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ABSTRACT 18 

Rift-Rift-Rift triple junctions are regions where three plates interact generating complex networks of 19 

variably oriented faults. While the geometry of the fault networks is easily constrained from their 20 

surface expression, what remains unclear is how the kinematics of faults and their interactions vary 21 

spatially, and how these relate to the unusual crustal motions that results from three plates diverging 22 

from each other. The Afar depression lies at the triple junction between the African, Arabian and 23 

Somalian plates where the unique combination of observational data from structural mapping, 24 

seismicity, and GNSS allows to understand the link between fault kinematics and plate motions. Here 25 

we complement these observations with an analog model to gain insights into how the patterns and 26 

directions of faults relate to overall plate motions. A key finding in both model and nature is that 27 

some adjacent normal faults form at high angles and generate T-shaped structures. These purely 28 

normal faults are synchronously active, which means that the extension direction varies ~90o locally. 29 

These kinematic contrasts in model and nature occur despite the relatively smooth pattern of overall 30 

surface motions. The results indicate that normal faults interacting at high angles to form the T-shaped 31 

structures can evolve synchronously within a stress field that varies gently in magnitude but 32 

dramatically in orientation over a few kilometers.  33 

 34 



INTRODUCTION 35 

Divergent triple junctions involve the movement of three tectonic plates away from each other 36 

(McKenzie & Morgan, 1969), resulting in a fault network that is very complex and may display 37 

variation in space and time. However, extensional triple junctions are difficult to observe and analyze 38 

in detail, since they most commonly develop in oceanic lithosphere (Ridge-Ridge-Ridge triple 39 

junctions) below sea level (McKenzie & Morgan, 1969). The Afar triple junction (Fig. 1A) is the only 40 

extensional triple junction directly observable subaerially (Varet, 2018). Extension has not reached 41 

the oceanic stage yet in Afar, where the continental lithosphere is still breaking apart giving rise to a 42 

Rift-Rift-Rift triple junction. The structural pattern in the region is characterized by atypical fault 43 

architecture (curvilinear, overlapping and cross-cutting faults), kinematics (oblique and/or strike-slip 44 

faulting) and interactions (T-shaped plan-view fault geometries). Similarly, T-axes of earthquake 45 

focal mechanisms and the orientation of dikes in and around the triple junction commonly vary by 46 

~90o over distances of tens of km, indicating that they likely respond to local complexities in stress 47 

direction (e.g., Keir et al. 2011; Doubre et al., 2017). Overall, the processes that control the geometry, 48 

interaction and kinematics of faults, and their relationship to the spatially variable and complex 49 

pattern of extension resultant from 3 diverging plates remain poorly understood (Rime et al., 2023). 50 

Here we compare an analog model with observations from the Afar depression (structural trends, 51 

GNSS data and T-axes from earthquakes) to gain insights into the distribution and kinematics of the 52 

complex deformation processes. 53 

 54 

THE AFAR TRIPLE JUNCTION 55 

The Afar triple junction results from the movement among the African, Somalian, and Arabian plates 56 

(e.g., Burke & Dewey, 1973; Hayward & Ebinger, 1996; Manighetti et al., 1997; Tesfaye et al., 2003; 57 

Wolfenden et al., 2004). The African and Somalian plates move apart at ~5 mm/yr in an ESE-WNW 58 

direction (Saria et al., 2014; Knappe et al., 2020; Stamps et al., 2021), giving rise to a system of NE-59 

SW-trending faults representing the northward termination of the Main Ethiopian Rift (Fig. 1A). 60 

Conversely, the ~20 mm/yr northeastward motion of the Arabian plate relative to Africa and Somalia 61 

(McClusky et al., 2010), results in the development of NW-SE-trending faults in the Afar rift 62 

segments that are related to Red Sea and Gulf of Aden opening (Fig. 1A). These two main fault 63 

systems interact in central Afar, developing typical T-shaped structures, with sharp 90° fault 64 

interactions. Previously, the region where the T-shaped structures are most pronounced has been 65 

interpreted as where the mutually perpendicular extension generated by plate motion is believed to 66 

be partitioned, and therefore where the triple junction is positioned (Maestrelli et al., 2022; Fig. 67 

