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SUMMARY

Modern time series data often exhibit complex dependence and structural changes which are
not easily characterised by shifts in the mean or model parameters.We propose a nonparametric
data segmentation methodology for multivariate time seriesstermed NP-MOJO. By considering
joint characteristic functions between the time series and its lagged values, NP-MOJO is able
to detect change points in the marginal distributiong/but also those in possibly non-linear serial
dependence, all without the need to pre-specify the ‘type of changes. We show the theoretical
consistency of NP-MOJO in estimating the totalsnumber and the locations of the change points,
and demonstrate the good performance of NP-MOJO against a variety of change point scenarios.
We further demonstrate its usefulness in @pplications to seismology and economic time series.

Some key words: change point detection, joint ¢characteristic function, moving sum, multivariate time series, nonpara-
metric

1. INTRODUCTION

Change point analySis has been an active area of research for decades, dating back to Page
(1954). Literature.on change point detection continues to expand rapidly due to its prominence
in numerous applications, including biology (Jewell et al., 2020), financial analysis (Lavielle &
Teyssiere, 2007) and environmental sciences (Carr et al., 2017). Considerable efforts have been
made for developing computationally and statistically efficient methods for data segmentation,
a.k.a. multiple change point detection, in the mean of univariate data under independence (Killick
et al., 2012; Frick et al., 2014; Fryzlewicz, 2014) and permitting serial dependence (Tecuapetla-
Gomez & Munk, 2017; Dette et al., 2020; Cho & Kirch, 2022; Cho & Fryzlewicz, 2023).
There also exist methods for detecting changes in the covariance (Aue et al., 2009; Wang et al.,
2021), parameters under linear regression (Bai & Perron, 1998; Xu et al., 2024) or other models
(Fryzlewicz & Subba Rao, 2014; Safikhani & Shojaie, 2022) in fixed and high dimensions. For
an overview, see Truong et al. (2020) and Cho & Kirch (2023+).

Any departure from distributional assumptions such as independence and Gaussianity tends
to result in poor performance of change point algorithms. Furthermore, it may not be realistic to
assume any knowledge of the type of change point that occurs, or to make parametric assumptions
on the data generating process, for time series that possess complex structures and are observed
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over a long period. Searching for change points in one property of the data (e.g. mean), when
the time series instead undergoes changes in another (e.g. variance), may lead to misleading con-
clusions and inference on such data. Therefore, it is desirable to develop flexible, nonparametric
change point detection techniques that are applicable to detect general changes in the underlying
distribution of serially dependent data.

There are several strategies for the nonparametric change point detection problem, such as
those based on the empirical cumulative distribution and density functions (Carlstein, 1988; Zou
etal., 2014; Haynes et al., 2017; Madrid Padilla et al., 2021; Vanegas et al., 2022; Madrid Padilla
et al., 2022, 2023), kernel transforms of the data (Harchaoui et al., 2009; Celisse et al., 2018;
Arlot et al., 2019; Li et al., 2019) or U-statistics measuring the ‘energy’-based distance between
different distributions (Matteson & James, 2014; Chakraborty & Zhang, 2021; Boniece et al.,
2023). There also exist graph-based methods applicable to non-Euclidean data (Chen & Zhang,
2015; Chu & Chen, 2019). All these methods can only detect changes in the marginal distribution
of the data and apart from Madrid Padilla et al. (2023), assume serial independence. We also
mention Cho & Fryzlewicz (2012), PreuB et al. (2015) and Korkas & Fryzlewicz (2017) where
the problem of detecting changes in the second-order structure is addressed, but.their methods
do not have power against changes in non-linear dependence.

We propose NP-MOJO, a NonParametric MOving sum procedure (for detecting changes in
the JOint characteristic function, which detects multiple changes in_serial, possibly non-linear
dependence as well as marginal distributions of a multivariate time seties {X,}_ . We adopt a
moving sum procedure to scan the data for multiple change points:The moving sum methodology
has successfully been applied to a variety of change point testing (Chu et al., 1995; Huskova &
Slaby, 2001) and data segmentation problems (Eichinger/& Kirch, 2018). Here, we combine it
with a detector statistic carefully designed to detect changes in complex dependence structure
beyond those detectable from considering the marginal distribution only. Specifically, we utilise
an energy-based distributional discrepancy that measures any change in the joint characteristic
function of the time series at some lag £ >'0, which allows for detecting changes in the joint
distribution of (X;, X;+¢) beyond the changes in their linear dependence. To the best of our
knowledge, NP-MOJO is the first nonparametric methodology which is able to detect changes in
non-linear serial dependence in multivariate time series.

We establish that NP-MOJO/achieves consistency in estimating the number and locations of
the change points for a given lag; providing convergence rates for the change point location
estimators, and propose a methodology that extends this desirable property of single-lag NP-
MOJO to multiple {ags. €Combined with a dependent multiplier bootstrapping procedure, NP-
MOJO and its multi-lag extension perform well across a wide range of change point scenarios
in simulations and real'data applications. Accompanying R software implementing NP-MOJO is
available as the R package CptNonPar (McGonigle & Cho, 2023) on CRAN.

2. MODEL AND MEASURE OF DISCREPANCY

We observe a multivariate time series {X; +_, of (finite) dimension p, where

q
X, = ZX}” {6 +1 <1 <641} (1)

j=0
with X; = (X;1,...,X;p)" and 0=6p <6 <--- <6, <0y =n. For each sequence
{X,(J): t>1},j=0,...,q, there exists an RP-valued measurable function g\’ (-) =

(gij)(-), . ,gl(,j)(-))T such that Xt(j) = g (F) with F; = o (&g : s < 1), and i.i.d. random ele-
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ments &,. We assume that g&/~1) # ¢() for all j = 1,..., g, such that under the model (1), the
time series undergoes ¢ change points at locations ® = {61, . .., 64}, with the notational conven-
tion that g = 0 and 6,4, = n. That is, {X;}_| consists of g + 1 stationary segments where the
j-th segment is represented in terms of a segment-dependent ‘output’ g/) (%), with the common
‘input’ F; shared across segments such that dependence across the segments is not ruled out.
Each segment has a non-linear Wold representation as defined by Wu (2005); this representation
includes commonly adopted time series models including ARMA and GARCH processes.
Denote the inner product of two vectors x and y by (x, y) = x "y and 1 the imaginary unit with

