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Summary 10

Modern time series data often exhibit complex dependence and structural changes which are
not easily characterised by shifts in the mean or model parameters. We propose a nonparametric
data segmentation methodology for multivariate time series termed NP-MOJO. By considering
joint characteristic functions between the time series and its lagged values, NP-MOJO is able
to detect change points in the marginal distribution, but also those in possibly non-linear serial 15

dependence, all without the need to pre-specify the type of changes. We show the theoretical
consistency of NP-MOJO in estimating the total number and the locations of the change points,
and demonstrate the good performance of NP-MOJO against a variety of change point scenarios.
We further demonstrate its usefulness in applications to seismology and economic time series.

Some key words: change point detection, joint characteristic function, moving sum, multivariate time series, nonpara- 20

metric

1. Introduction
Change point analysis has been an active area of research for decades, dating back to Page

(1954). Literature on change point detection continues to expand rapidly due to its prominence
in numerous applications, including biology (Jewell et al., 2020), financial analysis (Lavielle & 25

Teyssiere, 2007) and environmental sciences (Carr et al., 2017). Considerable efforts have been
made for developing computationally and statistically efficient methods for data segmentation,
a.k.a. multiple change point detection, in the mean of univariate data under independence (Killick
et al., 2012; Frick et al., 2014; Fryzlewicz, 2014) and permitting serial dependence (Tecuapetla-
Gómez & Munk, 2017; Dette et al., 2020; Cho & Kirch, 2022; Cho & Fryzlewicz, 2023). 30

There also exist methods for detecting changes in the covariance (Aue et al., 2009; Wang et al.,
2021), parameters under linear regression (Bai & Perron, 1998; Xu et al., 2024) or other models
(Fryzlewicz & Subba Rao, 2014; Safikhani & Shojaie, 2022) in fixed and high dimensions. For
an overview, see Truong et al. (2020) and Cho & Kirch (2023+).

Any departure from distributional assumptions such as independence and Gaussianity tends 35

to result in poor performance of change point algorithms. Furthermore, it may not be realistic to
assume any knowledge of the type of change point that occurs, or to make parametric assumptions
on the data generating process, for time series that possess complex structures and are observed
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2 E. T. McGonigle and H. Cho

over a long period. Searching for change points in one property of the data (e.g. mean), when
the time series instead undergoes changes in another (e.g. variance), may lead to misleading con-40

clusions and inference on such data. Therefore, it is desirable to develop flexible, nonparametric
change point detection techniques that are applicable to detect general changes in the underlying
distribution of serially dependent data.

There are several strategies for the nonparametric change point detection problem, such as
those based on the empirical cumulative distribution and density functions (Carlstein, 1988; Zou45

et al., 2014; Haynes et al., 2017; Madrid Padilla et al., 2021; Vanegas et al., 2022; Madrid Padilla
et al., 2022, 2023), kernel transforms of the data (Harchaoui et al., 2009; Celisse et al., 2018;
Arlot et al., 2019; Li et al., 2019) or 𝑈-statistics measuring the ‘energy’-based distance between
different distributions (Matteson & James, 2014; Chakraborty & Zhang, 2021; Boniece et al.,
2023). There also exist graph-based methods applicable to non-Euclidean data (Chen & Zhang,50

2015; Chu & Chen, 2019). All these methods can only detect changes in the marginal distribution
of the data and apart from Madrid Padilla et al. (2023), assume serial independence. We also
mention Cho & Fryzlewicz (2012), Preuß et al. (2015) and Korkas & Fryzlewicz (2017) where
the problem of detecting changes in the second-order structure is addressed, but their methods
do not have power against changes in non-linear dependence.55

We propose NP-MOJO, a NonParametric MOving sum procedure for detecting changes in
the JOint characteristic function, which detects multiple changes in serial, possibly non-linear
dependence as well as marginal distributions of a multivariate time series {𝑋𝑡 }𝑛𝑡=1. We adopt a
moving sum procedure to scan the data for multiple change points. The moving sum methodology
has successfully been applied to a variety of change point testing (Chu et al., 1995; Huskova &60

Slaby, 2001) and data segmentation problems (Eichinger & Kirch, 2018). Here, we combine it
with a detector statistic carefully designed to detect changes in complex dependence structure
beyond those detectable from considering the marginal distribution only. Specifically, we utilise
an energy-based distributional discrepancy that measures any change in the joint characteristic
function of the time series at some lag ℓ ≥ 0, which allows for detecting changes in the joint65

distribution of (𝑋𝑡 , 𝑋𝑡+ℓ) beyond the changes in their linear dependence. To the best of our
knowledge, NP-MOJO is the first nonparametric methodology which is able to detect changes in
non-linear serial dependence in multivariate time series.

We establish that NP-MOJO achieves consistency in estimating the number and locations of
the change points for a given lag, providing convergence rates for the change point location70

estimators, and propose a methodology that extends this desirable property of single-lag NP-
MOJO to multiple lags. Combined with a dependent multiplier bootstrapping procedure, NP-
MOJO and its multi-lag extension perform well across a wide range of change point scenarios
in simulations and real data applications. Accompanying R software implementing NP-MOJO is
available as the R package CptNonPar (McGonigle & Cho, 2023) on CRAN.75

2. Model and measure of discrepancy
We observe a multivariate time series {𝑋𝑡 }𝑛𝑡=1 of (finite) dimension 𝑝, where

𝑋𝑡 =

𝑞∑︁
𝑗=0

𝑋
( 𝑗 )
𝑡 · I{𝜃𝑗 + 1 ≤ 𝑡 ≤ 𝜃𝑗+1} (1)

with 𝑋𝑡 = (𝑋𝑡1, . . . , 𝑋𝑡 𝑝)⊤ and 0 = 𝜃0 < 𝜃1 < · · · < 𝜃𝑞 < 𝜃𝑞+1 = 𝑛. For each sequence
{𝑋 ( 𝑗 )𝑡 : 𝑡 ≥ 1}, 𝑗 = 0, . . . , 𝑞, there exists an R𝑝-valued measurable function 𝑔 ( 𝑗 ) (·) =80

(𝑔 ( 𝑗 )1 (·), . . . , 𝑔
( 𝑗 )
𝑝 (·))⊤ such that 𝑋 ( 𝑗 )𝑡 = 𝑔 ( 𝑗 ) (F𝑡 ) with F𝑡 = 𝜎(𝜀𝑠 : 𝑠 ≤ 𝑡), and i.i.d. random ele-
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NP-MOJO 3

ments 𝜀𝑡 . We assume that 𝑔 ( 𝑗−1) ≠ 𝑔 ( 𝑗 ) for all 𝑗 = 1, . . . , 𝑞, such that under the model (1), the
time series undergoes 𝑞 change points at locations Θ = {𝜃1, . . . , 𝜃𝑞}, with the notational conven-
tion that 𝜃0 = 0 and 𝜃𝑞+1 = 𝑛. That is, {𝑋𝑡 }𝑛𝑡=1 consists of 𝑞 + 1 stationary segments where the
𝑗-th segment is represented in terms of a segment-dependent ‘output’ 𝑔 ( 𝑗 ) (F𝑡 ), with the common 85

‘input’ F𝑡 shared across segments such that dependence across the segments is not ruled out.
Each segment has a non-linear Wold representation as defined by Wu (2005); this representation
includes commonly adopted time series models including ARMA and GARCH processes.

Denote the inner product of two vectors 𝑥 and 𝑦 by ⟨𝑥, 𝑦⟩ = 𝑥⊤𝑦 and 𝚤 the imaginary unit with
𝚤2 = −1. At some integer ℓ, define the joint characteristic function of {𝑋 ( 𝑗 )𝑡 }𝑡∈Z at lag ℓ, as 90

𝜙
( 𝑗 )
ℓ
(𝑢, 𝑣) = E

{
exp

(
𝚤⟨𝑢, 𝑋 ( 𝑗 )1 ⟩ + 𝚤⟨𝑣, 𝑋

( 𝑗 )
1+ℓ⟩

)}
, 0 ≤ 𝑗 ≤ 𝑞.

