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Abstract: This work combines two existing technologies to demonstrate the possibility for
automated, targeted, phototherapy of psoriasis and other skin conditions: 1) Image-to-image
translation via a neural network (NN) as a method of image segmentation. 2) Light control
using a digital micromirror device (DMD). With a small dataset of just 104 patient photographs
(labeled by expert dermatologists) our NN model was trained to identify regions of psoriasis
that required treatment, achieving an average accuracy of 96.6%. The image output of the NN
model was applied to a DMD and precise control over the shape of the illuminated region was
demonstrated. In the proposed automated phototherapy device this would target treatment to the
affected regions, minimizing exposure of healthy skin and the associated risks of patient harm.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Despite considerable effort over many decades, image segmentation tasks can still pose a
significant challenge for classic image processing code [1,2]. To achieve high performance,
applications often require carefully controlled imaging conditions and hand-crafted algorithms
that incorporate a priori knowledge about expected image features – resulting in solutions that are
fragile (i.e., working parameter ranges for basic operations such as thresholding, morphological
erosion/dilation and edge detection can shift significantly with changes in illumination level or
image content). Increasing code complexity to handle edge-cases and improve robustness can
significantly increase computing time per image which could be problematic for applications
where live video must be segmented with low latency. In recent years there has been considerable
interest in applying machine learning (ML) to object detection and image segmentation tasks
[3,4] with part of the appeal deriving from the following factors: The NN is assumed to act as
a universal function approximator [5]. During training, optimal values are determined for the
numerical parameters that make up the NN model. In contrast to hand-crafting a conventional
code algorithm, which often relies on human intuition and trial-and-error, the ML approach has
the advantage of being almost entirely based on the provided training data. Several large datasets
and challenges have been devised to test the segmentation performance of different methods,
these include the currently popular MS COCO (instance segmentation, 80 object classes [6]) and
the longer running PASCAL VOC (semantic segmentation, 20 object classes [7]). Figure 1 shows
officially submitted results for the PASCAL VOC segmentation task; interestingly they show a
clear step-change in segmentation performance at around 2014-2015. This correlates with the
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development of NN based segmentation methods such as [8] which claims a 20% improvement
on the preceding state-of-the-art result for PASCAL VOC segmentation.

47
48 Fig. 1. Scatter plot showing PASCAL VOC mean segmentation accuracy (over 20 object 
49 classes) as a function of submission date. Note that between 2007 and 2012 the size of the 
50 training dataset was increased each year, results are therefore grouped based on the dataset 
51 used. A further distinction is made between methods that train only on the PASCAL VOC 
52 dataset (competition 5) and those that use external data (competition 6).

53 Many of the most important applications of image segmentation are in the field of 
54 medicine [9, 10] where, for example, it can be used to identify different tissue types [11] or to 
55 highlight tumors [12, 13] which can help to improve accuracy and maximize throughput in a 
56 wide range of medical imaging techniques. Segmentation can even be applied to sets of 
57 images, e.g., representing cross-sectional slices of a patient, allowing production of three-
58 dimensional models with individual organs identified and labeled [14]. When used to assist in 
59 making a diagnosis, image segmentation tools are typically applied to static images, obtained 
60 previously using a medical imaging device. Although segmentation speed is desirable, the 
61 difference between a few milliseconds and a few minutes often wouldn’t be critical for 
62 diagnosis. In contrast, if image segmentation is used to target a treatment, it can be critical 
63 that there is low latency between the imaging system and the targeted output, for example to 
64 track patient movements accurately. In some applications it can therefore be attractive to use 
65 modern graphics processing units (GPUs) to accelerate image segmentation calculations. 
66 Whilst GPUs can be applied to classic image processing operations [15] they are particularly 
67 well-suited to the tensor mathematics required for both training, and subsequent inference 
68 from NN models. The ready availability of this hardware (and of software APIs for machine 
69 learning) means that even very complex NN models can now be used as part of a pipeline for 
70 low-latency, real-time, video processing applications. 
71 Our work aims to demonstrate that NN-based image segmentation is suitable for use in 
72 real-time control of a medical treatment device. The test application chosen is UV 
73 phototherapy, which can be an effective treatment for a variety of skin conditions, including 
74 psoriasis [16-18] and vitiligo [19, 20]. Although developed independently, our work has 
75 similarities with an existing medical device [21-23], in that it uses a digital micromirror 
76 device (DMD) to control the treatment beam. (The use of a DMD also facilitates structured 
77 light illumination [24] allowing this device to measure the 3d topography of the region to be 
78 treated). The aim of image segmentation within the control system is to automatically target 
79 treatment only to regions of the patient’s skin that are affected by the condition, and to 
80 minimize UV exposure to surrounding healthy skin. (Psoriasis manifests as scaly patches and 
81 plaques of inflamed skin that differ in color and texture to the surrounding healthy skin, 
82 making them suitable for identification and targeting via image segmentation). The control 
83 system of the existing medical device is proprietary and therefore not know, however, we 
84 believe that in comparison to classic image processing methods [25] an NN based system 