1> = —1. At some integer ¢, define the joint characteristic function of {Xt(j ) }iez atlag €, as

o ) =B fexp (100 X 4100, X)) 02 <q

We propose to measure the size of changes between adjacent segments under (1), using an
‘energy-based’ distributional discrepancy given by

d\) = (j)(u V) — qﬁ(j_l)(u v)’zw(u v)dudv,s. '€ < 2
¢ = 5 ¢ D) ] k) = ] — Q’

where w(u,v) is a posmve weight function for which the aboverintegral exists. For given lag
¢ > 0, the quantity d, /) measures the weighted L;-norm of the,distance between the lag ¢ joint

characteristic functions of {X,(J )},ez and {Xt(’ ) }tez.<A discrepancy measure of this form is a
natural choice for nonparametric data segmentation,Since:

Lemma 1. Forany £ > 0, dY) = 0 if and ity (X, x10)) £ (x =D x 7).

Lemma 1 extends the observation made in Matteson & James (2014) about the correspondence
between the characteristic function and,marginal distribution. It shows that by considering the
joint characteristic functions ¢é’ )(u, v)_at multiple lags € > 0, the discrepancy dé] ) is able to
capture changes in the serial depe€ndence as well as those in the marginal distribution of {X;}" ,.

The following lemma lists=some choices of the weight function w(u,v) and the associated
representation of dé’ ) as thedkefnel-based discrepancy between Yt(J ) = (X, (/) . X, ) <) and Y(J -
extending the observation made in Matteson & James (2014) for the setting Where a sequence
of independent observations are undergoing changes in the marginal distribution. Let ||x|| denote

the Euclidean norm*of a vector x, and define Yt(j ) = (f(t(] ) X G ;) where )?t(j ) = g (F) with
F; = 0(& : s < f)and & is an independent copy of &;.

LemMma 2. (i) Forany B > 0, suppose that d [(j ) in (2) is obtained with respect to the following
weight function:

w1 (u,v) =cl(ﬁ,przexp{—ziﬁ2 (1l + ||v||2)} with C1(B.p) = (2m)"pP.

Then, the function hy : R?P x R*? — [0, 1] defined as hy(x,y) = exp(=82|lx = y||*>/2) for
X,y € R2P, satisfies

dé]) =E {hl (Yl(j)’yl(j))} +E {hl (Yl(j_l)’Yl(j_l))} —_2E {hl (Yl(j)’Yl(j_l))} .
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(ii) For any 6 > 0O, suppose that déj ) is obtained with

p/2

P
wa(u,v) = Co(6, p) "> | |usviexp {—5 (”% + V%)} with C(6, p) = 2§32

s=1

Then, the function hs : R*? x R?P — [=2¢72/3,1] defined as

= — (% —yr)? — L —v)2
ha(x,y) = l_[ {26 (xr = yr) };?;P{ vy (xr = yr) }
r=1

forx = (x1,...,x0p) " and y = (y1,...,y2p)", satisfies
déj) — E{hz (Yl(J)’Yl(J))} +E{h2 (Yl(j_l)’Yl(j_l))} —-2FE {hZ (YI(J)’Y](J—I))} .

Lemma 2 is a special case of Bochner’s Theorem applied to the chosen weight/functions, see for
example Section 5.3 of Sejdinovic et al. (2013). The weight function w; is‘commonly referred
to as the Gaussian weight function. Both w; and w, are unit integrable,and separable in their
arguments, such that d é’ ) is well-defined due to the boundedeness of the claracteristic function.
We provide an alternative weight function in Appendix A.2 and alsowréfer to Fan et al. (2017) for
other suitable choices.

Remark 1. From Lemma 2, d;f ) can be viewed as the squared maximum mean discrepancy
(MMD) on a suitably defined reproducing kernel Hilbert space.with the associated kernel function;
see Lemma 6 of Gretton et al. (2012) and Section 2.6 of Celisse et al. (2018). We also note the
literature on the (auto)distance correlation for measuring and testing dependence in multivariate
(Székely et al., 2007) and time series (Zhou, 2012; Fokianos & Pitsillou, 2017; Davis et al., 2018)
settings.

Remark 2. In Model (1) (and in ourtheoretical results), the dimension p of the time series is
assumed fixed. We would expect practical"performance to deteriorate with increasing dimension
since we use an energy-based method:-For example, when the time series undergoes a change in
both mean and variance, the pre< and post-change segments of the time series can be separated
into an “inner layer" and_‘‘outer layer" based on their pairwise Euclidean distances. However,
as Chen & Friedman (2017)mote, “data points in the outer layer find themselves to be closer to
points in the inner layerthan other points in the outer layer", due to the curse of dimensionality.
See for example Ramdas et al. (2015) or Section 2.2 of Chu & Chen (2019) for further discussion.

3. METHODOLOGY

3.1. The NP-MOJO procedure

In this section we describe our proposed nonparametric moving sum procedure for detecting
changes in the joint characteristic function, henceforth referred to as NP-MOJO. The identities
given in Lemma 2 allow for the efficient computation of the statistics approximating d éj ) and their
weighted sums, which forms the basis for the NP-MOJO procedure for detecting multiple change
points from a multivariate time series {X;}”" , under the model (1). Throughout, we present the
procedure with a generic kernel / associated with some weight function w. We first introduce
NP-MOJO for the problem of detecting changes in the joint distribution of ¥; = (X;, X;4+¢) at a
given lag ¢ > 0, and extend it to the multi-lag problem in Section 3.3.
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Fig. 1: Top: time series of length n = 1000 with change points 61 = 300 and 6, = 650 (vertical dashed lines), see
Example 1. Bottom: corresponding detector statistics Ty (G, k) computed at lags € = 0.(dashed) and ¢ = 1 (solid).

