
Biometrika (2025), 112, 2, asaf024 https://doi.org/10.1093/biomet/asaf024
Advance Access publication 1 April 2025

Nonparametric data segmentation in multivariate time series
via joint characteristic functions

By E. T. MCGONIGLE

School of Mathematical Sciences, University of Southampton,
University Road, Southampton SO17 1BJ, U.K.

e.t.mcgonigle@soton.ac.uk

AND H. CHO

School of Mathematics, University of Bristol,
Woodland Road, Bristol BS8 1UG, U.K.

haeran.cho@bristol.ac.uk

SUMMARY

Modern time series data often exhibit complex dependence and structural changes that
are not easily characterized by shifts in the mean or model parameters. We propose a non-
parametric data segmentation methodology for multivariate time series. By considering joint
characteristic functions between the time series and its lagged values, our proposed method
is able to detect changepoints in the marginal distribution, but also those in possibly non-
linear serial dependence, all without the need to prespecify the type of changes. We show the
theoretical consistency of our method in estimating the total number and the locations of
the changepoints, and demonstrate its good performance against a variety of changepoint
scenarios. We further demonstrate its usefulness in applications to seismology and economic
time series.

Some key words: Changepoint detection; Joint characteristic function; Moving sum; Multivariate time series;
Nonparametric data.

1. Introduction

Changepoint analysis has been an active area of research for decades, dating back to
Page (1954). Literature on changepoint detection continues to expand rapidly due to its
prominence in numerous applications, including biology (Jewell et al., 2020), financial anal-
ysis (Lavielle & Teyssiere, 2007) and environmental sciences (Carr et al., 2017). Considerable
efforts have been made for developing computationally and statistically efficient methods for
data segmentation, also known as multiple changepoint detection, in the mean of univari-
ate data under independence (Killick et al., 2012; Frick et al., 2014; Fryzlewicz, 2014) and
permitting serial dependence (Tecuapetla-Gómez & Munk, 2017; Dette et al., 2020; Cho
& Kirch, 2022; Cho & Fryzlewicz, 2023). There also exist methods for detecting changes
in the covariance (Aue et al., 2009; Wang et al., 2021), parameters under linear regression
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2 E. T. McGonigle and H. Cho

(Bai & Perron, 1998; Xu et al., 2024) or other models (Fryzlewicz & Subba Rao, 2014;
Safikhani & Shojaie, 2022) in fixed and high dimensions. For an overview, see Truong et al.
(2020) and Cho & Kirch (2024).

Any departure from distributional assumptions such as independence and Gaussianity
tends to result in poor performance of changepoint algorithms. Furthermore, it may not
be realistic to assume any knowledge of the type of changepoint that occurs, or to make
parametric assumptions on the data-generating process, for time series that possess complex
structures and are observed over a long period. Searching for changepoints in one property
of the data (e.g., the mean), when the time series instead undergoes changes in another (e.g.,
the variance), may lead to misleading conclusions and inference on such data. Therefore,
it is desirable to develop flexible, nonparametric changepoint detection techniques that are
applicable to detect general changes in the underlying distribution of serially dependent
data.

There are several strategies for the nonparametric changepoint detection problem, such
as those based on the empirical cumulative distribution and density functions (Carlstein,
1988; Zou et al., 2014; Haynes et al., 2017; Madrid Padilla et al., 2021, 2022, 2023; Vanegas
et al., 2022), kernel transforms of the data (Harchaoui et al., 2009; Celisse et al., 2018; Arlot
et al., 2019; Li et al., 2019) or U-statistics measuring the ‘energy’-based distance between dif-
ferent distributions (Matteson & James, 2014; Chakraborty & Zhang, 2021; Boniece et al.,
2023). There also exist graph-based methods applicable to non-Euclidean data (Chen &
Zhang, 2015; Chu & Chen, 2019). All these methods can only detect changes in the mar-
ginal distribution of the data and, apart from Madrid Padilla et al. (2023), assume serial
independence. We also mention Cho & Fryzlewicz (2012), Preuß et al. (2015) and Korkas
& Fryzlewicz (2017), who addressed the problem of detecting changes in the second-order
structure, but their methods do not have power against changes in nonlinear dependence.

We propose a nonparametric moving sum procedure for detecting changes in the joint
characteristic function, which we refer to as the NP-MOJO procedure, that detects mul-
tiple changes in serial, possibly nonlinear dependence as well as marginal distributions of a
multivariate time series {Xt}

n
t=1. We adopt a moving sum procedure to scan the data for mul-

tiple changepoints. The moving sum methodology has successfully been applied to a variety
of changepoint testing (Chu et al., 1995; Huskova & Slaby, 2001) and data segmentation
problems (Eichinger & Kirch, 2018). Here, we combine it with a detector statistic carefully
designed to detect changes in the complex dependence structure beyond those detectable
from considering the marginal distribution only. Specifically, we utilize an energy-based dis-
tributional discrepancy that measures any change in the joint characteristic function of the
time series at some lag ℓ ⩾ 0, which allows for detecting changes in the joint distribution of
(Xt, Xt+ℓ) beyond the changes in their linear dependence. To the best of our knowledge, the
NP-MOJO procedure is the first nonparametric methodology that is able to detect changes
in nonlinear serial dependence in multivariate time series.

We establish that the NP-MOJO procedure achieves consistency in estimating the number
and locations of changepoints for a given lag, providing convergence rates for the change-
point location estimators, and propose a methodology that extends this desirable property
of a single-lag NP-MOJO procedure to multiple lags. Combined with a dependent multiplier
bootstrapping procedure, the NP-MOJO procedure and its multi-lag extension perform
well across a wide range of changepoint scenarios in simulations and real data applica-
tions. Accompanying R software implementing the NP-MOJO procedure is available as the
R package CptNonPar (McGonigle & Cho, 2023; R Development Core Team, 2025) on
CRAN.
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2. Model and measure of discrepancy

We observe a multivariate time series {Xt}
n
t=1 of (finite) dimension p, where

Xt =

q∑
j=0

X (j)
t I{θj + 1 ⩽ t ⩽ θj+1} (1)

with Xt = (Xt1, …, Xtp)
T and 0 = θ0 < θ1 < · · · < θq < θq+1 = n.

For each sequence {X (j)
t : t ⩾ 1}, j = 0, …, q, there exists an Rp-valued measurable func-

tion g(j)(·) = {g(j)
1 (·), …, g(j)

p (·)}T such that X (j)
t = g(j)(Ft) with Ft = σ(εs : s ⩽ t), and

independent and identically distributed random elements εt. We assume that g(j−1)
|= g(j)

for all j = 1, …, q, such that, under model (1), the time series undergoes q changepoints
at locations 2 = {θ1, …, θq}, with the notational convention that θ0 = 0 and θq+1 = n.
That is, {Xt}

n
t=1 consists of q+1 stationary segments where the jth segment is represented in

terms of a segment-dependent ‘output’ g(j)(Ft), with the common ‘input’ Ft shared across
segments such that dependence across the segments is not ruled out. Each segment has a
nonlinear Wold representation as defined by Wu (2005); this representation includes com-
monly adopted time series models including autoregressive moving average and generalized
autoregressive conditional heteroscedastic (garch) processes.

