zα

dτ2
¼ ϵfα1 þ ϵ2fα2 þOðϵ3Þ; ð3Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW D 109, 044021 (2024)

2470-0010=2024=109(4)=044021(22) 044021-1 Published by the American Physical Society

https://orcid.org/0000-0003-2965-7674
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.044021&domain=pdf&date_stamp=2024-02-08
https://doi.org/10.1103/PhysRevD.95.104056
https://doi.org/10.1103/PhysRevD.95.104056
https://doi.org/10.1103/PhysRevD.103.124016
https://doi.org/10.1103/PhysRevD.109.044021
https://doi.org/10.1103/PhysRevD.109.044021
https://doi.org/10.1103/PhysRevD.109.044021
https://doi.org/10.1103/PhysRevD.109.044021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


which reduces to the geodesic equation when ϵ → 0. In
Eq. (3), zα are coordinates on the accelerated worldline, γ, τ
is the proper time in the background metric, gμν, D=dτ ≔
uμ∇μ is the covariant derivative along the worldline and is
compatible with gμν, uα ≔ dzα=dτ is the four-velocity and
fαn is the nth-order self-force. The self-force (or at least part
of it) causes the orbit to evolve at a rate of Ė=E ∼ ϵ,
resulting in an inspiral over the radiation reaction time,
trr ∼ E=Ė ∼ 1=ϵ [13]. Here, E is the orbital energy and is
one of three constants of motion that completely describe
the geodesic of a test particle in the background Kerr
spacetime; the other two are the azimuthal angular momen-
tum, Lz, and the Carter constant, Q [19].
One challenge is that we are required to go to second

order in the mass ratio in order to model the waveforms
accurately. This is a result of the requirement that for us to
extract information from the data gathered by LISA, the
phase of the waveform must be accurate to within a fraction
of 1 radian. A precise argument for the need for second
order was made by Hinderer and Flanagan [20]. The orbital
parameters, JB ¼ fE;Lz;Qg, slowly evolve over the radi-
ation reaction time, trr ∼ 1=ϵ. This motives the introduction
of a “slow time,” t̃ ¼ ϵt, so that JB ¼ JBðt̃Þ. The orbital
frequencies, ΩA ¼ fΩr;Ωθ;Ωϕg in the case of Kerr, are
functions of the orbital parameters, JBðt̃Þ, and have
perturbative expansions,

ΩAðJB; ϵÞ ¼ Ωð0Þ
A ðJBÞ þ ϵΩð1Þ

A ðJBÞ þOðϵ2Þ; ð4Þ

whereΩðn≥1Þ
A are the nth order corrections toΩð0Þ

A due to the
conservative part of the self-force. The orbital frequencies
evolve with respect to the time, t, as

dΩA

dt
¼ ϵFð1Þ

A ðJBÞ þ ϵ2Fð2Þ
A ðJBÞ þOðϵ3Þ: ð5Þ

where FðnÞ
A is constructed from the nth-order dissipative

force. These can then be related to the orbital phases by

φA ¼
Z

ΩAdt; ð6Þ

so that

φA ¼ 1

ϵ

�
φð0Þ
A ðt̃Þ þ ϵφð1Þ

A ðt̃Þ þOðϵ2Þ
�
; ð7Þ

where the adiabatic term, φð0Þ
A , is constructed from Ωð0Þ

A and

Fð1Þ
A , and the first postadiabatic (1PA) term, φð1Þ

A , is

constructed from Ωð1Þ
A and Fð2Þ

A . One can see this through
noting that an integration over t introduces a factor of 1=ϵ
through dt ¼ dt=dt̃dt̃ ¼ ϵ−1dt̃. Therefore, to calculate the
orbital phases with an error much less than order-ϵ0

requires the entirety of the first-order self-force and the
dissipative part of the second-order self-force.
It should be stressed that the conservative piece of the

first-order self-force and the dissipative piece of the second-
order self-force are on equal footing: even if one has the
entirety of the first-order self-force (both dissipative and
conservative parts), if one does not have the dissipative
piece of the second-order self-force then one cannot
correctly track the motion of the small object.
As to the current status of the self-force field, at first

order, full inspirals driven by the self-force can be com-
puted for generic orbits in the Schwarzschild spacetime for
a spinning small object [21–24]. One can calculate the full
first-order self-force for a nonspinning small object on any
generic bound orbit in Kerr [25]. Adiabatic inspirals in Kerr
have been performed for equatorial [26] and generic [27]
orbits with Ref. [28] performing an equatorial inspiral
using the entirety of the first-order self-force.
Second-order calculations are at a much more prelimi-

nary stage but important breakthroughs have been made in
recent years [29–31] with Ref. [32] presenting the first
postadiabatic waveforms for quasicircular orbits in the
Schwarzschild spacetime. Work has also been undertaken
on incorporating effects of the spin of the small object as
this has an impact at 1PA order on the gravitational-wave
phase [33–45].

B. Local form of the metric perturbations,
puncture scheme and infinite mode coupling

1. Metric perturbations and effective stress-energy tensor

To find the local form of the metric perturbations, one
uses the method of matched asymptotic expansions (for a
general introduction to matched asymptotic expansions,
see, e.g., Refs. [46,47], and for an introduction to their use
in self-force, see, e.g., Ref. [13]). When close to the small
object, the expansion from Eqs. (1) and (2) breaks down as
the gravitational field from the small object dominates over
that of the background spacetime. One then introduces a
second expansion that focuses in on the small object and
then matches this with the external expansion at some
appropriate lengthscale. This is then combined with the
vacuum Einstein field equations to solve for the metric
perturbations, hμν.
The metric perturbation can be split into two fields [48],

hμν ¼ hRμν þ hSμν; ð8Þ

where hRμν and hSμν are the regular field and singular field,
respectively. The regular and singular fields can be
expanded in an analogous manner to Eq. (2), as

hRμν ¼
X∞
n¼1

ϵnhRnμν ; ð9Þ
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hSμν ¼
X∞
n¼1

ϵnhSnμν : ð10Þ

The regular field has the form of a Taylor series centred
on the worldline of the small object and satisfies the
vacuum Einstein field equations,

δGμν½hR1� ¼ 0; ð11Þ

δGμν½hR2� ¼ −δ2Gμν½hR1; hR1�; ð12Þ

throughout the entire spacetime. When combined with the
background metric, it forms a smooth, vacuum effective
metric that determines the local geometry that the small
object “feels,”

g̃μν ¼ gμν þ hRμν: ð13Þ

Through second order, the trajectory of the small object
(assuming zero spin) is governed by the equation of
motion [49,50]

D2zμ

dτ2
¼ −

1

2
ðgμα þ uμuαÞðgαδ − hRδα Þ

× ð2hRδβ;γ − hRβγ;δÞuβuγ þOðϵ3Þ; ð14Þ

which can be written as a geodesic in the effective
spacetime, g̃μν, as

D̃2zμ

dτ̃2
¼ Oðϵ3Þ; ð15Þ

where all quantities with tildes are defined with respect
to g̃μν. This correspondence is known as the generalized
equivalence principle [50], which states that (ignoring
finite-size effects) a compact object immersed in an
external gravitational field will follow a geodesic in some
effective metric whose geometry is determined by its own
physical mass.
The remaining part of the metric perturbations, the

singular field, contains information about the small object’s
multipole structure [48]. Schematically, it has the form

hS1μν ∼
m
r
; ð16Þ

hS2μν ∼
m2 þMα þ Sα

r2
; ð17Þ

where r is the proper spatial distance to γ andMα=Sα are the
mass/spin dipole terms, respectively. As in previous work,
we enforce that the mass dipole and any higher-order
corrections to it vanish. This ensures that γ tracks the small
object’s center of mass [50–52].

In certain classes of gauges, the small object also has the
effective stress-energy of a point mass in the effective
spacetime [53,54].1 Using this effective stress-energy
tensor, the field equations can be written in the form

δGμν½ϵh1 þ ϵ2h2� þ ϵ2δ2Gμν½h1; h1� ¼ 8πT̃μν þOðϵ3Þ;
ð18Þ

where T̃μν is the Detweiler stress-energy tensor,

T̃μν ¼ m
Z
γ
ũμũν

δ4ðx − zÞffiffiffiffiffiffi
−g̃

p dτ̃; ð19Þ

and all quantities with tildes are defined with respect to
the effective metric. The existence of this stress-energy
tensor was first postulated by Detweiler [53] and explicitly
derived in Ref. [54] (hereafter Paper I). One can also write
the left-hand side of Eq. (18) in terms of effective quantities
as [53,54]

fδGμν½hS� ¼ 8πT̃μν þOðϵ3Þ; ð20Þ
demonstrating that the system can be described as a linear
perturbation of an effective background.
It should be noted that the split into regular and singular

fields is not unique [55], but we choose the split to match
that of, e.g., Refs. [48–50,54], ensuring that the regular and
singular fields satisfy the properties listed above. That is,
the regular field is smooth on the worldline of the small
object, forms the effective metric, g̃μν, and satisfies the
generalized equivalence principle. In addition to the non-
uniqueness of the split, it should be emphasized that neither
hRμν nor hSμν represent the true physical field; only their sum
hμν ¼ hRμν þ hSμν does.
We stress that the results discussed in this section are all

derived from the principle of matched asymptotic expan-
sions. One does not start by assuming that the small object
is described by a point-particle stress-energy with some
effective equation of motion. Instead, one uses the match-
ing process at each order in ϵ to rigorously derive these
properties from first principles.

2. Puncture scheme

To date, all second-order calculations have involved
the use of a puncture scheme [29,30,32]; see, e.g.,
Refs. [14,16,55,56] for technical details.2 In this scheme,
one introduces a puncture field, hPμν ≈ hSμν, that approx-
imates the singular field to some sufficient order in r away

1This has explicitly been shown in the highly regular gauge
and (using a specific distributional definition of the second-order
Einstein tensor) in the Lorenz gauge. While it has not been
shown, it is likely to hold true in other gauges as well; see the
discussion in Sec. V E of Ref. [54].