For fixed bandwidth G € N, NP-MOJO scans the data using a detector statistic computed on
neighbouring moving windows of length G, which approximatessthe discrepancy between the
local joint characteristic functions of the corresponding windows measured analogously as in (2).

Specifically, the detector statistic at location k is given bysthefollowing two-sample V-statistic: s
1 k=¢ k+G—¢ k=t k+G-t
TG0 = G { D o)+ QT vy -2 > Y R, m}
s,t=k—G+1 s, t=k+1 s=k-G+1 t=k+1
for k = G,...,n— G, as an estimator of the local discrepancy measure
Df(G,k)=i(%W)zd§” |k -6;] <G -} (3)

J=0

At given k, the statistic T (Gyk) measures the difference in the distribution of ¥; over the disjoint
intervals of length G — ¢ around k&, and satisfies 160

E{T;(G,k)} = D¢(G, k) + O(G™'7?). 4)

We have Dy (G, k)'=.0 when the section of the data {X;, |t — k| < G — ¢} does not undergo a
change and accordingly, 77 (G, k) is expected to be close to zero. On the other hand, if |k — 6;] <

G - ¢, then D (G, k) increases and then decreases around 6, with a local maximum at k = 6;.
The statistic T (G, k) is expected to behave similarly: in particular, at any change point location

6;, we have that E{T;(G, 6;)} = déj) + O(G~'/?) (see Lemma D.4 in the supplementary material 1
for further information). We illustrate this using the following example.

Example 1. A univariate time series {X;}!" | of length n = 1000 is generated as X; = u, + &,

where 11, =0.7-1{t > 6,} and &, = &'V - I{z < 0o} + £'¥ - 1{t > 6>}, with 6; =300 and 6, =
650. Each si") is an autoregressive (AR) process of order 1: sil) = O.S.s‘t(i)1 + W; and st(z) =

—0.581(%)1 + W,, where {W,};cz is a white noise process with var(W;) = V1 — 0.52. This choice o
leads to var(X;) =1 for all ¢, see the top panel of Figure 1 for a realisation. Then, the mean
shift at 6, is detectable at all lags while the autocorrelation change at 6, is detectable at odd lags

only, i.e. déz) = 0 for even ¢ > 0. The bottom panel of Figure 1 plots T;(G, k), G < k < n -G,

http://mc.manuscriptcentral.com/biometrika
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computed using kernel 4, in Lemma 2 (ii) with G = 166. At lag £ = 0, the detector statistic forms
a prominent peak around 6; but it is flat around 6,; at lag £ = 1, the statistic 71 (G, k) forms local
maxima around both 6;, j = 1,2.

Based on these observations, it is reasonable to detect and locate the change points in the joint
distribution of (X;, X;+¢) as significant local maximisers of T;(G, k). We adopt the selection
criterion, first considered by Eichinger & Kirch (2018) in the context of detecting mean shifts
from univariate time series, for simultaneous estimation of multiple change points. For some fixed
constant 7 € (0, 1) and a threshold {7 (n, G) > 0, we identify any local maximiser of 7;(G, k),
say 6, which satisfies

D(G,g) > lp(n,G) and 0= argmaxkzlk_(;lSnGTg(G,k). (5)

That is, 6 is declared a change point if it is a local maximiser of 7;(G, k) over a sufficiently
large interval of size nG, at which the threshold &, (n, G) is exceeded. We denote,the set of such
estimators fulfilling (5) by ®, with gz = |®|. The choice of & (n, G) is discussediin'Section 3.4.

3.2. Theoretical properties

For some finite integer £ > 0, we define the index set of the change points detectable at lag £
asly,={1<j<gq: déj )+ 0}, and denote its cardinality by g, = | Z]-< ¢. Not all change points
are detectable at all lags, see Example 1 where we have 7y = {1} and %] = {1, 2}. In this section,
we show that the single-lag NP-MOJO described in Sections3:1 ‘consistently estimates the total
number g, and the locations {6;, j € Iy} of the change points,detectable at lag £, by @[

Writing g,:(-) = X% ¢t () - 1{6; + 1 < 1 < 6,10, define X (1) = 81 (F. (1)), Where
Fii-sy =0(...,8-5-1,&1—5,E1-s5+1,- .., &) isStancoupled version of F; with &,_; replaced
by its independent copy &-_s. For a random, variable Z and v > 0, let | Z], = {E(|Z]")}!/”.
Analogously as in Xu et al. (2024), we defin¢ the element-wise functional dependence measure
and its cumulative version as

6s,v,i = sup ||th Xll {t= s}”v and Am v = rnlag; Z 6s v,i» M€ Z. (6)
teZ p—

Then, we make the followingrassumptions on the degree of serial dependence in {X;}!
Assumption 1. There exist.;some constants Cg, Cx € (0, 0) and y; € (0, 2) such that

sup exp(Cpm”) A2 < Cx.

m>0

Assumption 2. The time series {X;}""_, is continuous and S-mixing with g(m) < Cgm™"? for
some constants Cg € (0, c0) and y, > 1 where

1 R S
B(m) = sup sup 5 :1Z|pr(A N By) = pr(A,)pr(By)] |

teZ
Here, the inner supremum is taken over all pairs of finite partitions {Aj,...,Agr} of ¥ =
o(ey, u <t)and {By,...,Bs}tof o(gy, u > t+m).

Assumptions 1 and 2 require the serial dependence in {X;}]__,, measured by A, > and B(m), to
decay exponentially, and both are met by a range of linear and non-linear processes (Wu, 2005;
Mokkadem, 1988). Under Assumption 1, we have || Xj;||2 < oo for all i and #. Assumption 1 is
required for bounding 7;(G, k) — E{T;(G, k)} uniformly over k, while Assumption 2 is used

http://mc.manuscriptcentral.com/biometrika
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for controlling the bias E{T;(G, k)} — D¢(G, k) which is attributed to serial dependence. A
condition similar to Assumption 2 is often found in the time series literature making use of
distance correlations, see e.g. Davis et al. (2018) and Yousuf & Feng (2022). Under the stronger
assumption that {X,(J )} and {Xt(] +1)} are independent, we can derive the analogous results as
those presented in Theorems 1 and 3, under Assumption 2 only.