We propose to measure the size of changes between adjacent segments under (1), using an
‘energy-based’ distributional discrepancy given by

𝑑
( 𝑗 )
ℓ

=

∫
R𝑝

∫
R𝑝

���𝜙 ( 𝑗 )
ℓ
(𝑢, 𝑣) − 𝜙

( 𝑗−1)
ℓ

(𝑢, 𝑣)
���2 𝑤(𝑢, 𝑣)𝑑𝑢𝑑𝑣, 1 ≤ 𝑗 ≤ 𝑞, (2)

where 𝑤(𝑢, 𝑣) is a positive weight function for which the above integral exists. For given lag 95

ℓ ≥ 0, the quantity 𝑑
( 𝑗 )
ℓ

measures the weighted 𝐿2-norm of the distance between the lag ℓ joint
characteristic functions of {𝑋 ( 𝑗−1)

𝑡 }𝑡∈Z and {𝑋 ( 𝑗 )𝑡 }𝑡∈Z. A discrepancy measure of this form is a
natural choice for nonparametric data segmentation, since:

Lemma 1. For any ℓ ≥ 0, 𝑑 ( 𝑗 )
ℓ

= 0 if and only if (𝑋 ( 𝑗 )1 , 𝑋
( 𝑗 )
1+ℓ)

𝑑
= (𝑋 ( 𝑗−1)

1 , 𝑋
( 𝑗−1)
1+ℓ ).

Lemma 1 extends the observation made in Matteson & James (2014) about the correspondence 100

between the characteristic function and marginal distribution. It shows that by considering the
joint characteristic functions 𝜙

( 𝑗 )
ℓ
(𝑢, 𝑣) at multiple lags ℓ ≥ 0, the discrepancy 𝑑

( 𝑗 )
ℓ

is able to
capture changes in the serial dependence as well as those in the marginal distribution of {𝑋𝑡 }𝑛𝑡=1.

The following lemma lists some choices of the weight function 𝑤(𝑢, 𝑣) and the associated
representation of 𝑑 ( 𝑗 )

ℓ
as the kernel-based discrepancy between 𝑌

( 𝑗 )
𝑡 = (𝑋 ( 𝑗 )𝑡 , 𝑋

( 𝑗 )
𝑡+ℓ ) and 𝑌

( 𝑗−1)
𝑡 , 105

extending the observation made in Matteson & James (2014) for the setting where a sequence
of independent observations are undergoing changes in the marginal distribution. Let ∥𝑥∥ denote
the Euclidean norm of a vector 𝑥, and define 𝑌

( 𝑗 )
𝑡 = ( 𝑋̃ ( 𝑗 )𝑡 , 𝑋̃

( 𝑗 )
𝑡+ℓ ) where 𝑋̃

( 𝑗 )
𝑡 = 𝑔 ( 𝑗 ) (F̃𝑡 ) with

F̃𝑡 = 𝜎(𝜀𝑠 : 𝑠 ≤ 𝑡) and 𝜀𝑡 is an independent copy of 𝜀𝑡 .

Lemma 2. (i) For any 𝛽 > 0, suppose that 𝑑 ( 𝑗 )
ℓ

in (2) is obtained with respect to the following 110

weight function:

𝑤1(𝑢, 𝑣) = 𝐶1(𝛽, 𝑝)−2 exp
{
− 1

2𝛽2

(
∥𝑢∥2 + ∥𝑣∥2

)}
with 𝐶1(𝛽, 𝑝) = (2𝜋) 𝑝/2𝛽𝑝 .

Then, the function ℎ1 : R2𝑝 × R2𝑝 → [0, 1] defined as ℎ1(𝑥, 𝑦) = exp(−𝛽2∥𝑥 − 𝑦∥2/2) for
𝑥, 𝑦 ∈ R2𝑝, satisfies

𝑑
( 𝑗 )
ℓ

= E
{
ℎ1

(
𝑌
( 𝑗 )

1 , 𝑌
( 𝑗 )

1

)}
+ E

{
ℎ1

(
𝑌
( 𝑗−1)

1 , 𝑌
( 𝑗−1)

1

)}
− 2E

{
ℎ1

(
𝑌
( 𝑗 )

1 , 𝑌
( 𝑗−1)

1

)}
. 115
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4 E. T. McGonigle and H. Cho

(ii) For any 𝛿 > 0, suppose that 𝑑 ( 𝑗 )
ℓ

is obtained with

𝑤2(𝑢, 𝑣) = 𝐶2(𝛿, 𝑝)−2
𝑝∏

𝑠=1
𝑢2
𝑠𝑣

2
𝑠 exp

{
−𝛿

(
𝑢2
𝑠 + 𝑣2

𝑠

)}
with 𝐶2(𝛿, 𝑝) =

𝜋𝑝/2

2𝑝𝛿3𝑝/2 .

Then, the function ℎ2 : R2𝑝 × R2𝑝 → [−2𝑒−2/3, 1] defined as

ℎ2(𝑥, 𝑦) =
2𝑝∏
𝑟=1

{
2𝛿 − (𝑥𝑟 − 𝑦𝑟 )2

}
exp

{
− 1

4𝛿 (𝑥𝑟 − 𝑦𝑟 )2
}

2𝛿

for 𝑥 = (𝑥1, . . . , 𝑥2𝑝)⊤ and 𝑦 = (𝑦1, . . . , 𝑦2𝑝)⊤, satisfies120

𝑑
( 𝑗 )
ℓ

= E
{
ℎ2

(
𝑌
( 𝑗 )

1 , 𝑌
( 𝑗 )

1

)}
+ E

{
ℎ2

(
𝑌
( 𝑗−1)

1 , 𝑌
( 𝑗−1)

1

)}
− 2E

{
ℎ2

(
𝑌
( 𝑗 )

1 , 𝑌
( 𝑗−1)

1

)}
.

Lemma 2 is a special case of Bochner’s Theorem applied to the chosen weight functions, see for
example Section 5.3 of Sejdinovic et al. (2013). The weight function 𝑤1 is commonly referred
to as the Gaussian weight function. Both 𝑤1 and 𝑤2 are unit integrable and separable in their
arguments, such that 𝑑 ( 𝑗 )

ℓ
is well-defined due to the boundedeness of the characteristic function.125

We provide an alternative weight function in Appendix A.2 and also refer to Fan et al. (2017) for
other suitable choices.

Remark 1. From Lemma 2, 𝑑 ( 𝑗 )
ℓ

can be viewed as the squared maximum mean discrepancy
(MMD) on a suitably defined reproducing kernel Hilbert space with the associated kernel function;
see Lemma 6 of Gretton et al. (2012) and Section 2.6 of Celisse et al. (2018). We also note the130

literature on the (auto)distance correlation for measuring and testing dependence in multivariate
(Székely et al., 2007) and time series (Zhou, 2012; Fokianos & Pitsillou, 2017; Davis et al., 2018)
settings.

Remark 2. In Model (1) (and in our theoretical results), the dimension 𝑝 of the time series is
assumed fixed. We would expect practical performance to deteriorate with increasing dimension135

since we use an energy-based method. For example, when the time series undergoes a change in
both mean and variance, the pre- and post-change segments of the time series can be separated
into an “inner layer" and “outer layer" based on their pairwise Euclidean distances. However,
as Chen & Friedman (2017) note, “data points in the outer layer find themselves to be closer to
points in the inner layer than other points in the outer layer", due to the curse of dimensionality.140

See for example Ramdas et al. (2015) or Section 2.2 of Chu & Chen (2019) for further discussion.

3. Methodology
3.1. The NP-MOJO procedure

In this section we describe our proposed nonparametric moving sum procedure for detecting
changes in the joint characteristic function, henceforth referred to as NP-MOJO. The identities145

given in Lemma 2 allow for the efficient computation of the statistics approximating 𝑑
( 𝑗 )
ℓ

and their
weighted sums, which forms the basis for the NP-MOJO procedure for detecting multiple change
points from a multivariate time series {𝑋𝑡 }𝑛𝑡=1 under the model (1). Throughout, we present the
procedure with a generic kernel ℎ associated with some weight function 𝑤. We first introduce
NP-MOJO for the problem of detecting changes in the joint distribution of 𝑌𝑡 = (𝑋𝑡 , 𝑋𝑡+ℓ) at a150

given lag ℓ ≥ 0, and extend it to the multi-lag problem in Section 3.3.
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Fig. 1: Top: time series of length 𝑛 = 1000 with change points 𝜃1 = 300 and 𝜃2 = 650 (vertical dashed lines), see
Example 1. Bottom: corresponding detector statistics 𝑇ℓ (𝐺, 𝑘) computed at lags ℓ = 0 (dashed) and ℓ = 1 (solid).