Fig. 1. Scatter plot showing PASCAL VOC mean segmentation accuracy (over 20 object
classes) as a function of submission date. Note that between 2007 and 2012 the size of the
training dataset was increased each year, results are therefore grouped based on the dataset
used. A further distinction is made between methods that train only on the PASCAL VOC
dataset (competition 5) and those that use external data (competition 6).

Many of the most important applications of image segmentation are in the field of medicine
[9,10] where, for example, it can be used to identify different tissue types [11] or to highlight
tumors [12,13] which can help to improve accuracy and maximize throughput in a wide range
of medical imaging techniques. Segmentation can even be applied to sets of images, e.g.,
representing cross-sectional slices of a patient, allowing production of three-dimensional models
with individual organs identified and labeled [14]. When used to assist in making a diagnosis,
image segmentation tools are typically applied to static images, obtained previously using a
medical imaging device. Although segmentation speed is desirable, the difference between a few
milliseconds and a few minutes often wouldn’t be critical for diagnosis. In contrast, if image
segmentation is used to target a treatment, it can be critical that there is low latency between the
imaging system and the targeted output, for example to track patient movements accurately. In
some applications it can therefore be attractive to use modern graphics processing units (GPUs)
to accelerate image segmentation calculations. Whilst GPUs can be applied to classic image
processing operations [15] they are particularly well-suited to the tensor mathematics required for
both training, and subsequent inference from NN models. The ready availability of this hardware
(and of software APIs for machine learning) means that even very complex NN models can now
be used as part of a pipeline for low-latency, real-time, video processing applications.

Our work aims to demonstrate that NN-based image segmentation is suitable for use in real-time
control of a medical treatment device. The test application chosen is UV phototherapy, which can
be an effective treatment for a variety of skin conditions, including psoriasis [16–18] and vitiligo
[19,20]. Although developed independently, our work has similarities with an existing medical
device [21–23], in that it uses a digital micromirror device (DMD) to control the treatment
beam. (The use of a DMD also facilitates structured light illumination [24] allowing this device
to measure the 3d topography of the region to be treated). The aim of image segmentation
within the control system is to automatically target treatment only to regions of the patient’s
skin that are affected by the condition, and to minimize UV exposure to surrounding healthy
skin. (Psoriasis manifests as scaly patches and plaques of inflamed skin that differ in color and
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texture to the surrounding healthy skin, making them suitable for identification and targeting
via image segmentation.) The control system of the existing medical device is proprietary and
therefore not know, however, we believe that in comparison to classic image processing methods
[25] an NN based system could offer significant advantages in terms of the robustness, precision,
and speed of segmentation, and in terms of the flexibility to train multiple NN models based on
datasets for different skin conditions. Indeed, various NN-based image segmentation methods
have been applied, for example, to psoriasis skin biopsies [26], and to photographs of psoriasis
for identification [27,28], classification [29–32], and severity grading [33–35]. The key novelty
that we claim for this work is in bringing together the existing concepts of NN-based image
segmentation and DMD targeted phototherapy in order to demonstrate (for the specific case of
psoriasis) the feasibility for this combination to achieve high performance in a new medical
treatment device.