Assumption 3. The kernel function £ is symmetric and bounded, and can be written as 4 (x, y) =
ho(x — y) for some function hg : R?”? — R that is Lipschitz continuous with respect to || - || with
Lipschitz constant Cj, € (0, o).

Assumption 3 on the kernel function / is met by /; and &, introduced in Lemma 2, with constants
Cj, bounded by Be~!/2 and 2V2p3/2671/2, respectively.

Assumption 4. (i) G~ 'log(n) — 0 as n — oo while ming< <4 (041 — 6;) > 2G.
(ii) VG /log(n) minjez, d\) — co.

Recall that 7, denotes the index set of detectable change points at lagl,d.e. dé’ YS 0iff j e 1.
However, this definition of detectability is too weak to ensure that all 8;, ", €., are detected by
NP-MOJO with high probability at lag £, since we do not rule out the'¢ase of local changes where
dég] ) - 0. Consider Example 1: the change in the autocorrelations-tesults in df) > 0 for all
odd ¢ but the size of change is expected to decay exponentially,fastas ¢ increases. Assumption 4
allows for local changes provided that /G / log(n)d;] ) diverges sufficiently fast. Assumption 4 (i)
on the minimum spacing of change points, is commonly‘imposed in the literature on change point
detection using moving window-based procedures. Assumption 4 does not rule out G/n — 0 and
permits the number of change points g to increase, in 7+*We discuss the selection of bandwidth in
Section 4.

THeEOREM 1. Let Assumptions 1, 2, 3 and4.hold and € > 0 be a finite integer, and set the thresh-
old as {y(n,G) = cs+/log(n)/G for some constant c; > 0. Then, there exists co > 0, depending
only on Cf, Cx, y1, Cg, v2 and p)\such that as n — oo,

pr | gc = 7> max min déj)|§— 0;| < coyGlog(n)| — 1.
j€12’ 56@[
Theorem 1 establishes that, for given £, NP-MOJO correctly estimates the total number and the
locations of the change points detectable at lag ¢ (including the no change case where g, = 0). In
particular, by Assumption 4, the change point estimators satisfy

EnlAn |§— Hjl =0p {(déj))‘lleog(n)} = oP{min(Qj - Hj—l, 9j+l - 91)} forall j € 1,
0By,

i.e. the change point estimators converge to the true change point locations in the rescaled time.
Further, the rate of estimation is inversely proportional to the size of change dé] ), such that the

change points associated with larger d;] ) are estimated with better accuracy. Also making use of
the energy-based distributional discrepancy, Matteson & James (2014) establish the consistency
of their proposed E-Divisive method for detecting changes in (marginal) distribution under
independence. In addition to detection consistency, we further derive the rate of estimation for
NP-MOJO which is applicable to detect changes in complex time series dependence besides those
in marginal distribution, in broader situations permitting serial dependence.

Compared to the optimal rate of estimation known for some parametric change point problems,
the rate reported in Theorem 1 is sub-optimal due to the bias of order O(G‘l/ 2) (see (4)) in U-
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and V-statistics in the presence of serial dependence. In the next theorem, we relax Assumptions 1
and 2 to serial independence, and derive a faster rate of estimation for detecting change points in
the marginal distribution (namely 6;, j € Iy = {1,..., go}) using NP-MOJO with lag ¢ = 0.

TueoreM 2. Let Assumptions 3 and 4 hold, the latter with =0, and assume that {X;}" |

=5 are independent over time, so that qo = q. Set the threshold as {(n, G) = cz+/log(n)/G for some
constant ¢y > 0. Then, there exists co > 0 depending on p, such that as n — oo,

prig=gq, max mln(d(f)) |9 ;| < colog(n)| —
1<j<q ge@,

3.3.  Multi-lag extension of NP-MOJO

In this section, we address the problem of combining the results of the NP-MOJO procedure
20 Whenitis applied with multiple lags. Let £ ¢ Ny = {0, 1, ...} denote a (finite) set of non-negative
integers. Recall that given £ € £, NP-MOJO returns a set of change points estimators ©;. Denote
the union of change point estimators over all lags L by 0= Urer ®€ = {HJ, sj<0:6 <
, < HQ} and denote by T(0) = maxge I (G, 6) the maximum detecter statistic at § across all
€ € .£. We propose to find a set of the final change point estimators 0.c ® by taking the following

265 steps; we refer to this procedure as multi-lag NP-MOJO.

Step 0. Set @) ( and select a constant ¢ € (0, 2]. _

Step 1. Set @1 e and m = 1. Iterate Steps 2—4 for m = 1,2, N, , while ©,,, # 0.
Step 2. Let 6,,, = min ©,, and identify Cy, = {0 € 0,600y < cG}.

Step 3. Identify 6,, = argmaxg_, T(6); if there is.a tie, we arbitrarily break it.

oo Step 4. Add 0, to ® and update m < m + 1 and Opm'= 0, \ Cn-1.

At iteration m of the multi-lag NP-MOJQ, Step 2 identifies the minimal element from the
current set of candidate change point estimators ®,,, and a cluster of estimators C,, whose
elements are expected to detect the identical*change points from multiple lags. Then, Step 3 finds
an estimator 6 € C,,, which is asso¢iated with the largest detector statistic at some lag, and it is

s added to the set of final estimators: This choice is motivated by Theorem 1, which shows each
0; is estimated with better accuraey at the lag associated with the largest change in the lagged
dependence (measured by d[gj )). Iterating these steps until all the elements of O are either added
to © or discarded, Weebtain‘the set of final change point estimators.

We define a subset©of L containing the lags at which the j-th change point is detectable, as

w LU ={teL: d;j) # 0}. Re-visiting Example 1, when we set £ = {0, 1}, it follows that £(1) =
{0,1} and £® = {1}. To establish the consistency of the multi-lag NP-MOJO, we formally
assume that all changes points are detectable at some lag £ € L.