Denote by ⟨x, y⟩ = xTy the inner product of two vectors x and y, and by ı the imaginary
unit with ı2

= −1. At some integer ℓ, define the joint characteristic function of {X (j)
t }t∈Z at

lag ℓ as

φ
(j)
ℓ (u, v) = E{exp(ı⟨u, X (j)

1 ⟩ + ı⟨v, X (j)
1+ℓ⟩)}, 0 ⩽ j ⩽ q.

We propose to measure the size of changes between adjacent segments under (1) using
an energy-based distributional discrepancy given by

d(j)
ℓ =

∫
Rp

∫
Rp
|φ

(j)
ℓ (u, v)− φ

(j−1)
ℓ (u, v)|2w(u, v) du dv, 1 ⩽ j ⩽ q, (2)

where w(u, v) is a positive weight function for which the above integral exists. For given lag
ℓ ⩾ 0, the quantity d(j)

ℓ measures the weighted L2 norm of the distance between the lag-ℓ

joint characteristic functions of {X (j−1)
t }t∈Z and {X (j)

t }t∈Z. A discrepancy measure of this
form is a natural choice for nonparametric data segmentation, since the following result
holds.

Lemma 1. For any ℓ ⩾ 0, d(j)
ℓ = 0 if and only if (X (j)

1 , X (j)
1+ℓ)

d
= (X (j−1)

1 , X (j−1)
1+ℓ ).

Lemma 1 extends the observation made by Matteson & James (2014) about the corres-
pondence between the characteristic function and marginal distribution. It shows that, by
considering the joint characteristic functions φ

(j)
ℓ (u, v) at multiple lags ℓ ⩾ 0, the discrep-

ancy d(j)
ℓ is able to capture changes in the serial dependence as well as those in the marginal

distribution of {Xt}
n
t=1.

The following lemma lists some choices of the weight function w(u, v) and the associ-
ated representation of d(j)

ℓ as the kernel-based discrepancy between Y (j)
t = (X (j)

t , X (j)
t+ℓ) and

Y (j−1)
t , extending the observation made by Matteson & James (2014) for the setting where
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4 E. T. McGonigle and H. Cho

a sequence of independent observations undergoes changes in the marginal distribution.
Let ∥x∥ denote the Euclidean norm of a vector x, and define Ỹ (j)

t = (X̃ (j)
t , X̃ (j)

t+ℓ), where

X̃ (j)
t = g(j)(F̃t) with F̃t = σ(ε̃s : s ⩽ t) and ε̃t is an independent copy of εt.

Lemma 2.

(i) For any β > 0, suppose that d(j)
ℓ in (2) is obtained with respect to the weight function

w1(u, v) = C1(β, p)−2 exp
{
−

1
2β2 (∥u∥2 + ∥v∥2)

}
with C1(β, p) = (2π)p/2βp.

Then the function h1 : R2p
× R2p

→ [0, 1], defined as h1(x, y) = exp(−β2
∥x − y∥2/2)

for x, y ∈ R2p, satisfies

d(j)
ℓ = E

{
h1(Y

(j)
1 , Ỹ (j)

1 )
}
+ E

{
h1(Y

(j−1)
1 , Ỹ (j−1)

1 )
}
− 2E

{
h1(Ỹ

(j)
1 , Y (j−1)

1 )
}
.

(ii) For any δ > 0, suppose that d(j)
ℓ is obtained with

w2(u, v) = C2(δ, p)−2
p∏

s=1

u2
s v2

s exp
{
− δ(u2

s + v2
s )
}
, where C2(δ, p) =

πp/2

2pδ3p/2 .

Then the function h2 : R2p
× R2p

→ [−2e−2/3, 1], defined as

h2(x, y) =

2p∏
r=1

{2δ − (xr − yr)
2
} exp{−(xr − yr)

2/4δ}

2δ

for x = (x1, …, x2p)
T and y = (y1, …, y2p)

T, satisfies

d(j)
ℓ = E

{
h2(Y

(j)
1 , Ỹ (j)

1 )
}
+ E

{
h2(Y

(j−1)
1 , Ỹ (j−1)

1 )
}
− 2E

{
h2(Ỹ

(j)
1 , Y (j−1)

1 )
}
.

Lemma 2 is a special case of Bochner’s theorem applied to the chosen weight functions;
see, for example, § 5.3 of Sejdinovic et al. (2013). The weight function w1 is commonly
referred to as the Gaussian weight function. Both w1 and w2 are unit integrable and sep-
arable in their arguments, such that d(j)

ℓ is well defined due to the boundedeness of the
characteristic function. We provide an alternative weight function in the Supplementary
Material and also refer the reader to Fan et al. (2017) for other suitable choices.

Remark 1. From Lemma 2, d(j)
ℓ can be viewed as the squared maximum mean discrepancy

on a suitably defined reproducing kernel Hilbert space with the associated kernel function;
see Lemma 6 of Gretton et al. (2012) and § 2.6 of Celisse et al. (2018). We also note the
literature on the (auto)distance correlation for measuring and testing dependence in multi-
variate (Székely et al., 2007) and time series (Zhou, 2012; Fokianos & Pitsillou, 2017; Davis
et al., 2018) settings.

Remark 2. In model (1) (and in our theoretical results), dimension p of the time series is
assumed fixed. We would expect practical performance to deteriorate with increasing dimen-
sion since we use an energy-based method. For example, when the time series undergoes a
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Nonparametric data segmentation in multivariate time series 5

change in both the mean and variance, the pre- and post-change segments of the time series
can be separated into an ‘inner layer’ and ‘outer layer’ based on their pairwise Euclidean dis-
tances. However, as Chen & Friedman (2017, p. 399) noted, ‘data points in the outer layer
find themselves to be closer to points in the inner layer than other points in the outer layer’,
due to the curse of dimensionality. See, for example, Ramdas et al. (2015) or Chu & Chen
(2019, § 2.2) for further discussion.

3. Methodology

3.1. The NP-MOJO procedure

In this section we describe our proposed NP-MOJO procedure. The identities given in
Lemma 2 allow for the efficient computation of the statistics approximating d(j)

ℓ and their
weighted sums, which form the basis for the NP-MOJO procedure for detecting multiple
changepoints from a multivariate time series {Xt}

n
t=1 under model (1). Throughout, we

present the procedure with a generic kernel h associated with some weight function w. We
first introduce the NP-MOJO procedure for the problem of detecting changes in the joint
distribution of Yt = (Xt, Xt+ℓ) at a given lag ℓ ⩾ 0, and extend it to the multi-lag problem
in § 3.3 below.

