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Aspects of Free Radical Spectroscopy

by Trevor John Sears.

Techniques for the computer solution to the eigenvalue problem for
the effective Hamiltonian describing the rotational levels of
asymmetric top free radicals in the presence of an external magnetic
field are presented. They are used to perform the analysis of
experimentally observed data for the HO2 radical and derive refined
values for the major parameters appearing in the effective
Hamiltonian describing the ground state of the molecule.

The detailed form of the effective spin-rotation Hamiltonian
including its centrifugal distortion correction for an asymmetric
top free radical is derived and a form sujtable for the empirical
fitting of experimentally observed spectra 1is discussed. It
is shown that for molecules of lower than orthorhombic symmetry
there are fewer determinable quadratic spin-rotation parameters
than have been used previously. Similar indeterminacies exist
among the quartic terms and the case of a molecule of orthorhombic
symmetry is discussed in detail. The results are applied to the
available experimental data on the spin-rotation splittings of
the HOZ’ NH2 and NO2 radicals in their ground vibronic states.

The observation of magnetic dipole transitions between the fine
structure states of X° I SeH by Taser magnetic resonance spectros-
copy is described. The spectra are analysed in terms of the
effective Hamiltonian for a 7 electronic state and refined values
for several of the major molecular parameters determined.



CHAPTER 1.

INTRODUCTION

Free radicals play an important role in our understanding
of chemical reaction kinetics and mechanisms and their presence
is frequently invoked in order to explain and predict the paths
of reactions occurring in both gas and liquid phases.  The
understanding'of the geometric shape and electronic structure of
this class of molecule is therefore very important. By their
very nature, free radicals are short-lived and highly reactive
species and it is only really over the past twenty years that
sufficiently sensitive experimental technigues have been developed
and direct spectroscopic identification of such molecules become
possible,

The study of short-Tived paramagnetic molecules by gas phase
magnetic resonance spectroscopy is now a well established techniaue.
The early work (see, for example Refs. (1) to (5)) was performed at
microwave frequencies. However there is a considerable increase in
the sensitivity of the technique with increased operating freguency
and the development of laser sources, especially in the far infra-red
and sub-millimetre regions of the spectrum, has resulted in the
observation of rotational spectra of molecular species whose E.P.R.
spectra had proved elusive or which were at best poorly characterised.
Prime examples are HO2 (6, 7, 8), HCO (9), NH2 (10) and PH2 (11).

More recently still, vibrational magnetic resonance transitions 1in
some of the better known free radicals have been detected using infra-

~

red CO, and CO gas discharge Tasers (12, 13).

As more high resolution spectral information concerning short-
lived free radicals has become available, our understanding of the
interactions between the constituent electrons and nuclei has increased.

Complete analyses of the observed spectra are now usually performed



using a Targe computer and the spectral Tline positions statistic-~
ally related to parameters appearing in the effective Hamiltonian
for the molecule in the state in question. Chapter 2 briefly
reviews the current state of this type of analysis and presents
some approaches towards the solution of the problems encountered
in the analysis in terms of the effective Hamiltonian model. The
techniques described are illustrated in the analysis of the
available high resclution spectra of the HO2 radical.

Chapter 3 deals specifically with the spin-rotation terms in
the effective Hamiltonian and the form of the quadratic and quartic
terms to be used in the analysis of asymmetric top spectra are
derived.  The results are applied to the analysis of the spectra
of HOZ’ NH2 and N02 in Chapter 4.

Departing from asymmetric top free radicals, Chapter 5 describes
the observation and subsequent analysis of magnetic dipole transitions
between the fine structure components of the ground (X2n) state of the
SeH radical. Refined values for several of the major constants
appearing in the effective Hamiltonian for a <1 molecule are derived
and some comment on the theoretical significance of the numbers is
included in terms of third order contributions to the effective
Hamiltonian.
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CHAPTER 2.

THE CALCULATION OF THE ROTATIONAL ENERGY LEVELS OF ASYMMETRIC
TOP FREE RADICALS.

2 (1) Introduction

With present day wide availahility of very powerful computers
such as the CDC 7600 or IBM 360/195, it is possible to attempt far
more sophisticated analyses of experimentally observed spectra
than would have been contemplated even five years ago. This
chapter outlines two programs developed and tested over the past
two years, which interpret the observed spectra in terms of an
effective molecular Hamiltonian.  The Hamiltonian, which is
considered in more detail in the next section and in Chapter 3,
contains a finite number of molecular constants to be determined
from the experimental data. It is the aim of the analysis to
determine these constants, or parameters, such that the eiaenvalues
of the Hamiltonian and the molecular energy levels, as defined by the
observed spectra coincide.

The programs referred to above represent two different approaches
to the analysis problem, and they are considered in detail in
sections (IV) and (V) of this Chapter respectively. The results
of their application to the analysis of the available high resolution
spectra of the HO2 radical are presented in section (VI). e
begin however, in section (II) by outlining the problem more fully
and reviewing the standard least squares methods, used in the data
reduction, which are common to both programs. Section (III)
contains a discussion of general programming and efficiency aspects
which are, in the main, again applicable to the approaches repres-
ented by both programs.



2 (II) Outline of the Problem.

2 (II) a. Introduction

The position of the lines in a gas phase magnetic resonance
spectrum of a free radical, contain, in principle, large amounts
of information concerning the molecule's structure and its
electronic states. The analysis of such a spectrum in terms of
an effective molecular Hamiltonian aims to extract as much of
this information as possible. In this type of analysis, the
molecular energy levels, as inferred from the line positions, are
identified with the eigenvalues of an effective Hamiltonian
operator for the molecule in the (usually) vibronic state in question.
The form of the Hamiltonian is derived making only physically
acceptable assumptions regarding the molecule's geometry and the
interactions between the individual particles from which it is
constituted. The Hamiltonian then contains a number of empirical
molecular constants which, when determined, will provide information
concerning the detailed structure of the molecule.

The derivation of a suitable Hamiltonian is beyond the scope
of this chapter, but the theory is well developed (1, 2, 3) and
some aspects are considered in Chapter 3. The essential property
of the effective Hamiltonian is that its eigenstates span a single
vibronic state of the molecule, which, for most problems considered,
is the Towest, i.e. ground, state. For the purposes of this chapter
it will be adequate to consider the Hamiltonian as a sum of operator
terms, each jdentified with a specific contribution to the energy of
the molecule, thus we write:

H = H +H +H 4+ H

eff rot cd sr srcd + H

hes Mg T H, (2.7)

when Hrot and Hcd describe the rotational energy and the centrifugal

distortion correction to it and Hsr and H the spin rotation

srcd
interaction and its centrifugal distortion correction. ths and



HQ account for the small corrections to the molecular energy
levels necessary when one or more of the nuclei in the molecule
have non-zero spin; the former represents the electron-nuclear
spin-spin interactions and the latter the electric quadrupole
interaction between a nucleuswith spin greater than 3 and the
electric field created by the other charged particles within the
molecule. ‘HZ describes the interaction between the molecule and
an external magnetic field which is an essential feature of
magnetic resonance experiments. Each individual term in (2.1)
is composed of a product of operators representing the different
angular momenta possessed by the isolated molecule, and the
appropriate molecular parameters.

We wish to calculate the eigenvalues and eigenvectors of this
Hamiltonian and the problem may be written:

Heff Y= E (2.2)

in the usual notation. The standard method of solution, and the

one to which this chapter is devoted, is numerical. The eigen-
functions are approximated by a linear combination of basis functions
and the Hamiltonian matrix is constructed numerically in this basis
then diagonalised using an electronic computer. The elements of

the diagonalised matrix then represent the eigenvalues of the
Hamiltonian and the transformation generating the diagonalised

matrix yields the linear combinations of the basis vectors which
constitute the eigenfunctions.