2. Methods

2.1. Experimental apparatus

In this proof-of-concept experiment, a computer monitor was used in place of the patient (see
Fig. 2(a)). The monitor displays patient skin images, allowing us to rapidly present many
examples of psoriasis to the NN within the treatment device (via its camera). To avoid risks
associated with unnecessary UV exposure, the UV phototherapy beam was simulated using
visible spectrum light from a data projector, which contains a digital micromirror device (DMD),
a large 2D array of computer-controlled mirrors which allow the projected light to be switched
on or off on a pixel-by-pixel basis [36]. The data projector (via a process termed spatial light
modulation) is therefore able to shape its light output, to illuminate only regions that the NN has
labeled as requiring treatment. A calibration procedure was required to determine the relationship
between pixel coordinates on the monitor, camera images and the projector output; part of this
process is shown in Fig. 2(b). Once the necessary coordinates are determined it is possible
to calculate the image-transforms that must be applied to the projector and monitor such that
they display perfectly overlapping images as viewed by the camera. The proposed automated
phototherapy device will use a DMD similar to the one inside the data projector, in precisely the
same manner, to achieve localized UV treatment as illustrated in Fig. 2(c).

2.2. Data collection

For this initial work, medical staff took photographs of psoriasis (with patient consent) from
patients attending the Psoriasis Clinic and UV treatment center at the Dermatology department
at the University Hospital Southampton NHS Foundation Trust. Ethical approval (reference
number 22/WS/0015) for the study was granted by the West of Scotland REC4 Research Ethics
Committee and by the NHS Health Research Authority (HRA) and Health and Care Research
Wales (HCRW). Photographs were taken using an Apple iPad with no special consideration given
to consistency of, for example, lighting, orientation, physical scale, etc. The photographs varied
in pixel dimensions (due to cropping and orientation). The width varied between 1708 and 4032
pixels whilst the height varied between 1393 and 4032 pixels.

Psoriasis photographs were accumulated over time as patients attended for treatment and/or
review of their skin disease. This gave us the opportunity to investigate the effects of increasing
the amount of data available to the NN. An initial data group that consisted of 45 psoriasis
images (obtained from 10 patients) and the associated labeled images was later expanded with the
addition of 59 more psoriasis images (from 4 patients, one of whom was also part of the initial
data group). The dataset was further expanded by adding 65 images showing the background of
the UV treatment and patient consultation rooms, with no psoriasis or patient skin in view (see
Table 1).
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85 could offer significant advantages in terms of the robustness, precision, and speed of 
86 segmentation, and in terms of the flexibility to train multiple NN models based on datasets for 
87 different skin conditions. Indeed, various NN-based image segmentation methods have been 
88 applied, for example, to psoriasis skin biopsies [26], and to photographs of psoriasis for 
89 identification [27, 28], classification [29-32], and severity grading [33-35]. The key novelty 
90 that we claim for this work is in bringing together the existing concepts of NN-based image 
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93 treatment device.

94 2. Methods
95 2.1 Experimental apparatus

96 In this proof-of-concept experiment, a computer monitor was used in place of the patient (see 
97 Fig. 2 a). The monitor displays patient skin images, allowing us to rapidly present many 
98 examples of psoriasis to the NN within the treatment device (via its camera). To avoid risks 
99 associated with unnecessary UV exposure, the UV phototherapy beam was simulated using 

100 visible spectrum light from a data projector, which contains a digital micromirror device 
101 (DMD), a large 2D array of computer-controlled mirrors which allow the projected light to be 
102 switched on or off on a pixel-by-pixel basis [36]. The data projector (via a process termed 
103 spatial light modulation) is therefore able to shape its light output, to illuminate only regions 
104 that the NN has labeled as requiring treatment. A calibration procedure was required to 
105 determine the relationship between pixel coordinates on the monitor, camera images and the 
106 projector output; part of this process is shown in Fig. 2 b).  Once the necessary coordinates 
107 are determined it is possible to calculate the image-transforms that must be applied to the 
108 projector and monitor such that they display perfectly overlapping images as viewed by the 
109 camera. The proposed automated phototherapy device will use a DMD similar to the one 
110 inside the data projector, in precisely the same manner, to achieve localized UV treatment as 
111 illustrated in Fig. 2 c).

112
113 Fig. 2. a) Experimental setup, with a computer monitor to display patient skin images, and a 
114 data projector to simulate the phototherapy device. b) Photograph showing part of the 
115 calibration process. c) Schematic flow diagram of the automated UV phototherapy device.

Fig. 2. a) Experimental setup, with a computer monitor to display patient skin images, and
a data projector to simulate the phototherapy device. b) Photograph showing part of the
calibration process. c) Schematic flow diagram of the automated UV phototherapy device.