For fixed bandwidth G ∈ N, the NP-MOJO procedure scans the data using a detector
statistic computed on neighbouring moving windows of length G, which approximates the
discrepancy between the local joint characteristic functions of the corresponding windows
measured analogously as in (2). Specifically, the detector statistic at location k is given by
the two-sample V -statistic

Tℓ(G, k) =
1

(G − ℓ)2


k−ℓ∑

s,t=k−G+1

h(Ys, Yt)+

k+G−ℓ∑
s,t=k+1

h(Ys, Yt)− 2
k−ℓ∑

s=k−G+1

k+G−ℓ∑
t=k+1

h(Ys, Yt)


for k = G, …, n− G, as an estimator of the local discrepancy measure

Dℓ(G, k) =

q∑
j=0

(
G − ℓ− |k− θj|

G − ℓ

)2

d(j)
ℓ I{|k− θj| ⩽ G − ℓ}.

At given k, the statistic Tℓ(G, k) measures the difference in the distribution of Yt over the
disjoint intervals of length G − ℓ around k, and satisfies

E{Tℓ(G, k)} = Dℓ(G, k)+O(G−1/2). (3)

We have Dℓ(G, k) = 0 when the section of the data {Xt, |t− k| ⩽ G − ℓ} does not undergo
a change and, accordingly, Tℓ(G, k) is expected to be close to zero. On the other hand, if
|k − θj| < G − ℓ then Dℓ(G, k) increases and then decreases around θj with a local maxi-
mum at k = θj. The statistic Tℓ(G, k) is expected to behave similarly: in particular, at any

changepoint location θj, we have E{Tℓ(G, θj)} = d(j)
ℓ +O(G−1/2) (see Lemma D.4 within

the Supplementary Material for further information). We illustrate this using the following
example.

Example 1. A univariate time series {Xt}
n
t=1 of length n = 1000 is generated as Xt =

µt + εt, where µt = 0.7I{t > θ1} and εt = ε
(1)
t I{t < θ2} + ε

(2)
t I{t ⩾ θ2}, with θ1 = 300 and
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Fig. 1. Top: time series of length n = 1000 with changepoints θ1 = 300 and θ2 = 650 (vertical dashed
lines); see Example 1. Bottom: corresponding detector statistics Tℓ(G, k) computed at lags ℓ = 0 (dashed) and

ℓ = 1 (solid).

θ2 = 650. Each ε
(j)
t is an autoregressive (ar) process of order 1, i.e., ε

(1)
t = 0.5ε

(1)
t−1 +Wt and

ε
(2)
t = −0.5ε

(2)
t−1 +Wt, where {Wt}t∈Z is a white noise process with var(Wt) = (1− 0.52)1/2.

This choice leads to var(Xt) = 1 for all t; see the top panel of Fig. 1 for a realization.
Then, the mean shift at θ1 is detectable at all lags, while the autocorrelation change at θ2 is
detectable at odd lags only, i.e., d(2)

ℓ = 0 for even ℓ ⩾ 0. The bottom panel of Fig. 1 plots
Tℓ(G, k), G ⩽ k ⩽ n − G, computed using kernel h2 in Lemma 2(ii) with G = 166. At lag
ℓ = 0, the detector statistic forms a prominent peak around θ1, but it is flat around θ2; at
lag ℓ = 1, the statistic T1(G, k) forms local maxima around both θj, j = 1, 2.

Based on these observations, it is reasonable to detect and locate the changepoints in the
joint distribution of (Xt, Xt+ℓ) as significant local maximizers of Tℓ(G, k). We adopt the
selection criterion, first considered by Eichinger & Kirch (2018) in the context of detecting
mean shifts from univariate time series, for simultaneous estimation of multiple change-
points. For some fixed constant η ∈ (0, 1) and a threshold ζℓ(n, G) > 0, we identify any
local maximizer of Tℓ(G, k), say θ̂ , which satisfies

Tℓ(G, θ̂ ) > ζℓ(n, G) and θ̂ = arg max
k : |k−θ̂ |⩽ηG

Tℓ(G, k). (4)

That is, θ̂ is declared a changepoint if it is a local maximizer of Tℓ(G, k) over a sufficiently
large interval of size ηG, at which the threshold ζℓ(n, G) is exceeded. We denote the set of
such estimators fulfilling (4) by 2̂ℓ with q̂ℓ = |2̂ℓ|. The choice of ζℓ(n, G) is discussed in § 3.4
below.

3.2. Theoretical properties

For some finite integer ℓ ⩾ 0, we define the index set of changepoints detectable at lag ℓ as
Iℓ = {1 ⩽ j ⩽ q : d(j)

ℓ |= 0}, and denote its cardinality by qℓ = |Iℓ| ⩽ q. Not all changepoints
are detectable at all lags; see Example 1 where we have I0 = {1} and I1 = {1, 2}. In this
section, we show that the estimated changepoints 2̂ℓ produced by the single-lag NP-MOJO
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Nonparametric data segmentation in multivariate time series 7

procedure described in § 3.1 consistently estimates the total number qℓ and the locations
{θj, j ∈ Iℓ} of the changepoints detectable at lag ℓ.

Writing gti(·) =
∑q

j=0 g(j)
i (·)I{θj + 1 ⩽ t ⩽ θj+1}, define Xti,{t−s}= gti(Ft,{t−s}), where

Ft,{t−s} = σ(…, εt−s−1, ε̃t−s, εt−s+1, …, εt) is a coupled version of Ft with εt−s replaced by its
independent copy ε̃t−s. For a random variable Z and ν > 0, let ∥Z∥ν = {E(|Z|ν)}1/ν . Anal-
ogously as in Xu et al. (2024), we define the elementwise functional dependence measure
and its cumulative version as

δs,ν,i = sup
t∈Z
∥Xti − Xti,{t−s}∥ν and 1m,ν = max

1⩽i⩽p

∞∑
s=m

δs,ν,i, m ∈ Z.

Then, we make the following assumptions on the degree of serial dependence in {Xt}
n
t=1.

Assumption 1. There exist some constants CF , CX ∈ (0,∞) and γ1 ∈ (0, 2) such that

sup
m⩾0

exp(CF mγ1)1m,2 ⩽ CX .

Assumption 2. The time series {Xt}
n
t=1 is continuous and β mixing with β(m) ⩽ Cβm−γ2

for some constants Cβ ∈ (0,∞) and γ2 ⩾ 1, where

β(m) = sup
t∈Z

(
sup

1
2

R∑
r=1

S∑
s=1

|pr(Ar ∩ Bs)− pr(Ar)pr(Bs)|

)
.

Here, the inner supremum is taken over all pairs of finite partitions {A1, …, AR} of Ft =

σ(εu, u ⩽ t) and {B1, …, BS} of σ(εu, u ⩾ t+m).