For the problems considered in this chapter, that is specifically
asymmetric top molecules, the most convenient rotational basis
functions are eigenfunctions of the total rotational angular
operator NZ and its space-and molecule-fixed z components, the so-
called symmetric top basis functions [N KM >. The molecules of
particular interest here possess an unpaired electron and we must
take into account effects of spin angular momentum; this is

represented by the spin angular momentum operator S and a convenient



basis set is one in which the electron spin angular momentum

is coupled to the molecular rotational angular momentum to produce
a resultant J. These basis functions are described by the ket
{NKSJMJ>.
when the molecule possesses a nucleus with non-zero spin. The basis
functions referred to most often in this chapter are the fully
coupled |NKSJIFM.>, when the nuclear spin [ is assumed to be coupled
to the resultant of N and § to give a resultant F = J + I, and the
I-decoupled basis set lNKSJMJIMI>. The two are discussed in

more detail in later sections and matrix elements of the Hamiltonian

in both bases are quoted in the literature, (3, 18, 19, 20).

Similarly we must include nuclear spin angular momentum

It is important to realise that the eicenvalues of the
Hamiltonian do not depend on the basis set used in the calculation
indeed in many ways the advent of high speed computers has
eliminated the necessity for a careful choice of basis functions
because the differences in time needed to diagonalise the Hamiltonian
matrix set up in various different basis sets are minimal. In this
case it is more efficient to choose a basis representation whose
matrix elements are the simplest and easiest to set up.

The computer programs developed use an iterative procedure to
find the 'best fit' molecular constants for the effective Hamiltonian.
An initial set of molecular constants is employed and the matrix
representation of the Hamiltonian is diagonalised giving eigenvalues,
or calculated energy levels.  From differences between the upper
and Tower state energy levels, calculated frequencies are obtained.
Discrepancies between the observed and calculated frequencies, or
in the case of magnetic resonance type experiments, fields, are
inserted 1into a least squares fit to find corrections to the
previous choice of molecular constants. With the new set of
molecular constants, the Hamiltonian is rediagonalised. The
iteration process continues to convergence, giving a set of constants
for the particular model Hamiltonian which best reproduce the
observed data.
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2 (II) b Least squares procedure

The least squares method of analysis described in this
chapter is based on techniques described elsewhere (4),(5) and only
a brief outline is presented here. The 'best' values of the
Hamiltonian parameters are those for which the observed and
calculated spectra are most nearly identical. We can guantify
this in the case of a magnetic resonance spectrum by requiring
that the sum of the squared residuals in the observed fields,
that is:

be minimum, implying

n
)

() o g (1) 7 .
- ZZT(BobS Beate ) 1 7
Py

-2 j{: obs Bcg;g ) aégéig = 0 (2.3)

Where n is the number of Tines observed, p refers to the
th Hamiltonian parameter and B<bg is the fwe?d at which the
ith observed line occurs. We assume that for small changes in
the parameters, Ap., linear changes occur in the calculated

transition fields, A Bcg%g, so that we may write:

w8 )= s 1) /35) A, (2.4)

We would Tike to find changes in the parameters such that the
calculated and observed 1ine positions are brought into coincidence.
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The problem may be expressed in matrix form:
D A = X (2.5)

where E is a matrix of derivatives (chgég/apj), A is a vector
of corrections to parameters and X a vector of residuals in the
fields. Since we have many more independent transition fields
than parameters to be fitted the set of equations is over
determined. If 4 1is the vector of corrections to the parameters
which minimises the squared derivatives in the fields, it may be

shown (4) to be given by:

> >
it
—

L)

.D) . DX (2.6)

and the variance-co-variance matrix, related to the correlation
matrix of the estimated parameters is given by:

(2.7)

D>
i
Qv
Ny
—
)
[
I )
S
H
ot

where & is the estimated standard deviation of the variances in
the field measurements, given by:

'm being the number of parameters to be fitted. The approximation,
represented by Eq. (2.4), that small changes in the Hamiltonian

parameters produce proportional changes in the calculated fields, is
not strictly adhered to in practice, and the calculation proceeds by
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repeating steps (2.6) to (2.8) with the corrected parameters

until successive values of the estimated standard deviation &

of the fit are identical to within the estimated accuracy of an
individual measurement, or until successive changes to the parameters
are smaller than their respective uncertainties.

The remaining problem in the analysis as outlined above is
the efficient calculation of the (nxm) matrix of derivatives of
the calculated fields with respect to the parameters (D).  This
may be performed by simply incrementing each parameter~in turn by
a 'small’ amount and repeating the eigenvalue calculations for the
Tevels involved in each transition with these new parameter values,
then calculating the derivatives by subtraction and division. It is
apparent that this would be a very tedious calculation and even on
a fast computer, the time taken for this type of calculation becomes
prohibitively Tong. A more efficient calculation of the derivatives
may be performed using a modification of the method originally due
to Castellano and Bothner-By (5). We first relate the derivatives
of the calculated fields to the transition frequencies by the
implicit function theorem

<avi/88i>p' is simply the rate at which the transition tunes in
the magnetic field and may be calculated by Tinear interpolation
between points a few gauss either side of the observed field.

The calculation of a tuning rate is required in any case to provide
an estimate of the calculated field at which the transition occurs.
(Bvi/apj) is related to the derivativeg of the ejgenvalues of the
states involved in the transition {A<;) and A(é) say) by:
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(1) (1)
vi A, 8y (2.10)
®; Py ° Py

The derivatives of the eigenvalues with respect to the parameters
can be estimated from the relationship (5):

H, ) S} (2.11)

3p. oo

when S is the matrix of the eigenvector coefficients, that is the
transformation relating the eigenstate involved in the_transition

to a linear combination of the basis states, and (BH(;) / Bpj) is
the derivative of the Hamiltonian matrix in the basis representation
with respect to the jth parameter which is straightforward to
calculate. Evaluation of the derivatives matrix D using Egs. (2.9)
to (2.11) is very much more efficient than a calculation based on
incrementation of both parameters and fields. Analysis of spectra
obtained at zero field is simpler since, in this case, there is no
need to calculate the tuning rates (avi/ aBi) since we observe
energy, ie. frequency, differences between molecular energy levels
directly.

For a well constrained problem, it was usually found that the
standard deviation of the fit o converged to within the estimated
accuracy of the field measurements, usually better than one gauss,
in two or three cycles. The final best fit parameters are then
used to make a best fit spectrum prediction.

Stight modifications are necessary to Eqs. (2.6) to (2.8) when
the data are known to be of unequal precision, these equations then
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take the form : (4)

N O LU VR I Bl LI TR (2.6b)

g = vty (2.7b)

8 =1 -0t (x-0h) (2.8b)
n-m

where M is a known diagonal weight matrix whose non-zero elements
T . 2 2
are ratios of variances 0. /on of the measurements errors.

Both programs considered in detail in Tater sections make use
of the weighted ~formulations (2.6b) - (2.8b) and hence data of
unequal precision may be fitted simultaneously. The matrix
inversions necessary in the solution of these equations are carried
out using N.A.G. library routines available as a standard package
on the computer systems used.

2 (I11) Efficient solution of the eigenvalue problem.

2 (I11) a Introduction

Advances in computer hardware have meant that efficiency
considerations in programming do not assume the over-riding
importance that they once held. However, in attempting to perform
sophisticated analyses of large amounts of high resolution data,
one can rapidly reach limitations imposed by computer time budgets;
therefore it is still very worthwhile to attack the problem as
efficiently as is reasonably possible.