Assumption 5. For £ c Ny with L = |L| < oo, we have Upe £ Iy = {1,..., q}. Equivalently,
LU z0forallj=1,...,q

285 Under Assumptions 1-5, the consistency of the multi-lag NP-MOJO procedure is largely a
consequence of Theorem 1. Assumption 4 (ii) requires that at any lag £ € L and a given change

point 6;, we have either j € 7, with d[(] ) large enough (in the sense that /G /log(n)déj ) 00),
or j ¢ I such that d;j ) =0. Such a dyadic classification of the change points rules out the

possibility that for some j, we have dlfj) > 0 but déj) = O{y/log(n)/G}, in which case 6; may
20 escape detection by NP-MOJO at lag £. We therefore consider the following alternative:
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Assumption 6. (i) G~ 'log(n) — 0 as n — oo while ming< <4 (0,41 — ;) > 4G.

(ii) /G /log(n) miny << max,e i dy’ — co.

Compared to Assumption 4, Assumption 6 requires that the change points are further apart from
one another relative to G by the multiplicative factor of two. At the same time, the latter only
requires that foreach j = 1,. .., g, there exists at least one lag € € L at which d éj ) is large enough
to guarantee the detection of §; by NP-MOJO with large probability. Theorem 3 establishes the

consistency of multi-lag NP-MOJO under either Assumption 4 or 6.

THEOREM 3. Suppose that Assumptions 1, 2, 3 and 5 hold and at each { € L, we set {¢(n, G) =
cz,e\1log(n)/G with some constants cg ¢ > 0. Let 0= {HJ, 1<j<qg: 0, <...< 9 =} denote
the set of estimators returned by multi-lag NP-MOJO with tuning parameter c.

(i) If Assumption 4 holds for all € € L and ¢ =2n with n € (0, 142}, then with ¢y as in
Theorem 1, depending only on Cr, Cx, y1, Cg, y2 and p,

pr|{g = g, max max d(]) ’0 -6; ‘ < CO\/Glog(n)) — 1 as n— oo.
1<j<qeerV)

(ii) If Assumption 6 holds and c = 2, then the ¢onclusion of (i) holds.

Under Assumption 6 (ii), which is weaker thanvAssumption 4 (ii), we may encounter a situation
where /G /log(n)déj ) = O (1) while dé] )7>0.at some lag ¢ € L. Then, we cannot guarantee that
such 6; is detected by NP-MOJO at’lag #“and, even so, we can only show that its estimator
0 € O, satisfies = ;| = O(G). This requires setting the tuning parameter ¢ maximally for the
clustering in Step 2 of multi-lag NP-MOJO, see Theorem 3 (ii). At the same time, there exists a
lag well-suited for the localisation'of each change point and Step 3 identifies an estimator detected
at such lag, and the final estimator inherits the rate of estimation attained at the favourable lag.

3.4. Threshold selection via dependent wild bootstrap

Theorem 1 gives the choice of the threshold ¢ (n, G) = cz+/log(n)/G which guarantees the
consistency of NP-MOJO in multiple change point estimation. The choice of ¢, influences the
finite sample performance of NP-MOJO but it depends on many unknown quantities involved in
specifying the degree of serial dependence in {X;}! , (see Assumptions 1 and 2), which makes
the theoretical choice of little practical use. Resampling is popularly adopted for the calibration
of change point detection methods including threshold selection. However, due to the presence
of serial dependence, permutation-based approaches such as that adopted in Matteson & James
(2014) or sample splitting adopted in Madrid Padilla et al. (2021) are inappropriate.

We propose to adopt the dependent wild bootstrap procedure proposed in Leucht & Neumann
(2013), in order to approximate the quantiles of maxg<i<n-G Tz (G, k) in the absence of any
change point, from which we select £, (n, G). Let {Wt[r] };‘z‘lc denote a bootstrap sequence gener-

ated as a Gaussian AR(1) process with var(Wt[r]) = 1 and the AR coefficient exp(—1/b,), where
the sequence {b,} is chosen such that b, = o(n) and lim,,_,., b, = co. We construct bootstrap
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r]

replicates using {W[ ]}" G as T[ = MaXG<k<n-G Tl,[r] (G, k), where

k=¢ k+G ¢
(] __ 1 L] [r]
T'[ (Gak)_ (G_g)z{ Z Ws’kWt’kh(YSaYI)-i- Z WS GkWt Gkh(YS9Yt)
s,t=k—G+1 s, t=k+1
k=t k+G-¢
rly
2 Z > owliwl Gkh(YS,Y,)}
s=k-G+1 t=k+1
with er] = [rJ -(G-0)" IZM G W, Independently generatlng {W[rj}" G for r =
1,..., R (R denoting the number of bootstrap replications), we storeT I'and select the threshold

as {g(n G)=qi_ (,({T[r ¥R ), the (1 — @)-quantile of {T[r]}R for the chosen level @ € (0, 1].
Additionally, we can compute the importance score for each 0 c @[ as
|{1<r<R (G, 9)>T[r }|

5(0) = R

(7

Taking a value between 0 and 1, the larger s(g) is, the more likely that there exists a change
point close to 0 empirically. The bootstrap procedure generalises to_the/multi-lag NP-MOJO
straightforwardly. In practice, we observe that setting Gj = arg maxg . 5(6) (with some misuse

of the notation, s(-) is computed at the relevant lag for each 6)\works well in Step 3 of multi-
lag NP-MOIJO. This is attributed to the fact that this score inherently takes into account the
varying scale of the detector statistics at multiple lags and/*standardises’ the importance of each
estimator. In all numerical experiments, our implementation of multi-lag NP-MOJO is based
on this choice of §;. We provide the algorithmicideseriptions of NP-MOJO and its multi-lag
extension in Algorithms 1 and 2 in Appendix A.S.

4. IMPLEMENTATION OF NP-MOJO

In this section, we discuss the computational aspects of NP-MOJO and provide recommenda-
tions for the choice of tuning parameters based on extensive numerical results. Numerical studies
analysing NP-MOJO'’s sensitivity:to these tuning parameters can be found in Appendix B.