1A,B). However, the combination of observational and modelling studies suggests the diverging 68 



plates may interact across a wider (several hundred km-wide) zone. For example, the major 69 

curvilinear or Y-shaped grabens coupled with minor perpendicular faults in eastern Afar (e.g., 70 

Immino graben; IM in Fig. 1A), and rift perpendicular dike intrusion in southern Afar, are best 71 

explained by a broad zone of triple junction tectonics (Keir et al., 2011; Collanega et al., 2020; Fig. 72 

S1).  73 

 74 

DATA AND METHODS 75 

Analog model 76 

We performed analog models reproducing the dynamics of a RRR triple junction by simulating the 77 

motion of three tectonic plates (Africa, Arabia, Somalia) diverging from each other. To get detailed 78 

insights into the deformation of the Afar triple junction, we used the best-fit model from Maestrelli 79 

et al., 2022 (Model A-OR-6, see Supplementary material for setup details, Fig. S2) involving 80 

simulation of two-phase motion among the three plates. The first phase implies NE motion of Arabia 81 

with respect to stable Africa-Somalia; the second phase involves contemporaneous ESE-WNW 82 

divergence of Africa and Somalia and accelerated NE motion of Arabia (e.g., Tesfaye et al., 2003; 83 

see Supplementary material, Fig. S2; the influence of different extension conditions was tested in 84 

Maestrelli et al., 2022). During this last phase, Arabia is moving four times faster than Africa and 85 

Somalia (i.e., R=4 where R is the velocity ratio |VArabia|/|VAfrica=Somalia|), as currently occurring in the 86 

natural system (McClusky et al., 2010). This model well accounts for the overall structural features 87 

and evolution of deformation in Afar, with a progressive northward migration of the structural triple 88 

junction and depocenter with time (see Maestrelli et al., 2022).  We performed a detailed analysis of 89 

fault patterns, kinematics of deformation and dynamics of fault interaction. Model deformation was 90 

monitored through top-view photos and digital elevation models through photogrammetry. We 91 

analyzed model displacement fields through Particle Image Velocimetry (PIV) with the PIVlab 92 

software (Thielicke and Stamhuis, 2014; see Supplementary material for details). Additionally, by 93 

monitoring the motion of markers in the footwall and the hangingwall on individual faults, we provide 94 

an indication of the direction of extensional slip across the specific fault (Philippon et al., 2015). We 95 

call these the model T-axes since the measurements are analogous to the T-axes derived from 96 

earthquake focal mechanisms. 97 

 98 

Fault analysis 99 

Both in nature and the model, statistical analysis was performed on fault segments by using the 100 

FracPaQ tool for MATLAB™ (Healy et al., 2017). Trends of fault segments in the model were plotted 101 

using rose diagrams (10° bin) and compared with the trends of natural faults mapped on a 30m 102 



resolution SRTM Digital Elevation Model (Farr et al., 2007; free to download at 103 

https://earthexplorer.usgs.gov/) at the triple junction area (Figs. 1B,C and 2B,C). Regional fault 104 

mapping was performed at 1:250.000 scale.  105 

 106 

GNSS based rift motions  107 

We derived the 2D velocity field of the Afar triple junction by interpolating two-dimensional GNSS 108 

velocities in an Africa-fixed reference frame (Doubre et al., 2017) onto a uniform grid with 19 km 109 

spacing that is equivalent to the scaled grid size of the analog model (Fig. 4). To obtain the long-term 110 

velocity field, we removed GNSS based velocities near the Dabbahu segment where a rifting episode 111 

occurred in 2005-2010 (Wright et al., 2012). Since GNSS sites on the Somalia plate are scarce, we 112 

fixed site velocities for three additional points on the Somalian Plate assuming the values predicted 113 

by Stamps et al. (2008).  114 

 115 

Earthquake T-axes and dike opening directions 116 

We derive T-axes from the global Centroid Moment Tensor (gCMT) catalog for the region (time 117 

period 1976-2022, Ekström et al., 2012; last accessed October 2023). In addition, we compiled a 118 

database of dike locations and their strike modelled from InSAR observations (Goitom et al., 2015; 119 

Moore et al., 2019; Keir et al., 2009; Nobile et al, 2012; Pagli et al., 2012; Tarantola et al., 1980; 120 