In the last section, we touched on thissubject while discussing
the methods available for the calculation of the derivatives matrix
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necessary in the least squares treatment of the data and

calculation of the best fit molecular constants. This section

is devoted to a general outline of the methods employed for

setting up and obtaining solutions to the eigenvalue problem for the
Hamiltonian (2.1) on an electronic computer in the most efficient
way .

2 (III) b Rotational Basis Functions

The construction and diagonalisation of the Hamiltonian matrix
are processes repeated many times during a full analysis calculation
and are always the most time consuming parts of the calculation.
Sections (IV) and (V) of this chapter discuss specific approaches
to the problem; the discussion in this section is more general.
Before reviewing the computational aspects, it is necessary that
the model that we are to use is more precisely defined. An
asymmetric top rotational energy level is specified by the quantum
numbers N, Ka’ and KC and usually symbolised NKaKc (6). For each
value of N there are 2N+1 distinct rotational energy levels which
are uniquely identified in terms of the prolate top quantum number
Ka and the oblate top quantum number KC. The energy levels arranged
in increasing energy for a particular value of N are:

(K ,K ) = (0,N), (T,N), (1,N-1), (2,N-T), (2,N-2), (3,N-2), ...,

a’c

.o (N=1,2), (N-T, 1), (N,1), (N,0).

We note that each value of Ka (or KC) except zero occurs twice
in succession. Also Ka + KC = N or N+1.

For reasons discussed later in this subsection, it is advantageous
to work with functions which have a definite symmetry under the
space-fixed inversion operation, E*.  Such functions are said to
possess a parity which may be positive or negative depending on
whether they are unchanged or change sign under the £ operation,

The functions NKaKc are not in general eigenfunctions of £ and do
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not therefore possess a well defined parity; linear combinations
of them do however, and we define the +or- parity preserving

combinations as:

INKxs>= 10 Ks= (=) VKo ke (2.12a)

Iz

where |N K > respresents the symmetric top
wavefunction NKa‘ A detailed discussion of the parity properties
of the rotational levels of asymmetric top molecules has been given
by Oka (7) using molecular symmetry group (8) arguments, and we
will not debate the problems fully here. It is sufficient to
realise that for all molecules belonging to groups containing the
space-fixed inversion operation, the parity of a rotational Tevel
is well, and easily, defined. Planar asymmetric tops belong
to this class of molecule and it turns out that the parity of a
rotational level is given by the quantum number Kes odd KC =
- parity, even KC = + parity. Complications arise when the
molecule belongs to a group not containing the E* operation. In
some cases (groups containing permutation-inversion operations) the
parity of a Tevel is still well defined but must be discussed in
conjunction with spin symmetry, whereas for all other cases the
discussion of parity is irrelevant; the molecules possess stereo-

isomers.

Later in this chapter reference will be made to Wang combinations
of the Nka functions. The Wang combination is defined as:

INK (£) > = T{NK>s+ [N-K>}3, (2.12b)

[z

and we will see that Wang (+) and parity + descriptions coincide
when N + K is even, but are opposite when N + K is odd. The comments

made immediately below apply equally to the Wang combination.
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Asymmetric top wavefunctions are linear combinations of the
NKa functions and hence of the combinations (2.12a). The
advantage of using a basis set composed of parity preserving
combinations of the symmetric top functions is that the effective
Hamiltonian (2.1) has non-zero matrix elements only between states of
the same (+ or -) symmetry. Asymmetric top energy levels are thus
represented by linear combinations of the + or - combinations, but
the two sets are not mixed. For numerical calculations of the
eigenvalues of the effective Hamiltonian the important result of the
above discussion is that if we set up our asymmetric top Hamiltonian
in a Wang or parity basis, it will be approximately half the size of
that in a simple |N K> representation, and thus require considerably

less time to construct and diagonalise.

For asymmetric tops belonging to higher symmetry groups, that

is orthorhombic symmetry groups, it is possible to further reduce the
size of the Hamiltonian matrix representing a given rotational Tevel.
This arises because the irreducible representation to which a given

+ or - combination belongs depends upon whether the K is even or odd.
It means that, for this type of molecule, the size of the Hamiltonian
matrix can be made to be approximately one quarter the size that it
would be if we were to use a crude symmetric top |N K> basis repres-
entation and ignore symmetry division of the matrix.

For molecules belonging to lower than orthorhombic symmetry
groups it is not strictly possible to effect this second reduction
because levels of odd and even K in the combinations (2.12) transform
according to the same irreducible representation of the molecular
symmetry group and are hence connected by terms in the Hamiltonian.
However, in practice, it happens that the terms in the Hamiltonian
which connect these basis states have only very small effects on the
eigenvalues and these are only rarely experimentally observable.

The computer programs, described in the next two sections, make use
of the symmetry properties of the Wang or parity combinations of
the symmetric rotor basis functions to minimise the size of the
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matrices representing the Hamiltonian.  The inclusion of
the effects of matrix elements bhetween states of odd and even

K is optionatl.

For near-symmetric top molecules a further reduction in
diagonalisation time is possible, based not on symmetry but on
order of magnitude considerations. In this type of molecule,

K is very nearly a good guantum number and, assuming that one

has chosen the correct representation, the eigenvectors have one
principal component and only small contributions from other basis
states. We can thus truncate the Hamiltonian matrix by including
only basis states which make an experimentally observable ,
contribution to the eigenvalues. This approach is carried further
in oné of the programs developed, section (IV), where nerturbation
theory is used to reduce the size of the Hamiltonian matrix still
further. Fig. (1) shows, diagrammatically, the form of the matrix
for various Jow N rotational levels in a parity basis for a molecule
in a singlet electronic state in the absence of an external field.

2 (IIT) ¢ Treatment of spin functions.

The Hamiltonian matrix becomes larger and more complicated when
the molecule possesses unpaired electron spin, i.e. is a free
radical. The appropriate basis set is one in which the electron
spin angular momentum S is coupled to the rotational angular
momentum N to give a resultant J. The allowed values of J are N + S,
N+S-T1,.../N =S |. There are hence 25 + 1 fine structure states
associated with each rotational basis vector; they may be
represented by the [N K (£) S J> in the Wang representation, or
N K+S J> in the parity representation. In the absence of
external fields, the quantum number J is good, that is, the
Hamiltonian contains no terms which mix states of different J,
however there are terms present which mix states of different N,
which is therefore no Tonger a good quantum number. The matrix
in the Wang and parity respresentations for a molecule in a doublet
state in the absence of external fields s shown for various low J
values in Fig (2).
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Figure 1. Hamiltonian matrices in a parity preserving
basis for various low N values for a moiecule in a singlet
state. The rows and columns are labelled by the K values.
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Figure 2. Hamiltonian matrix for the 42+ levels of an
ortho-rhombic molecule in a doublet state in (a) parity and
(b) Wang representations in the absence of external fields.
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The quantum number J is no Tonger a good one when the
molecule is subjected to an external magnetic field. The
direction of the field defines the space-fixed z axis direction
and the projection of J on this axis is represented by MJ. There
are 2J + 1 values of MJ for a given J and MJ is the only good
quantum number 1in this case.  The Hamiltonian matrix is now of
infinite order and hence a complete solution to the eigenvalue
problem cannot be achieved. To obtain eigenvalues it is therefore
necessary to truncate the Hamiltonian matrix at a point where the
inclusion of extra basis states makes experimentally undetectable
changes to the required eigenvalue. Where and how this truncation
is effected in practice is discussed in sections (IV) and (V).
The Hamiltonian matrix for a molecule in a doublet state in an
external magnetic field is shown diagrammatically in Fig. 3.