Table 1. Summary of data augmentation (* example of partitioning scheme)

Data group Description Patients Images Aug. images

#1 Initial patient photographs 10 45 10000

#2 Clinic background images 0 65 14444

#3 Additional patient photographs 4 59 13111

#1 Test * Testing partition of group #1 2 3 614

#1 Train * Training partition of group #1 8 42 9386

2.3. Labeling

Each photograph was viewed by two dermatologists who used image processing software
to manually label regions that required treatment by painting those areas white (RGB value
255,255,255) and saving the labeled image under a new filename, see Fig. 3(a) and (b). Filenames
included an anonymized patient ID number to aid data partitioning (e.g., to ensure that no patient
appeared in both the training and testing datasets); this metadata was not accessible to the NN.
Between the healthy skin and regions that are clearly psoriasis-affected there is a transition zone
(at least a few pixels wide) where there is some uncertainty as to whether treatment should be
applied. In these areas the dermatologists used their judgement and placed the labels accordingly,
which was an important mechanism by which human expert knowledge and experience were
transferred to the NN.

2.4. Data augmentation

When working with small datasets, data augmentation can be a valuable tool [37]. In this technique,
for each item in a dataset, several variations (based on the original data) can be synthesized. Here,
augmented data was generated by randomly cropping parts of each image (differing in both size
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158
159 Fig. 3. a) Original patient photograph. b) Expert labeled image. c-h) Examples of augmented 
160 image-label pairs.

161 Table 1. Summary of data augmentation (* example of partitioning scheme)

Data group Description Patients Images Aug. images

#1 Initial patient photographs 10 45 10000
#2 Clinic background images 0 65 14444
#3 Additional patient photographs 4 59 13111

#1 Test * Testing partition of group #1 2 3 614
#1 Train * Training partition of group #1 8 42 9386

162
163 During data augmentation, source images were selected one-by-one, with uniform 
164 probability. For each selection a new augmented image was generated. Our target number of 
165 augmented images for the first group of patient photographs was 10000. For subsequent data 
166 groups the same average augmentation factor was maintained (222.2 augmented images per 
167 source image as shown in Table 1). To achieve this, more augmented images than needed 
168 were generated. Some augmented images were discarded on the basis that: 1) They contained 
169 no psoriasis. 2) Their file size was too small (indicating the image contained little 
170 information). 3) They were randomly selected for discard with a uniform probability across 
171 all remaining augmented images, until the target number for the total of all augmented images 
172 was reached. This meant that whilst the average number of augmented images per source 
173 image was 222.2, the number of augmented images per source image varied between 133 and 
174 269. 

175 2.5 Neural network implementation

176 In 2017 researchers at UC Berkeley released their pix2pix software with the stated aim of 
177 achieving a “general-purpose solution to image-to-image translation problems” [38]. The 
178 code utilizes conditional adversarial networks to convert input images from one visual style to 
179 another, for example, converting line drawings to full color renderings. Pix2pix has proved to 
180 be extremely successful and has been applied widely in many fields of research [14, 39-47]. 
181 The great appeal of pix2pix is that it is a general-purpose image-to-image processing tool, 
182 allowing the same algorithm to be applied to a wide variety of tasks without significant 
183 modification, additionally its computational requirements are relatively modest. In this work 

Fig. 3. a) Original patient photograph. b) Expert labeled image. c-h) Examples of
augmented image-label pairs.

and position). Each randomly cropped image was then rotated to an arbitrary angle, subjected
to a random perspective distortion, and had its color intensity randomly altered, before finally
scaling it to a size of 256 256 pixels. Identical transforms were applied to the corresponding
label image, and the patient photograph and label image were then concatenated side-by-side
to produce a single image-label pair (see examples in Fig. 3(c)-(h)). Image manipulation was
carried out using standard Python libraries (Numpy and OpenCV) prior to NN training. Data
augmentation greatly increased the number of images available for training and incorporated
additional variability into the dataset.

During data augmentation, source images were selected one-by-one, with uniform probability.
For each selection a new augmented image was generated. Our target number of augmented
images for the first group of patient photographs was 10000. For subsequent data groups the
same average augmentation factor was maintained (222.2 augmented images per source image as
shown in Table 1). To achieve this, more augmented images than needed were generated. Some
augmented images were discarded on the basis that: 1) They contained no psoriasis. 2) Their file
size was too small (indicating the image contained little information). 3) They were randomly
selected for discard with a uniform probability across all remaining augmented images, until
the target number for the total of all augmented images was reached. This meant that whilst the
average number of augmented images per source image was 222.2, the number of augmented
images per source image varied between 133 and 269.