Computational compleXitys=owing to the moving sum-based approach, the cost of sequen-
tially computing 74(G, k).from T;(G, k — 1) is O(G), giving the overall cost of computing
T:(G,k), G < k <n=<G, as O(nG). Exact details of the sequential update are given in Ap-
pendix A.l. The bootstrap procedure described in Section 3.4 is performed once per lag for
simultaneously detecting multiple change points, in contrast with E-Divisive (Matteson & James,
2014) that requires the permutation-based testing to be performed for detecting each change
point. With R bootstrap replications, the total computational cost is O (|£|RnG) for multi-lag
NP-MOIJO using the set of lags £ and bootstrapping, as opposed to O(Rgn?) for E-Divisive.
Furthermore, the bootstrap procedure can be parallelised in a straightforward manner, which we
include as an option in the implementation of the method.

We ran simulations to compare the computational speed of the competing nonparamet-
ric methods. We simulate realisations under the change in mean model (B.1), with in-
creasing values of sample size n and the number of equispaced change points g ((n,q) €
{(100, 1), (500, 2), (1000, 3), (2000, 5), (5000, 10), (10000, 20)}). We use the same settings for
each method as in the main simulation study, using the parallelised version of multi-lag NP-MOJO
when n > 2000, and compute the average run time over 100 realisations. The results are displayed
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in Figure 2. The fastest method by far is cpt.np, followed by KCPA and NP-MOJO. E-Divisive
and NWBS are noticeably slower than the other methods. In particular, when n = 10000, the
average running time of cpt.np is 0.17 seconds, KCPA is 46.26 seconds, NP-MOJO is 2.31 min-
utes, NWBS is 30.06 minutes, and E-Divisive is 70.37 minutes. Also, we observe that KCPA’s
running time is increasing at a faster rate than NP-MOJO’s, and may exceed the running time of
NP-MOJO for larger values of n.

cpt.np —e— E-Divisive

500] == NP-MOJO -e: NWBS g

100| - e KCPA

Running Time (s)
PN

100 500 1000 2000 5000 {10000
n

Fig. 2: Running time comparisons between the competing nonparametric methods. Both axes are in the log scale.

Kernel function: as with any kernel-based apptroach; NP-MOJQO’s performance will vary with
the choice of kernel, and a kernel that works well forione type of change point may not be the best
for another type of change point. Based on empirical performance and versatility to a wide range
of change point scenarios (see Appendix.B.3.1), we recommend the use of the kernel function
hy in Lemma 2 (ii). The parameter ¢ is ‘set using the ‘median trick’, a common heuristic used
in kernel-based methods (Li et al.,,2019). Specifically, we set ¢ to be a half the median of all
||Ys — Y;||? involved in the calculationof T, (G, k). For p-variate i.i.d. Gaussian data with common
variance o2, this corresponds 0,6 & o p as the dimension p increases (Ramdas et al., 2015). As
with the kernel /,, the median trick can also be used when setting g if the kernel 4 is used.

Bandwidth: due to the nonparametric nature of NP-MOJO, it is advised to use a larger band-
width than that shownto'work well for the moving sum procedure for univariate mean change
detection (Eichinger ‘& Kirch, 2018). In our simulation studies and data applications, we set
G = | n/6]. Itis often found that using multiple bandwidths and merging the results improves the
adaptivity of moving window-based procedures, such as the ‘bottom-up’ merging proposed by
Messer et al. (2014) or the localised pruning of (Cho & Kirch, 2022). We empirically explore the
multiscale extension of the multi-lag NP-MOJO with bottom-up merging, see Appendix A.3 for
details of its implementation and Appendix B.5 for a proof of concept numerical study involv-
ing multiscale change point scenarios. We leave a theoretical investigation into the multiscale
extension of NP-MOJO for future research.

Parameters for change point estimation: we set n = 0.4 in (5) following the recommendation
in Meier et al. (2021). For multi-lag NP-MOJO, we set ¢ = 1 for clustering the estimators from
multiple lags, a choice that lies between those recommended in Theorem 3 (i) and (ii), since we do
not know whether Assumptions 4 or 6 hold in practice. Appendices B.3.3 and B.3.4 demonstrate
that within a reasonable range, NP-MOJO is insensitive to the choices of 1 and ¢. To further
guard against spurious estimators, we only accept those 6 that lie in intervals of length greater
than |0.02G | where the corresponding 77 (G, k) exceeds ¢ (n, G).
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Parameters for the bootstrap procedure: the choice of b, sets the level of dependence in the
multiplier bootstrap sequences. Leucht & Neumann (2013) show that a necessary condition is that
lim,, e (b,,! + b,n~1) = 0, giving a large freedom for choice of b,,. We recommend b,, = 1.5n'/3,
which works well in practice. Appendix B.3.2 demonstrates that within a reasonable range, NP-
MOIJO is insensitive to the choice of b,. As for «, its choice amounts to setting the level of
significance in statistical testing. This provides a more systematic alternative to the problem of
model selection in multiple change point detection compared to others, such as those requiring
the selection of a threshold that is known up to a rate (or a range of rates, see e.g. Madrid Padilla
et al., 2023), or constants involved in the penalty of a penalised cost function (Arlot et al., 2019).
In all numerical experiments, we use @ = 0.1 with R = 499 bootstrap replications.