When the molecule contains one or more nucleus possessing non-
zero spin each fine structure level is further divided into hyper-
fine levels associated, in zero field, with the allowed values of the
quantum number F, F = J + I where ] is the total nuclear spin
angular momentum of the state in question. Again, the Zeeman terms
in the Hamiltonian will connect states of different F when the
molecule is subjected to a magnetic field and the projection of F
along the field direction <MF) is then the only good quantum number,
ie. the Hamiltonian matrix should strictly be constructed using an
infinite basis set. Order of magnitude arguments are again used to
decide where the necessarily finite matrix diagonalised by the

computer 1is truncated.

In summary then, the exact calculation of a particular eigenvalue
of the Hamiltonian may require the use of an infinitely large basis
set, even when a symmetrised choice of basis functions is used.

In this case, the matrix is truncated at points where the inclusion
of more basis states makes a less than experimentally detectable
change to the eigenvalue in question. For molecules possessing
both unpaired electron and nuclear spins, the necessary basis may
still be large. It is therefore important that the individual
matrix elements are set up as efficiently as possible, so that
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Figure 3. Diagrammatic renresentation of the lower half

of the Hamiltonian matrix for a doublet state molecule 1in

an external magnetic field. In the absence of nuclear

spin hyperfine splittings, the quantum number MJ is good

and the matrix contains all states J ;}MJ}. Only one

value of the quantum number K is shown in the basis for
reasons of clarity, the matrix will contain contributions
from states with all possible K associated with each included
value of N (see Fig. 2).
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execution time is kept to a minimum. In cases where the molecule
possesses many different angular momenta, the calculation of

matrix elements is facilitated by the use of the spherical tensor
approach (9, 10, 11).  The various operator terms in the Hamiltonian
are expressed as components of spherical tensor operators and
standard results from angular momentum theory are used to express

the matrix in terms of 3, 6 and 9-j symbols. The spherical tensor
approach is particularly well suited to computer solution and both
programs make use of it.

In the next two sections we consider the approaches to

solutions of the eigenvalue problem as represented by the two
programs developed to perform complete spectrum analyses.

2 (1V) - Program I.

2 (IV) a. Introduction.

This section describes a program developed with a view to the
analysis of the spectra of near symmetric rotors in doublet states.
Although it is restricted to this type of molecule alone, it is
true to say that most known asymmetric top free radicals, e.g.

NO, (12, 13) HCO (14), HO2 (15, 16) fall into this category

and the program has turned out to be a very useful one. We refer

to it as program 1. By restricting the molecular type, we are

able to make various approximations and assumptions which dramatically
reduce the computer time required to perform eigenvalue calculations.
However the extremely fast execution time achieved by thié program

is at the expense of poor model accuracy in some cases, and a large
computer storage requirement.

2 (IV) b Eigenvalue calculations: Program 1.

The fast execution speed is achieved by the method used to
construct the Hamiltonian matrix; the structure of the program
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broadly follows that described in the previous sections. Use
is made of the Wang factorisation of the matrix and small
effects of matrix elements connecting states differing in K by
one may be included by explicit 20 perturbation theory expressions
which are added to the appropriate matrix elements, themselves
coded explicitly in an J-decoupled basis representation. The
matrix is truncated at elements with AK = 0, AN = 21 and

AJ = #1 and the inclusion of all elements with AMJ = AMI = 0,

+1, ¥2 ..., ie. AMF = 0 is optional. The basic 6 x 6 block is
shown in Fig (4). This block 1is repeated for every allowed pair
of MI’ MJ values and hence the size of the Hamiltonian matrix
depends on the value of the nuclear spin (the program assumes that
the molecule contains only one nucleus with non-zero spin).

The effects of matrix elements off-diagonal in K have been
included using perturbation theory. The treatment is complete
to second order and dominant terms up to fourth order have been
included. K-doubling effects in K = 3 Tevels arise in third order
and these have also been included. Fig. (5) shows how this process
is achijeved. There are small truncation errors associated with
the neglect of matrix elements with AN = 22 of the dipolar hyper-
fine and anisotropic Zeeman Hamiltonians, and other further off-
diagonal elements of the latter operator. Comparison with a
program which included these terms showed that these were almost
never the dominant contributions to the program error. These arise
due to the unreliability of the perturbation theory contributions
in the treatment of the effects of matrix elements off-diagonal in K.
It is these discrepancies which 1imit the program use to near-
symmetric top rotors, because for more asymmetric top rotors, such
as NHZ’ the perturbation theory treatment is inadequate.

The extensive use of perturbation theory in the construction of
the Hamiltonian matrix has several drawbacks, not the least being the
amount of programming time and effort involved in deriving,coding
and checking the complicated perturbation theory expressions. The
main Timitation is the inexact knowledge of the accuracy of the
calculation being performed. For example, a?though the approach
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N+1,K
J=N=+3/2
N+1, K
J=N+1/2
N, K
J=N+1/2
N, K
0 J=N-1/2
N-1, K
0] 0 J=N-1/2
N-1,K

Figure 4. Diagram of the basic 6 x 6 building block
for the treatment of the Hamiltonian matrix of program 1,
This block is repeated for each allowed value of MI’ MJ'
The quantum number Tabels are shown in the diagonal
elements.
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Figure 5. Treatment of matrix elements
in the quantum number K in program I.

off-diagonal
The program

sets up the matrix truncated at points A and the effects
of the shaded matrix elements are collapsed into this

central block using perturbation theory.
number Tabels for the diagonal elements
and fine structure states are not shown
clarity.

The quantum
only are shown
for reasons of
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used is adequate for the molecules NO2 and HCO, the program

did not reproduce more accurate calculations for HOZ’ although
this last molecule is no more asymmetric than the previous ones.
The reason for the inaccuracy lies in the Targe spin rotation
interaction in HDZ’ a factor which had been overlooked during
initial calculations; it causes breakdown of the third order
treatment used in the program.

Diagonalisation of the Hamiltonian matrix is performed by
a N.A.G. Tibrary routine FOZABF which returns the eigenvalues in
order of ascending magnitude. It is necessary, therefore, to
identify which of the eigenvalues is the one required. There are
two general approaches to the prob]ém. The first is to employ a
counting method and include in the input data a number which
identifies the state required by a simple countback from the end of
the eigenvalue array. The second makes use of the eigenvector
coefficient matrix which is computed by the library routine and used
in the Teast squares and intensity calculations. Program I uses
the latter approach which has the advantage that it is very general;
countback methods run into difficulties when the calculations are
being performed for very asymmetric top molecules (24) and the
eigenvector analysis approach is more physically satisfying; however
it is more difficult to program and slightly slower in terms of
machine time.

The program has been used to analyse the available magnetic
resonance and microwave data for NO2 in its ground electronic state
and the results are discussed in Chapter (4). It was also used to
perform preliminary analyses of the large body of magnetic resonance
data recently obtained (15) from the spectrum of the HO2 radical.
With large amounts of data available the high execution speed of
this program is at a premium and although the final analysis was
performed using program II (considered later) various different fits
were attempted prior to this using program I.
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2 (V) Program II.

2 (V) a Introduction.

During the analysis of the microwave spectrum of HO2 (16)
it became clear that the approximations in the calculation of the
eigenvalues made by program I were not reliable, due mainly to the
large spin-rotation interaction in this molecule. Rather than
continue to program the higher orders of perturbation theory
invoked to account for the discrepancies, it was decided to design
a program in which the accuracy of the eigenvalue calculations
performed was more easily defined and optionally variable, by choice
of size of bésis set, to suit the problem in hand. The program,
referred to here as program I, assumes only one nucleus in the
molecule, has non-zero spin, although this may be of any size, and
will perform calculations for molecules in states of any multiplicity.