For fixed bandwidth 𝐺 ∈ N, NP-MOJO scans the data using a detector statistic computed on
neighbouring moving windows of length 𝐺, which approximates the discrepancy between the
local joint characteristic functions of the corresponding windows measured analogously as in (2).
Specifically, the detector statistic at location 𝑘 is given by the following two-sample 𝑉-statistic: 155

𝑇ℓ (𝐺, 𝑘) = 1
(𝐺 − ℓ)2

{
𝑘−ℓ∑︁

𝑠,𝑡=𝑘−𝐺+1
ℎ(𝑌𝑠, 𝑌𝑡 ) +

𝑘+𝐺−ℓ∑︁
𝑠,𝑡=𝑘+1

ℎ(𝑌𝑠, 𝑌𝑡 ) − 2
𝑘−ℓ∑︁

𝑠=𝑘−𝐺+1

𝑘+𝐺−ℓ∑︁
𝑡=𝑘+1

ℎ(𝑌𝑠, 𝑌𝑡 )
}

for 𝑘 = 𝐺, . . . , 𝑛 − 𝐺, as an estimator of the local discrepancy measure

Dℓ (𝐺, 𝑘) =
𝑞∑︁
𝑗=0

(
𝐺 − ℓ − |𝑘 − 𝜃𝑗 |

𝐺 − ℓ

)2
𝑑
( 𝑗 )
ℓ
· I{|𝑘 − 𝜃𝑗 | ≤ 𝐺 − ℓ}. (3)

At given 𝑘 , the statistic 𝑇ℓ (𝐺, 𝑘) measures the difference in the distribution of𝑌𝑡 over the disjoint
intervals of length 𝐺 − ℓ around 𝑘 , and satisfies 160

E{𝑇ℓ (𝐺, 𝑘)} = Dℓ (𝐺, 𝑘) + O(𝐺−1/2). (4)

We have Dℓ (𝐺, 𝑘) = 0 when the section of the data {𝑋𝑡 , |𝑡 − 𝑘 | ≤ 𝐺 − ℓ} does not undergo a
change and accordingly, 𝑇ℓ (𝐺, 𝑘) is expected to be close to zero. On the other hand, if |𝑘 − 𝜃𝑗 | <
𝐺 − ℓ, then Dℓ (𝐺, 𝑘) increases and then decreases around 𝜃𝑗 with a local maximum at 𝑘 = 𝜃𝑗 .
The statistic 𝑇ℓ (𝐺, 𝑘) is expected to behave similarly: in particular, at any change point location
𝜃𝑗 , we have that E{𝑇ℓ (𝐺, 𝜃𝑗)} = 𝑑

( 𝑗 )
ℓ
+ O(𝐺−1/2) (see Lemma D.4 in the supplementary material 165

for further information). We illustrate this using the following example.

Example 1. A univariate time series {𝑋𝑡 }𝑛𝑡=1 of length 𝑛 = 1000 is generated as 𝑋𝑡 = 𝜇𝑡 + 𝜀𝑡 ,
where 𝜇𝑡 = 0.7 · I{𝑡 > 𝜃1} and 𝜀𝑡 = 𝜀

(1)
𝑡 · I{𝑡 < 𝜃2} + 𝜀 (2)𝑡 · I{𝑡 ≥ 𝜃2}, with 𝜃1 = 300 and 𝜃2 =

650. Each 𝜀
( 𝑗 )
𝑡 is an autoregressive (AR) process of order 1: 𝜀 (1)𝑡 = 0.5𝜀 (1)

𝑡−1 +𝑊𝑡 and 𝜀
(2)
𝑡 =

−0.5𝜀 (2)
𝑡−1 +𝑊𝑡 , where {𝑊𝑡 }𝑡∈Z is a white noise process with var(𝑊𝑡 ) =

√
1 − 0.52. This choice 170

leads to var(𝑋𝑡 ) = 1 for all 𝑡, see the top panel of Figure 1 for a realisation. Then, the mean
shift at 𝜃1 is detectable at all lags while the autocorrelation change at 𝜃2 is detectable at odd lags
only, i.e. 𝑑 (2)

ℓ
= 0 for even ℓ ≥ 0. The bottom panel of Figure 1 plots 𝑇ℓ (𝐺, 𝑘), 𝐺 ≤ 𝑘 ≤ 𝑛 − 𝐺,
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6 E. T. McGonigle and H. Cho

computed using kernel ℎ2 in Lemma 2 (ii) with 𝐺 = 166. At lag ℓ = 0, the detector statistic forms
a prominent peak around 𝜃1 but it is flat around 𝜃2; at lag ℓ = 1, the statistic 𝑇1(𝐺, 𝑘) forms local175

maxima around both 𝜃𝑗 , 𝑗 = 1, 2.

Based on these observations, it is reasonable to detect and locate the change points in the joint
distribution of (𝑋𝑡 , 𝑋𝑡+ℓ) as significant local maximisers of 𝑇ℓ (𝐺, 𝑘). We adopt the selection
criterion, first considered by Eichinger & Kirch (2018) in the context of detecting mean shifts
from univariate time series, for simultaneous estimation of multiple change points. For some fixed180

constant 𝜂 ∈ (0, 1) and a threshold 𝜁ℓ (𝑛, 𝐺) > 0, we identify any local maximiser of 𝑇ℓ (𝐺, 𝑘),
say 𝜃̂, which satisfies

𝑇ℓ (𝐺, 𝜃̂) > 𝜁ℓ (𝑛, 𝐺) and 𝜃̂ = arg max
𝑘: |𝑘−𝜃 | ≤𝜂𝐺𝑇ℓ (𝐺, 𝑘). (5)

That is, 𝜃̂ is declared a change point if it is a local maximiser of 𝑇ℓ (𝐺, 𝑘) over a sufficiently
large interval of size 𝜂𝐺, at which the threshold 𝜁ℓ (𝑛, 𝐺) is exceeded. We denote the set of such185

estimators fulfilling (5) by Θ̂ℓ with 𝑞ℓ = |Θ̂ℓ |. The choice of 𝜁ℓ (𝑛, 𝐺) is discussed in Section 3.4.

3.2. Theoretical properties
For some finite integer ℓ ≥ 0, we define the index set of the change points detectable at lag ℓ

as Iℓ = {1 ≤ 𝑗 ≤ 𝑞 : 𝑑
( 𝑗 )
ℓ

≠ 0}, and denote its cardinality by 𝑞ℓ = |Iℓ | ≤ 𝑞. Not all change points
are detectable at all lags, see Example 1 where we have I0 = {1} and I1 = {1, 2}. In this section,190

we show that the single-lag NP-MOJO described in Section 3.1 consistently estimates the total
number 𝑞ℓ and the locations {𝜃𝑗 , 𝑗 ∈ Iℓ} of the change points detectable at lag ℓ, by Θ̂ℓ .

Writing 𝑔𝑡𝑖 (·) =
∑𝑞

𝑗=0 𝑔
( 𝑗 )
𝑖
(·) · I{𝜃𝑗 + 1 ≤ 𝑡 ≤ 𝜃𝑗+1}, define 𝑋𝑡𝑖,{𝑡−𝑠} = 𝑔𝑡𝑖 (F𝑡 ,{𝑡−𝑠}), where

𝐹𝑡 ,{𝑡−𝑠} = 𝜎(. . . , 𝜀𝑡−𝑠−1, 𝜀𝑡−𝑠, 𝜀𝑡−𝑠+1, . . . , 𝜀𝑡 ) is a coupled version of F𝑡 with 𝜀𝑡−𝑠 replaced
by its independent copy 𝜀𝑡−𝑠. For a random variable 𝑍 and 𝜈 > 0, let ∥𝑍 ∥𝜈 = {E( |𝑍 |𝜈)}1/𝜈 .195

Analogously as in Xu et al. (2024), we define the element-wise functional dependence measure
and its cumulative version as

𝛿𝑠,𝜈,𝑖 = sup
𝑡∈Z
∥𝑋𝑡𝑖 − 𝑋𝑡𝑖,{𝑡−𝑠} ∥𝜈 and Δ𝑚,𝜈 = max

1≤𝑖≤𝑝

∞∑︁
𝑠=𝑚

𝛿𝑠,𝜈,𝑖, 𝑚 ∈ Z. (6)

Then, we make the following assumptions on the degree of serial dependence in {𝑋𝑡 }𝑛𝑡=1.