2The first implementations of the puncture scheme were
performed at first order in Refs. [57–59] although Ref. [60]
originally suggested its used at second order.
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from theworldline, and goes to zero beyond that. From this,
one can define a residual field,

hRμν ≔ hμν − hPμν; ð21Þ
so that hRμν ≈ hRμν near γ. These fields are then analytically
extended down to the worldline, and one solves for the
residual field, hRμν, with the puncture field as the source,
instead of directly for the physical field, hμν.
We wish to be able to replace hRμν with hRμν in the equation

of motion (14). This is possible if hRμν and its first
derivatives are identical to hRμν. To ensure this, we impose
the conditions

lim
x→z

ðhPμν − hSμνÞ ¼ 0; ð22Þ

lim
x→z

ðhPμν;ρ − hSμν;ρÞ ¼ 0; ð23Þ

where zμ is a point on the worldline. Explicitly, to calculate
the second-order self-force, we need to go to order r in our
second-order punctures so that our residual field is once
differentiable.
Substituting Eq. (21) into the field equations and

expanding the residual and puncture fields order-by-order,
as in Eq. (2),

hR=P
μν ¼

X∞
n¼1

ϵnhR=Pn
μν ; ð24Þ

we get

δGμν½hR1� ¼ −δGμν½hP1�; r > 0; ð25Þ
δGμν½hR2� ¼ −δGμν½hP2� − δ2Gμν½h1; h1�; r > 0: ð26Þ

These equations can be promoted to the entire domain,
including r ¼ 0, provided that the puncture field is known
to a sufficiently high order in r; see the discussion after
Eq. (13) of Paper I. Combining the field equations with the
equation of motion (14), one can solve the coupled system
of equations and determine how the small object travels in
spacetime.

3. The problem of infinite mode coupling

When implementing the puncture scheme at second
order, one encounters the problem of infinite mode cou-
pling [61]. To take advantage of the symmetries of
the spacetime, one decomposes the metric perturbations
into a suitable basis of harmonics.3 For example, in
Schwarzschild, one could choose Barack–Lousto–Sago

tensor spherical harmonics [62,63], so that the metric
perturbations can be decomposed as

hnμν ¼
X
ilm

hnilmðtBL; rBLÞYilm
μν ðθ;ϕÞ: ð27Þ

With the modes written as such, to calculate a single mode
of δ2Gμν½h1; h1� requires one to calculate the infinite sum of
products of first-order modes [61,64],

δ2Gilm½h1;h1� ¼
X
i1l1m1
i2l2m2

Dilm
i1l1m1i2l2m2

½h1i1l1m1
;h1i2l2m2

�; ð28Þ

where Dilm
i1l1m1i2l2m2

½hi1l1m1
; hi2l2m2

� is a certain differ-
ential operator [64]. From Eq. (16), we see that
hS1μν ∼m=r. This means that, generically, the second-
order Einstein tensor diverges as ∼m2=r4 at the world-
line of the small object as it has the structural form,
δ2Gμν½h1; h1� ∼ ð∂h1Þ2 þ h1∂2h1 ∼m2=r4. After decom-
posing into modes and integrating over two of the dimen-
sions, one finds that Eq. (28) acts as

δ2Gilm½h1; h1� ∼m2

r2
: ð29Þ

However, the modes of the first-order field are finite on the
worldline [65,66], meaning that Eq. (28) is attempting to
reconstruct a divergent function through summing up finite
modes. Thus to get convergence requires one to calculate
an arbitrarily large number of modes of the first-order fields
to calculate even one second-order mode.
A way to circumvent this problem was provided by

Miller et al. [61]. Instead of summing over modes, as in
Eq. (28), one expands the first-order field into regular and
singular pieces. After expanding the first-order field, the
second-order Einstein tensor in the source of the second-
order field equations has the form

δ2Gμν½h1; h1� ¼ δ2Gμν½hR1; hR1� þ 2δ2Gμν½hR1; hS1�
þ δ2Gμν½hS1; hS1�; r > 0: ð30Þ

One then replaces the regular and singular fields in
Eq. (30) with the residual and puncture fields. The
δ2Gilm½hR1; hR1� and δ2Gilm½hR1; hP1� terms are suffi-
ciently well-behaved that one may compute the modes
directly from the modes of the first-order residual and
puncture fields. As described in Ref. [61], the problem is
entirely caused by the slow converge of the modes of
δ2Gilm½hP1; hP1� as this is the term that causes the
nonmode-decomposed second-order Einstein tensor to
diverge as ∼m2=r4. Instead of summing up the products
of the modes of hP1μν , Miller et al. [61] directly cal-
culate δ2Gμν½hP1; hP1� in four dimensions using the four
dimensional expression for hP1μν and then decompose this

3Note that the issue described here cannot be avoided by
performing a full 4D calculation. Instead of having to go to very
high mode numbers in order to obtain convergence of the mode-
sum, one would have to perform a very delicate numerical
calculation between two terms that diverge as 1=r4.
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quantity into modes. Unfortunately, while this makes
the calculation of the modes of the source possible, it is
incredibly computationally expensive and takes up almost all
the code runtime when implemented (such as in Ref. [29]).
This is due to having to calculate the modes by numerically
integrating the complete four-dimensional expression on
a grid of rBL and r values. This will not be efficiently
extendible when approaching problems involving more
complicated dynamics, such as generic orbits in Kerr.

C. Highly regular gauge

The highly regular gauge was introduced by Pound [50]
to ameliorate the strong divergences that occur near the
worldline of the small object when in a generic gauge. In
this gauge, the most singular piece of the second-order
perturbation now has the form ∼m2r0 instead of the
∼m2=r2 behavior previously seen; see Refs. [50,54] for
a full discussion. One can divide the second-order singular
field into two pieces: a “singular times regular” piece,
hSRμν ∼mhR1μν =r, and a “singular times singular” piece,
hSSμν ∼m2r0. By simple order counting of m and hR1μν , we
see that, in the second-order Einstein field equations, hSSμν is
sourced by δ2Gμν½hS1; hS1�, as they both feature terms ∼m2,
and that hSRμν is sourced by δ2Gμν½hR1; hS1� as both expres-
sions have terms of the form ∼mhR1μν . Although the hSRμν
term appears more divergent, as discussed in Paper I,
its source, δ2Gμν½hR1; hS1�, is well defined as a distri-
bution. The singular times singular term causes the
most issues. Acting on the singular times singular piece
with the linearized Einstein operator, we see that
δGμν½hSS� ∼m2=r2. Therefore, we know that the most
singular piece of the second-order Einstein tensor can only
act as badly δ2Gμν½hS1; hS1� ∼m2=r2 instead of ∼m2=r4 as
in a generic gauge. This means that when decomposing into
modes, the individual modes of the second-order Einstein
tensor can behave, at worst, as δ2Gilm½h1; h1� ∼m2 log jrj.
While this is still divergent, it is much weaker than in the
Lorenz gauge.
The highly regular gauge enforces that the local light

cone structure around γ is preserved in the perturbed
spacetime. To do so, two gauge conditions are imposed
on the singular field. Firstly, the metric perturbations vanish
when contracted with kμ, the null vector tangent to the
future light cone that emanates from the worldline:

hSμνkμ ¼ 0: ð31Þ

Second, the perturbations are trace-free with respect to
ΩAB, the metric on surfaces of constant luminosity distance:

hSμνe
μ
Ae

ν
BΩAB ¼ 0; ð32Þ

where an upper case Latin letter indicates a quantity defined
on those surfaces and eμA ≔ ∂xμ=∂θA is the basis vector,

where xμ are coordinates in the full spacetime and θA are
coordinates on the surface of constant luminosity distance.
These gauge conditions ensure that the local background
light cone structure is preserved in the perturbed spacetime
and that the background luminosity distance is an affine
parameter on the null rays that generate the light cones.
An image showing the geometric construction is given
in Fig. 1.
When working with a puncture scheme, one can impose

different gauge conditions on the residual and puncture
fields; see the discussions in Sec. IVA of Ref. [68],
Sec. VII A of Ref. [50] and Sec. VI A of Paper I.
Therefore, to control the singularity structure, one can
impose the highly regular gauge conditions on the punc-
ture. Then, one can impose any convenient gauge con-
ditions on the residual field that simplify the left-hand side
of the field equations (25) and (26).
Reference [50] only provided the leading-order pieces of

the second-order metric perturbations in this gauge. Paper I
extended this to include all orders needed to perform a
numerical calculation of the self-force. These expressions
were provided in Fermi-Walker coordinates, a particular
coordinate system that is tethered to an accelerated world-
line, γ, and is useful for analyzing the properties of fields
near to this worldline. However, in order to use the expres-
sions in a puncture scheme, one needs to write them in a
coordinate scheme specialized to the problem at hand, such
as Boyer-Lindquist coordinates ðtBL; rBL; θBL;ϕBLÞ [69].
To avoid a potentially complicated coordinate transforma-
tion from Fermi-Walker coordinates to the new coordinate
system, one can convert the Fermi-Walker expressions into
covariant form. This can then be written in the chosen
coordinate system.
To do so, one can use the method given by Pound and

Miller [55] (hereafter Paper II). This method was developed

FIG. 1. Geometric picture of the gauge conditions for the highly
regular gauge. The image features a light cone emanating from
the worldline, γ. The null vector, kμ, is tangent to the light cone
along radially outgoing curves, and the basis vector, eμA, is tangent
to the light cone along spheres of constant luminosity distance,
Sr. Based on Fig. 16 from Ref. [67].
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in order to transform expressions for the singular field in
the Lorenz gauge into covariant form. These expressions,
after being written in an appropriate coordinate system and
decomposed into a suitable basis of modes, were used as
input into the two-timescale expansion [56] that has been
used in the only existing calculations of second-order
quantities [29,30,32].
The aim in Paper II was the same as the aim here: to

convert expressions for the singular field written in Fermi-
Walker coordinates into fully covariant expressions. This
covariant expression can then be used as input into the
previously mentioned puncture scheme.

D. Paper outline

We begin in Secs. II and III by recapping local
expansion methods using bitensors; tensorial functions
of two spacetime points; the construction of Fermi-
Walker coordinates, and the conversion from Fermi-
Walker coordinates to covariant form, as introduced by
Paper II. Readers familiar with these concepts should feel
free to skip directly to Sec. IV, where the covariant
punctures for the metric perturbations in the highly
regular gauge are derived. These are displayed in an
abridged form due to their length, but the full expressions
are provided in a Mathematica notebook in the
Supplemental Material [70].
Section V then re-expands the covariant expressions

from Sec. IV D into a generic coordinate expansion. The
method for reexpanding the various covariant quantities is
detailed in Sec. VA and, as before, readers familiar with
this method can skip directly to Sec. V B where the generic
coordinate expansions are presented. As with the covariant
expressions, the coordinate punctures are too lengthy to
include fully in this paper and are provided in the
Supplemental Material [70].
Finally, we sum up the findings of this paper in Sec. VI

and discuss potential future avenues for research.