Set of lags .L: the flexibility of NP-MOJO in its ability to detect changes in dependence, comes
at the price of having to select the set of lags L. The choice of £ depends on the practitioner’s
interest and domain knowledge, a problem commonly faced by general-purpose change point
detection methods, such as the choice of the quantile level in Vanegas et al. (2022)ythe parameter
of interest in Zhao et al. (2022) and the estimating equation in Kirch & Reckruehm«(2024). For
example, for monthly data, using £ = {0, 3, 12} allows for detecting changesiin'the quarterly and
yearly seasonality. Even when the interest lies in detecting changes in thé¢ marginal distribution
only, it helps to jointly consider multiple lags, since any marginal distributional change is likely to
result in changes in the joint distribution of (X;, X;+¢). As we considef tume Series that exhibit short
range dependence, we would expect that NP-MOJO will not have ‘deteCtion power at large lags.
In simulations, we use £ = {0, 1, 2} which works well not only:for.detecting changes in the mean
and the second-order structure, but also for detecting changes in"(non-linear) serial dependence
and higher-order characteristics. For a practical appreach/torlag selection, see Appendix A.4 in
the supplementary material, where we propose a.semi-automatic method for choosing the set of
lags £ given some initial set L.

5. SIMULATION STUDY

We conduct extensive simulation_studies with varying change point scenarios (30 scenarios
where g > 1, 7 with g = 0), sample sizes (n € {500, 1000, 2000, 10000}) and dimensions p €
{1,2,5, 10}, and consider both eyenly=spaced and multiscale change point settings. We provide
complete descriptions of the simulation studies in Appendix B where, for comparison, we consider
not only nonparametric but also parametric data segmentation procedures well-suited to detect
the types of changes«in censideration, which include changes in the mean, second-order and
higher-order moments/and non-linear serial dependence. Due to space constraint, here we focus
on a selection of the results in the evenly-spaced setting with n = 1000 comparing both single-
lag and multi-lag NP-MOIJO (denoted by NP-MOJO-¢ and NP-MOJO-L respectively), with the
nonparametric competitors: E-Divisive (Matteson & James, 2014), NWBS (Madrid Padilla et al.,
2021), KCPA (Celisse et al., 2018; Arlot et al., 2019) and cpt.np (Haynes et al., 2017). E-Divisive
and KCPA are applicable to multivariate data segmentation whilst NWBS and cpt.np are not. The
scenarios are:

(BS) X, = Z;:o 2;/2]1{9_1' +1<1t<0j1} &, where & =(g1,6)" With & ~ijid 15,
(61,62, 63) = (250,500,750), Zg = T = () 9) and Iy = 5 = (s ).

€D X, =X =a;XY) &, for 6;+1<1<61, where ¢ =2, (61,62) = (333,667) and
(ag,air,az) = (-0.8,0.8,-0.8).. . .

€3 X, =X =g, with (") = wj+a;(XU)2+ (D)) for 6;+1 <1< 6,
where g = 1, 8; = 500, (wo, @o, Bo) = (0.01,0.7,0.2) and (w1, a1, B1) = (0.01,0.2,0.7).
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(D3) X; =0.4X,_1 +&; where & ~iiq N(0,0.5%) for t <6, and 7> 6>+ 1, and & ~ijq
Exponential(0.5) — 0.5 for 6; + 1 <t < 6,, with ¢ =2 and (6, 6;) = (333, 667).

Additional simulations for differing sample sizes can be found in Appendix B.4, and simulations
with uneven spacing between neighbouring segments examining the performance of the multiscale
version of multi-lag NP-MOJO are given in Appendix B.5. The above scenarios consider changes
in the covariance of bivariate, non-Gaussian random vectors in (B5), changes in the autocorrelation
(while the variance stays unchanged) in (C1), a change in the parameters of an ARCH(1, 1) process
in (C3), and changes in higher moments of serially dependent observations in (D3). Table 1 reports
the distribution of the estimated number of change points and the average covering metric (CM)
and V-measure (VM) over 1000 realisations. Taking values between [0, 1], CM and VM close
to 1 indicates better accuracy in change point location estimation, see Appendix B.2 for their
definitions and complete discussions of change point scenarios.

In the case of (C1), we have g, =0, ¢ # 1, while ¢g; = 2, and thus we report g, — g, for the
respective single-lag NP-MOJO-¢. Across all scenarios, NP-MOJO-_£L shows good detection and
estimation accuracy and demonstrates the efficacy of considering multiple lags, see (C3) and (D3)
in particular. As the competitors are calibrated for the independent setting, they,tend to either over-
or under-detect the number of change points in the presence of serial dependence in (C1), (C3)
and (D3). In Appendix B.2, we compare NP-MOJO against change point methods proposed for
time series data where it performs comparably to methods specifically calibrated for the change
point scenarios considered.

Table 1: Distribution of the estimated number of change points.and,the average CM and VM over 1000 realisations.
The modal value of g — ¢ in each row is given in bold. Alsothe'best performance for each metric is underlined for
each scenario.

9-q/q—qr
Model Method <-2 =1 0 1 >2 CM VM
(B5) NP-MOJO=0 '0:000 0.001 0.997 0.002 0.000 0.974 0.959
NP-MOJO-1%0.005 0.121 0.867 0.007 0.000 0.931 0.927
NP-MQJO-2, 0.006 0.103 0.884 0.007 0.000 0.935 0.929
NP-MOJO-L 0.000 0.001 0.999 0.000 0.000 0.973 0.958

E-Divisive  0.670 0.189 0.101 0.032 0.008 0.431 0.335
KCPA 0.322 0.000 0.662 0.015 0.001 0.775 0.725

(CH«/NP-MOJO-0 - - 0851 0.140 0009 - -
NP-MOJO-1 0.000 0.002 0.956 0.042 0.000 0.978 0.961
NP-MOJO-2 - - 0836 0.149 0015 - -
NP-MOJO-£ 0.000 0.002 0.986 0.012 0.000 0.980 0.963

E-Divisive  0.001 0.001 0.012 0.035 0.951 0.685 0.686
KCPA 0.792 0.002 0.065 0.025 0.116 0.399 0.132
NWBS 0.013 0.001 0.007 0.015 0.964 0.398 0.558
cpt.np 0.000 0.000 0.002 0.003 0.995 0.593 0.647

(C3) NP-MOJO-0 - 0.409 0.533 0.056 0.002 0.744 0.484
NP-MOJO-1 - 0.236 0.682 0.081 0.001 0.819 0.633
NP-MOJO-2 - 0.299 0.626 0.073 0.002 0.787 0.571
NP-MOJO-£ - 0210 0.727 0.062 0.001 0.823 0.645
E-Divisive - 0.032 0.327 0.211 0.430 0.742 0.602