Assumption 1. There exist some constants 𝐶𝐹 , 𝐶𝑋 ∈ (0,∞) and 𝛾1 ∈ (0, 2) such that200

sup
𝑚≥0

exp(𝐶𝐹𝑚
𝛾1)Δ𝑚,2 ≤ 𝐶𝑋 .

Assumption 2. The time series {𝑋𝑡 }𝑛𝑡=1 is continuous and 𝛽-mixing with 𝛽(𝑚) ≤ 𝐶𝛽𝑚
−𝛾2 for

some constants 𝐶𝛽 ∈ (0,∞) and 𝛾2 ≥ 1, where

𝛽(𝑚) = sup
𝑡∈Z

(
sup

1
2

𝑅∑︁
𝑟=1

𝑆∑︁
𝑠=1
|pr(𝐴𝑟 ∩ 𝐵𝑠) − pr(𝐴𝑟 )pr(𝐵𝑠) |

)
.

Here, the inner supremum is taken over all pairs of finite partitions {𝐴1, . . . , 𝐴𝑅} of F𝑡 =205

𝜎(𝜀𝑢, 𝑢 ≤ 𝑡) and {𝐵1, . . . , 𝐵𝑆} of 𝜎(𝜀𝑢, 𝑢 ≥ 𝑡 + 𝑚).

Assumptions 1 and 2 require the serial dependence in {𝑋𝑡 }𝑛𝑡=1, measured by Δ𝑚,2 and 𝛽(𝑚), to
decay exponentially, and both are met by a range of linear and non-linear processes (Wu, 2005;
Mokkadem, 1988). Under Assumption 1, we have ∥𝑋𝑖𝑡 ∥2 < ∞ for all 𝑖 and 𝑡. Assumption 1 is
required for bounding 𝑇ℓ (𝐺, 𝑘) − E{𝑇ℓ (𝐺, 𝑘)} uniformly over 𝑘 , while Assumption 2 is used210
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NP-MOJO 7

for controlling the bias E{𝑇ℓ (𝐺, 𝑘)} − Dℓ (𝐺, 𝑘) which is attributed to serial dependence. A
condition similar to Assumption 2 is often found in the time series literature making use of
distance correlations, see e.g. Davis et al. (2018) and Yousuf & Feng (2022). Under the stronger
assumption that {𝑋 ( 𝑗 )𝑡 } and {𝑋 ( 𝑗+1)𝑡 } are independent, we can derive the analogous results as
those presented in Theorems 1 and 3, under Assumption 2 only. 215

Assumption 3. The kernel function ℎ is symmetric and bounded, and can be written as ℎ(𝑥, 𝑦) =
ℎ0(𝑥 − 𝑦) for some function ℎ0 : R2𝑝 → R that is Lipschitz continuous with respect to ∥ · ∥ with
Lipschitz constant 𝐶ℎ ∈ (0,∞).
Assumption 3 on the kernel function ℎ is met by ℎ1 and ℎ2 introduced in Lemma 2, with constants
𝐶ℎ bounded by 𝛽𝑒−1/2 and 2

√
2𝑝3/2𝛿−1/2, respectively. 220

Assumption 4. (i) 𝐺−1 log(𝑛) → 0 as 𝑛→∞ while min0≤ 𝑗≤𝑞 (𝜃𝑗+1 − 𝜃𝑗) ≥ 2𝐺.
(ii)

√︁
𝐺/log(𝑛)min𝑗∈Iℓ 𝑑

( 𝑗 )
ℓ
→∞.

Recall that Iℓ denotes the index set of detectable change points at lag ℓ, i.e. 𝑑 ( 𝑗 )
ℓ

> 0 iff 𝑗 ∈ Iℓ .
However, this definition of detectability is too weak to ensure that all 𝜃𝑗 , 𝑗 ∈ Iℓ , are detected by
NP-MOJO with high probability at lag ℓ, since we do not rule out the case of local changes where 225

𝑑
( 𝑗 )
ℓ
→ 0. Consider Example 1: the change in the autocorrelations results in 𝑑

(2)
ℓ

> 0 for all
odd ℓ but the size of change is expected to decay exponentially fast as ℓ increases. Assumption 4
allows for local changes provided that

√︁
𝐺/log(𝑛)𝑑 ( 𝑗 )

ℓ
diverges sufficiently fast. Assumption 4 (i)

on the minimum spacing of change points, is commonly imposed in the literature on change point
detection using moving window-based procedures. Assumption 4 does not rule out 𝐺/𝑛→ 0 and 230

permits the number of change points 𝑞 to increase in 𝑛. We discuss the selection of bandwidth in
Section 4.

Theorem 1. Let Assumptions 1, 2, 3 and 4 hold and ℓ ≥ 0 be a finite integer, and set the thresh-
old as 𝜁ℓ (𝑛, 𝐺) = 𝑐𝜁

√︁
log(𝑛)/𝐺 for some constant 𝑐𝜁 > 0. Then, there exists 𝑐0 > 0, depending

only on 𝐶𝐹 , 𝐶𝑋, 𝛾1, 𝐶𝛽 , 𝛾2 and 𝑝, such that as 𝑛→∞, 235

pr

(
𝑞ℓ = 𝑞ℓ , max

𝑗∈Iℓ
min
𝜃∈Θ̂ℓ

𝑑
( 𝑗 )
ℓ
|𝜃̂ − 𝜃𝑗 | ≤ 𝑐0

√︁
𝐺 log(𝑛)

)
→ 1.

Theorem 1 establishes that, for given ℓ, NP-MOJO correctly estimates the total number and the
locations of the change points detectable at lag ℓ (including the no change case where 𝑞ℓ = 0). In
particular, by Assumption 4, the change point estimators satisfy

min
𝜃∈Θ̂ℓ

|𝜃̂ − 𝜃𝑗 | = 𝑂𝑃

{
(𝑑 ( 𝑗 )

ℓ
)−1

√︁
𝐺 log(𝑛)

}
= 𝑜𝑃{min(𝜃𝑗 − 𝜃𝑗−1, 𝜃𝑗+1 − 𝜃𝑗)} for all 𝑗 ∈ Iℓ , 240

i.e. the change point estimators converge to the true change point locations in the rescaled time.
Further, the rate of estimation is inversely proportional to the size of change 𝑑

( 𝑗 )
ℓ

, such that the
change points associated with larger 𝑑 ( 𝑗 )

ℓ
are estimated with better accuracy. Also making use of

the energy-based distributional discrepancy, Matteson & James (2014) establish the consistency
of their proposed E-Divisive method for detecting changes in (marginal) distribution under 245

independence. In addition to detection consistency, we further derive the rate of estimation for
NP-MOJO which is applicable to detect changes in complex time series dependence besides those
in marginal distribution, in broader situations permitting serial dependence.

Compared to the optimal rate of estimation known for some parametric change point problems,
the rate reported in Theorem 1 is sub-optimal due to the bias of order 𝑂 (𝐺−1/2) (see (4)) in 𝑈- 250
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8 E. T. McGonigle and H. Cho

and𝑉-statistics in the presence of serial dependence. In the next theorem, we relax Assumptions 1
and 2 to serial independence, and derive a faster rate of estimation for detecting change points in
the marginal distribution (namely 𝜃𝑗 , 𝑗 ∈ I0 = {1, . . . , 𝑞0}) using NP-MOJO with lag ℓ = 0.

Theorem 2. Let Assumptions 3 and 4 hold, the latter with ℓ = 0, and assume that {𝑋𝑡 }𝑛𝑡=1
are independent over time, so that 𝑞0 = 𝑞. Set the threshold as 𝜁 (𝑛, 𝐺) = 𝑐𝜁

√︁
log(𝑛)/𝐺 for some255

constant 𝑐𝜁 > 0. Then, there exists 𝑐0 > 0 depending on 𝑝, such that as 𝑛→∞,

pr

(
𝑞 = 𝑞, max

1≤ 𝑗≤𝑞
min
𝜃∈Θ̂0

(𝑑 ( 𝑗 )0 )
2 |𝜃̂ − 𝜃𝑗 | ≤ 𝑐0 log(𝑛)

)
→ 1.