2 (V) b Eigenvalue Calculations: Program II.

The size of the basis set used in a particular calculation is
chosen by the user. It is usual to choose the smallest required
to reproduce larger basis set calculations to within the experi-
mental accuracy, say 0.1 Mz for microwave data, slightly more for
less accurate magnetic resonance data. The Hamiltonian matrix is
set up in a fully-coupled, parity-conserving, basis set and
optionally contains states with both odd and even K or assumes
AK = 1 matrix elements make a negligible contribution to the energy
and only includes either odd or even K basis vectors as appropriate.
A calculation for a given rotational level can then be divided into
four distinct steps, i.e:

1. Setting up the basis set appropriate to the calculation
of the rotational level in question.

2. Setting up the Hamiltonian matrix in this basis.

3. Diagonalisation of the Hamiltonian matrix.
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4. Selection of the correct eigenvalue from the set of
eigenvalues of the Hamiltonian matrix.

We will consider each of these points in turn and discuss the
approach used in program II to solve the problems.

Firstly then, we must set up the basis set needed to calculate
the energy of a particular rotational level reliably. Initially '
we discuss the zero field problem where F is a good quantum number
and then outline the further complications when states of different
F are to be included in the basis set. Given a set of quantum
numbers N, K, parity (plus or minus one), and F, the program sets
up a basis set which contains adjacent rotational Tevels which are
connected to the Tevel in question by operator terms in the
Hamiltonian, and which will therefore contribute to the energy of
the Tevel of interest. The number of these adjacent levels included
is defined by the user as part of the program input as two parameters
which define respectively, which states of different N and which of
different K are to be included in the basis. For example, a
calculation of the energy of the rotational Tevel 95+ with Timits on
N mixing (idn) set at one, and units on K mixing (idk) at two would
include the Tevels 8,7, 8.%, 8,%, 9,7, 9.%, 9.7, 10", 10,7, 10,
assuming that mixing of states of even K by terms in the Hamiltonian
is not significant. This is a typical set of numbers and one would
expect an adequate calculation of the energy of the 95+ Tevel of a
near symmetric top molecule such as HCO or NO2 using this size of
rotational level basis set. For more asymmetric rotors such as
NHZ’ it is usually necessary to include more levels of different K
for a reliable calculation of the eigenvalue.

For these molecules, of course, we also have to tackle the problems
of non-zero unpaired electron spin and nuclear spin.  The way the
program treats these problems is shown diagrammatically by the flow
diagram, Fig (6),for the zero field case. When states of different
F are to be included, 1i.e. the Zeeman Hamiltonian is to be included
in the model, an extra loop over all possible F values for the given
MF is necessary. The quantum numbers of the Ny basis states to be
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Figure 6. Flow diagram describing the logic used to
load the required basis state quantum numbers in
program 1I.
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Input to routine
N) K’ parit‘y, F,
I} S, idﬂ, ‘idk.

i}
-

NO

NMIN = N - idn
NMAX = N + 1dn

yes
NMIN < 0

no

NMIN = 0 -

NA = NMIN

" yes
NA NMAX RETURN WITH FILLED
>
NA = NA + 1 ONUM ARRAY
| no

JMAX = NA + S
JMIN = NA - S

i




yes

JMIN = JMIN + 1

no
JA = JMIN
yes
no
— F-Jdhg I
JA = JA + 1
‘ yes
: KMIN = K ~-idk

]

KMIN > NA

KMIN = 1

no
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QN (NO, 1) = NA
QN (NO, 2) = KA
QN (NO, 3) = JA
QN (NO, 8) = F
KA = KA + 2
NO = NO + 1

NOTES.

For simplicity this describes the route followed

by the routine when it is required to set up a
basis set for a zero field calculation, i.e. where
F is a good quantum number.

The flow diagram assumes that only states having
quantum number K differing by even numbers are
connected by the Hamiltonian operator.
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used in the calculation are loaded into an n, * 4 matrix

and stored by the routine to be passed back to a second routine
which sets up the Hamiltonian matrix using this basis set.

The details of the quantum number storage are summarised by
diagram (7).

The o basis states are then used to construct the Hamiltonian
matrix and the matrix elements for all terms included in the model
are given in the literature (3, 18, 19, 20). The matrix elements
are coded directly in terms of 3, 6 and 9-j symbols which are
computed as required by separate routines. This procedure
minimises coding problems and eliminates the practice of coding
the long and complicated algebraic formulae used by program I, and
makes program checking a much easier task. Versions of the program
exist employing both the A- and S- reduced forms of the rotational
and spin-rotational Hamiltonians (see ref (18) and Chapter (3)).

In the analysis of magnetic resonance data the matrix elements of
the Zeeman Hamiltonian must be computed. This calculation is
performed by a separate routine and the zero field and Zeeman
matrices added immediately prior to diagonalisation. In this way
the matrices may be used again in a subsequent‘calcuiation for the
same rotational Tevel at a different magnetic field simply by
multiplying the Zeeman matrix by the appropriate field and repeating
the addition and diagonalisation. It is important to minimise

the number of times each matrix is set up in this way because
re-calculation of the large numbers of 3, 6 and 9-j symbols is very
time consuming. In the future it is possible that they will be
stored as calculated, so making the process more efficient still.

The Hamiltonian matrix is diagonalised using N.A.G. Tibrary
routine FOZABF which employs a Householder transformation to convert
the symmetric matrix to symmetric tridiagonal form and the QL
algorithm to perform the subsequent diagonalisation (21). The
eigenvalues are returned in order of increasing magnitude with
the eigenvectors, expressed as linear combinations of the basis
vectors in a coefficient matrix, in the same order. The choice of
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Figure 7.  Basis state quantum number storage. For

the zero field problem each basis state is labelled

by five quantum numbers, one of which is the parity

which is the same for all states in the basis set.

The quantum numbers are stored such that each row of

the array contains all necessary to identify a particular
basis state.
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the required eigenvalue presents some difficulty. Program I
uses a method based entirely on a detailed analysis of the
eigenvector coefficient matrix to pick out the eigenvector,

and therefore eigenvalue, required. It was felt that the
adoptation of this method for program II would require an
unjustified amount of programming effort and, for the very much
larger matrices involved, prove inordinately inefficient. We
have therefore opted for a counting method when a state is
labelled by its quantum numbers, N, K, F, or N, K, MF in the case
of Zeeman calculations, and an index number which counts down
from the highest energy level of this N and K. A unique level
classification is thus provided by five numbers; N, K, parity,
F (or MF) and i; vreverting to our original example 95+, F=29,
i = 2 would specify the second highest level of F = 9 in the
95+rotationa? level. The eigenvector coefficient matrix is used
to pick out the rotational Tevel, N always, and K almost always
being reliable for this purpose.

The extra flexibility and markedly higher sophistication of
program Il is achieved at the expense of rather slower execution
time when compared to program I.  The gains lie in the precise
knowledge of the accuracy of the calculation being performed and
the ease with which the model, in the form of the basis set, can
be varied. The coding of the program is simpler, there being no
unwieldy algebraic perturbation theory expressions, implying that
it is easier to check and occupies less storage area in the computer,
a factor which had become a problem with program I. Program II has
been used in the analysis of both MODR and magnetic resonance data
pertaining to NHZ’ a highly asymmetric top molecule; the spectra
were not amenable to analysis using program I due to the inadequacy
of the perturbation theory treatment. Spectra of the small free
radicals HCO, H02 and DO2 have also been successfully analysed and
some of the results are presented in the next section, whereas others
are given in later chapters.
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2 (VI) Application to the analysis of the microwave and magnetic
resonance spectra of the HO2 radical.