E. Conventions and definitions

We use metric signature ð−;þ;þ;þÞ and geometric
units with c ¼ G ¼ 1. Indices using Greek letters run from
0 to 3 and with lowercase Latin letters run from 1 to 3.
Greek/Latin indices are raised and lowered from the
background metric, gμν, and the flat-space Euclidean
metric, δab, respectively.
A primed index on a tensor, Aμ0 , indicates the tensor is

evaluated at x0μ ≔ zμðτÞ, where zμðτÞ are coordinates on the
worldline, γ. An unprimed index on a tensor, Aμ, is used for
when the tensor is evaluated away from the worldline at xμ.
An overset bar on a tensorial index, Aμ̄, is used when a
tensor is evaluated at x̄μ. This is a point on the worldline
which is connected to xμ by an orthogonal geodesic.
A hat on a tensor, T̂a1…ai , refers to the symmetric trace-

free (STF) part of the tensor with respect to the flat-space

metric, δab. The covariant derivative is given by ∇ or a
semicolon and is compatible with the background metric,
gμν. The partial derivative is given by ∂ or a comma.
We adopt notation from Ref. [71] for contractions of uμ

0
,

σμ
0
and Δxμ0 so that,

ΓΔ
uΔ;Δ ≔ Γα0

β0μ0;ν0Δxα0u
β0Δxμ0Δxν0 ; ð33Þ

Ṙuσuσ ≔ Rα0β0μ0ν0;γ0σ
β0σν

0
uα

0
uμ

0
uγ

0
; ð34Þ

for example. We use analogous notation for contractions of
tensors evaluated at x̄μ, e.g.

Ṙū σ̄ ū σ̄ ≔ Rᾱ β̄ μ̄ ν̄;γ̄σ
β̄σν̄uᾱuμ̄uγ̄: ð35Þ

The calculations in this paper make extensive use of
Wolfram Mathematica [72] and the tensor algebra package
xAct [73–78].

II. LOCAL EXPANSION METHODS

In this section, we recap the methods of performing
covariant and coordinate expansions of tensorial quantities
near the worldline. We also give an overview of the
construction of Fermi-Walker coordinates.

A. Covariant expansions using bitensors

In this section, we outline how one may construct local
covariant expansions of tensor fields. Our explanation of
the method follows that of Refs. [12,79,80]. To do this, we
introduce the concept of a bitensor: a tensor which is a
function of two spacetime points. One important bitensor
that we will make extensive use of is Synge’s world
function [12,79],

σðx; x0Þ ¼ ε

2

�Z
β
ds

�
2

; ð36Þ

where β is the unique geodesic connecting xμ and xμ
0
, s is

an affine parameter and ε ¼ ∓1 for time/spacelike geo-
desics (not to be confused with the mass ratio ϵ). This gives
half the geodesic distance squared between the points xμ

and xμ
0
. If the two points are connected by a null geodesic,

then σðx; x0Þ is identically zero. We will use λ as a formal
order counting parameter to count powers of spatial
distance away from the worldline, γ, so that σ ∼ λ2.
We denote derivatives of Synge’s world function as

σμ0 ≔ ∇μ0σðx; x0Þ ¼ ∂μ0σðx; x0Þ. Note also that we may take
derivatives of Synge’s world function at the unprimed
coordinates as well, giving σμ ≔ ∇μσðx; x0Þ ¼ ∂μσðx; x0Þ.
This can be generalized to higher and higher derivatives,
e.g., σμ0ν0 ≔ ∇ν0∇μ0σ or σμ0ν ≔ ∇ν∇μ0σ. The indices of σ tell
us its tensorial structure at both xμ and xμ

0
, that is, σμ0ν0 is a

rank-2 tensor at xμ
0
but a scalar at xμ. Likewise, σμ0ν is a
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covector at both xμ and xμ
0
. This property demonstrates that

we can always commute primed and unprimed indices as
the existence of one does not affect the tensorial rank at the
other point. Derivatives of Synge’s world function also
satisfy the useful identity

gαβσασβ ¼ gα0β0σα
0
σβ

0 ¼ 2σðx; x0Þ: ð37Þ

By taking derivatives of Eq. (37) and then the limit as xμ

goes to xμ
0
, one may derive local covariant expansions of

σα0…α… in terms of quantities defined on the worldline. To
see an example, we start by introducing the standard
notation for the coincidence limit [79],

½Aα…α0…
β…β0…� ≔ lim

xμ→xμ
0
Aα…α0…
β…β0…ðx; x0Þ: ð38Þ

It immediately follows from Eqs. (36) and (37) that

½σ� ¼ ½σα� ¼ ½σα0 � ¼ 0; ð39Þ

as, if the length of β goes to 0, then the integral in Eq. (36)
vanishes. Taking primed derivatives of Eq. (37), we see

σμ0 ¼ σν
0
σν0μ0 ; ð40Þ

which implies that

½σμ0ν0 � ¼ gμ0ν0 : ð41Þ

This can be repeated to find higher and higher derivatives of
σðx; x0Þ [80],

½σμ0ν0ρ0 � ¼ 0; ð42Þ

½σμ0ν0α0β0 � ¼
2

3
Rμ0ðα0β0Þν0 : ð43Þ

Another object we will make use of is the parallel
propagator, gμ

0
μðx; x0Þ [12,79,80]. The parallel propagator

parallel transports a tensor from xμ
0
to xμ along β. For

instance, the vector AμðxÞ can be transported from/to
Aμ0 ðx0Þ via

AμðxÞ ¼ gμμ0 ðx; x0ÞAμ0 ðx0Þ; ð44Þ

Aμ0 ðx0Þ ¼ gμ
0
μðx0; xÞAμðxÞ; ð45Þ

respectively. These expressions hold for covectors as well
and tensors with any number of indices with the inclusion
of an appropriate number of parallel propagators, e.g.

Aαβ
μ
νðxÞ ¼ gαα0gββ0gμ

0
μgνν0Aα0β0

μ0
ν0 ðx0Þ: ð46Þ

It also has the properties that when contracted with itself, it
returns the Kronecker delta,

gμμ0gμ
0
ν ¼ δμν ; ð47Þ

gμ
0
μgμν0 ¼ δμ

0
ν0 ; ð48Þ

and is symmetric in indices and arguments,

gμμ
0 ðx; x0Þ ¼ gμ

0
μðx0; xÞ: ð49Þ

When contracted with Synge’s world function, it gives

σμ ¼ −gμ0μσμ0 ; ð50Þ

σμ0 ¼ −gμμ0σμ; ð51Þ

and its derivative contracted with Synge’s world function
vanishes for all combinations of primed and unprimed
indices, e.g.

gμ
0
μ;νσ

ν ¼ 0: ð52Þ

As we did for Synge’s world function with Eq. (37), we can
calculate different covariant expansions by repeatedly
differentiating Eq. (52) and taking the coincidence limit.
For example [80],

½gμν0 � ¼ δμ
0

ν0 ; ð53Þ

½gμν0;α0 � ¼ 0; ð54Þ

½gμν0;αβ� ¼ −
1

2
Rμ0

ν0α0β0 : ð55Þ

Combining the previous definitions, we can then express
an arbitrary tensor Aμ

ν, evaluated at x, in terms of quantities
evaluated at x0 as

Aμ
νðxÞ ¼ gμμ0gνν

0
�
Að0Þμ0

ν0 ðx0Þ þ λAð1Þμ0
ν0α0 ðx0Þσα0

þ λ2

2
Að2Þμ0

ν0α0β0 ðx0Þσα0σβ0
�
þOðλ3Þ; ð56Þ

where λ is a formal order counting parameter to be set to
unity at the end of the calculation. The unknown coef-
ficients, AðNÞμ0

ν0α01…α0n , can be found in the same manner as
before by repeated differentiation and taking of the coinci-
dence limit. As an example, we seek the covariant expan-
sion of σμ0ν0 . We first expand, as in Eq. (56) but without the
need for parallel propagators, as

σμ0ν0 ¼ σð0Þμ0ν0 þ λσð1Þμ0ν0α0σ
α0 þ λ2

2
σð2Þμ0ν0α0β0σ

α0σβ
0 þOðλ3Þ: ð57Þ

We know from Eq. (41), that Að0Þ
μ0ν0 ¼ gμ0ν0 . Taking primed

derivatives and the coincidence limit gives that
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σð1Þμ0ν0α0 ¼ ½σμ0ν0α0 � ¼ 0; ð58Þ

σð2Þμ0ν0α0β0 ¼ ½σμ0ν0α0β0 � ¼
2

3
Rμ0ðα0β0Þν0 ; ð59Þ

meaning that

σμ0ν0 ¼ gμ0ν0 þ
λ2

3
Rμ0α0β0ν0σ

α0σβ
0 þOðλ3Þ: ð60Þ

This can be repeated for any required covariant quantity.
Ref. [81] provides a semirecursive method for calculating
expansions of Synge’s world function and the parallel
propagator, along with many other covariant quantities.

B. Fermi-Walker coordinates

To analyze the properties of the fields near the worldline
of the small object, we introduce Fermi-Walker coordi-
nates, ðt; xaÞ, attached to the accelerated worldline, γ. Our
description of Fermi-Walker coordinates summarizes that
of Refs. [12,82]. To begin, we introduce an orthonormal
tetrad, ðuμ; eμaÞ, on γ which is defined at the point zðτÞ so
that it satisfies

Deμa
dτ

¼ aνeνauμ; ð61Þ

gμνuμuν ¼ −1; ð62Þ
gμνe

μ
auν ¼ 0; ð63Þ

gμνe
μ
aeνb ¼ δab; ð64Þ

where uμ ¼ dzμ=dτ is the curve’s four-velocity, aμ ¼
D2zμ=dτ2 is the acceleration of γ and δab ¼ diagð1; 1; 1Þ
is the three-dimensional flat space metric. If γ is a geodesic
then aμ vanishes. Equation (61) ensures that the tetrad basis
is Fermi-Walker transported along γ, thus keeping it
orthogonal to the worldline as it travels along it. This
condition reduces to that of parallel transport when the
worldline is a geodesic. Equations (62)–(64) then ensure
that it is orthonormal at all points on γ. The dual tetrad,
ðe0μ; eaμÞ, can be defined as satisfying

e0μ ¼ −uμ; ð65Þ

eaμ ¼ δabgμνeνb: ð66Þ

Equations (62)–(66) then imply that we can write the metric
and inverse metric as

gμν ¼ −e0μe0ν þ δabeaμebν ; ð67Þ
gμν ¼ −uμuν þ δabeμaeνb; ð68Þ

respectively.