3.3. Multi-lag extension of NP-MOJO
In this section, we address the problem of combining the results of the NP-MOJO procedure

when it is applied with multiple lags. LetL ⊂ N0 = {0, 1, . . .} denote a (finite) set of non-negative260

integers. Recall that given ℓ ∈ L, NP-MOJO returns a set of change points estimators Θ̂ℓ . Denote
the union of change point estimators over all lags L by Θ̃ =

⋃
ℓ∈L Θ̂ℓ = {𝜃̃𝑗 , 1 ≤ 𝑗 ≤ 𝑄 : 𝜃̃1 <

. . . , < 𝜃̃𝑄}, and denote by T(𝜃̃) = maxℓ∈L 𝑇ℓ (𝐺, 𝜃̃) the maximum detector statistic at 𝜃̃ across all
ℓ ∈ L. We propose to find a set of the final change point estimators Θ̂ ⊂ Θ̃ by taking the following
steps; we refer to this procedure as multi-lag NP-MOJO.265

Step 0. Set Θ̂ = ∅ and select a constant 𝑐 ∈ (0, 2].
Step 1. Set Θ̃1 = Θ̃ and 𝑚 = 1. Iterate Steps 2–4 for 𝑚 = 1, 2, . . ., while Θ̃𝑚 ≠ ∅.
Step 2. Let 𝜃̃𝑚 = min Θ̃𝑚 and identify C𝑚 = {𝜃̃ ∈ Θ̃𝑚 : 𝜃̃ − 𝜃̃𝑚 < 𝑐𝐺}.
Step 3. Identify 𝜃̂𝑚 = arg max

𝜃∈C𝑚 T(𝜃̃); if there is a tie, we arbitrarily break it.
Step 4. Add 𝜃̂𝑚 to Θ̂ and update 𝑚 ← 𝑚 + 1 and Θ̃𝑚 = Θ̃𝑚−1 \ C𝑚−1.270

At iteration 𝑚 of the multi-lag NP-MOJO, Step 2 identifies the minimal element from the
current set of candidate change point estimators Θ̃𝑚, and a cluster of estimators C𝑚 whose
elements are expected to detect the identical change points from multiple lags. Then, Step 3 finds
an estimator 𝜃̂ ∈ C𝑚, which is associated with the largest detector statistic at some lag, and it is
added to the set of final estimators. This choice is motivated by Theorem 1, which shows each275

𝜃𝑗 is estimated with better accuracy at the lag associated with the largest change in the lagged
dependence (measured by 𝑑

( 𝑗 )
ℓ

). Iterating these steps until all the elements of Θ̃ are either added
to Θ̂ or discarded, we obtain the set of final change point estimators.

We define a subset of L containing the lags at which the 𝑗-th change point is detectable, as
L ( 𝑗 ) = {ℓ ∈ L : 𝑑

( 𝑗 )
ℓ

≠ 0}. Re-visiting Example 1, when we setL = {0, 1}, it follows thatL (1) =280

{0, 1} and L (2) = {1}. To establish the consistency of the multi-lag NP-MOJO, we formally
assume that all changes points are detectable at some lag ℓ ∈ L.

Assumption 5. For L ⊂ N0 with 𝐿 = |L| < ∞, we have ∪ℓ∈LIℓ = {1, . . . , 𝑞}. Equivalently,
L ( 𝑗 ) ≠ ∅ for all 𝑗 = 1, . . . , 𝑞.

Under Assumptions 1–5, the consistency of the multi-lag NP-MOJO procedure is largely a285

consequence of Theorem 1. Assumption 4 (ii) requires that at any lag ℓ ∈ L and a given change
point 𝜃𝑗 , we have either 𝑗 ∈ Iℓ with 𝑑

( 𝑗 )
ℓ

large enough (in the sense that
√︁
𝐺/log(𝑛)𝑑 ( 𝑗 )

ℓ
→∞),

or 𝑗 ∉ Iℓ such that 𝑑
( 𝑗 )
ℓ

= 0. Such a dyadic classification of the change points rules out the
possibility that for some 𝑗 , we have 𝑑

( 𝑗 )
ℓ

> 0 but 𝑑 ( 𝑗 )
ℓ

= 𝑂{
√︁

log(𝑛)/𝐺}, in which case 𝜃𝑗 may
escape detection by NP-MOJO at lag ℓ. We therefore consider the following alternative:290
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NP-MOJO 9

Assumption 6. (i) 𝐺−1 log(𝑛) → 0 as 𝑛→∞ while min0≤ 𝑗≤𝑞 (𝜃𝑗+1 − 𝜃𝑗) ≥ 4𝐺.
(ii)

√︁
𝐺/log(𝑛)min1≤ 𝑗≤𝑞 maxℓ∈L ( 𝑗) 𝑑

( 𝑗 )
ℓ
→∞.

Compared to Assumption 4, Assumption 6 requires that the change points are further apart from
one another relative to 𝐺 by the multiplicative factor of two. At the same time, the latter only
requires that for each 𝑗 = 1, . . . , 𝑞, there exists at least one lag ℓ ∈ L at which 𝑑

( 𝑗 )
ℓ

is large enough 295

to guarantee the detection of 𝜃𝑗 by NP-MOJO with large probability. Theorem 3 establishes the
consistency of multi-lag NP-MOJO under either Assumption 4 or 6.

Theorem 3. Suppose that Assumptions 1, 2, 3 and 5 hold and at each ℓ ∈ L, we set 𝜁ℓ (𝑛, 𝐺) =
𝑐𝜁 ,ℓ

√︁
log(𝑛)/𝐺 with some constants 𝑐𝜁 ,ℓ > 0. Let Θ̂ = {𝜃̂𝑗 , 1 ≤ 𝑗 ≤ 𝑞 : 𝜃̂1 < . . . < 𝜃̂𝑞} denote

the set of estimators returned by multi-lag NP-MOJO with tuning parameter 𝑐. 300

(i) If Assumption 4 holds for all ℓ ∈ L and 𝑐 = 2𝜂 with 𝜂 ∈ (0, 1/2], then with 𝑐0 as in
Theorem 1, depending only on 𝐶𝐹 , 𝐶𝑋, 𝛾1, 𝐶𝛽 , 𝛾2 and 𝑝,

pr
(
𝑞 = 𝑞, max

1≤ 𝑗≤𝑞
max
ℓ∈L ( 𝑗)

𝑑
( 𝑗 )
ℓ

���𝜃̂𝑗 − 𝜃𝑗 ��� ≤ 𝑐0
√︁
𝐺 log(𝑛)

)
→ 1 as 𝑛→∞.

(ii) If Assumption 6 holds and 𝑐 = 2, then the conclusion of (i) holds.

Under Assumption 6 (ii), which is weaker than Assumption 4 (ii), we may encounter a situation 305

where
√︁
𝐺/log(𝑛)𝑑 ( 𝑗 )

ℓ
= 𝑂 (1) while 𝑑 ( 𝑗 )

ℓ
> 0 at some lag ℓ ∈ L. Then, we cannot guarantee that

such 𝜃𝑗 is detected by NP-MOJO at lag ℓ and, even so, we can only show that its estimator
𝜃̃ ∈ Θ̃ℓ satisfies |𝜃̃ − 𝜃𝑗 | = 𝑂 (𝐺). This requires setting the tuning parameter 𝑐 maximally for the
clustering in Step 2 of multi-lag NP-MOJO, see Theorem 3 (ii). At the same time, there exists a
lag well-suited for the localisation of each change point and Step 3 identifies an estimator detected 310

at such lag, and the final estimator inherits the rate of estimation attained at the favourable lag.