Considerable interest has been shown in the study of the H02
radical during the past five years. Prior to this, although
widely invoked as a reaction intermediate, there had been no definite
spectroscopic identificiation. However, observation of infra-red
and ultra-violet spectra by Paukert and Johnston (22) and large
numbers of Tines in the L.M.R. spectrum at far infra-red wave-
lengths (15) provided good estimates for the main constants and
subsequently microwave spectra resulting from both a- and b- type
transitions were recorded by Saito (17) and Beers and Howard (23).
E.P.R. transitions at around 9GHz have also been recorded (16).
The Tlarge number of spectroscopic results supports the suggestion
that HO2 is an important species in chemical reactions. ‘The
programs have been used to fit all the available high resolution
data and determine an improved set of parameters for the molecule
in its ground vibronic state. In the process, some minor incon-
sistences in the analysis of the microwave spectrum were removed
and the quality of the fit of the L.M.R. data considerably improved
(previously the Tatter were fitted to a very simple model).

The data were fitted to a model containing the symmetric (S-)
reduced rotational Hamiltonian, however it was not sufficient to
determine all the higher order constants and some were constrained
to zero. In the process, it was confirmed that the S-reduced
centrifugal distortion Hamiltonian gives a similar fit to that of the
A-reduced form for the same number of parameters, but the parameters
are less strongly correlated (18), (24). In order to obtain a
satisfactory fit to the magnetic resonance data, it was found necessary
to include the rotational Zeeman effect in the analysis and the values
for the rotational g-factors were obtained.

The precision of the microwave data was estimated to be around
0.1 MHz, whereas that of the magnetic resonance data only approximately
5 MHz (assuming that, on average, a magnetic resonance line tunes at
approximately one MHz/G). Due to this large disparity in precision,
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it proved convenient to fit the two data sets separately since

a larger basis set is needed to calculate the microwave freguencies
to within the experimental accuracy. It was also necessary to
include both odd and even Ka states in the calculation since these
are significantly mixed by off-diagonal components of the spin-
rotation tensor. None of the levels involved in the magnetic
resonance data was significantly affected by this spin-rotation
perturbation.

Analysis of the microwave data yielded values for the
rotational constants, the guartic distortion constants Dy s DNK
and dT’ the quadratic spin-rotation constants, the Fermi- contact
parameter, and the diagonal components of the (I-S) dipolar
hyperfine tensor. Subsequently, these parameters were constrained
to their determined values in a fit of the magnetic resonance data
which was used to determine the remaining quartic centrifugal
distortion constants and some sextic ones, together with two quartic
spin rotation parameters (the spin-rotation treatment used is
discussed in detail in chapters (3) and (4)) and parameters
describing the Zeeman interaction.  The procedure of fitting first
the zero field data and then the magnetic resonance data was repeated
to ensure that convergence to the final set of parameters had been
achieved,

The fit of the microwave data (17) is given in Table (I) and
the constants obtained from the fit of this data in combination with
the magnetic resonance data given in Table (II). The magnetic
resonance data set included nine E.P.R. and one hundred and forty-one
L.M.R. transitions, the Tatter chosen to be a representative sample
of the very large data set Tisted by Hougan et al (15); approximately
two lines of each polarisation were taken for each observed rotational
transition.  The Zeeman parameters determined are given in Table(III)
and are found to agree well with the values predicted from theory,
(16, 25).
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Table I ({contd.)

' Data taken from ref. (17)

2
Frequency calculated using the parameters given in Table II.
Standard deviation of fit estimated as 0.17 MHz
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TABLE III.

ZEEMAN PARAMETTRS TOR HO, 1N THE XA STATE

s g .

Parameter Present Worlk Solid State (26) Theory
aa ora 1 o 4 2
g, 2.04204(19) 2.0353(5) 2.04293
bb .
g, 2.00790(24) 2.0086(5) 2.00863
9. 2.00152(24) 2.0042(5) 2.00219
103 graa ~9,857 (41) ~ ~10.98
104 g, "+ g% -1.85(41) - ~0.94

1
The numbers in parentheses represent one standard deviation of the

least~squares fit, in units of the last quoted decimal place,

2
Calculated from Curl's relationship (25), using gg = 2.,00232,

3
FElectronic contribution only to the rotational g~factors (see text).
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CHAPTER 3.

THE EFFECTIVE SPIN-ROTATION HAMILTONIAN FOR AN ASYMMETRIC TOP MOLECULE.

3 (1) Introduction

The effective spin- rotation interaction is the coupling between
the spin dipole moment and the magnetic field created by the charged
particles (electrons and nuclei) in the molecule as they rotate.
Information on this interaction is now available for several asymmetric
top molecules in doublet states, derived from spectroscopic studies
at a variety of wavelengths. Prime examples are NO2 (1) (2),

NHZ (3) (4) (5), PH2 (6), HCO (7), HNF (8) and HO2 (9) (10). The
principal components of the spin-rotation tensor e, have been
determined for all these molecules; in addition, the splittings have
been measured in a sufficient number of rotational levels that
centrifugal distortion effects must be taken into account.

Van Vieck (11) has derived the form of the effective spin-
rotation Hamiltonian from a consideration of the mixing of electronic
states by the combined effects of spin-orbit coupling and the Coriolis
term in the rotational Hamiltonian, viz.

(2) _
Ho < /he = 3 4 eaNySp + SNy (3.1)

where o and B8 run separately over the mo?ecu1émfixed co-ordinates,
X, ¥y and z. He has also shown that the secord order (electronic)

contribution to £, usually predominates over the first order

(nuclear) contribuiion. A similar conclusion was reached by Curl
(12).  Centrifugal distortion corrections to the spin rotaticn
interaction were first discussed by Dixon and Duxbury (13) for
symmetric top molecules. This work has recently been extended to
asymmetric rotors by Cook, Hills and Curl (14), and by Brown and
Sears (15) who cast the quartic spin rotation Hamiltonian in the

form:

(4) Y
Ho Y /he = zgiYénaBY6<NaNBNYSS + SN NN ). (3.2)
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To date, workers have contented themselves by adding two
or three of the more important terms from (3.2) to the effective
Hamiltonian used to fit their experimental data. In this chapter
we derive the correct form for the reduced Hamiltonian to be used
for this purpose, that is a Hamiltonian which contains only
determinable combinations of parameters. The result is obtained
by following the procedure formulated by Watson (16) in his classic
paper on the centrifugal distortion. of the rotational energy of a
molecule. The Hamiltonian is subjected to a series of unitary
transformations which eliminate the indeterminacies.  These
transformations, and their general implications are described in
section III. The quadratic spin rotation terms are considered in
section IV, where it is shown that there are indeterminacies which
have not previously been detected for molecules belonging to non-
orthorhombic groups. Section V deals with the specific reduction
of the quartic spin-rotation Hamiltonian for an orthorhombic
molecule. The results are applied to the well documented examples
of HOZ’ NH2 and NO2 in the next chapter. We begin this chapter
with a discussion of the origin of the quartic spin rotation terms
and show how the naBys parameters are related to other molecular
properties.

3 (II)Derivation of the Effective Quartic Spin-Rotation Hamiltonian.