Assumptions 1 and 2 require the serial dependence in {Xt}
n
t=1, measured by 1m,2 and

β(m), to decay exponentially, and both are met by a range of linear and nonlinear processes
(Mokkadem, 1988; Wu, 2005). Under Assumption 1, ∥Xit∥2 <∞ for all i and t. Assumption
1 is required for bounding Tℓ(G, k)− E{Tℓ(G, k)} uniformly over k, while Assumption 2 is
used for controlling the bias E{Tℓ(G, k)} −Dℓ(G, k) that is attributed to serial dependence.
A condition similar to Assumption 2 is often found in the time series literature making use
of distance correlations; see, e.g., Davis et al. (2018) and Yousuf & Feng (2022). Under the
stronger assumption that {X (j)

t } and {X (j+1)
t } are independent, we can derive the analogous

results to those presented in Theorems 1 and 3 below, under Assumption 2 only.

Assumption 3. The kernel function h is symmetric and bounded, and can be written as
h(x, y) = h0(x−y) for some function h0 : R2p

→ R that is Lipschitz continuous with respect
to ∥ · ∥ with Lipschitz constant Ch ∈ (0,∞).

Assumption 3 on the kernel function h is met by h1 and h2 introduced in Lemma 2, with
constants Ch bounded by βe−1/2 and 2

√
2p3/2δ−1/2, respectively.

Assumption 4.

(i) As n→∞, G−1 log(n)→ 0, while min0⩽j⩽q(θj+1 − θj) ⩾ 2G.

(ii) We have {G/ log(n)}1/2 minj∈Iℓ d(j)
ℓ →∞.
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8 E. T. McGonigle and H. Cho

Recall that Iℓ denotes the index set of detectable changepoints at lag ℓ, i.e., d(j)
ℓ > 0 if

and only if j ∈ Iℓ. However, this definition of detectability is too weak to ensure that all
θj, j ∈ Iℓ, are detected by the NP-MOJO procedure with high probability at lag ℓ, since we

do not rule out the case of local changes where d(j)
ℓ → 0. Consider Example 1: the change

in the autocorrelations results in d(2)
ℓ > 0 for all odd ℓ, but the size of change is expected

to decay exponentially fast as ℓ increases. Assumption 4 allows for local changes provided
that {G/ log(n)}1/2d(j)

ℓ diverges sufficiently fast. Assumption 4(i), on the minimum spacing
of changepoints, is commonly imposed in the literature on changepoint detection using
moving window-based procedures. Assumption 4 does not rule out G/n → 0 and permits
the number of changepoints q to increase in n. We discuss the selection of the bandwidth in
§ 4 below.

Theorem 1. Suppose that Assumptions 1, 2, 3 and 4 hold, let ℓ ⩾ 0 be a finite integer and
set the threshold as ζℓ(n, G) = cζ {log(n)/G}1/2 for some constant cζ > 0. Then, there exists
c0 > 0, depending only on CF , CX , γ1, Cβ , γ2 and p, such that, as n→∞,

pr

(
q̂ℓ = qℓ, max

j∈Iℓ

min
θ̂∈2̂ℓ

d(j)
ℓ |θ̂ − θj| ⩽ c0{G log(n)}1/2

)
→ 1.

Theorem 1 establishes that, for given ℓ, the NP-MOJO procedure correctly estimates the
total number and the locations of the changepoints detectable at lag ℓ (including the no-
change case where qℓ = 0). In particular, by Assumption 4, the changepoint estimators
satisfy

min
θ̂∈2̂ℓ

|θ̂ − θj| = OP[(d
(j)
ℓ )−1

{G log(n)}1/2
] = oP{min(θj − θj−1, θj+1 − θj)}

for all j ∈ Iℓ, i.e., the changepoint estimators converge to the true changepoint locations
in the rescaled time. Furthermore, the rate of estimation is inversely proportional to the
size of change d(j)

ℓ , such that the changepoints associated with larger d(j)
ℓ are estimated with

better accuracy. Also, making use of the energy-based distributional discrepancy, Matte-
son & James (2014) established the consistency of their proposed E-divisive method for
detecting changes in the (marginal) distribution under independence. In addition to detec-
tion consistency, we further derive the rate of estimation for the NP-MOJO procedure that
is applicable to detect changes in complex time series dependence besides those in marginal
distribution, in broader situations permitting serial dependence.

Compared to the optimal rate of estimation known for some parametric changepoint
problems, the rate reported in Theorem 1 is suboptimal due to the bias of order O(G−1/2)
(see (3)) in U- and V -statistics in the presence of serial dependence. In the next theorem, we
relax Assumptions 1 and 2 to serial independence, and derive a faster rate of estimation for
detecting changepoints in the marginal distribution (namely, θj, j ∈ I0 = {1, …, q0}) using
the NP-MOJO procedure with lag ℓ = 0.

Theorem 2. Let Assumptions 3 and 4 hold, the latter with ℓ = 0, and assume that {Xt}
n
t=1

are independent over time, so that q0 = q. Set the threshold as ζ(n, G) = cζ {log(n)/G}1/2 for
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Nonparametric data segmentation in multivariate time series 9

some constant cζ > 0. Then, there exists c0 > 0, depending on p, such that, as n→∞,

pr

(
q̂ = q, max

1⩽j⩽q
min
θ̂∈2̂0

(d(j)
0 )2
|θ̂ − θj| ⩽ c0 log(n)

)
→ 1.

3.3. Multi-lag extension of the NP-MOJO procedure

In this section, we address the problem of combining the results of the NP-MOJO pro-
cedure when it is applied with multiple lags. Let L ⊂ N0 = {0, 1, …} denote a (finite) set
of nonnegative integers. Recall that, given ℓ ∈ L, the NP-MOJO procedure returns a set of
changepoint estimators 2̂ℓ. Denote the union of changepoint estimators over all lags L by
2̃ =

⋃
ℓ∈L 2̂ℓ = {θ̃j, 1 ⩽ j ⩽ Q : θ̃1 < · · · < θ̃Q}, and denote by T(θ̃) = maxℓ∈L Tℓ(G, θ̃ )

the maximum detector statistic at θ̃ across all ℓ ∈ L. We propose to find a set of the final
changepoint estimators 2̂ ⊂ 2̃ by taking the following steps; we refer to this procedure as
the multi-lag NP-MOJO procedure.

Step 0. Set 2̂ = ∅ and select a constant c ∈ (0, 2].
Step 1. Set 2̃1 = 2̃ and m = 1. Iterate steps 2–4 below for m = 1, 2, …, while 2̃m |= ∅.
Step 2. Let θ̃m = min 2̃m and identify Cm = {θ̃ ∈ 2̃m : θ̃ − θ̃m < cG}.
Step 3. Identify θ̂m = arg maxθ̃∈Cm

T(θ̃); if there is a tie, we arbitrarily break it.