3.4. Threshold selection via dependent wild bootstrap
Theorem 1 gives the choice of the threshold 𝜁ℓ (𝑛, 𝐺) = 𝑐𝜁

√︁
log(𝑛)/𝐺 which guarantees the

consistency of NP-MOJO in multiple change point estimation. The choice of 𝑐𝜁 influences the
finite sample performance of NP-MOJO but it depends on many unknown quantities involved in 315

specifying the degree of serial dependence in {𝑋𝑡 }𝑛𝑡=1 (see Assumptions 1 and 2), which makes
the theoretical choice of little practical use. Resampling is popularly adopted for the calibration
of change point detection methods including threshold selection. However, due to the presence
of serial dependence, permutation-based approaches such as that adopted in Matteson & James
(2014) or sample splitting adopted in Madrid Padilla et al. (2021) are inappropriate. 320

We propose to adopt the dependent wild bootstrap procedure proposed in Leucht & Neumann
(2013), in order to approximate the quantiles of max𝐺≤𝑘≤𝑛−𝐺 𝑇ℓ (𝐺, 𝑘) in the absence of any
change point, from which we select 𝜁ℓ (𝑛, 𝐺). Let {𝑊 [𝑟 ]𝑡 }𝑛−𝐺𝑡=1 denote a bootstrap sequence gener-
ated as a Gaussian AR(1) process with var(𝑊 [𝑟 ]𝑡 ) = 1 and the AR coefficient exp(−1/𝑏𝑛), where
the sequence {𝑏𝑛} is chosen such that 𝑏𝑛 = 𝑜(𝑛) and lim𝑛→∞ 𝑏𝑛 = ∞. We construct bootstrap 325
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10 E. T. McGonigle and H. Cho

replicates using {𝑊 [𝑟 ]𝑡 }𝑛−𝐺𝑡=1 as 𝑇 [𝑟 ]
ℓ

= max𝐺≤𝑘≤𝑛−𝐺 𝑇
[𝑟 ]
ℓ
(𝐺, 𝑘), where

𝑇
[𝑟 ]
ℓ
(𝐺, 𝑘) = 1

(𝐺 − ℓ)2

{
𝑘−ℓ∑︁

𝑠,𝑡=𝑘−𝐺+1
𝑊̄
[𝑟 ]
𝑠,𝑘

𝑊̄
[𝑟 ]
𝑡 ,𝑘

ℎ(𝑌𝑠, 𝑌𝑡 ) +
𝑘+𝐺−ℓ∑︁
𝑠,𝑡=𝑘+1

𝑊̄
[𝑟 ]
𝑠−𝐺,𝑘

𝑊̄
[𝑟 ]
𝑡−𝐺,𝑘

ℎ(𝑌𝑠, 𝑌𝑡 )

−2
𝑘−ℓ∑︁

𝑠=𝑘−𝐺+1

𝑘+𝐺−ℓ∑︁
𝑡=𝑘+1

𝑊̄
[𝑟 ]
𝑠,𝑘

𝑊̄
[𝑟 ]
𝑡−𝐺,𝑘

ℎ(𝑌𝑠, 𝑌𝑡 )
}
,

with 𝑊̄
[𝑟 ]
𝑡 ,𝑘

= 𝑊
[𝑟 ]
𝑡 − (𝐺 − ℓ)−1 ∑𝑘−ℓ

𝑢=𝑘−𝐺+1 𝑊
[𝑟 ]
𝑢 . Independently generating {𝑊 [𝑟 ]𝑡 }𝑛−𝐺𝑡=1 for 𝑟 =

1, . . . , 𝑅 (𝑅 denoting the number of bootstrap replications), we store 𝑇 [𝑟 ]
ℓ

and select the threshold
as 𝜁ℓ (𝑛, 𝐺) = 𝑞1−𝛼 ({𝑇 [𝑟 ]ℓ

}𝑅
𝑟=1), the (1 − 𝛼)-quantile of {𝑇 [𝑟 ]

ℓ
}𝑅
𝑟=1 for the chosen level 𝛼 ∈ (0, 1].330

Additionally, we can compute the importance score for each 𝜃̂ ∈ Θ̂ℓ as

𝑠(𝜃̂) =

���{1 ≤ 𝑟 ≤ 𝑅 : 𝑇ℓ (𝐺, 𝜃̂) ≥ 𝑇
[𝑟 ]
ℓ,𝑟

}���
𝑅

. (7)

Taking a value between 0 and 1, the larger 𝑠(𝜃̂) is, the more likely that there exists a change
point close to 𝜃̂ empirically. The bootstrap procedure generalises to the multi-lag NP-MOJO
straightforwardly. In practice, we observe that setting 𝜃̂𝑗 = arg max𝜃∈C𝑗 𝑠(𝜃) (with some misuse335

of the notation, 𝑠(·) is computed at the relevant lag for each 𝜃̃) works well in Step 3 of multi-
lag NP-MOJO. This is attributed to the fact that this score inherently takes into account the
varying scale of the detector statistics at multiple lags and ‘standardises’ the importance of each
estimator. In all numerical experiments, our implementation of multi-lag NP-MOJO is based
on this choice of 𝜃̂𝑗 . We provide the algorithmic descriptions of NP-MOJO and its multi-lag340

extension in Algorithms 1 and 2 in Appendix A.5.

4. Implementation of NP-MOJO
In this section, we discuss the computational aspects of NP-MOJO and provide recommenda-

tions for the choice of tuning parameters based on extensive numerical results. Numerical studies
analysing NP-MOJO’s sensitivity to these tuning parameters can be found in Appendix B.345

Computational complexity: owing to the moving sum-based approach, the cost of sequen-
tially computing 𝑇ℓ (𝐺, 𝑘) from 𝑇ℓ (𝐺, 𝑘 − 1) is 𝑂 (𝐺), giving the overall cost of computing
𝑇ℓ (𝐺, 𝑘), 𝐺 ≤ 𝑘 ≤ 𝑛 − 𝐺, as 𝑂 (𝑛𝐺). Exact details of the sequential update are given in Ap-
pendix A.1. The bootstrap procedure described in Section 3.4 is performed once per lag for
simultaneously detecting multiple change points, in contrast with E-Divisive (Matteson & James,350

2014) that requires the permutation-based testing to be performed for detecting each change
point. With 𝑅 bootstrap replications, the total computational cost is 𝑂 ( |L|𝑅𝑛𝐺) for multi-lag
NP-MOJO using the set of lags L and bootstrapping, as opposed to 𝑂 (𝑅𝑞𝑛2) for E-Divisive.
Furthermore, the bootstrap procedure can be parallelised in a straightforward manner, which we
include as an option in the implementation of the method.355

We ran simulations to compare the computational speed of the competing nonparamet-
ric methods. We simulate realisations under the change in mean model (B.1), with in-
creasing values of sample size 𝑛 and the number of equispaced change points 𝑞 ((𝑛, 𝑞) ∈
{(100, 1), (500, 2), (1000, 3), (2000, 5), (5000, 10), (10000, 20)}). We use the same settings for
each method as in the main simulation study, using the parallelised version of multi-lag NP-MOJO360

when 𝑛 ≥ 2000, and compute the average run time over 100 realisations. The results are displayed
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NP-MOJO 11

in Figure 2. The fastest method by far is cpt.np, followed by KCPA and NP-MOJO. E-Divisive
and NWBS are noticeably slower than the other methods. In particular, when 𝑛 = 10000, the
average running time of cpt.np is 0.17 seconds, KCPA is 46.26 seconds, NP-MOJO is 2.31 min-
utes, NWBS is 30.06 minutes, and E-Divisive is 70.37 minutes. Also, we observe that KCPA’s 365

running time is increasing at a faster rate than NP-MOJO’s, and may exceed the running time of
NP-MOJO for larger values of 𝑛.
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Fig. 2: Running time comparisons between the competing nonparametric methods. Both axes are in the log scale.

Kernel function: as with any kernel-based approach, NP-MOJO’s performance will vary with
the choice of kernel, and a kernel that works well for one type of change point may not be the best
for another type of change point. Based on empirical performance and versatility to a wide range 370

of change point scenarios (see Appendix B.3.1), we recommend the use of the kernel function
ℎ2 in Lemma 2 (ii). The parameter 𝛿 is set using the ‘median trick’, a common heuristic used
in kernel-based methods (Li et al., 2019). Specifically, we set 𝛿 to be a half the median of all
∥𝑌𝑠 − 𝑌𝑡 ∥2 involved in the calculation of𝑇ℓ (𝐺, 𝑘). For 𝑝-variate i.i.d. Gaussian data with common
variance 𝜎2, this corresponds to 𝛿 ≈ 𝜎𝑝 as the dimension 𝑝 increases (Ramdas et al., 2015). As 375

with the kernel ℎ2, the median trick can also be used when setting 𝛽 if the kernel ℎ1 is used.
Bandwidth: due to the nonparametric nature of NP-MOJO, it is advised to use a larger band-

width than that shown to work well for the moving sum procedure for univariate mean change
detection (Eichinger & Kirch, 2018). In our simulation studies and data applications, we set
𝐺 = ⌊𝑛/6⌋. It is often found that using multiple bandwidths and merging the results improves the 380

adaptivity of moving window-based procedures, such as the ‘bottom-up’ merging proposed by
Messer et al. (2014) or the localised pruning of (Cho & Kirch, 2022). We empirically explore the
multiscale extension of the multi-lag NP-MOJO with bottom-up merging, see Appendix A.3 for
details of its implementation and Appendix B.5 for a proof of concept numerical study involv-
ing multiscale change point scenarios. We leave a theoretical investigation into the multiscale 385

extension of NP-MOJO for future research.
Parameters for change point estimation: we set 𝜂 = 0.4 in (5) following the recommendation

in Meier et al. (2021). For multi-lag NP-MOJO, we set 𝑐 = 1 for clustering the estimators from
multiple lags, a choice that lies between those recommended in Theorem 3 (i) and (ii), since we do
not know whether Assumptions 4 or 6 hold in practice. Appendices B.3.3 and B.3.4 demonstrate 390

that within a reasonable range, NP-MOJO is insensitive to the choices of 𝜂 and 𝑐. To further
guard against spurious estimators, we only accept those 𝜃̂ that lie in intervals of length greater
than ⌊0.02𝐺⌋ where the corresponding 𝑇ℓ (𝐺, 𝑘) exceeds 𝜁ℓ (𝑛, 𝐺).
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12 E. T. McGonigle and H. Cho