2.5. Neural network implementation

In 2017 researchers at UC Berkeley released their pix2pix software with the stated aim of
achieving a “general-purpose solution to image-to-image translation problems” [38]. The
code utilizes conditional adversarial networks to convert input images from one visual style to
another, for example, converting line drawings to full color renderings. Pix2pix has proved to be
extremely successful and has been applied widely in many fields of research [14,39–47]. The
great appeal of pix2pix is that it is a general-purpose image-to-image processing tool, allowing
the same algorithm to be applied to a wide variety of tasks without significant modification,
additionally its computational requirements are relatively modest. In this work we use pix2pix for
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image segmentation by training a model that transforms digital photographs into labeled binary
images. An alternative approach would be to implement a purpose-built image segmentation NN
[4,48–50]; this could potentially yield higher performance but would require considerably more
powerful computing resources to train and is therefore outside of the scope of this initial study.

Pix2pix is an example of a conditional generative adversarial neural network; it is termed
adversarial because its two main parts, the generator and discriminator, compete against each
other to improve their individual performance. During training, example data is provided to
the NN in the form of side-by-side input-output pairs. In this work the input is an image of the
patient’s skin, the output is the same size but is a binary image (the label) where each pixel is
either black (indicating no treatment is needed) or white in the region that requires treatment
(see Fig. 3). The generator (having a ‘U-net’ structure [51,52]) is only provided with the input
images, and from these it must produce its own estimates of the corresponding label images.
(Once the NN is fully trained, the generator estimates of the label should accurately fulfill the
psoriasis segmentation task). Throughout training the discriminator (a convolutional ‘PatchGAN’
[53]) improves its capability to distinguish between real image-label pairs (where the label was
applied by a medical professional), and pairs that include an NN-generated label. The feedback
that allows the NN to learn is provided by a combination of three loss terms: The generator L1
loss (error between the predicted and actual labels), the discriminator loss, and the combined
adversarial loss [38].

3. Results

During this work, various studies were undertaken to investigate the effect of different hyperpa-
rameters and different data partitioning schemes. For example, we determined that a batch size
of 1 produced the highest performance and this was therefore used in all subsequent experiments
(i.e. during training, NN internal parameters were updated each time an image-label pair was
processed).

To assess NN performance it was necessary to devise a set of key performance metrics. The
two that are presented in the results below are the ‘mean’ and the ‘above 90%’ metrics. The
‘mean’ metric is evaluated as the mean (across all images in the testing dataset) of the percentage
of pixels that are correct (i.e., where the NN prediction of the label agrees with the one applied
by a human expert). The ‘above 90%’ metric is the percentage of images in the testing dataset
where greater than 90% of the NN predicted pixels are correct; (90% was an arbitrarily chosen
threshold).

3.1. Training with different sized datasets

In this section we investigate the effect of increasing the dataset size. We consider separately
the effect of adding two additional data groups to the initial one (data group #1, ‘Init’). Firstly,
additional photographs of the clinic background (data group #2, ‘Bg’) were added. These do not
contain any psoriasis (or even any patient skin). Secondly, an extended set of patient photographs
was added (data group #3, ‘Ext’). See Table 1 for clarification of the data groups. We considered
four combinations of these data groups, each of which was used to train a separate NN model.
Key performance metrics were evaluated at each stage of training as presented in Fig. 4 and the
highest values achieved for each metric are summarized in Table 2.

The uncertainty in the percentages shown in Table 2 can be assessed in several ways: Firstly,
the standard deviation, across all augmented images in the test dataset, for the ‘mean’ metric
was approximately 3.48%. Secondly, variation in the highest scores achieved was assessed over
multiple training runs – this yielded a standard deviation of 1.6% for the ‘mean’ metric and 5.3%
for the ‘above 90%’ metric. Finally, variation in the highest achieved scores was assessed for 10
different data partitioning schemes (i.e. with different patients chosen as the testing data). After
two epochs of training the standard deviation of the ‘mean’ metric was 2.3% whilst it was 11.0%
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227
228 Fig. 4. Performance metrics during training, plotted for various datasets. a) shows the mean 
229 percentage of pixels that are correct. b) shows the percentage of images that exceed 90 % of 
230 pixels being correct. Markers show individual sampling results whilst the solid lines show the 
231 moving average, with a window size of 2. Note that the horizontal axes are logarithmic, and 
232 the data extends to 1.5 M training steps.