KCPA - 0418 0.262 0.171 0.149 0.667 0.370
NWBS - 0.895 0.048 0.020 0.037 0.525 0.069
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cpt.np — 0.000 0.013 0.047 0.940 0.634 0.554

(D3) NP-MOJO-0 0.003 0.139 0.809 0.049 0.000 0.899 0.872
NP-MOJO-1 0.006 0.155 0.792 0.047 0.000 0.892 0.864
NP-MOJO-2 0.021 0.248 0.685 0.045 0.001 0.848 0.819
NP-MOJO-£ 0.002 0.082 0.914 0.002 0.000 0.917 0.884

E-Divisive  0.005 0.002 0.072 0.118 0.803 0.681 0.707
KCPA 0.441 0.012 0.481 0.052 0.014 0.667 0.500
NWBS 0.047 0.015 0.139 0.124 0.675 0.680 0.676
cpt.np 0.000 0.000 0.045 0.055 0.900 0.726 0.756

6. DATA APPLICATIONS
6.1. California seismology measurements data set

We analyse a data set from the High Resolution Seismic Network, operated by,the Berkeley
Seismological Laboratory. Ground motion sensor measurements were recorded in three mutually
perpendicular directions at 13 stations near Parkfield, California, USA for'/40 seconds from
2am on December 23rd 2004. The data has previously been analysed in Xie et al. (2019) and
Chen et al. (2022). Chen et al. (2022) pre-process the data by removing a linear trend and down-
sampling, and the processed data is available in the ocd R package,(Chen et al., 2020). According
to the Northern California Earthquake Catalog, an earthquakesof magnitude 1:47 Md hit near
Atascadero, California (50 km away from Parkfield) at 02:09:54.01.
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Fig. 3: Heat map of standardised sensor data. Change points detected by multi-lag NP-MOJO are shown in vertical
dashed lines, and the time of the earthquake is given by solid vertical line.

We analyse time series of dimension p = 39 and length n = 2000 by taking a portion of the
data set between 544 and 672 seconds after 2am, which covers the time at which the earthquake
occurred (594 seconds after). We apply the multi-lag NP-MOJO with tuning parameters selected
as in Section 4, using G = 333 and set of lags £ = {0, ..., 4}. We detect two changes at all lags;
the first occurs at between 603.712 and 603.968 seconds after 2am and may be attributed to the
earthquake. As noted in Chen et al. (2022), P waves, which are the primary preliminary wave and
arrive first after an earthquake, travel at up to 6km/s in the Earth’s crust. This is consistent with the
delay of approximately 9 seconds between the occurrence of the earthquake and the first change
point detected by multi-lag NP-MOJO. We also note that performing online change point analysis,
Xie et al. (2019) and Chen et al. (2022) report a change at 603.584 and 603.84 seconds after the
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Fig. 4: Sample correlations from the three segments defined by the change point estimators.

earthquake, respectively. The second change is detected at between 6265176 and 626.496 seconds
after 2am. It may correspond to the ending of the effect of thelearthquake, as sensors return to
‘baseline’ behaviour. Figure 3 plots the heat map of the data with each series standardised for ease
of visualisation, along with the onset of the earthquake andithe.two change points detected by the
multi-lag NP-MOJO. It suggests, amongst other possible,distributional changes, the time series
undergoes mean shifts as found in Chen et al. (2022)4We also examine the sample correlations
computed on each of the three segments, see Figure 4 where the data exhibit a greater degree
of correlation in segment 2 compared to the otheér'two segments. Recalling that each station is
equipped with three sensors, we notice that,pairwise correlations from the sensors located at the
same stations undergo greater changes in,correlations. A similar observation is made about the
sensors located at nearby stations.

6.2. US recession data

We analyse the US recessionindicator data set. Recorded quarterly between 1855 and 2021 (n =
667), X; isrecorded as a 1'if any'month in the quarter is in a recession (as identified by the Business
Cycle Dating Committee ‘of the National Bureau of Economic Research), and 0 otherwise. The
data has previously been examined for change points under piecewise stationary autoregressive
models for integer<valued time series in Hudecova (2013) and Diop & Kengne (2021). We apply
the multi-lag NP-MOJO with G = 111 and £ ={0,...,4}. All tuning parameters are set as
recommended in Section 4 with one exception, ¢ for the kernel /4. We select 6 = 1 for lag 0 and
2 otherwise, since pairwise distances for binary data are either O or 1 when £ = 0 such that the
median heuristic would not work as desired.

At all lags, we detect a single change point located between 1933:Q1 and 1938:Q2. Multi-
lag NP-MOJO estimates the change point at 1933:Q1, which is comparable to the previous
analyses: Hudecova (2013) report a change at 1933:Q1 and Diop & Kengne (2021) at 1932:Q4.
The change coincides with the ending of the Great Depression and beginning of World War
II. The left panel of Figure 5 plots the detected change along with the sample average of X;
over the two segments (superimposed on {X;} ), showing that the frequency of recession is
substantially lower after the change. The right panel plots the detector statistics Tz (G, k) at lags
¢ € L, divided by the respective threshold {;(n, G) obtained from the bootstrap procedure. The
thus-standardised 74 (G, k), shown in solid line, displays the change point with the most clarity,
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Fig. 5: Left: quarterly US recession indicator series. A change point detected by multi-lag NP-MOJO is shown in
vertical dashed lines and the sample means over the two segments in solid line. Right: 7, (G, k), G'< k < n - G for
lags ¢ € L, after standardisation by respective thresholds.

attaining the largest value over the widest interval above the threshold((standardised to be one).
At lag 4, the detector statistic has the interpretation of measuring @any,discrepancy in the joint
distribution of the recession indicator series and its yearly lagged values.

Supplementary material

The supplementary appendix contains additionalsdiscussion on the implementation of NP-
MOIJO and multi-lag NP-MOJO, the complete simulation results and the proofs of all theoretical
results.
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