Step 4. Add θ̂m to 2̂ and update m← m+ 1 and 2̃m = 2̃m−1 \ Cm−1.

At iteration m of the multi-lag NP-MOJO procedure, Step 2 identifies the minimal
element from the current set of candidate changepoint estimators 2̃m, and a cluster of esti-
mators Cm whose elements are expected to detect the identical changepoints from multiple
lags. Then, Step 3 finds an estimator θ̂ ∈ Cm, which is associated with the largest detector
statistic at some lag, and it is added to the set of final estimators. This choice is motivated by
Theorem 1, which shows that each θj is estimated with better accuracy at the lag associated

with the largest change in the lagged dependence (measured by d(j)
ℓ ). Iterating these steps

until all the elements of 2̃ are either added to 2̂ or discarded, we obtain the set of final
changepoint estimators.

We define a subset of L containing the lags at which the jth changepoint is detectable as
L(j)
= {ℓ ∈ L : d(j)

ℓ |= 0}. Revisiting Example 1, when we set L = {0, 1}, it follows that L(1)
=

{0, 1} and L(2)
= {1}. To establish the consistency of the multi-lag NP-MOJO procedure,

we formally assume that all changepoints are detectable at some lag ℓ ∈ L.

Assumption 5. ForL ⊂ N0 with L = |L| <∞, we have
⋃

ℓ∈L Iℓ = {1, …, q}. Equivalently,
L(j)
|= ∅ for all j = 1, …, q.

Under Assumptions 1–5, consistency of the multi-lag NP-MOJO procedure is largely
a consequence of Theorem 1. Assumption 4(ii) requires that at any lag ℓ ∈ L and
a given changepoint θj, we have either j ∈ Iℓ with d(j)

ℓ large enough (in the sense

that {G/ log(n)}1/2d(j)
ℓ → ∞), or j /∈ Iℓ such that d(j)

ℓ = 0. Such a dyadic classifica-

tion of the changepoints rules out the possibility that, for some j, we have d(j)
ℓ > 0, but

d(j)
ℓ = O{{log(n)/G}1/2

}, in which case θj may escape detection by the NP-MOJO procedure
at lag ℓ. We thus consider the following alternative.

Assumption 6.

(i) As n→∞, G−1 log(n)→ 0, while min0⩽j⩽q(θj+1 − θj) ⩾ 4G.

(ii) We have {G/ log(n)}1/2 min1⩽j⩽q maxℓ∈L(j) d(j)
ℓ →∞.
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10 E. T. McGonigle and H. Cho

Compared to Assumption 4, Assumption 6 requires that the changepoints are further
apart from one another relative to G by the multiplicative factor of 2. At the same time,
the latter only requires that, for each j = 1, …, q, there exists at least one lag ℓ ∈ L at
which d(j)

ℓ is large enough to guarantee the detection of θj by the NP-MOJO procedure with
large probability. Theorem 3 below establishes the consistency of the multi-lag NP-MOJO
procedure under either Assumption 4 or 6.

Theorem 3. Suppose that Assumptions 1–3 and 5 hold, and at each ℓ ∈ L we set ζℓ(n, G) =
cζ ,ℓ{log(n)/G}1/2 with some constants cζ ,ℓ > 0. Let 2̂ = {θ̂j, 1 ⩽ j ⩽ q̂ : θ̂1 < · · · < θ̂q̂}

denote the set of estimators returned by the multi-lag NP-MOJO procedure with tuning
parameter c.

(i) If Assumption 4 holds for all ℓ ∈ L and c = 2η with η ∈ (0, 1/2] then, with c0 as in
Theorem 1, depending only on CF , CX , γ1, Cβ , γ2 and p,

pr
(

q̂ = q, max
1⩽j⩽q

max
ℓ∈L(j)

d(j)
ℓ |θ̂j − θj| ⩽ c0{G log(n)}1/2

)
→ 1 as n→∞.

(ii) If Assumption 6 holds and c = 2 then the conclusion of part (i) holds.

Under Assumption 6(ii), which is weaker than Assumption 4(ii), we may encounter a
situation where {G/ log(n)}1/2d(j)

ℓ = O(1), while d(j)
ℓ > 0 at some lag ℓ ∈ L. Then, we cannot

guarantee that such θj is detected by the NP-MOJO procedure at lag ℓ and, even so, we can
only show that its estimator θ̃ ∈ 2̃ℓ satisfies |θ̃ − θj| = O(G). This requires setting the tuning
parameter c maximally for the clustering in Step 2 of the multi-lag NP-MOJO procedure;
see Theorem 3(ii). At the same time, there exists a lag well suited for the localization of each
changepoint and Step 3 identifies an estimator detected at such a lag, and the final estimator
inherits the rate of estimation attained at the favourable lag.

3.4. Threshold selection via dependent wild bootstrap

Theorem 1 gives the choice of the threshold ζℓ(n, G) = cζ {log(n)/G}1/2 that guaran-
tees the consistency of the NP-MOJO procedure in multiple changepoint estimation. The
choice of cζ influences the finite sample performance of the NP-MOJO procedure, but it
depends on many unknown quantities involved in specifying the degree of serial depen-
dence in {Xt}

n
t=1 (see Assumptions 1 and 2), which makes the theoretical choice of little

practical use. Resampling is popularly adopted for the calibration of changepoint detection
methods, including threshold selection. However, due to the presence of serial dependence,
permutation-based approaches such as that adopted by Matteson & James (2014) or sample
splitting adopted by Madrid Padilla et al. (2021) are inappropriate.

We propose to adopt the dependent wild bootstrap procedure proposed by Leucht &
Neumann (2013), in order to approximate the quantiles of maxG⩽k⩽n−G Tℓ(G, k) in the
absence of any changepoint, from which we select ζℓ(n, G). Let {W [r]t }

n−G
t=1 denote a bootstrap

sequence generated as a Gaussian ar(1) process with var(W [r]t ) = 1 and the ar coefficient
exp(−1/bn), where the sequence {bn} is chosen such that bn = o(n) and limn→∞ bn = ∞.
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Nonparametric data segmentation in multivariate time series 11

We construct bootstrap replicates using {W [r]t }
n−G
t=1 as T [r]ℓ = maxG⩽k⩽n−G T [r]ℓ (G, k), where

T [r]ℓ (G, k) =
1

(G − ℓ)2

{ k−ℓ∑
s,t=k−G+1

W̄ [r]s,kW̄ [r]t,kh(Ys, Yt)+

k+G−ℓ∑
s,t=k+1

W̄ [r]s−G,kW̄ [r]t−G,kh(Ys, Yt)

− 2
k−ℓ∑

s=k−G+1

k+G−ℓ∑
t=k+1

W̄ [r]s,kW̄ [r]t−G,kh(Ys, Yt)

}

with W̄ [r]t,k =W [r]t − (G − ℓ)−1∑k−ℓ
u=k−G+1 W [r]u . Independently generating {W [r]t }

n−G
t=1 for r =

1, …, R (R denoting the number of bootstrap replications), we store T [r]ℓ and select the
threshold as ζℓ(n, G) = q1−α({T [r]ℓ }

R
r=1), the (1−α) quantile of {T [r]ℓ }

R
r=1 for the chosen level

α ∈ (0, 1]. Additionally, we can compute the importance score for each θ̂ ∈ 2̂ℓ as

s(θ̂) =
|{1 ⩽ r ⩽ R : Tℓ(G, θ̂ ) ⩾ T [r]ℓ,r}|

R
.