Wright et al., 2006), and derived the opening direction (orthogonal to the strike) of each dike.   121 

 122 

RESULTS  123 

Fault pattern 124 

A detailed analysis of the analog model indicates a very good correspondence with Afar in terms of 125 

fault pattern (cf. Figs. 1, 2; see also Fig. S3). The model reproduces the two dominant fault sets 126 

characterizing Afar: the NW-SE-trending faults, related to NE motion of Arabia, and the roughly NE-127 

SW-trending extensional structures related to the relative divergence of the African and Somalian 128 

plates. The statistical analysis of fault orientations in the model highlights the two dominant fault sets, 129 

as illustrated in Figure 2C. The NE-SW-directed faults in the model define a series of sub-parallel 130 

grabens closely resembling the major sub-parallel basins of Afar (Figs. 1, 2). A closer view of the 131 

fault pattern at the triple junction reveals the two sets of faults interacting at a high angle (Fig. 2B), 132 

giving rise to a T-shaped pattern of extensional structures which also characterize central Afar (Fig. 133 

1). Detailed analysis of the evolution of faulting at the analog model triple junction (Fig. 3) reveals 134 

that faults interact at high angles and form the T-shaped structures contemporaneously. Analysis of 135 



the analog model T-axes clearly indicates that two roughly orthogonal directions of extension (NE-136 

SW-trending and roughly E-W-directed) are responsible for the development of these faults (Fig. 3).  137 

 138 

Plate motions and kinematics of faulting 139 

Figure 4 compares the modelled surface velocities to those measured by GNSS, showing the overall 140 

kinematics of the plates. In general, there is a good match between modelled and GNSS-derived 141 

surface velocities (Fig. 4A), with the discrepancies generally lower than 15° and with better 142 

correlation where the GNSS data is denser. Similarly, the indicators of fault extension from the T-143 

axes of earthquakes and those calculated from the analog model match very well (Fig. 4B). These 144 

primarily trend NE in northern and central Afar, but show both NE and ESE directions in southern 145 

Afar (Fig. 4B). In contrast to the plate motions however, these indicators of extension vary over very 146 

short length scales – a few tens of kilometers. The earthquake T-axes are also similar to the dike 147 

opening directions, suggesting that extension across the faults is similar to the direction of minimum 148 

horizontal stress (s3). The similarity between earthquake T-axes and dike opening direction also 149 

shows faults and dikes are responding in a similar way to both regional and local stresses.  150 

 151 

DYNAMICS OF FAULT INTERACTION AT RIFT-RIFT-RIFT TRIPLE JUNCTIONS 152 

(AND IMPLICATIONS FOR AFAR) 153 

The very good match between the analog model and the Afar depression suggests that the overall 154 

deformation pattern and its evolution result from different stress fields related to the differential 155 

divergent motion acting contemporaneously at the triple junction (e.g., Rime et al., 2023). A key 156 

observation from model and nature is that the T-axes can vary by ~90o close to orthogonal fault sets. 157 

Such complexity in fault geometry and local orientation of extension is observed within fairly smooth 158 

overall surface motions, as indicated from the observed and modelled surface velocity vectors, (Figs. 159 

3, S4) resulting from a dominant NE (Arabia) movement and subordinate NW-SE (Africa-Somalia) 160 

divergence. These constraints on both faulting and overall rift motions indicate that faults interacting 161 

at high angles to form the T-shaped structures do not result from an alternating stress direction shift 162 

over time, but they form and act contemporaneously. These sub-orthogonal fault systems result from 163 

the partition of the triple junction’s stress field into two roughly orthogonal directions of extension (a 164 

NE-SW-trending extension direction related to motion of the Arabian plate and a roughly E-W-165 

directed extension related to Africa-Somalia motion) acting contemporaneously and independently at 166 

the triple junction, as suggested for others extensional settings (e.g., the Barents Sea, Collanega et al., 167 

2020). This process explains the anomalous WNW-ESE dike intrusion occurred during May 2000 in 168 

the Main Ethiopian Rift of southern Afar (Ayelu-Amoissa Dike, AAD in Fig. 4B). The dike event 169 



documents NE-SW directed extension, roughly perpendicular to the dominant near ESE-WNW 170 

extension related to Africa-Somalia motion (Keir et al., 2011). Coexistence of the Africa-Arabia-171 

related stress field in the area, as suggested by model analysis and the resulting partition of 172 

deformation, may explain this anomalously oriented dike event and the associated seismicity (Fig. 173 