With the orthonormal tetrad constructed, we may now
create a local coordinate system so that we may derive
the form of the metric near γ. The full technical details
are not considered here (see Ref. [ [12], Chs. 9.3–9.5] for
more details) but we outline the geometric picture of the
coordinate construction. At a point x̄ ≔ zðtÞ on γ, where t is
the proper time, we generate a surface orthogonal to the
worldline by emitting spacelike geodesics from zðtÞ that are
orthogonal to γ. We can then label a point on this surface
with coordinates xa so that we have coordinates, ðt; xaÞ,
that describe points near to the worldline. The tetrad can be
written in terms of Synge’s world function as

x0 ¼ t; ð69Þ

xa ¼ −eaᾱðx̄Þσᾱðx; x̄Þ; ð70Þ

σᾱðx; x̄Þuᾱðx̄Þ ¼ 0: ð71Þ

As stated previously, Synge’s world function gives half the
geodesic distance squared between two points (up to a
minus sign) meaning that a derivative gives the geodesic
distance. This quantity is then contracted with the spatial
Fermi-Walker tetrad leg, eaᾱ, to give the Fermi-Walker
spatial distance, xa. The third equation ensures that σᾱ is
always orthogonal to the worldline. Alternatively, we can
write xi ¼ rni, with r ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δabxaxb

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σðx; x̄Þp
being the

proper distance (along a unique spacelike geodesic ortho-
gonal to γ) from γ to the point being considered and ni

being a unit vector giving the direction that the point lies
in respective to γ. We note as well that, as with σα0 , r ∼ λ
and so counts powers of distance from the worldline. A
geometric representation of the Fermi-Walker coordinate
construction is given in Fig. 2.
Using these coordinates, we can write the metric near γ

in the form [50]

gtt ¼ −1 − 2raini − r2ðRtitj þ aiajÞnij

−
r3

3
ð4Rtitjak þ Rtitj;kÞnijk þOðr4Þ; ð72aÞ

gta ¼ −
2r2

3
Rtiajnij −

r3

12
ð4Rtiajak þ 3Rtiaj;kÞnijk

þOðr4Þ; ð72bÞ

gab ¼ δab −
r2

3
Raibjnij −

r3

6
Raibj;knijk þOðr4Þ; ð72cÞ

where all Riemann terms are evaluated on γ at time t. When
evaluating Eq. (72) on γ, we immediately see that the metric
in Fermi-Walker coordinates reduces to the Minkowski
metric. However, the Christoffel symbols at lowest order
are not all zero. Instead, Γt

tajγ ¼ aa and Γa
ttjγ ¼ aa; both

reduce to 0 if γ is a geodesic.
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As we are looking at a vacuum solution with Rμν ¼ 0,
we may use the identities from Appendix D 3 of Ref. [83]
to write

Rtatb ¼ Eab; ð73aÞ

Rabct ¼ ϵab
iBic; ð73bÞ

Rabcd ¼ −ϵabiϵcdjEij ð73cÞ

and the derivatives as

Rtatb;c ¼ Eabc þ
2

3
ϵciðaḂbÞi; ð74aÞ

Rabct;d ¼ ϵab
i

�
4

3
Bicd −

2

3
ϵdjðiĖj

cÞ

�
; ð74bÞ

Rabcd;e ¼ −ϵabiϵcdj
�
Eij

e þ
2

3
ϵek

ðiḂjÞk
�
: ð74cÞ

The quantities E and B are the tidal moments felt by an
extended body moving on the world line, γ, where two/
three indices refer to the quadrupole/octopole moments
respectively. They are symmetric and trace-free, with
respect to δab, over all indices and only depend on the
proper time, t.

III. CONVERTING FERMI-WALKER
COORDINATES TO COVARIANT FORM

In this section we review the method used in Paper II
to derive the covariant Lorenz gauge puncture. While the
full technical details containing derivations of the various
quantities are contained within that paper, we reproduce the
essential results that we will need to produce the highly
regular gauge puncture. The final results will be covariant
quantities expressed entirely in terms of parallel propaga-
tors, the four-velocity, Riemann tensors, and Synge’s world
function.
The idea behind the method from Paper II is to express

the field at a point x in terms of an arbitrary nearby point
on the worldline, x0 ¼ zðτ0Þ. This is done through an
intermediary point, x̄ ¼ zðτ̄Þ, which lies on γ and is
separated from x0 by the difference in proper time

Δτ ≔ τ̄ − τ0: ð75Þ
The intermediary point, x̄, is then connected to x by the
unique geodesic that intersects the worldline orthogonally.
A visual representation is provided in Fig. 3.
As Fermi-Walker coordinates are constructed geo-

metrically, see Sec. II B, there is a very straightforward
way to convert them into covariant form. We know from
Eqs. (69)–(71), that there is a simple correspondence
between Fermi-Walker coordinates and covariant quantities.
As we saw in the text below Eq. (71), we can write the Fermi-
Walker radial distance in terms of covariant quantities with

r ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δabxaxb

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pᾱ β̄σ

ᾱσβ̄
q

¼
ffiffiffiffiffi
2σ̄

p
; ð76Þ

where

σ̄ ≔ σðx; x̄Þ: ð77Þ

FIG. 2. Visualization of construction of Fermi-Walker coor-
dinates. At the point zðtÞ, we generate an orthogonal surface and
label points on that surface with the coordinate xi. The quantity r
gives the proper distance to xi and ni picks out the unique
orthogonal geodesic that connects xi and γ. Based on Fig. 6
from Ref. [12].

FIG. 3. Diagram illustrating the relationship between x, x0, and
x̄. The two points x0 and x̄ are points on the worldline, γ, separated
by Δτ while x̄ and x are connected by the geodesic that intersects
γ orthogonally. Based on Fig. 1 from Paper II.
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We have added an extra step in Eq. (76), where we have
rewritten the flat-space metric in terms of the projection
operator,

eαaeaβ ¼ Pαβ ¼ gαβ þ uαuβ; ð78Þ

which immediately follows from Eq. (68). The radial unit
vector is then given by

na ¼ xa

r
¼ −eaᾱσᾱffiffiffiffiffi

2σ̄
p : ð79Þ

Additionally, we must replace the Fermi-Walker basis
one-forms, as when written explicitly, the singular field has
the standard form

hSμνdxμdxν ¼ hSttdtdtþ 2hStadtdxa þ hSabdx
adxb: ð80Þ

These are given in Eqs. (82)–(84) from Paper II by

dt ¼ μσᾱαuᾱdxα; ð81Þ

dxa ¼ −eaᾱðσᾱα þ μσᾱβ̄u
β̄σαγ̄uγ̄Þ; ð82Þ

where

μ ¼ −ðσᾱ β̄uᾱuβ̄ þ σᾱaᾱÞ−1: ð83Þ

Finally, the second-order singular field hSRμν features deriv-
atives of the first-order regular field, hR1μν . Using Eqs. (122)
and (123) of Paper II, these can be written as

∂thR1μν ¼ hR1μ̄ ν̄ jᾱu
ᾱ þOðaμÞ; ð84Þ

∂ahR1μν ¼ hR1μ̄ ν̄ jᾱe
ᾱ
a þOðaμÞ; ð85Þ

∂t∂thR1μν ¼ hR1
μ̄ ν̄ jᾱ β̄u

ᾱuβ̄ þOðaμÞ; ð86Þ

∂t∂ahR1μν ¼ hR1
μ̄ ν̄ jᾱ β̄e

ᾱ
auβ̄ þOðaμÞ; ð87Þ

∂a∂bhR1μν ¼ hR1
μ̄ ν̄ jᾱ β̄e

ᾱ
ae

β̄
b þ 2Rμ̄

btauðᾱhR1β̄Þμ̄

−
4

3
Rμ̄ðbν̄ÞaPν̄ðᾱhR1β̄Þμ̄ þOðaμÞ; ð88Þ

where the bar, j, indicates a covariant derivative at xᾱ and
any acceleration terms can be ignored as they would belong
to the third-order singular field. These expressions can be
derived by taking covariant derivatives of hR1

ᾱ β̄
and calcu-

lating the Christoffel symbols constructed from the FW
background metric in Eq. (72).
After rewriting all quantities in terms of x̄, we then

reexpand them in powers ofΔτ, the time difference given in
Eq. (75). For example,

httðx; x̄Þ ¼
X∞
n¼0

Δτn
dn

dτ0n
httðx; x0Þ; ð89Þ

where d
dτ0 ¼ uα

0∇α0 and the expansion in distance of the
difference in proper time is given by

Δτ ¼ λrþ λ2raσ þOðλ3Þ; ð90Þ

originally from Eqs. (97) and (98) in Paper II. Here, λ is our
formal order-counting parameter from Sec. II A, and we
have introduced the quantity,

r ≔ uμ0σμ
0
; ð91Þ

and below we will also use the quantity,

ρ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pμ0ν0σ

μ0σν
0

q
: ð92Þ

for notational simplicity.4 This means that the contraction
of Synge’s world function with itself can be written as

σμ
0
σμ0 ¼ 2σðx; x0Þ ¼ ρ2 − r2: ð93Þ

Here, r gives a notion of the difference in proper time while
ρ denotes a difference in proper distance.
We note that we expand all quantities [such as Eqs. (89)

and (90)] through four total orders, but we only display
the leading two orders here to indicate the forms of the
expressions; the full expansions can be found in Paper II.
We may do our series expansions as a normal power series
as all the Fermi-Walker quantities (including one-forms)
are scalars at x̄. The expansion of Synge’s world function is
given by Eqs. (99)–(101) of Paper II as

σðx; x̄Þ¼ σðx;x0Þþdσ
τ0
Δτþ1

2

d2σ
dτ02

Δτ2þ1

6

d3σ
dτ03

Δτ3þOðλ4Þ

¼ 1

2
½λ2ρ2þλ3r2aσ�þOðλ4Þ; ð94Þ

and expansions of the Fermi-Walker basis one-forms are
then given by Eqs. (103)–(106) of Paper II as

dt ¼ −gα0μ ½λ0uα0 þ λðraα0 þ aσuα0 Þ þOðλ2Þ�dxμ; ð95Þ

dxa ¼ gα
0

μ ½λ0eaα0 þ λðeaβ0ruα0aβ0 Þ þOðλ2Þ�dxμ: ð96Þ

In the above expressions, we see that acceleration terms
have appeared. This is a result of taking the derivatives with
respect to τ0. As stated, d=dτ0 ¼ uα

0∇α0 , so taking multiple
τ0 derivatives results in us taking derivatives of uα0 along the
worldline, providing us with acceleration terms. These can

4We use r in agreement with Refs. [55,71,84] but we use ρ to
match Refs. [66,85] instead of s as in Paper II.
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then be differentiated along the worldline, giving us terms
like ȧα

0
, where a dot indicates a time derivative in the usual

manner.
When accounting for these terms, at first order, we split

up hS1μν into an acceleration-independent and a linear-in-
acceleration piece:

hS1μν ¼ hS1aμν þ hS1aμν þOða2Þ: ð97Þ

Recall from Eqs. (3) and (14) that each acceleration term
carries an ϵ. This effectively makes hS1aμν a second-order
term and allows us to ignore any nonlinear acceleration
terms that appear in the expansion of hS1μν . Additionally, we
can ignore any explicit acceleration terms that appear in
both hSRμν and hSSμν as these would become third-order terms.