Taking a value between 0 and 1, the larger s(θ̂) is, the more likely that there exists a change-
point close to θ̂ empirically. The bootstrap procedure generalizes to the multi-lag NP-MOJO
procedure straightforwardly. In practice, we observe that setting θ̂j = arg maxθ̃∈Cj

s(θ̃) (with

some misuse of the notation, s(·) is computed at the relevant lag for each θ̃ ) works well
in Step 3 of the multi-lag NP-MOJO procedure. This is attributed to the fact that this
score inherently takes into account the varying scale of the detector statistics at multiple
lags and ‘standardizes’ the importance of each estimator. In all numerical experiments, our
implementation of the multi-lag NP-MOJO procedure is based on this choice of θ̂j. We pro-
vide the algorithmic descriptions of the NP-MOJO procedure and its multi-lag extension in
Algorithms 1 and 2 within the Supplementary Material.

4. Implementation of the NP-MOJO procedure

4.1. Computational complexity

Owing to the moving sum-based approach, the cost of sequentially computing Tℓ(G, k)
from Tℓ(G, k−1) is O(G), giving the overall cost of computing Tℓ(G, k), G ⩽ k ⩽ n−G, as
O(nG). Exact details of the sequential update are given in the Supplementary Material. The
bootstrap procedure described in § 3.4 is performed once per lag for simultaneously detect-
ing multiple changepoints, in contrast with the E-divisive method (Matteson & James, 2014)
that requires the permutation-based testing to be performed for detecting each change-
point. With R bootstrap replications, the total computational cost is O(|L|RnG) for the
multi-lag NP-MOJO procedure using the set of lags L and bootstrapping, as opposed to
O(Rqn2) for the E-divisive method. Furthermore, the bootstrap procedure can be paral-
lelized in a straightforward manner, which we include as an option in the implementation
of the method.

We ran simulations to compare the computational speed of the competing nonpara-
metric methods: E-divisive (Matteson & James, 2014), NWBS (Madrid Padilla et al., 2021),
KCPA (Celisse et al., 2018; Arlot et al., 2019) and cpt.np (Haynes et al., 2017). We sim-
ulate realizations under the change in mean model (B.1) in the Supplementary Material,
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Fig. 2. Running time comparisons between the competing nonparametric methods.
Both axes are on the log scale.

with increasing values of sample size n and the number of equispaced changepoints q
((n, q) ∈ {(100, 1), (500, 2), (1000, 3), (2000, 5), (5000, 10), (10 000, 20)}). We use the same
settings for each method as in the main simulation study, using the parallelized version of
the multi-lag NP-MOJO procedure when n ⩾ 2000, and compute the average run time over
100 realizations. The results are displayed in Fig. 2. The fastest method by far is cpt.np, fol-
lowed by KCPA and NP-MOJO. The E-divisive and NWBS methods are noticeably slower
than the other methods. In particular, when n = 10 000, the average running time is 0.17 s
for cpt.np, 46.26 s for the KCPA method, 2.31 min for the NP-MOJO method, 30.06 min
for the NWBS method and 70.37 min for the E-divisive method. Also, we observe that the
KCPA method’s running time increases at a faster rate than the NP-MOJO method’s, and
may exceed the running time of the NP-MOJO method for larger values of n.

4.2. Kernel function

As with any kernel-based approach, the NP-MOJO procedure’s performance will vary
with the choice of kernel, and a kernel that works well for one type of changepoint may not
be the best for another type of changepoint. Based on empirical performance and versatility
to a wide range of changepoint scenarios we recommend the use of the kernel function
h2 in Lemma 2(ii). The parameter δ is set using the ‘median trick’, a common heuristic
used in kernel-based methods (Li et al., 2019). Specifically, we set δ to be half the median
of all ∥Ys − Yt∥

2 involved in the calculation of Tℓ(G, k). For p-variate independent and
identically distributed Gaussian data with common variance σ 2, this corresponds to δ ≈ σp
as dimension p increases (Ramdas et al., 2015). As with kernel h2, the median trick can also
be used when setting β if kernel h1 is used.

4.3. Bandwidth

Because of the nonparametric nature of the NP-MOJO procedure, it is advised to use
a larger bandwidth than that shown to work well for the moving sum procedure for uni-
variate mean change detection (Eichinger & Kirch, 2018). In our simulation studies and
data applications, we set G = ⌊n/6⌋. It is often found that using multiple bandwidths
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Nonparametric data segmentation in multivariate time series 13

and merging the results improves the adaptivity of moving window-based procedures, such
as the ‘bottom-up’ merging proposed by Messer et al. (2014) or the localized pruning of
Cho & Kirch (2022). We empirically explore the multiscale extension of the multi-lag NP-
MOJO procedure with bottom-up merging; see the Supplementary Material for details of
its implementation and for a proof of the concept numerical study involving multiscale
changepoint scenarios. We leave a theoretical investigation into the multiscale extension of
the NP-MOJO procedure for future research.

4.4. Parameters for changepoint estimation

We set η = 0.4 in (4) following the recommendation by Meier et al. (2021). For the multi-
lag NP-MOJO procedure, we set c = 1 for clustering the estimators from multiple lags, a
choice that lies between those recommended in Theorem 3(i) and (ii), since we do not know
whether Assumption 4 or 6 holds in practice. In the Supplementary Material we demonstrate
that, within a reasonable range, the NP-MOJO procedure is insensitive to the choices of
η and c. To further guard against spurious estimators, we only accept those θ̂ that lie in
intervals of length greater than ⌊0.02G⌋ where the corresponding Tℓ(G, k) exceeds ζℓ(n, G).

4.5. Parameters for the bootstrap procedure

The choice of bn sets the level of dependence in the multiplier bootstrap sequences. Leucht
& Neumann (2013) showed that a necessary condition is that limn→∞(b−1

n + bnn−1) = 0,
giving a large freedom for the choice of bn. We recommend bn = 1.5n1/3, which works well,
in practice. In the Supplementary Material we demonstrate that, within a reasonable range,
the NP-MOJO procedure is insensitive to the choice of bn. As for α, its choice amounts to
setting the level of significance in statistical testing. This provides a more systematic alter-
native to the problem of model selection in multiple changepoint detection compared to
others, such as those requiring the selection of a threshold that is known up to a rate (or a
range of rates; see, e.g., Madrid Padilla et al., 2023), or constants involved in the penalty of
a penalized cost function (Arlot et al., 2019). In all numerical experiments, we use α = 0.1
with R = 499 bootstrap replications.