Parameters for the bootstrap procedure: the choice of 𝑏𝑛 sets the level of dependence in the
multiplier bootstrap sequences. Leucht & Neumann (2013) show that a necessary condition is that395

lim𝑛→∞(𝑏−1
𝑛 + 𝑏𝑛𝑛−1) = 0, giving a large freedom for choice of 𝑏𝑛. We recommend 𝑏𝑛 = 1.5𝑛1/3,

which works well in practice. Appendix B.3.2 demonstrates that within a reasonable range, NP-
MOJO is insensitive to the choice of 𝑏𝑛. As for 𝛼, its choice amounts to setting the level of
significance in statistical testing. This provides a more systematic alternative to the problem of
model selection in multiple change point detection compared to others, such as those requiring400

the selection of a threshold that is known up to a rate (or a range of rates, see e.g. Madrid Padilla
et al., 2023), or constants involved in the penalty of a penalised cost function (Arlot et al., 2019).
In all numerical experiments, we use 𝛼 = 0.1 with 𝑅 = 499 bootstrap replications.

Set of lags L: the flexibility of NP-MOJO in its ability to detect changes in dependence, comes
at the price of having to select the set of lags L. The choice of L depends on the practitioner’s405

interest and domain knowledge, a problem commonly faced by general-purpose change point
detection methods, such as the choice of the quantile level in Vanegas et al. (2022), the parameter
of interest in Zhao et al. (2022) and the estimating equation in Kirch & Reckruehm (2024). For
example, for monthly data, using L = {0, 3, 12} allows for detecting changes in the quarterly and
yearly seasonality. Even when the interest lies in detecting changes in the marginal distribution410

only, it helps to jointly consider multiple lags, since any marginal distributional change is likely to
result in changes in the joint distribution of (𝑋𝑡 , 𝑋𝑡+ℓ). As we consider time series that exhibit short
range dependence, we would expect that NP-MOJO will not have detection power at large lags.
In simulations, we use L = {0, 1, 2} which works well not only for detecting changes in the mean
and the second-order structure, but also for detecting changes in (non-linear) serial dependence415

and higher-order characteristics. For a practical approach to lag selection, see Appendix A.4 in
the supplementary material, where we propose a semi-automatic method for choosing the set of
lags L given some initial set L̃.

5. Simulation study
We conduct extensive simulation studies with varying change point scenarios (30 scenarios420

where 𝑞 ≥ 1, 7 with 𝑞 = 0), sample sizes (𝑛 ∈ {500, 1000, 2000, 10000}) and dimensions 𝑝 ∈
{1, 2, 5, 10}, and consider both evenly-spaced and multiscale change point settings. We provide
complete descriptions of the simulation studies in Appendix B where, for comparison, we consider
not only nonparametric but also parametric data segmentation procedures well-suited to detect
the types of changes in consideration, which include changes in the mean, second-order and425

higher-order moments and non-linear serial dependence. Due to space constraint, here we focus
on a selection of the results in the evenly-spaced setting with 𝑛 = 1000 comparing both single-
lag and multi-lag NP-MOJO (denoted by NP-MOJO-ℓ and NP-MOJO-L respectively), with the
nonparametric competitors: E-Divisive (Matteson & James, 2014), NWBS (Madrid Padilla et al.,
2021), KCPA (Celisse et al., 2018; Arlot et al., 2019) and cpt.np (Haynes et al., 2017). E-Divisive430

and KCPA are applicable to multivariate data segmentation whilst NWBS and cpt.np are not. The
scenarios are:

(B5) 𝑋𝑡 =
∑3

𝑗=0 Σ
1/2
𝑗
I{𝜃𝑗 + 1 ≤ 𝑡 ≤ 𝜃𝑗+1} · 𝜀𝑡 , where 𝜀𝑡 = (𝜀1𝑡 , 𝜀2𝑡 )⊤ with 𝜀𝑖𝑡 ∼i.i.d. 𝑡5,

(𝜃1, 𝜃2, 𝜃3) = (250, 500, 750), Σ0 = Σ2 =
( 1 0

0 1
)

and Σ1 = Σ3 =
( 1 0.9

0.9 1
)
.

(C1) 𝑋𝑡 = 𝑋
( 𝑗 )
𝑡 = 𝑎𝑗𝑋

( 𝑗 )
𝑡−1 + 𝜀𝑡 for 𝜃𝑗 + 1 ≤ 𝑡 ≤ 𝜃𝑗+1, where 𝑞 = 2, (𝜃1, 𝜃2) = (333, 667) and435

(𝑎0, 𝑎1, 𝑎2) = (−0.8, 0.8,−0.8).
(C3) 𝑋𝑡 = 𝑋

( 𝑗 )
𝑡 = 𝜎

( 𝑗 )
𝑡 𝜀𝑡 with (𝜎 ( 𝑗 )𝑡 )2 = 𝜔𝑗 + 𝛼𝑗 (𝑋 ( 𝑗 )𝑡−1)

2 + 𝛽𝑗 (𝜎 ( 𝑗 )𝑡−1)
2 for 𝜃𝑗 + 1 ≤ 𝑡 ≤ 𝜃𝑗+1,

where 𝑞 = 1, 𝜃1 = 500, (𝜔0, 𝛼0, 𝛽0) = (0.01, 0.7, 0.2) and (𝜔1, 𝛼1, 𝛽1) = (0.01, 0.2, 0.7).
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NP-MOJO 13

(D3) 𝑋𝑡 = 0.4𝑋𝑡−1 + 𝜀𝑡 where 𝜀𝑡 ∼i.i.d. N(0, 0.52) for 𝑡 ≤ 𝜃1 and 𝑡 ≥ 𝜃2 + 1, and 𝜀𝑡 ∼i.i.d.
Exponential(0.5) − 0.5 for 𝜃1 + 1 ≤ 𝑡 ≤ 𝜃2, with 𝑞 = 2 and (𝜃1, 𝜃2) = (333, 667). 440

Additional simulations for differing sample sizes can be found in Appendix B.4, and simulations
with uneven spacing between neighbouring segments examining the performance of the multiscale
version of multi-lag NP-MOJO are given in Appendix B.5. The above scenarios consider changes
in the covariance of bivariate, non-Gaussian random vectors in (B5), changes in the autocorrelation
(while the variance stays unchanged) in (C1), a change in the parameters of an ARCH(1, 1) process 445

in (C3), and changes in higher moments of serially dependent observations in (D3). Table 1 reports
the distribution of the estimated number of change points and the average covering metric (CM)
and V-measure (VM) over 1000 realisations. Taking values between [0, 1], CM and VM close
to 1 indicates better accuracy in change point location estimation, see Appendix B.2 for their
definitions and complete discussions of change point scenarios. 450

In the case of (C1), we have 𝑞ℓ = 0, ℓ ≠ 1, while 𝑞1 = 2, and thus we report 𝑞ℓ − 𝑞ℓ for the
respective single-lag NP-MOJO-ℓ. Across all scenarios, NP-MOJO-L shows good detection and
estimation accuracy and demonstrates the efficacy of considering multiple lags, see (C3) and (D3)
in particular. As the competitors are calibrated for the independent setting, they tend to either over-
or under-detect the number of change points in the presence of serial dependence in (C1), (C3) 455

and (D3). In Appendix B.2, we compare NP-MOJO against change point methods proposed for
time series data where it performs comparably to methods specifically calibrated for the change
point scenarios considered.