233 Table 2. Summary of highest performance metrics achieved for each combination of data groups. *See Table 1 
234 for more information about data groups.

Dataset Name Init Init + Bg Init + Ext Init + Ext + Bg

Data Groups* #1 #1, #2 #1, #3 #1, #2, #3

Best Mean % 96.50 96.20 96.73 96.63
Best >90 % 88.76 87.13 93.49 93.81

235
236 The uncertainty in the percentages shown in Table 2 can be assessed in several ways: 
237 Firstly, the standard deviation, across all augmented images in the test dataset, for the ‘mean’ 
238 metric was approximately 3.48 %. Secondly, variation in the highest scores achieved was 
239 assessed over multiple training runs – this yielded a standard deviation of 1.6 % for the 
240 ‘mean’ metric and 5.3 % for the ‘above 90 %’ metric. Finally, variation in the highest 
241 achieved scores was assessed for 10 different data partitioning schemes (i.e. with different 
242 patients chosen as the testing data). After two epochs of training the standard deviation of the 
243 ‘mean’ metric was 2.3 % whilst it was 11.0 % for the ‘above 90 %’ metric. The considerably 
244 greater variability in the ‘above 90 %’ metric was driven by an outlying case where patient 1 
245 was used as the test data (this had just 62.6 % of test images with more than 90 % of pixels 
246 correct – the next lowest score was for patient 14 where 84.0 % of test images had more than 
247 90 % of pixels correct).
248 In this experiment the addition of the clinic background photographs seems to have a 
249 largely negative effect on final NN performance. The patient photographs already contain 
250 many pixels that do not show psoriasis, so the overall effect of the background photographs 
251 seems to be to reduce the signal-to-noise ratio for psoriasis recognition. (Note that in the ‘Init 
252 + Bg’ training dataset there are 23,346 augmented images but only 9386 of them contain 

Fig. 4. Performance metrics during training, plotted for various datasets. a) shows the mean
percentage of pixels that are correct. b) shows the percentage of images that exceed 90% of
pixels being correct. Markers show individual sampling results whilst the solid lines show
the moving average, with a window size of 2. Note that the horizontal axes are logarithmic,
and the data extends to 1.5 M training steps.

Table 2. Summary of highest performance metrics achieved for each combination of data groups.
*See Table 1 for more information about data groups

Dataset Name Init Init+Bg Init+Ext Init+Ext+Bg

Data Groups* #1 #1, #2 #1, #3 #1, #2, #3

Best Mean % 96.50 96.20 96.73 96.63

Best >90% 88.76 87.13 93.49 93.81

for the ‘above 90%’ metric. The considerably greater variability in the ‘above 90%’ metric was
driven by an outlying case where patient 1 was used as the test data (this had just 62.6% of test
images with more than 90% of pixels correct – the next lowest score was for patient 14 where
84.0% of test images had more than 90% of pixels correct).

In this experiment the addition of the clinic background photographs seems to have a largely
negative effect on final NN performance. The patient photographs already contain many pixels
that do not show psoriasis, so the overall effect of the background photographs seems to be to
reduce the signal-to-noise ratio for psoriasis recognition. (Note that in the ‘Init+Bg’ training
dataset there are 23,346 augmented images but only 9386 of them contain psoriasis). Despite
this, the highest percentage of images that exceed the arbitrary 90% threshold was achieved by
the NN model trained with the ‘Init+Ext+Bg’ dataset.

During the early stages of training, the ‘Init+Bg’ model suffered a plateau region where it
appears to have been unable to improve its psoriasis recognition. This lasted until approximately
1500 training steps. The NN output during this plateau region was an approximate duplicate
of the NN input (patient image) but with greatly reduced color saturation; the NN therefore
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constantly predicted that no psoriasis was present. This strategy nevertheless yielded higher
performance (at this early stage of training) than the NN model trained using the ‘Init+Ext’
dataset, although this situation is reversed before completion of the first epoch (22,497 steps for
the ‘Init+Ext’ dataset).

The different vertical scales on Fig. 4(a) and (b) highlight that the ‘above 90%’ metric is far
more sensitive than the ‘mean’ metric. According to the more sensitive ‘above 90%’ metric,
there is a 4.7% increase in performance with the addition of the extended patient image dataset,
demonstrating that there is scope for considerable improvement in NN performance as more
patient data is collected.