4.6. Set of lags L
The flexibility of the NP-MOJO procedure in its ability to detect changes in dependence

comes at the price of having to select the set of lags L. The choice of L depends on the prac-
titioner’s interest and domain knowledge, a problem commonly faced by general-purpose
changepoint detection methods, such as the choice of the quantile level in Vanegas et al.
(2022), the parameter of interest in Zhao et al. (2022) and the estimating equation in Kirch
& Reckruehm (2024). For example, for monthly data, using L = {0, 3, 12} allows for detect-
ing changes in the quarterly and yearly seasonality. Even when the interest lies in detecting
changes in the marginal distribution only, it helps to jointly consider multiple lags, since
any marginal distributional change is likely to result in changes in the joint distribution of
(Xt, Xt+ℓ). As we consider time series that exhibit short-range dependence, we would expect
that the NP-MOJO procedure will not have detection power at large lags. In simulations,
we use L = {0, 1, 2}, which works well not only for detecting changes in the mean and the
second-order structure, but also for detecting changes in (nonlinear) serial dependence and
higher-order characteristics. For a practical approach to lag selection, see the Supplemen-
tary Material, where we propose a semi-automatic method for choosing the set of lags L
given some initial set L̃.
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5. Simulation study

We conduct extensive simulation studies with varying changepoint scenarios (30 scenar-
ios where q ⩾ 1, 7 with q = 0), sample sizes (n ∈ {500, 1000, 2000, 10 000}) and dimensions
p ∈ {1, 2, 5, 10}, and consider both evenly spaced and multiscale changepoint settings.
We provide complete descriptions of the simulation studies in the Supplementary Mate-
rial where, for comparison, we consider, not only nonparametric, but also parametric data
segmentation procedures well suited to detect the types of changes in consideration, which
include changes in the mean, second-order and higher-order moments and nonlinear serial
dependence. Owing to space constraints, here we focus on a selection of the results in the
evenly spaced setting with n = 1000, comparing both single-lag and multi-lag NP-MOJO
(denoted NP-MOJO-ℓ and NP-MOJO-L, respectively) procedures, with the nonparametric
competitors: E-divisive (Matteson & James, 2014), NWBS (Madrid Padilla et al., 2021),
KCPA (Celisse et al., 2018; Arlot et al., 2019) and cpt.np (Haynes et al., 2017). The E-divisive
and KCPA methods are applicable to multivariate data segmentation, whilst the NWBS and
cpt.np methods are not. The scenarios are

(B5) Xt =
∑3

j=0 6
1/2
j I{θj + 1 ⩽ t ⩽ θj+1} · εt, where εt = (ε1t, ε2t)

T with εit
i.i.d.
∼ t5,

(θ1, θ2, θ3) = (250, 500, 750), 60 = 62 =
(

1 0
0 1

)
and 61 = 63 =

(
1 0.9

0.9 1

)
;

(C1) Xt = X (j)
t = ajX

(j)
t−1 + εt for θj + 1 ⩽ t ⩽ θj+1, where q = 2, (θ1, θ2) = (333, 667) and

(a0, a1, a2) = (−0.8, 0.8,−0.8);
(C3) Xt = X (j)

t = σ
(j)
t εt with (σ

(j)
t )2
= ωj + αj(X

(j)
t−1)

2
+ βj(σ

(j)
t−1)

2 for θj + 1 ⩽ t ⩽ θj+1,
where q = 1, θ1 = 500, (ω0, α0, β0) = (0.01, 0.7, 0.2) and (ω1, α1, β1) = (0.01, 0.2, 0.7);

(D3) Xt = 0.4Xt−1 + εt where εt
i.i.d.
∼ N (0, 0.52) for t ⩽ θ1 and t ⩾ θ2 + 1, and

εt
i.i.d.
∼ Ex(0.5)− 0.5 for θ1 + 1 ⩽ t ⩽ θ2, with q = 2 and (θ1, θ2) = (333, 667).

Additional simulations for differing sample sizes and simulations with uneven spacing
between neighbouring segments examining the performance of the multiscale version of
the multi-lag NP-MOJO procedure are given in the Supplementary Material. The above
scenarios consider changes in the covariance of bivariate, non-Gaussian random vectors in
(B5), changes in the autocorrelation (while the variance stays unchanged) in (C1), a change
in the parameters of an arch(1, 1) process in (C3) and changes in higher moments of serially
dependent observations in (D3). Table 1 reports the distribution of the estimated number
of changepoints and the average covering metric (CM) and V-measure (VM) over 1000 real-
izations. Taking values between [0, 1], CM and VM close to 1 indicates better accuracy in
changepoint location estimation; see the Supplementary Material for their definitions and
complete discussions of the changepoint scenarios.

In the case of (C1), we have qℓ = 0, ℓ |= 1, while q1 = 2, and thus we report q̂ℓ − qℓ

for the respective single-lag NP-MOJO-ℓ procedure. Across all scenarios, the NP-MOJO-L
procedure shows good detection and estimation accuracy and demonstrates the efficacy of
considering multiple lags; see (C3) and (D3) in particular. As the competitors are calibrated
for the independent setting, they tend to either over- or under-detect the number of change-
points in the presence of serial dependence in (C1), (C3) and (D3). In the Supplementary
Material we compare the NP-MOJO procedure against changepoint methods proposed for
time series data where it performs comparably to methods specifically calibrated for the
changepoint scenarios considered.
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Table 1. Distribution of the estimated number of changepoints and the average CM and VM
over 1000 realizations. The modal value of q̂ − q in each row is given in bold, and the best

performance for each metric is underlined for each scenario
q̂− q / q̂ℓ − qℓ

Model Method ⩽ −2 −1 0 1 ⩾ 2 CM VM

(B5) NP-MOJO-0 0.000 0.001 0.997 0.002 0.000 0.974 0.959
NP-MOJO-1 0.005 0.121 0.867 0.007 0.000 0.931 0.927
NP-MOJO-2 0.006 0.103 0.884 0.007 0.000 0.935 0.929
NP-MOJO-L 0.000 0.001 0.999 0.000 0.000 0.973 0.958

E-divisive 0.670 0.189 0.101 0.032 0.008 0.431 0.335
KCPA 0.322 0.000 0.662 0.015 0.001 0.775 0.725

(C1) NP-MOJO-0 – – 0.851 0.140 0.009 – –
NP-MOJO-1 0.000 0.002 0.956 0.042 0.000 0.978 0.961
NP-MOJO-2 – – 0.836 0.149 0.015 – –
NP-MOJO-L 0.000 0.002 0.986 0.012 0.000 0.980 0.963