The derivation of the effective Hamiltonian (2.1) can be
considered in two stages. First the removal of the effects of
matrix elements which connect different electronic states, and
secondly the corresponding process for the matrix elements off-
diagonal in the vibrational state within the electronic state in
question.  The effects of such off-diagonal matrix elements are
usually removed by some form of perturbation theory, taken to such
an order that the resultant eigenvalues are more accurate than the
experimental data. In the case of the construction of the effective
vibration-rotation Hamiltonian (the first stage), it is usually
sufficient to go to second order in perturbation theory. At this
point in the calculation both the rotational and spin-rotational
Hamiltonians are defined, although they are still functions of the
nuclear (ie. vibrational) co-ordinates. The spin-rotation tensor
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e, for example, has components which are identified as the
coefficients of terms bilinear in rotational and electron spin
angular momenta, N and S respectively (11).

The reduction of the vibration-rotation Hamiltonian to an
effective Hamiltonian as given in (2.1) is the second stage in
this process. It is most common to use a harmonic oscillator
basis set to perform the perturbation calculation (17), since the
contact transformation is then easy to formulate; it may however
be most efficient in particular cases to use an anharmonic
vibrational basis set (18). The centrifugal distortion terms
Hcd, and the centrifugal distortion corrections to the spin-
rotation interaction, Hsrcd, appear at this stage of the calculation.
The guartic centrifugal distortion terms can be derived by a simple
second order perturbation treatment (19). UWe now derive the
corresponding corrections to the spin-rotation interaction by the
same method. These corrections arise from the dependence of the
inertial tensor and spin-rotation tensor on the vibrational co-
ordinates Qr:

2 2 g2 . (aB)
frot/he =T % Mo = N7 Mo Mg § a Pl + 0 (00 (3.3)
2heé—1,%, 2heds 1 © 1
o g G @B BT

of
+ 3 Z (NS, + SN Z o, + 0 (0,0,) (3.4)
o8 ’
where
ar<u8) = AlLe/R0,
br<us) = 3e,/34,
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and oand g run over the molecule-fixed co-ordinates, Xx,y, and z.

The first expansion is standard in vibration-rotation theory (20);
the spin-rotation Hamiltonian has been expanded in a corresponding
fashion. The term linear in Qr in Hrot gives rise to the gquartic

centrifugal distortion terms in second order of perturbation

theory:
H_/he =4 NN N Ng (aB)  (v8)
cd o e .e . e e 4y 4
4hc aB v§6 I I I
Y vy 8 6 (3.5)
ZM = 122 aBys on\B YN6 s
aB y§
wheref 086 are the parameters introduced by Wilson and Howard (21),

multiplied by ‘ﬁ4

using a simple harmonic oscillator basis set, then

If the perturbation calculation is performed

(ag) . (v6)
T = A0 1 a4 qp , (3.6)
B3 e e e e 2 9 2
he " Iua IBB IYY 166 8n? ¢ W,
where w_ is a harmonic vibrational freguency in cm”T. The centrifugal

r
distortion corrections to the spin-rotation interaction arise in a

similar fashion from the cross terms between Hrot and Hsr to give:

e =1 2
o Pl L s [NQNB(NysS +SN)

+ <Nys(S + sémy) NN 1, (3.7)
where
(aB)  (v6)
n _ ﬁ3 % br
aBys = — e g
4ehc? T 1.5 w? (3.8)

oo BB r

The components of both Iz and n tensors can be expressed more

ap

compactly in terms of the coupling parameters Cr

Watson (22).Explicitly

introduced by
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.. (aB) o (v8)
TdBYé = =7 }:: Cr | CY W,

and

i
L]
-
PN
Q
™
Y
Qo
=<
o
\

naByﬁ

in wavenumber units, when q, is the dimensionless normal co-ordinate.

Equation (3.8) is an expression for the n parameters. It can
be seen by comparison with (3.6) that there is not a rigourous
relationship between Tagys and7&BY6 since ar(ag) and br(aB) are
independent quantities. However, an approximate relationship of the
sort derived by Dixon and Duxbury (13)can be established by further
investigation of the coefficient bgTEB). Using second order

perturbation theory, Van Vieck (11) has shown that:

€0 = ik E <oi¢&ﬂn><nﬁ€@ L Jo >, (3.9)

2hc Y oYY

n#o (E - E

when ¢ 1s a spin-orbit coupling parameter and Hop = (I"I)dB is a
component of the inverse inertial tensor (20). The molecule-~fixed
axis system is Tocated so that it corresponds to the principal axes
of the equilibrium inertial tensor:

.1
UaB - <Iaeu IBGB) [Iaeﬁ 5aBM ar(uB) Qr +0 (QFQS)] (3.10)

The integration in the matrix elements in (3.9) is performed over
electronic co-ordinates and 0 an n are the labels for the different
electronic states. To determine br<u8) we need to know the vibrational
dependence of all factors on the right hand side of (3.9). Since T
is a function of nuclear co-ordinates only, it can be taken as a

factor outside the integral over electronic co-ordinates and the
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derivative with respect to a vibrational co-ordinate involves

_r.
aQr I e e r
ooy Yy

3 <n[uayLylG> = -a (o¥) <n}LY)o> + u“Ygg“ <nityio>. (3.11)

The orbital angular momentum operator LY is independent of vibrational
co-ordinates but the electronic wavefunctions in general are not.

In consequence, <n}Ly}o> is a function of Q., as are <o]CLBIn> and
(EO-En). If we make the approximation of a crude adiabatic basis
set (that is, the electronic wavefunctions refer to fixed nuclei at
some reference configuration, usually the equilibrium configuration)
then

br(as) - ﬁzzar(av)

<0|zLB|n><n|Ly]o>

2hc e , e '
r Iu aIy v n#o (ED—EH)
_ e (ay) e
= :g::sys a, / Ia o (3.12)
N

On substitution of this result in equation (3.8), we obtain

"§ T £
= § 7§
Tagys ™ oBys 58 (3.13)

§
: ZB§

where B§ is the rotational constant associated with the principal
inertial axis §. Strictly speaking, the quantities in (3.13) should
be the equilibrium values of the parameters. However, in view of

the approximations made in obtaining the expression for br(a5> in
(3.12), the result is probably no less reliable if the values for a
particular vibrational level are used. Some applications of

equation (3.13) are considered in Chapter 4.
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3 (III) General Considerations

3 (II1) a The standard form for the upin-rotation Hamiltonian

In the last section, the origin of terms in the effective
Hamiltonian which describe centrifugal distortion corrections to
the spin-rotation interaction was discussed. The form of the
Hamiltonian considered up to now (3.2) is not well suited to the
calculation of matrix elements and therefore fitting to
experimental data. The remainder of this chapter is devoted to
the transformation of the quartic spin-rotation Hamiltonian (3.2)
to yield an operator form which is suitable for the empirical
fitting of experimental data.

We start with the effective Hamiltonian as derived in Ref.
(11) and the last section.  This Hamiltonian is an operator
function of the components of the rotational and spin angular
momenta, N and S, and acts only within a single vibrational level
of a given electronic state. The general form of the Hamiltonian
contains products of N@ and S8 with the individual factors in
arbitrary order. By use of the commutation relations for molecule
fixed components (11) :

?‘;\ =

LI NB] fe g N (3.74a)
N, SB] = ie g sY (3.14b)
[5u3 Se] = ieagy S, (3.14¢)

it is always possible to express the general term in the form :

3 (NP Nyq Nzr S, + SN, Nyq pr)

with o = x, y or z, at the expense of introducing terms of Tower
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degree. The latter can then be re-arranged into the same form

and the process repeated to yield a sum of terms of this type.