3.2. Best and worst case NN performance

One of the best performing neural network models was produced after 1.2 M training steps
combining training data from all the data groups listed in Table 1 (‘Init+Ext+Bg’). In Fig. 5
we look in more detail at the performance of this NN model on individual test images.

297
298 Fig. 5. a) b) best c) median and d) worst-case performance, for each source image in the testing 
299 dataset. Top row shows the test images, the lower row shows analysis of the NN output. 
300 Numeric values are expressed as percentages and indicate: Mean, the percentage of pixels that 
301 are correct. True positive (Tp, green). True negative (Tn, black). False positive (Fp, red), False 
302 negative (Fn, yellow).

303 3.3 Demonstration of DMD beam shaping:

304 Fig. 6 demonstrates the use of the Digital Micromirror Device (DMD), within the data 
305 projector, for beam shaping to achieve localized irradiation of psoriasis. With the 
306 experimental arrangement shown in Fig. 2 a) it was possible to display the patient image on 
307 the computer monitor, have this captured by the device camera and processed by the trained 
308 NN. The data projector then received the NN estimate of the region labeled as psoriasis and 
309 illuminated only this region with blue light (simulating the localized UV phototherapy 
310 treatment). The patient skin images in Fig. 6 are different augmented versions of the same 
311 source image (taken from the testing dataset, and therefore not seen during training). A video 
312 is included in the supplementary material (Visualization 1) where multiple augmented images 
313 are arranged into a sequence – simulating patient motion within live video. The sequence was 
314 recorded with approximately 1 second delay between each image so that the patient skin 
315 displayed on the computer monitor and the projected treatment beam could be clearly 
316 distinguished. Without any code optimization inference took on average 60 ms per input 
317 image (using an Nvidia Quadro RTX 5000 GPU) which is equivalent to approximately 
318 16 frames per second (it is anticipated that, with code optimization, considerably higher frame 
319 rates will be feasible).

Fig. 5. a) b) best c) median and d) worst-case performance, for each source image in the
testing dataset. Top row shows the test images, the lower row shows analysis of the NN
output. Numeric values are expressed as percentages and indicate: Mean, the percentage of
pixels that are correct. True positive (Tp, green). True negative (Tn, black). False positive
(Fp, red), False negative (Fn, yellow).
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Figure 5(a) shows the best performing augmented image (in terms of the mean percentage
of pixels that were correct), for each of the three source images in the testing dataset (patients
1 and 6). Note: trivial cases such as those that do not feature any psoriasis were disregarded.
For all source images, the best performing case achieved 99% accuracy, with fewer than 1% of
false negative or false positive pixels. Below each augmented patient image, a color-coded plot
indicates regions that were correctly identified by the NN as psoriasis (in green), false positive (in
red) and false negative (in yellow). Figure 5(b) provides additional examples of good psoriasis
recognition, with the next highest scoring test images.

The worst-case performance for this NN model is presented in Fig. 5(d). For patient 1 image 3
the worst-case performance was 83.9% of pixels correct, with over 10% of false positive pixels
occurring. The unsatisfactory results for some augmented images derived from this particular
source image (patient 1, image 3) are likely because this image has the largest number of distinct
regions of psoriasis in the whole dataset, and because there were relatively few images in the
training dataset where the psoriasis presented in this sort of clustered arrangement – making this
source image something of an outlier and a particularly challenging test case. Image analysis
has shown that the poor worst-case performance for patient 6 image 1 and patient 6 image 2
are chiefly caused by a large scaling factor applied during augmentation, which increases the
median size of psoriasis regions above the norm for the dataset. In addition, both of these source
images have low image contrast relative to the average for the training dataset. The worst-case
performance for patient 6 image 2 still yields >95% of pixels being correct.

The augmented images in the testing dataset produced a distribution of scores for the mean
percentage of pixels correct metric. Figure 5(c) shows the augmented images within the testing
dataset that scored closest to the median of this distribution and as such, they represent the typical
performance of this NN model.