E-divisive 0.001 0.001 0.012 0.035 0.951 0.685 0.686
KCPA 0.792 0.002 0.065 0.025 0.116 0.399 0.132
NWBS 0.013 0.001 0.007 0.015 0.964 0.398 0.558
cpt.np 0.000 0.000 0.002 0.003 0.995 0.593 0.647

(C3) NP-MOJO-0 – 0.409 0.533 0.056 0.002 0.744 0.484
NP-MOJO-1 – 0.236 0.682 0.081 0.001 0.819 0.633
NP-MOJO-2 – 0.299 0.626 0.073 0.002 0.787 0.571
NP-MOJO-L – 0.210 0.727 0.062 0.001 0.823 0.645

E-divisive – 0.032 0.327 0.211 0.430 0.742 0.602
KCPA – 0.418 0.262 0.171 0.149 0.667 0.370
NWBS – 0.895 0.048 0.020 0.037 0.525 0.069
cpt.np – 0.000 0.013 0.047 0.940 0.634 0.554

(D3) NP-MOJO-0 0.003 0.139 0.809 0.049 0.000 0.899 0.872
NP-MOJO-1 0.006 0.155 0.792 0.047 0.000 0.892 0.864
NP-MOJO-2 0.021 0.248 0.685 0.045 0.001 0.848 0.819
NP-MOJO-L 0.002 0.082 0.914 0.002 0.000 0.917 0.884

E-divisive 0.005 0.002 0.072 0.118 0.803 0.681 0.707
KCPA 0.441 0.012 0.481 0.052 0.014 0.667 0.500
NWBS 0.047 0.015 0.139 0.124 0.675 0.680 0.676
cpt.np 0.000 0.000 0.045 0.055 0.900 0.726 0.756

6. Data applications

6.1. California seismology measurement dataset

We analyse a dataset from the High Resolution Seismic Network, operated by the
Berkeley Seismological Laboratory. Ground motion sensor measurements were recorded in
three mutually perpendicular directions at 13 stations near Parkfield, California, USA for
740 s from 2 am on 23 December 2004. The data have previously been analysed by Xie
et al. (2019) and Chen et al. (2022). Chen et al. (2022) pre-processed the data by removing
a linear trend and down-sampling; the processed data are available in the ocdR package
(Chen et al., 2020). According to the Northern California Earthquake Catalog, an earth-
quake of magnitude 1:47 Md hit near Atascadero, California (50 km away from Parkfield)
at 02:09:54.01.

We analyse time series of dimension p = 39 and length n = 2000 by taking a portion of
the dataset between 544 and 672 s after 2 am, which covers the time at which the earthquake
occurred (594 s after). We apply the multi-lag NP-MOJO procedure with tuning parameters
selected as in § 4, using G = 333 and the set of lags L = {0, …, 4}. We detect two changes at
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Fig. 3. Heat map of standardized sensor data. Changepoints detected by the multi-lag NP-MOJO procedure
are shown with vertical dashed lines, and the time of the earthquake is represented by the solid vertical line.

all lags; the first occurs at between 603.712 and 603.968 s after 2 am and may be attributed to
the earthquake. As noted by Chen et al. (2022), P waves, which are the primary preliminary
wave and arrive first after an earthquake, travel at up to 6 km/s in the Earth’s crust. This
is consistent with the delay of approximately 9 s between the occurrence of the earthquake
and the first changepoint detected by the multi-lag NP-MOJO procedure. We also note that
performing online changepoint analysis, Xie et al. (2019) and Chen et al. (2022) reported
a change at 603.584 and 603.84 s after the earthquake, respectively. The second change is
detected at between 626.176 and 626.496 s after 2 am. It may correspond to the ending of the
effect of the earthquake, as sensors return to baseline behaviour. Figure 3 plots the heat map
of the data with each series standardized for ease of visualization, along with the onset of
the earthquake and the two changepoints detected by the multi-lag NP-MOJO procedure. It
suggests, amongst other possible distributional changes, that the time series undergoes mean
shifts, as found by Chen et al. (2022). We also examine the sample correlations computed on
each of the three segments; see Fig. 4 where the data exhibit a greater degree of correlation
in segment 2 compared to the other two segments. Recalling that each station is equipped
with three sensors, we note that pairwise correlations from the sensors located at the same
stations undergo greater changes in correlations. A similar observation is made about the
sensors located at nearby stations.

6.2. US recession data

We analyse the US recession indicator dataset. Recorded quarterly between 1855 and
2021 (n = 667), Xt is recorded as a 1 if any month in the quarter is in a recession (as identified
by the Business Cycle Dating Committee of the National Bureau of Economic Research),
and 0 otherwise. The data have previously been examined for changepoints under piece-
wise stationary autoregressive models for integer-valued time series by Hudecová (2013)
and Diop & Kengne (2021). We apply the multi-lag NP-MOJO procedure with G = 111
and L = {0, …, 4}. All tuning parameters are set as recommended in § 4 with one exception,
δ for kernel h2. We select δ = 1 for lag 0 and 2 otherwise, since pairwise distances for binary
data are either 0 or 1 when ℓ = 0 such that the median heuristic would not work as desired.

At all lags, we detect a single changepoint located between 1933:Q1 and 1938:Q2. The
multi-lag NP-MOJO procedure estimates the changepoint at 1933:Q1, which is compar-
able to the previous analyses: Hudecová (2013) reported a change at 1933:Q1 and Diop &
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Fig. 4. Sample correlations from the three segments defined by the changepoint estimators.
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Fig. 5. (a) Quarterly US recession indicator series. A changepoint detected by the multi-lag NP-MOJO proce-
dure is shown with a vertical dashed line and the sample means over the two segments with solid lines. (b) Plot

of Tℓ(G, k), G ⩽ k ⩽ n− G, for lags ℓ ∈ L, after standardization by respective thresholds.

Kengne (2021) at 1932:Q4. The change coincides with the ending of the Great Depression
and the beginning of World War II. Figure 5(a) plots the detected change along with the
sample average of Xt over the two segments (superimposed on {Xt}

n
t=1), showing that the

frequency of recession is substantially lower after the change. Figure 5(b) plots the detector
statistics Tℓ(G, k) at lags ℓ ∈ L, divided by the respective threshold ζℓ(n, G) obtained from
the bootstrap procedure. The thus standardized T4(G, k), shown with a solid line, displays
the changepoint with the most clarity, attaining the largest value over the widest interval
above the threshold (standardized to be one). At lag 4, the detector statistic has the inter-
pretation of measuring any discrepancy in the joint distribution of the recession indicator
series and its yearly lagged values.
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Supplementary material

Supplementary Material contains additional discussion on the implementation of the
NP-MOJO and multi-lag NP-MOJO procedures, the complete simulation results and the
proofs of all theoretical results.
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