S1). In addition to the dominance of T-shaped structures, other complex graben geometries (e.g., 174 

curvilinear and Y-shaped grabens) are also observed in Afar (Collanega et al., 2020) and can be 175 

explained by our model.  176 

 177 

Traditionally, complex patterns of fault trends and slip directions (e.g., angular or T-shaped patterns) 178 

have been interpreted as resulting from a multiphase evolution with changes in time of the regional 179 

extension direction (see discussion in Zwaan et al. 2021). This allows multiple fault sets to be 180 

activated at different times and for temporal variability in fault slip to occur. Our observations do not 181 

support this scenario for the current tectonics of Afar, but instead show that highly variable fault 182 

orientations but with normal slip kinematics can be synchronously active. The magnitude of 183 

horizontal principal stresses (s2 and s3) are prone to being similar at a multi-directionally divergent 184 

zone like Afar. This facilitates that s2  and s3 switch locally, generating a 90° shift in the fault 185 

orientation and slip directions. This finding indicates caution should be used when interpreting the 186 

behavior of interacting fault systems from time-averaged structural data in these complex structural 187 

settings. 188 
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FIGURE CAPTIONS 337 

Figure 1. Tectonic setting of the Afar depression (modified from Keir et al., 2013, after Manighetti 338 

et al., 2001). A) Simplified fault pattern and main volcanic centers. Inset in the top right shows a 339 

sketch of the East African Rift and its plate tectonic setting. KR: Kenya Rift; MER: Main Ethiopian 340 

Rift; TC: Tanzanian Craton; TD: Turkana Depression; WB: Western Branch. Bottom right inset 341 

shows the plate tectonic setting of the Afar depression. Af: African plate; Ar: Arabian plate; GoA: 342 

Gulf of Aden; So: Somalian plate; TJ: Triple Junction; IM: Immino Graben. B) Detail of the T-shaped 343 

fault interaction in central Afar. C) Rose diagram (10° bin) of fault segments. Considered structures 344 

are those included in the dashed rectangle in A. 345 

 346 

Figure 2. Final results of the best fit analog model (model A-OR-6 modified from Maestrelli et al., 347 

2022; see supplementary Fig. S2 for details). A) Fault pattern superimposed on the topography 348 

(DEM) of the model surface at the end of deformation. The model is rotated 32° clockwise to be 349 

directly comparable to Afar. B) Close up of the triple junction area showing the typical T-shaped fault 350 

interactions. C) Rose diagram of fault distribution in B calculated as in Fig. 1C. 351 

 352 

Figure 3. Evolution of T-shaped fault interaction at the model triple junction (area covers the inset in 353 

Fig. 2). White bars indicate the displacement on the faults, calculated as in Philippon et al. (2015). 354 

Vectors in the box show the total extension between the three plates. White arrow shows northern 355 

plate movement during 1st deformation stage. Dashed gray lines mark plate boundaries position. 356 

 357 

Figure 4. Model to nature comparison of deformation kinematics. A) Comparison between velocity 358 

vectors in the model (black arrows) and GNSS data in Afar (yellow arrows denote the measured data; 359 

grey arrows show motion data interpolated from measured ones on a 5x5 km grid). Velocity vectors 360 

(black arrows) in the models are obtained from PIV analysis (see supplementary Fig. S4), following 361 

the methods described in Maestrelli et al., (2021a,b).  GNSS vectors and model velocity vectors were 362 

calculated considering, respectively, a fixed Africa plate and a fixed SW model plate. B) Comparison 363 

between T-axes from earthquakes in Afar (red lines; derived from gCMT catalogue, Ekström et al., 364 

2012) and T-axes from the model calculated as in Philippon et al. (2015). The dashed box encloses 365 

T-axes resulting from earthquakes related to the Dabbahu dike sequence. C) Scheme showing the 366 

correspondence between scaled analog model boundaries and nature. MP1, MP2 and MP3: moving 367 

plates, cf. Fig. S2. 368 
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