IV. CREATING THE COVARIANT PUNCTURE

With the methods from Paper II recapped, we can now
proceed to use them to generate our covariant puncture
in the highly regular gauge. We begin in Sec. IVA by
reviewing the form of the metric perturbations in the highly
regular gauge. Section IV B will provide the components of
the highly regular gauge singular field when evaluated at x̄
with each being written in covariant form. We then move to
Sec. IV C, which provides the components evaluated at x0
before combining this with one-form expansions to find the
final, fully covariant form in Sec. IV D.

A. Metric perturbations in the highly regular gauge

In this section, we review the main results from Paper I.
All results in this section are from there but are reproduced
here for convenience.
We write the metric perturbations in the highly regular

gauge as

gμν ¼ g̃μν þ hSμν; ð98Þ

where the singular field is given by

hSμν ¼ ϵhS1μν þ ϵ2hS2μν þOðϵ3Þ: ð99Þ

The second-order singular field is then split as

hS2μν ¼ hSSμν þ hSRμν ; ð100Þ

where the “singular times singular” piece, hSSμν , features all
terms proportional to m2 and the “singular times regular”
piece, hSRμν , features all terms with the form mhR1μν .
The full expressions for the first-order singular field in

the highly regular gauge are given in Eq. (56) of Paper I. We
reproduce the two leading orders here:

hS1tt ¼ 2m
r

þ 11

3
mrEabn̂ab þOðr2Þ; ð101aÞ

hS1ta ¼ 2m
r

n̂a þ
2

15
mrð11Eabn̂b þ 10Bbcϵacdn̂bd

þ 15Ebcn̂abcÞ þOðr2Þ; ð101bÞ

hS1ab ¼
2m
3r

ðδab þ 3n̂abÞ þ
1

315
mrð154Eab − 168Bd

ðaϵbÞcdn̂
c

þ 580Ecðan̂bÞc þ 15Ecdδabn̂cd þ 840Bcdϵc
iðan̂bÞdi

þ 105Ecdn̂abcdÞ þOðr2Þ: ð101cÞ

Moving to second order, hSRμν is given in full by Eq. (130) of
Paper I. The two leading orders are

hSRtt ¼ −
m
r
ð2hR1tt þ hR1abn

abÞ −mr0

2
ðhR1ab;cnabc

− 4nab∂thR1ab þ 8na∂thR1ta Þ þOðrÞ; ð102aÞ

hSRta ¼−
m
r
ð2hR1ta þhR1tt na − 2hR1abn

bþ 2hR1bc na
bcÞ

−
mr0

2
ð2nb½2hR1t½a;b� − ∂thR1ab � þ 4nab∂thR1tb

−nbc½20hR1ab;cþhR1bc;a�− 2nabc∂thR1bc ÞþOðrÞ; ð102bÞ

hSRab ¼ −
m
r
ð4hR1tðanbÞ − 4hR1cðanbÞ

c þ 3hR1cd nab
cdÞ

−
mr0

2
ð4hR1tða;jcjnbÞc þ 4hR1tc;ðanbÞ

c − 4hR1cða;jdjnbÞ
cd

− 2hR1cd;ðanbÞ
cd þ 3hR1cd;inab

cdi − 4ncða∂jtjhR1bÞcÞ
þOðrÞ: ð102cÞ

Finally, hSSμν is given by Eq. (131) of Paper I, which we
reproduce here in full as

hSStt ¼ −4m2

�
r0Eabnab þ r

�
1

3
Ėabnab

�
11 − 6 log

�
2m
r

�	

þ 2

3
Eabcnabc

�

þOðr2Þ; ð103aÞ

hSSta ¼ −4m2

�
r0Ebcnabc þ r

�
2

9
Ėabnb

�
7 − 3 log

�
2m
r

�	

þ 1

6
Eabcnbc −

2

9
Ḃb

dϵacdnbc
�
4 − 3 log

�
2m
r

�	

þ 1

9
Ėbcnabc

�
19 − 12 log

�
2m
r

�	
þ 1
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hSSab ¼ −4m2
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−
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�
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�

þOðr2Þ: ð103cÞ

B. Perturbation components expanded about x̄

We begin by calculating the form of the components of the first-order singular field, hS1μν , when expanded around x̄α. To
do so, we substitute the appropriate expressions from Sec. III into Eq. (101). The components of hS1μ̄ ν̄ are then given by

hS1tt ¼
ffiffiffi
2

p
m

λ
ffiffiffī
σ

p þ 11mλ

3
ffiffiffiffiffi
2σ̄

p Rū σ̄ ū σ̄ þOðλ2Þ; ð104aÞ

hS1ta ¼ −
meᾱa
3σ̄

�
3σᾱ
λ

− λ½2
ffiffiffi
2

p
Rᾱ σ̄ ū σ̄

ffiffiffī
σ

p
− 2Rᾱ ū σ̄ ūσ̄ − 3Rū σ̄ ū σ̄σᾱ�

�
þOðλ2Þ; ð104bÞ

hS1ab ¼
meᾱae

β̄
b

12σ̄3=2

�
6

ffiffiffi
2

p
σᾱσβ̄
λ

þ λ½
ffiffiffi
2

p
Rū σ̄ ū σ̄σᾱσβ̄ − 16

ffiffiffī
σ

p
σðᾱRβ̄Þσ̄ ū σ̄ þ 8

ffiffiffi
2

p
σ̄σðᾱRβ̄Þū σ̄ ū�

�
þOðλ2Þ: ð104cÞ

We have omitted the highest-order piece of hS1μ̄ ν̄ due to its length, but it will be used to calculate the covariant punctures.
This can then be continued at second order for the singular fields hSRμ̄ ν̄ (102) and hSSμ̄ ν̄ (103). The singular times regular

piece is given by

hSRtt ¼ −
m

4
ffiffiffi
2

p
σ̄3=2

�
2

λ
ðhR1σ̄ σ̄ þ 4hR1ū ūσ̄Þ − λ0ð16σ̄ḣR1σ̄ ū þ hR1σ̄ σ̄ jσ̄ þ 4

ffiffiffi
2

p
σ̄1=2ḣR1σ̄ σ̄Þ



þOðλÞ; ð105aÞ

hSRta ¼ −
meᾱa
4σ̄2
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2

λ
ð2hR1ᾱ σ̄ σ̄ þ 2

ffiffiffi
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þOðλÞ; ð105bÞ

hSRab ¼ −
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b
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2
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2

p
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σᾱσβ̄h

R1
σ̄ σ̄ jσ̄ þ 16σ̄3=2ðhR1σ̄ ū jðᾱσβ̄Þ þ σðᾱhR1β̄Þujσ̄ − σðᾱḣR1β̄Þσ̄ÞÞ



þOðλÞ: ð105cÞ

As in the expression for hS1μ̄ ν̄, we omit the highest-order piece of hSRμ̄ ν̄ due to length constraints. Finally, the singular times
singular piece is given by

hSStt ¼ −
2m2λ0

σ̄
þ 2m2λ

3σ̄
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p
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þOðλ2Þ; ð106aÞ

hSSta ¼ m2eᾱa
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3=2

�
29 − 12 log

� ffiffiffi
2

p
m

λ
ffiffiffī
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hSSab ¼ m2eᾱae
β̄
b
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Ṙū σ̄ ū σ̄

�
7 − 6 log

� ffiffiffi
2

p
m

λ
ffiffiffī
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þOðλ2Þ: ð106cÞ

C. Expansion about x0

Accounting for the introduction of acceleration terms and splitting up hS1μν as in Eq. (97), we find that the components of
hS1aμν , when expanded around x0α, are given by

hS1att ¼ 2m
λρ

þ mλ

3ρ3
Ruσuσðr2 þ 11ρ2Þ þOðλ2Þ; ð107aÞ

hS1ata ¼−
meα

0
a

36ρ4

�
72ρ2σα0

λ
þ λð12ρ2ðRα0uσuðr2þ 4rρþ 2ρ2Þ− 2Rα0σuσðrþ 2ρÞÞþ 24Ruσuσðr2þ 3ρ2Þσα0 Þ



þOðλ2Þ; ð107bÞ

hS1aab ¼meα
0

a e
β0
b

3ρ5

�
6ρ2σα0σβ0

λ
þ λðRuσuσσα0σβ0 ð3r2 þ ρ2Þ− 2ρ2½2ðrþ 2ρÞσðα0Rβ0Þσuσ − ðr2 þ 4rρþ 2ρ2Þσðα0Rβ0Þuσu�Þ



þOðλ2Þ:

ð107cÞ

The acceleration terms that appear as a result of our expansion of the first-order singular field are

hS1att ¼ −
mλ0aσr2

ρ3
−
mλȧσr3

3ρ3
þOðλ2Þ; ð108aÞ

hS1ata ¼ −
meα

0
a r

3ρ6
½3λ0rρ2ðaα0ρ2 − 2aσσα0 Þ þ λr2ρ2ðȧα0ρ2 − 2ȧσσα0 Þ� þOðλ2Þ; ð108bÞ

hS1aab ¼ −
meα

0
a e

β0
b r

2

3ρ5
½3λ0ð3aσσα0σβ0 − 2ρ2aðα0σβ0ÞÞ þ λrð3ȧσσα0σβ0 − 2ρ2ȧðα0σβ0ÞÞ� þOðλ2Þ: ð108cÞ

As hS1aμν is a second-order term, we can neglect any terms of order-λ2 and higher to match the orders required for hSRμν
and hSSμν .
Moving to the second-order field, we calculate the SR components to be

hSRtt ¼ −
m
2ρ3

�
2

λ
ðhR1σσ þ 2hR1σurþ hR1uuðr2 þ 2ρ2ÞÞ − λ0ðrðrhR1uu;σ þ 2hR1σu;σÞ þ hR1σσ;σ − ðr − 4ρÞ

× ḣR1σσ − 2ðr2 − 4rρ − 4ρ2ÞḣR1σu − rðr2 − 4rρ − 4ρ2ÞḣR1uuÞ


þOðλÞ; ð109aÞ

hSRta ¼ −
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þ rðrþ 2ρÞhR1uu;α0 þ 2ðhR1α0σ;σ þ ðrþ ρÞðhR1α0u;σ − ḣR1α0σÞ − rðrþ 2ρÞḣR1α0uÞÞ þ σα0 ð2ðr − ρÞḣR1σσ
− 2ðr2hR1uu;σ þ 2rhR1σu;σ þ hR1σσ;σÞ þ 2ðr2 − rρ − ρ2Þð2ḣR1σu þ rḣR1uuÞÞ�



þOðλÞ; ð109bÞ

SECOND-ORDER GRAVITATIONAL SELF-FORCE IN A HIGHLY … PHYS. REV. D 109, 044021 (2024)

044021-13



hSRab ¼ −
meα
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þOðλÞ; ð109cÞ

where, again, we have omitted the highest order term. The SS components are calculated to be

hSStt ¼ −
4m2
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þOðλ2Þ; ð110aÞ

hSSta ¼ 2m2eα
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�
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− σα0

�
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�
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þOðλ2Þ; ð110bÞ

hSSab ¼ 2m2eα
0

a e
β0
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− 5Ruσuσσα0σβ0 Þ þ λ
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þ σα0σβ0

�
6Ruσuσ;σ − Ṙuσuσ
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�
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�
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þ
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�

þOðλ2Þ: ð110cÞ

D. Final expressions for the covariant punctures

With all of the individual components of the singular field now expressed as functions of x0α, we now combine them with
the expansions of dt and dxa, given in Eqs. (95) and (96) to find the final form of the covariant punctures. After contracting
with the basis vectors, we obtain the covariant form of hSμνdxμdxν, as in Eq. (80). We then read off the coefficients of dxμdxν

to obtain hSμν.
The first-order singular field is given by

hS1aαβ ¼ −
mgα

0
αg

β0
β

36ρ5

�
−72ρ2

λ
ðσα0 þ ðrþ ρÞuα0 Þðσβ0 þ ðrþ ρÞuβ0 Þ − 12λðRuσuσð3r2 þ ρ2Þσα0σβ0

þ 2Ruσuσrð3r − ρÞðrþ ρÞσðα0uβ0Þ þ Ruσuσðr − ρÞðrþ ρÞ2ð3rþ ρÞuα0uβ0 þ 2ρ2ðσðα0 þ ðrþ ρÞuðα0 Þ
× ðRβ0Þσuσðr − 3ρÞ þ 2Rβ0Þuσuðρ2 − r2ÞÞÞ þ λ2ð3ð−3Ṙuσuσrðr2 þ ρ2Þ þ Ruσuσ;σð3r2 þ ρ2ÞÞσα0σβ0
þ 6ðRuσuσ;σrð3r − ρÞðrþ ρÞ − Ṙuσuσð3r4 þ 2r3ρþ 3ρ4ÞÞσðα0uβ0Þ þ 3ðRuσuσ;σðr − ρÞðrþ ρÞ2ð3rþ ρÞ
− Ṙuσuσð3r5 þ 4r4ρ − 2r3ρ2 − 6r2ρ3 þ 3rρ4 þ 14ρ5ÞÞuα0uβ0 þ 4gα0β0ρ4ð3Ruσuσ;σ þ 3Ṙuσuσr − 8ṘuσuσρÞ
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− 8ρ5ðṘα0σβ0σ − Rα0uβ0u;σð3rþ ρÞ þ Ṙα0uβ0uð9ρ2 þ 4rρ − 2r2Þ þ 3Ruðα0β0Þσ;σ þ ðr − 5ρÞṘuðα0β0Þσ
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þ ðrþ ρÞ2uðα0Ṙβ0ÞuσuÞÞ


þOðλ3Þ: ð111Þ

We have confirmed that this satisfies the Einstein field equations to the appropriate order, i.e.

δGμν½hS1a� ¼ OðλÞ; x ∉ γ: ð112Þ

At second order, the SS piece of the singular field is given by
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þOðλ2Þ: ð113Þ

This again satisfies the appropriate Einstein field equations,

δGμν½hSS� þ δ2Gμν½hS1a; hS1a� ¼ Oðλ0Þ; x ∉ γ: ð114Þ
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The first-order singular field with linear acceleration terms is

hS1aαβ ¼ gα
0
αg

β0
β

3ρ5
½3λ0ð2rρ2ðrþ 2ρÞaðα0 ðσβ0Þ þ ðrþ ρÞuβ0ÞÞ − aσð3r2σα0σβ0 þ 2ð3r3 þ 2r2ρ − 2rρ2 − 2ρ3Þσðα0uβ0Þ
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þ 2ð3r3 þ 2r2ρ − 3rρ2 − 6ρ3Þσðα0uβ0Þ þ ðrþ ρÞð3r3 þ r2ρ − 6rρ2 − 12ρ3Þuα0uβ0 ÞÞ� þOðλ2Þ; ð115Þ

while the SR piece of the second-order singular field is

hSRαβ ¼ −
mgα

0
α g

β0
β

2ρ5

�
2

λ
½4ρ2ðhR1ðα0jσjσβ0Þ þ ðrþ ρÞðhR1ðα0jujσβ0Þ þ hR1ðα0jσjuβ0Þ þ ðrþ ρÞhR1ðα0jujuβ0ÞÞÞ

− hR1σσ ð3σα0σβ0 þ ðrþ ρÞð3rþ ρÞuα0uβ0 þ 2ð3rþ 2ρÞσðα0uβ0ÞÞ − hR1σuð6rσα0σβ0 þ 2ðrþ ρÞðð3r − 2ρÞ
× ðrþ ρÞuα0uβ0 þ 2ð3r − ρÞσðα0uβ0ÞÞÞ − hR1uuð3r2σα0σβ0 þ ðrþ ρÞððrþ ρÞð3r2 − 2rρ − 2ρ2Þuα0uβ0
þ 2ð3r2 − rρ − ρ2Þσðα0uβ0ÞÞÞ� þ λ0½hR1σσ;σð−3σα0σβ0 − ðrþ ρÞð3rþ ρÞuα0uβ0 − 2ð3rþ 2ρÞσðα0uβ0ÞÞ
þ rḣR1uuð3r2σα0σβ0 þ ðrþ ρÞð3r3 þ r2ρ − 6rρ2 − 8ρ3Þuα0uβ0 þ 2ð3r3 þ 2r2ρ − 3rρ2 − 4ρ3Þσðα0uβ0ÞÞ
þ ḣR1σuð6r2σα0σβ0 þ 2ðrþ ρÞð3r3 þ r2ρ − 4rρ2 − 4ρ3Þuα0uβ0 þ 4ð3r3 þ 2r2ρ − 2rρ2 − 2ρ3Þσðα0uβ0ÞÞ
− hR1uu;σð3r2σα0σβ0 þ ðrþ ρÞð3r3 þ r2ρ − 4rρ2 − 4ρ3Þuα0uβ0 þ 2ð3r3 þ 2r2ρ − 2rρ2 − 2ρ3Þσðα0uβ0ÞÞ
− 2hR1σu;σð3rσα0σβ0 þ ðrþ ρÞðð3r − 2ρÞðrþ ρÞuα0uβ0 þ 2ð3r − ρÞσðα0uβ0ÞÞÞ
þ ḣR1σσ ð3rσα0σβ0 þ ðrþ ρÞðð3r − 2ρÞðrþ ρÞuα0uβ0 þ 2ð3r − ρÞσðα0uβ0ÞÞÞ
þ 2ρ2ðσðα0hR1jσσj;β0Þ þ 2ðrþ ρÞσðα0hR1jσuj;β0Þ þ rðrþ 2ρÞσðα0hR1juuj;β0Þ þ 2σðα0hR1β0Þσ;σ þ 2ðrþ ρÞσðα0hR1β0Þu;σ
− 2ðrþ ρÞσðα0 ḣR1β0Þσ − 2rðrþ 2ρÞσðα0 ḣR1β0Þu þ ðrþ ρÞuðα0hR1jσσj;β0Þ þ 2ðrþ ρÞ2uðα0hR1jσuj;β0Þ
þ rðrþ ρÞðrþ 2ρÞuðα0hR1juuj;β0Þ þ 2ðrþ ρÞuðα0hR1β0Þσ;σ þ 2ðrþ ρÞ2uðα0hR1β0Þu;σ − 2ðrþ ρÞ2uðα0hR1β0Þσ;u
− 2rðrþ ρÞðrþ 2ρÞuðα0 ḣR1β0ÞuÞ�



þOðλÞ: ð116Þ

These need to satisfy

δGμν½hSR� þ δGμν½hS1a� þ 2δ2Gμν½hR1; hS1a� ¼ Oðλ0Þ;
x ∉ γ: ð117Þ

We have successfully checked that the covariant punctures
for hSRμν and hS1;aμν satisfy Eq. (117) through the leading two
orders, λ−3 and λ−2. However, we have not been able to verify
this at the highest order we have calculated, order λ−1. This is
due to the complexity and length of the expressions when
taking multiple different combinations of derivatives.
Despite this, we provide all orders of the covariant punctures
for the different singular field terms in a Mathematica
notebook in the Supplemental Material [70].
Comparing the covariant puncture for hS1μν from Eq. (111)

to the Lorenz gauge version of the puncture from Eq. (127)
of Paper II,

hS1a;Lorαβ ¼ 2m
λρ

gα
0

α g
β0
β ðgα0β0 þ 2uα0uβ0 Þ þOðλÞ; ð118Þ

we see that the highly regular gauge puncture has a more
complicated form. This continues at higher order with the
Lorenz gauge puncture being substantially simpler and
shorter at all orders. The more complex form results from
the highly regular gauge conditions that seek to preserve
the background light cone structure emanating from the
worldline in the perturbed spacetime; see Sec. I C for
further discussion. This has the knock-on effect that the
coordinate expansion in the highly regular gauge will be
much more complicated than the Lorenz gauge one as we
are introducing more and more terms, and more quantities
will need to be expanded. Thus, if we wanted to perform a
mode decomposition of the singular field in the highly
regular gauge, we would find that the process is likely to
be more complicated than in the Lorenz gauge due to an
increase in the number of quantities that need to be
decomposed into modes. However, we believe that the
benefits of the highly regular gauge outweigh any dis-
advantages that may come from the metric perturbations
having a more complicated structure. Merely eliminating
the two leading orders of hSSμν in Eq. (113) has dramatic
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consequences as it alleviates the problem of infinite mode
coupling [61] that was discussed in the introduction. This
should allow one to much more efficiently calculate modes
of the second-order source.