3.3. Demonstration of DMD beam shaping

Figure 6 demonstrates the use of the digital micromirror device (DMD), within the data projector,
for beam shaping to achieve localized irradiation of psoriasis. With the experimental arrangement
shown in Fig. 2(a) it was possible to display the patient image on the computer monitor, have
this captured by the device camera and processed by the trained NN. The data projector then
received the NN estimate of the region labeled as psoriasis and illuminated only this region with
blue light (simulating the localized UV phototherapy treatment). The patient skin images in
Fig. 6 are different augmented versions of the same source image (taken from the testing dataset,
and therefore not seen during training). A video is included in the supplementary material
(Visualization 1) where multiple augmented images are arranged into a sequence – simulating
patient motion within live video. The sequence was recorded with approximately 1 second delay
between each image so that the patient skin displayed on the computer monitor and the projected
treatment beam could be clearly distinguished. Without any code optimization inference took on
average 60 ms per input image (using an Nvidia Quadro RTX 5000 GPU) which is equivalent to
approximately 16 frames per second (it is anticipated that, with code optimization, considerably
higher frame rates will be feasible).

https://doi.org/10.6084/m9.figshare.24745929
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320
321 Fig. 6. From left to right: Column 1, augmented image as displayed on the monitor. Column 2, 
322 Analysis of the NN output (colors same as Fig. 5). Column 3, projected treatment beam, as 
323 viewed by the device camera. Column 4, Patient skin displayed on the monitor, overlayed with 
324 the projected treatment beam, as viewed by the device camera.

325 4. Conclusion
326 This work demonstrates that recognition of psoriasis, and differentiation of psoriasis from 
327 non-involved skin, are possible via an image-to-image transform neural network. The NN 
328 model used to produce the results shown in Fig. 5 and Fig. 6 achieved a mean of 96.6 % of 
329 pixels correct per image, across the entire testing dataset. The same model exceeded 90 % of 
330 pixels being correct for 93.8 % of the augmented images in that testing dataset (576/614 
331 images). Furthermore, our simulated patient and treatment device apparatus demonstrated that 
332 targeted phototherapy can be automated via control signals from a trained neural network. A 
333 production medical device could apply image analysis to estimate NN segmentation accuracy 
334 and issue a warning, or halt treatment, when input images deviate too far towards the edges of 
335 the parameter space sampled by the training data. (E.g., If the input image contrast is too low, 
336 or if the segmented image predicts too many small distinct regions of psoriasis).    

Fig. 6. From left to right: Column 1, augmented image as displayed on the monitor. Column
2, Analysis of the NN output (colors same as Fig. 5). Column 3, projected treatment beam,
as viewed by the device camera. Column 4, Patient skin displayed on the monitor, overlayed
with the projected treatment beam, as viewed by the device camera.
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4. Conclusion

This work demonstrates that recognition of psoriasis, and differentiation of psoriasis from
non-involved skin, are possible via an image-to-image transform neural network. The NN model
used to produce the results shown in Fig. 5 and Fig. 6 achieved a mean of 96.6% of pixels correct
per image, across the entire testing dataset. The same model exceeded 90% of pixels being
correct for 93.8% of the augmented images in that testing dataset (576/614 images). Furthermore,
our simulated patient and treatment device apparatus demonstrated that targeted phototherapy
can be automated via control signals from a trained neural network. A production medical device
could apply image analysis to estimate NN segmentation accuracy and issue a warning, or halt
treatment, when input images deviate too far towards the edges of the parameter space sampled
by the training data (e.g., If the input image contrast is too low, or if the segmented image predicts
too many small distinct regions of psoriasis).

Since segmentation of still images has been successful (with unoptimized calculation times of
approximately 60 ms) the trained NN should, in principle, be able to perform the same task on
a live-video feed in the proposed automated phototherapy device. The NN-based approach to
image segmentation is particularly suited to this as it makes efficient use of GPU acceleration.
(Note that, during inference, NN calculation time is essentially independent of image complexity;
meaning that input images with many small psoriasis plaques require the same processing time
as images with a single plaque or with no psoriasis.)

The NN’s treatment accuracy likely already rivals that which can be achieved with a hand-
held localized treatment device, where the beam width would typically be at least a few mm.
Nevertheless, it is anticipated that it will be possible to further improve NN performance (reducing
false positives in particular) if a state-of-the-art neural network is specifically designed for this
image segmentation task. We recognize that, due to its limited size, our dataset cannot contain
all possible distributions of psoriasis and skin types but expect that additional performance gains
(and wider applicability) will be attained by significantly expanding the training dataset size (as
demonstrated in section 3.1).
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