Table 1: Distribution of the estimated number of change points and the average CM and VM over 1000 realisations.
The modal value of 𝑞 − 𝑞 in each row is given in bold. Also, the best performance for each metric is underlined for
each scenario.

𝑞 − 𝑞 / 𝑞ℓ − 𝑞ℓ
Model Method ≤ −2 −1 0 1 ≥ 2 CM VM

(B5) NP-MOJO-0 0.000 0.001 0.997 0.002 0.000 0.974 0.959
NP-MOJO-1 0.005 0.121 0.867 0.007 0.000 0.931 0.927
NP-MOJO-2 0.006 0.103 0.884 0.007 0.000 0.935 0.929
NP-MOJO-L 0.000 0.001 0.999 0.000 0.000 0.973 0.958

E-Divisive 0.670 0.189 0.101 0.032 0.008 0.431 0.335
KCPA 0.322 0.000 0.662 0.015 0.001 0.775 0.725

(C1) NP-MOJO-0 – – 0.851 0.140 0.009 – –
NP-MOJO-1 0.000 0.002 0.956 0.042 0.000 0.978 0.961
NP-MOJO-2 – – 0.836 0.149 0.015 – –
NP-MOJO-L 0.000 0.002 0.986 0.012 0.000 0.980 0.963

E-Divisive 0.001 0.001 0.012 0.035 0.951 0.685 0.686
KCPA 0.792 0.002 0.065 0.025 0.116 0.399 0.132
NWBS 0.013 0.001 0.007 0.015 0.964 0.398 0.558
cpt.np 0.000 0.000 0.002 0.003 0.995 0.593 0.647

(C3) NP-MOJO-0 – 0.409 0.533 0.056 0.002 0.744 0.484
NP-MOJO-1 – 0.236 0.682 0.081 0.001 0.819 0.633
NP-MOJO-2 – 0.299 0.626 0.073 0.002 0.787 0.571
NP-MOJO-L – 0.210 0.727 0.062 0.001 0.823 0.645

E-Divisive – 0.032 0.327 0.211 0.430 0.742 0.602
KCPA – 0.418 0.262 0.171 0.149 0.667 0.370
NWBS – 0.895 0.048 0.020 0.037 0.525 0.069
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14 E. T. McGonigle and H. Cho

cpt.np – 0.000 0.013 0.047 0.940 0.634 0.554

(D3) NP-MOJO-0 0.003 0.139 0.809 0.049 0.000 0.899 0.872
NP-MOJO-1 0.006 0.155 0.792 0.047 0.000 0.892 0.864
NP-MOJO-2 0.021 0.248 0.685 0.045 0.001 0.848 0.819
NP-MOJO-L 0.002 0.082 0.914 0.002 0.000 0.917 0.884

E-Divisive 0.005 0.002 0.072 0.118 0.803 0.681 0.707
KCPA 0.441 0.012 0.481 0.052 0.014 0.667 0.500
NWBS 0.047 0.015 0.139 0.124 0.675 0.680 0.676
cpt.np 0.000 0.000 0.045 0.055 0.900 0.726 0.756

6. Data applications
6.1. California seismology measurements data set460

We analyse a data set from the High Resolution Seismic Network, operated by the Berkeley
Seismological Laboratory. Ground motion sensor measurements were recorded in three mutually
perpendicular directions at 13 stations near Parkfield, California, USA for 740 seconds from
2am on December 23rd 2004. The data has previously been analysed in Xie et al. (2019) and
Chen et al. (2022). Chen et al. (2022) pre-process the data by removing a linear trend and down-465

sampling, and the processed data is available in the ocd R package (Chen et al., 2020). According
to the Northern California Earthquake Catalog, an earthquake of magnitude 1:47 Md hit near
Atascadero, California (50 km away from Parkfield) at 02:09:54.01.
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Fig. 3: Heat map of standardised sensor data. Change points detected by multi-lag NP-MOJO are shown in vertical
dashed lines, and the time of the earthquake is given by solid vertical line.

We analyse time series of dimension 𝑝 = 39 and length 𝑛 = 2000 by taking a portion of the
data set between 544 and 672 seconds after 2am, which covers the time at which the earthquake470

occurred (594 seconds after). We apply the multi-lag NP-MOJO with tuning parameters selected
as in Section 4, using 𝐺 = 333 and set of lags L = {0, . . . , 4}. We detect two changes at all lags;
the first occurs at between 603.712 and 603.968 seconds after 2am and may be attributed to the
earthquake. As noted in Chen et al. (2022), P waves, which are the primary preliminary wave and
arrive first after an earthquake, travel at up to 6km/s in the Earth’s crust. This is consistent with the475

delay of approximately 9 seconds between the occurrence of the earthquake and the first change
point detected by multi-lag NP-MOJO. We also note that performing online change point analysis,
Xie et al. (2019) and Chen et al. (2022) report a change at 603.584 and 603.84 seconds after the
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Fig. 4: Sample correlations from the three segments defined by the change point estimators.

earthquake, respectively. The second change is detected at between 626.176 and 626.496 seconds
after 2am. It may correspond to the ending of the effect of the earthquake, as sensors return to 480

‘baseline’ behaviour. Figure 3 plots the heat map of the data with each series standardised for ease
of visualisation, along with the onset of the earthquake and the two change points detected by the
multi-lag NP-MOJO. It suggests, amongst other possible distributional changes, the time series
undergoes mean shifts as found in Chen et al. (2022). We also examine the sample correlations
computed on each of the three segments, see Figure 4 where the data exhibit a greater degree 485

of correlation in segment 2 compared to the other two segments. Recalling that each station is
equipped with three sensors, we notice that pairwise correlations from the sensors located at the
same stations undergo greater changes in correlations. A similar observation is made about the
sensors located at nearby stations.

6.2. US recession data 490

We analyse the US recession indicator data set. Recorded quarterly between 1855 and 2021 (𝑛 =

667), 𝑋𝑡 is recorded as a 1 if any month in the quarter is in a recession (as identified by the Business
Cycle Dating Committee of the National Bureau of Economic Research), and 0 otherwise. The
data has previously been examined for change points under piecewise stationary autoregressive
models for integer-valued time series in Hudecová (2013) and Diop & Kengne (2021). We apply 495

the multi-lag NP-MOJO with 𝐺 = 111 and L = {0, . . . , 4}. All tuning parameters are set as
recommended in Section 4 with one exception, 𝛿 for the kernel ℎ2. We select 𝛿 = 1 for lag 0 and
2 otherwise, since pairwise distances for binary data are either 0 or 1 when ℓ = 0 such that the
median heuristic would not work as desired.

At all lags, we detect a single change point located between 1933:Q1 and 1938:Q2. Multi- 500

lag NP-MOJO estimates the change point at 1933:Q1, which is comparable to the previous
analyses: Hudecová (2013) report a change at 1933:Q1 and Diop & Kengne (2021) at 1932:Q4.
The change coincides with the ending of the Great Depression and beginning of World War
II. The left panel of Figure 5 plots the detected change along with the sample average of 𝑋𝑡

over the two segments (superimposed on {𝑋𝑡 }𝑛𝑡=1), showing that the frequency of recession is 505

substantially lower after the change. The right panel plots the detector statistics 𝑇ℓ (𝐺, 𝑘) at lags
ℓ ∈ L, divided by the respective threshold 𝜁ℓ (𝑛, 𝐺) obtained from the bootstrap procedure. The
thus-standardised 𝑇4(𝐺, 𝑘), shown in solid line, displays the change point with the most clarity,
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Fig. 5: Left: quarterly US recession indicator series. A change point detected by multi-lag NP-MOJO is shown in
vertical dashed lines and the sample means over the two segments in solid line. Right: 𝑇ℓ (𝐺, 𝑘), 𝐺 ≤ 𝑘 ≤ 𝑛 − 𝐺 for
lags ℓ ∈ L, after standardisation by respective thresholds.

attaining the largest value over the widest interval above the threshold (standardised to be one).
At lag 4, the detector statistic has the interpretation of measuring any discrepancy in the joint510

distribution of the recession indicator series and its yearly lagged values.

Supplementary material
The supplementary appendix contains additional discussion on the implementation of NP-

MOJO and multi-lag NP-MOJO, the complete simulation results and the proofs of all theoretical
results.515
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