V. COORDINATE EXPANSION

In order to implement the covariant expansions in a
specific calculation, one must first write them in a chosen
coordinate system. This necessitates reexpanding all the
covariant quantities in terms of coordinate differences,

Δxα0 ≔ xα − xα
0
; ð119Þ

where Δxα0 ∼ λ. A derivative of Δxα0 at xμ0 then gives

Δxα0 ; β0 ¼ −δα0β0 : ð120Þ

This leaves us with coefficients evaluated at xμ
0
, as in

Eq. (56), contracted into certain combinations of Δxα0 .

A. Expanding Synge’s world function
and the parallel propagator

In this section, we generate generic coordinate expan-
sions of the covariant quantities appearing in the punctures
from Sec. IV D. We begin by expanding Synge’s world
function, σμ0 , and then use that to find expansions for r and
ρ. We then move on to find the coordinate expansion for the
parallel propagator.
To find a coordinate expansion of Synge’s world

function, we exploit the fact that it satisfies the identity
from Eq. (37). We make the following ansatz as an
expansion for Synge’s world function,

σ ¼
X∞
n¼2

λnAðn−1Þ
α0
1
…α0n

ðx0ÞΔxα01 � � �Δxα0n

¼ λ2Að1Þ
ΔΔðx0Þ þ λ3Að2Þ

ΔΔΔðx0Þ þ λ4Að3Þ
ΔΔΔΔðx0Þ

þ λ5Að4Þ
ΔΔΔΔΔðx0Þ þOðλ6Þ; ð121Þ

see Refs. [84,86] for similar expansions but with dif-
ferent conventions for Δxα0. The primed derivative is then
given by

σμ0 ¼ −2λAð1Þ
μ0Δ þ λ2ðAð1Þ

ΔΔ;μ0 − 3Að2Þ
μ0ΔΔÞ

þ λ3ðAð2Þ
ΔΔΔ;μ0 − 4Að3Þ

μ0ΔΔΔÞ
þ λ4ðAð3Þ

ΔΔΔΔ;μ0 − 5Að4Þ
μ0ΔΔΔΔÞ þOðλ5Þ: ð122Þ

We then substitute Eqs. (121) and (122) into the identity
for Synge’s world function from Eq. (37) and solve order-

by-order. The expressions for AðnÞ
α01���α0n are

Að1Þ
α0β0 ¼

1

2
gα0β0 ; ð123aÞ

Að2Þ
α0β0γ0 ¼

1

2
gδ0ðα0Γδ0

β0γ0Þ; ð123bÞ

Að3Þ
α0β0γ0δ0 ¼

1

72
ðRα0½γ0δ0�β0 þ 3gα0ι0Γι0

γ0δ0;β0

þ 9gι0ðβ0Γι0
γ0δ0Þ;α0 þ 9gι0μ0Γι0

α0ðβ0Γ
μ0
γ0δ0Þ

þ 6gμ0ðα0Γ
μ0
β0Þι0Γ

ι0
γ0δ0 þ 6gμ0ðγ0Γι0

δ0Þβ0Γ
μ0
α0ι0 Þ; ð123cÞ

Að4Þ
α0β0γ0δ0ι0 ¼

1

120
ð5gðα0jρ0jΓρ0

δ0ι0;γ0β0Þ þ 5Γρ0
ðα0β0gγ0jκ0jΓ

κ0
ι0jρ0j;δ0Þ

þ 10Γρ0
ðα0β0gjρ0κ0jΓ

κ0
δ0ι0;γ0Þ þ 10Γρ0

ðα0jκ0jgβ0jρ0j∂γ0Γ
κ0
δ0ι0Þ

þ 3Γρ0
ðα0β0Γ

κ0
γ0δ0Γ

μ0
ι0Þρ0gκ0μ0 þ 7Γρ0

ðα0β0Γ
κ0
γ0δ0Γ

μ0
ι0Þκ0gρ0μ0

þ 5Γρ0
ðα0β0Γ

κ0
γ0jμ0jΓ

μ0
δ0jρ0jgι0Þκ0 Þ: ð123dÞ

These are similar to the expansions appearing in Eq. (2.10)
of Ref. [86] and Eq. (3.10) of Ref. [84], but here, we have
a slightly different definition for Δxα0 and we take the
derivatives at xμ

0
instead of xμ. Taking the primed derivative

of the appropriate quantities and then substituting these and
Eq. (123) into Eq. (122) gives us the final expression for the
coordinate expansion of Synge’s world function,

σα0 ¼
X∞
n¼1

λnσðnÞα0 ; ð124Þ

where the first four orders are given by

σð1Þα0 ¼ −Δxα0 ; ð125aÞ

σð2Þα0 ¼ −
1

2
gα0δ0Γδ0

ΔΔ; ð125bÞ

σð3Þα0 ¼ −
1

6
ðgα0ι0Γι0

ΔΔ;Δ þ gα0μ0Γι0
ΔΔΓ

μ0
Δι0 Þ; ð125cÞ

σð4Þα0 ¼ −
1

24
½Γν0

ΔΔðgα0μ0Γκ0
Δν0Γ

μ0
Δκ0 þ gα0κ0Γκ0

Δν0;Δ

− Rα0ΔΔν0 Þ þ gα0ν0 ð2Γν0
Δκ0Γ

κ0
ΔΔ;Δ þ Γν0

ΔΔ;ΔΔÞ�: ð125dÞ
To check these expressions, one can substitute Eq. (125)
into Eq. (37) to demonstrate they satisfy the identity for
Synge’s world function.
We also require the expansions of r and ρ from Eqs. (91)

and (92) which can be performed by substituting in
Eqs. (124) and (125). The expression for r is trivial as it
just requires us to contract the four-velocity into Eq. (124),
so that, at leading order,

r ¼ −λr0 þOðλ2Þ; ð126Þ
where, in analogy with Eq. (91), we define the four-velocity
contracted with the coordinate difference as
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r0 ≔ uμ0Δxμ
0
; ð127Þ

We write the expansion of ρ as a power series,

ρ ¼
X∞
n¼1

λnρðnÞ; ð128Þ

and define

ρ0 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pμ0ν0Δxμ

0Δxν0
q

: ð129Þ

We then proceed to substitute our coordinate expansion for
σα0 from Eq. (124) into the definition for ρ from Eq. (128)
and collect terms at each order in λ. The first four orders of
the expansion are given by

ρð1Þ ¼ ρ0; ð130aÞ

ρð2Þ ¼ 1

2ρ0
ðΓΔ

ΔΔ þ Γu
ΔΔr0Þ; ð130bÞ

ρð3Þ ¼ −
1

8ρ30
ðΓΔ

ΔΔ þ Γu
ΔΔr0Þ2 þ

1

24ρ0
ð3Γu

ΔΔ
2 þ 4ΓΔ

ΔΔ;Δ

þ 4Γu
ΔΔ;Δr0 þ 4r0Γα0

ΔΔΓu
α0Δ þ 4Γα0

ΔΔΓΔ
α0Δ

þ 3gα0β0Γα0
ΔΔΓ

β0
ΔΔÞ; ð130cÞ

ρð4Þ ¼ 1

16ρ50
ðΓΔ

ΔΔþΓu
ΔΔr0Þ3−

1

48ρ30
ðΓΔ

ΔΔþΓu
ΔΔr0Þð3Γu

ΔΔ
2

þΓα0
ΔΔ½4ΓΔ

α0Δþ3gα0β0Γ
β0
ΔΔþ4Γu

α0Δr0�þ4½ΓΔ
ΔΔ;Δ

þΓu
ΔΔ;Δr0�Þþ

1

24ρ0
ð2Γu

ΔΔΓu
ΔΔ;Δþ2Γα0

ΔΔ;ΔΓΔ
α0Δ

þΓΔ
ΔΔ;ΔΔþ2Γα0

ΔΔ;ΔΓu
α0Δr0þΓu

ΔΔ;ΔΔr0þΓα0
ΔΔ½2Γu

α0ΔΓ
u
ΔΔ

þΓΔ
Δα0;Δþ2gα0β0Γ

β0
ΔΔ;ΔþΓu

Δα0;Δr0þRα0ΔuΔr0�
þΓα0

Δβ0Γ
β0
ΔΔ½ΓΔ

α0Δþ2gα0γ0Γ
γ0
ΔΔþΓu

α0Δr0�Þ: ð130dÞ

To calculate the coordinate expansion of gν
0
μ , we proceed

in a similar way to that of σα0 . To begin, we use the ansatz

gν
0
μ ¼ δν

0
μ0 þ λGð1Þν0

μ0Δ þ λ2Gð2Þν0
μ0ΔΔ þ λ3Gð3Þν0

μ0ΔΔΔ þOðλ4Þ ð131Þ

and substitute this into the identity for the derivative of the
parallel propagator contracted into a derivative of Synge’s
world function from Eq. (52). We proceed to solve this
order-by-order to find

Gð1Þα0
β0γ0 ¼ Γα0

β0γ0 ; ð132aÞ

Gð2Þα0
β0γ0δ0 ¼

1

2
ðΓα0

β0ι0Γ
ι0
γ0δ0 þ Rα0

ðγ0δ0Þβ0 þ Γα0
γ0δ0;β0 Þ; ð132bÞ

Gð3Þα0
β0γ0δ0ι0 ¼

1

6
Sym
γ0δ0ι0

ðΓς0
γ0δ0 ½3Rα0

ðς0ι0Þβ0 þ Γα0
ι0ς0;β0 �

þ Γα0
β0ς0 ½Γς0

γ0κ0Γ
κ0
δ0ι0 þ Γς0

γ0δ0;ι0 � − Γς0
β0γ0R

α0
ι0ς0δ0 þ Rα0

δ0γ0β0;ι0

þ Γα0
γ0ς0Γ

ς0
δ0ι0;β0 þ Γα0

γ0δ0;β0ι0 Þ: ð132cÞ

As with Eq. (123), similar expansions of the parallel
propagator have been done previously in Eqs. (3.10)–
(3.12) of Ref. [87]. We have checked our expressions by
substituting them into Eq. (52) and have verified that they
satisfy the identity to the appropriate order in λ.

B. Coordinate expansions of the covariant punctures

With our covariant punctures derived, we can proceed
to write them as a generic coordinate expansion using the
techniques discussed for the singular scalar field in Sec. VA.
This will allow them to be easily written in any desired
coordinate system.
To do so, we substitute our coordinate expansion for σα0

from Eqs. (124) and (125), ρ from Eqs. (128)–(130) and gμ
0

μ

from Eqs. (131) and (132) into the expression for hSμν from
Sec. IV D. Doing so results in expressions that are written
in terms of the coordinate difference, Δxμ0 and the four-

velocity, uμ
0
along with hR1μ0ν0 , Γ

μ0
ν0ρ0 , and Rα0β0μ0ν0 and their

respective derivatives. The final expressions are incredibly
long and, as such, we only display them through order λ0

(except for hSRμν , for which we just display the leading-
order term). The higher order terms are available in the
Supplemental Material in a Mathematica notebook [70].
The coordinate expansion of the first-order singular field,

with no acceleration, in the highly regular gauge is given by

hS1aμν ¼ 2m
λρ30

ðΔxμ0 þ uμ0 ðr0 − ρ0ÞÞðΔxν0 þ uν0 ðr0 − ρ0ÞÞ −
mλ0

ρ50
½uμ0uν0 ðr0 − ρ0Þð3r0ðΓΔ

ΔΔ þ Γu
ΔΔr0Þ

− ðΓΔ
ΔΔ þ Γu

ΔΔr0Þρ0 − 2Γu
ΔΔρ

2
0Þ þ 3Δxμ0Δxν0 ðΓΔ

ΔΔ þ Γu
ΔΔr0Þ þ 2ðΓΔ

ΔΔð3r0 − 2ρ0Þ
þ Γu

ΔΔðr0 − ρ0Þð3r0 þ ρ0ÞÞuðμ0Δxν0Þ − 2uðμ0 ð2ΓΔ
ν0ÞΔ þ gν0Þα0Γα0

ΔΔ þ 2Γu
ν0ÞΔðr0 − ρ0ÞÞ

× ðr0 − ρ0Þρ20 − 2Δxðμ0ρ20ð2ΓΔ
ν0ÞΔ þ gν0Þα0Γα0

ΔΔ þ 2Γu
ν0ÞΔðr0 − ρ0ÞÞ� þOðλÞ: ð133Þ
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Moving to second order, the first-order singular field with acceleration is

hS1aμν ¼ −
mλ0

ρ50
½aΔuμ0uν0 ð3r30 − r20ρ0 − 4r0ρ20 þ 4ρ30Þðρ0 − r0Þ − 3Δxμ0Δxν0aΔr20 þ 2ðr0ðr0 − 2ρ0Þ

× ρ20Δxðμ0aν0Þ þ aΔð2r20ρ0 þ 2r0ρ20 − 2ρ30 − 3r30ÞΔxðμ0uν0Þ þ r0ðr0 − 2ρ0Þðr0 − ρ0Þρ20aðμ0uν0ÞÞ� þOðλÞ: ð134Þ

The singular times singular piece is given by

hSSμν ¼ −
2m2λ0

3ρ40
½6ρ30Rðμ0jΔjν0Þu þ 2ð3r0 − ρ0Þρ30Rðμ0jujν0Þu þ RΔuΔuð5Δxμ0Δxν0 − gμ0ν0ρ20

þ uμ0uν0 ð5r20 − 6r0ρ0 þ 5ρ20Þ þ ð10r0 − 6ρ0ÞΔxðμ0uν0ÞÞ − 6ρ0Δxðμ0Rν0ÞΔΔu þ 2ρ0

× ð2ρ0 − 3r0ÞΔxðμ0Rν0ÞuΔu − 6r0ρ0uðμ0Rν0ÞΔΔu − 2ρ0ð3r20 − 2r0ρ0 þ 3ρ20Þuðμ0Rν0ÞuΔu� þOðλÞ: ð135Þ

Finally, the singular times regular piece is

hSRμν ¼ m
λρ50

½4ρ20Δxðμ0hR1ν0ÞΔ þ 4ðr0 − ρ0Þρ20Δxðμ0hR1ν0Þu − hR1Δuð6Δxμ0Δxν0r0 þ 2uμ0uν0 ðr0 − ρ0Þ2

× ð3r0 þ 2ρ0Þ þ 4ðr0 − ρ0Þð3r0 þ ρ0ÞΔxðμ0uν0ÞÞ − hR1ΔΔð3Δxμ0Δxν0 þ uμ0uν0 ðr0 − ρ0Þð3r0 − ρ0Þ
þ 2ð3r0 − 2ρ0ÞΔxðμ0uν0ÞÞ − hR1uuð3Δxμ0Δxν0r20 þ uμ0uν0 ðr0 − ρ0Þ2ð3r20 þ 2r0ρ0 − 2ρ20Þ
þ 2ðr0 − ρ0Þð3r20 þ r0ρ0 − ρ20ÞΔxðμ0uν0ÞÞ þ 4ðr0 − ρ0Þρ20uðμ0 ðhR1ν0ÞΔ þ ðr0 − ρ0ÞhR1ν0ÞuÞ� þOðλ0Þ: ð136Þ

VI. CONCLUSION AND APPLICATIONS

The main result of this paper is the conversion of the
local coordinate form of the metric perturbations given in
Paper I into fully covariant form using the methods of
Paper II. These were provided in truncated form in
Sec. IV D and in full form in the Mathematica notebook
in the Supplemental Material [70].
We have then reexpanded these covariant expressions

and written them as a generic coordinate expansion that
is valid in any desired coordinate system. As with the
covariant expressions, abridged forms were presented in
Sec. V B, with the full expressions appearing in the Supple-
mental Material [70]. By providing the metric perturbations
in these forms, we have enabled them to be written in any
desired coordinate system without necessitating the use of a
potentially complicated coordinate transformation from
Fermi-Walker coordinates.
One useful immediate extension of this work would be to

calculate the modes of the punctures to see how well the
highly regular gauge alleviates the problem of infinite mode
coupling. For quasicircular orbits in Schwarzschild, for
example, one could decompose the punctures into modes
using the methods of Ref. [66]. From this, one could use the
mode coupling formula from Eq. (28) to explicitly calculate
the behavior of the second-order Einstein tensor near to the
worldline of the small object.
An interesting property of the highly regular gauge

to note is that, following from the gauge conditions
given in Sec. I C, one can write the singular field metric

perturbations in terms of null vectors. For example, if one
defines

kα ¼
gα

0
αffiffiffi
2

p
�
uα0 þ

Pα0β0σ
β0

ρ

�

¼ gα
0

αffiffiffi
2

p
ρ
ðσα0 þ ðrþ ρÞuα0 Þ; ð137Þ

so that kαkα ¼ 0, one can write the first-order singular field
from Eq. (111) as

hS1aμν ¼ 4m
λρ

kμkν þOðλÞ: ð138Þ

One can then write Eq. (1) in terms of these null vectors as

gμν ¼ gμν þ ϵðhR1μν þ hS1aμν Þ þOðϵ2Þ;
¼ gμν þ ϵλ−12Vkμkν þOðϵλ0; ϵ2Þ; ð139Þ

where V ¼ 2m=ðρÞ. This has the form of a Kerr-Schild per-
turbation [88,89] on the background spacetime. However,
this correspondence is broken in the singular field at order λ
through the introduction of Riemann tidal terms in hS1μν .
Additionally, hR1μν kμkν ≠ 0 due to the regular field being in a
generic gauge.
It would be interesting to further explore the connection

between the highly regular gauge and Kerr-Schild gauges,
potentially drawing on previous work by Harte [90] and
Harte and Vines [91].
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APPENDIX: QUASI-KERR-SCHILD FORM OF
THE METRIC PERTURBATIONS

In this section, we derive the leading-order form of the
second-order metric perturbations when written in the
quasi-Kerr-Schild form discussed in Sec. VI.
We begin with the first-order singular field with accel-

eration. This now takes the form

hS1aμν ¼ λ0Vffiffiffi
2

p
ρ2

½2aðμkνÞrρðrþ 2ρÞ þ fakðr− ρÞ þ aNðrþ ρÞg

× f2kμkνðr2 − rρ− ρ2Þ− kðμNνÞðr2 þ 2rρþ 2ρ2Þg�
þOðλÞ; ðA1Þ

where we have contracted in the parallel propagators and
introduced the auxiliary null vector

Nα ¼
gα

0
αffiffiffi
2

p
�
uα0 −

Pα0β0σ
β0

ρ

�

¼ −
gα

0
αffiffiffi
2

p
ρ
ðσα0 þ ðr − ρÞuα0 Þ ðA2Þ

that is normalized so that kαNα ¼ −1. Moving on to
the singular times singular piece, after substituting in
Eqs. (137) and (A2), we see that

hSSμν ¼ λ0ρ2V2

6
½4Rμkνk − 2RkðμνÞN − 2RμNνN

þ 2ð4kðμ − NðμÞRνÞkNk − 2ðkðμ − 2NðμÞRνNkN

þ ðgμν − 8kμkν − 2NμNνÞRkNkN � þOðλÞ: ðA3Þ

Finally, the singular times regular piece is now given by

hSRμν ¼ V
2λ

½8kðμhR1νÞk þ ðhR1kk þ 6hR1kN − 3hR1NNÞkμkν
þ 4hR1kk kðμNνÞ� þOðλ0Þ: ðA4Þ

These calculations can be extended to higher order in λ by
continuing to replace uα0 and σα0 with kα and Nα through
the use of Eqs. (137) and (A2).
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