In this way, the general spin-rotation Hamiltonian can be expressed
in the standard form :

- (a) Py 4 r roya p
Hsr/hc : EE; ji: kpqr (Nx Ny Nz Su * Sa Nz Ny Nx )
p,g,r o

(3.15)

The coefficients kpéi) which can be related to the components ¢

in equations (3.1) and (3.2) are in general complex.

aB
and naByS
For application to physical systems, the Hamiltonian must be
hermitian and invariant under the operation of time reversal,

that is :

(3.16)

The coefficients kpég) are transformed with their complex
conjugates by either operation while the angular momentum components
change sign under time reversal (T) but are invariant under the
operation of hermitian conjugation (+). The combined effect of
these operations requires that the coefficients kpéi) be real and
that the sum of the indices n, = p+g+r, be odd. The standard

form of the spin-rotation is therefore given by the restricted sum :

7
_ (o) Py Gyl r Gy P
Hg o/he = %ZZ:ZEjkpqr (N, Ny N,© S, + S, N, Ny N (3.17)
n o

with n odd and real coefficients kpéi). Terms with n = 1 are
identified with the quadratic spin rotation Hamiltonian, H< )

sr
whereas those with n = 3 represent the quartic spin-rotation terms,

that is the centrifugal distortion of the spin-rotation interaction
(&)
Hsr .
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The total number of terms of degree n (odd) in the
standard form of Hep i; %éx (n+1)(n+2) so that there are nine
terms 1in general in Hsr) and thirty in Héi). However, if the
molecule possesses symmetry elements otner than the identity
operation, there are fewer terms in the Hamiltonian because of
the requirement that Hsr transforms according to the totally
symmetric representation of the molecular symmetry group. Terms
in Hsr of total degree (n+1) in angular momentum components
transform under the molecular symmetry operations as the(nH)th
direct product of the representations of the individual operators;
the representations formed by the components of a molecule fixed
rotation are listed in the character tables. Asymmetric top
symmetry groups are sub-groups of DZh and the numbers of terms in
the quadratic and quartic Hamiltonians for this and all other
orthorhombic groups are given in Table 1, together with the
corresponding number of terms expected for molecules of the groups

CS and C} (no symmetry elements other than the identity). It can
be seen that there are three terms in Hgi) and nine in Héi) for

an orthorhombic molecule; when the molecule has only a plane of
symmetry, the numbers are five and sixteen respectively.

Although symmetry arquments allow a certain number of
independent terms in the Hamiltonian, it is still possible that the
eigenvalues depend on particular combinations of these parameters only.
In this case, an attempt to fit the Hamiltonian toobserved molecular
spectra and thereby determine its parameters will not succeed.

It is therefore necessary to identify all possible indeterminacies

and to remove them by reducing the number of parameters.  The reduced
Hamiltonian has the same eigenvalues as the original operator, but
different parameters which are linear combinations of the previous
ones and fewer in number.  The simplest example of this effect

is in the rigid rotor problem (23), where the molecule-fixed axes

can always be re-oriented to bring the inertial tensor into diagonal
form. The rotational eigenvalues thus depend on no more than three
independent principal moments of inertia and these in turn are the
most ~ that can be determined from the rotational energy levels.
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TABLE 1

THE NUMBERS OF TERMS IN THE STANDARD AND REDUCED FORMS OF THE

SPIN-ROTATION HAMILTONIAN

Number of terms C CS Orthorhombic

(a2) Quadratic spin~rotation

g 2 9 5 3
ST
Fo 3 1 0
@ 6 4 3
ST

(b) Quartic spin-rotation

g 4 30 16 9
s

F, 18 8 3
no@ 12 8 6
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3 (IIT) b Unitary Transformations

The standard form Hamiltonian, Eq (3.17) is to be subjected
to a series of unitary transformations to yield the reduced
Hamiltonian é which contains determinable parameters only. The
transformed Hamiltonian is given by

A = utHuU (3.18)

where U is some unitary operator (UT = U"l) Following Watson
(16), we choose the convenient exponent form for the unitary

operator :

U = exp (iF) (3.19)

where the unitary condition requires F to be hermitian. If the
transformed Hamiltonian is to be both invariant under time reversal
and hermitian, then so must U be also. This in turn implies that
F change sign under time reversal. Using the arguments given in
the previous section, it can be shown that, when F is expressed in
a standard form similar to (3.15) it has real coefficients and
contains terms of even p + q + r only.

The unitary transformations are assumed to be applied
successively to the Hamiltonian, which is equivalent to expressing
U as a product and considering each factor separately :

U = exp (iFO) exp (ﬁFZ) exp (iFd) (3.20)
where Fn contains terms with n =p + g + r only:
_ ' (0) POy T ry Ay P
Fo= 3 Z z Fotd (NP NI s e s TN IS (3.2)
pHg+r=n  «

and fégi is real. From (3.20) it can be seen that :
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vt =

H

. exp (—in) exp (min) exp (—iFO) (3.22)

so that the transformations of increasing n can be applied in order

H = (...exp(—iF4) exp(in)exp(~fFO)H exp(iFo)exp(in)exp(iF4)*.)
(3.23)

The various stages in the transformation can thus be identified :

Hy = expéﬁ?o) H exp (iFO) (3.24a)
Hy = exp(-in) H exp (1F2) (3.24b)
H o= H (3.24¢)

One of the advantages of using the exponential form for the unitary
transformation is that the process can be readily expanded in terms
of commutators, for example:

Hy=H+ 1 [H, F T -8 [[HF I, F T + ... (3.25)

so that the relations (3.14) can be invoked to given the transformation
explicit form.

The transformation defined by equations (3.20) and (3.21)
involves the components of spin angular momentum, and in this respect,
it corresponds to a change in spin basis set. Because there is a
mathematical connection between a matrix u of the special unitary
group in two dimensions and a real orthogonal matrix of the rotation
group (specifically, SU(2) is homomorphic with SO(3) = R3), there is
always a certain rotation R which can be associated with this change
of basis set. Abragam and Bleaney (23) refer to the rotation as
ficticious to distinguish it from a real rotation of the co-ordinate

system. As a result, the parameter»ea behaves 1ike the component

B
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of a double vector; the first subscript transforms under the
operations of S0(3) whereas the second transforms under the
operations of SU(2). The consequence for the present work is
that a unitary transformation involving Sa is independent of
the corresponding transformation involving Nu and must be
considered separately in the removal of indeterminacies in the
spin-rotation Hamiltonian.

3 (III) ¢ The reduced spin-rotation Hamiltonian.

We are concerned with the spin-rotational reduction of the
motecular Hamiltonian to give an operator which contains determinable
combinations of parameters only. Watson (16), (22) has discussed
the analogous problem of the application of a rotational contact
transformation to the rotational Hamiltonian by a succession of
unitary transformations of the form (3.20) of odd degree in N&.

There are extra complications in the present case in that the spin-
rotational reduction of the rotational Hamiltonian and the

rotational reduction of the spin-rotational Hamiltonian must also

be considered. The commutation relationships (3.14b) and (3.%14c)
show that it is not possible to eliminate a dependence on Sa by

these transformations and hence terms are generated in the spin-
rotation Hamiltonian. The simplest solution to this problem is to
consider that the rotational contact transformation be applied first.
This defines both the rotational and quartic and higher degree
centrifugal distortion constants in the Hamiltonian. It also
determines the co-ordinate system in which the standard form of the
spin-rotation Hamiltonian Eg. (3.15) is expressed. In this discussion
then, we only need consider the spin-rotational contact transformation,
although it must be applied to both the rotational <Hrot) and spin-

rotational (H Hamiltonians.  The details of both the rotational

)
and spinwrotaigonaE reductions must therefore be specified when
quoting the results of a complete determination of parameters from
experimental data. There is one more comment to be made before
the implications of the spin-rotational reduction are considered.
We are Tooking for terms in the Hamiltonian which are linear in Sa.

However the transformations themselves generate terms of higher
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degree in Sa, for example, terms of the form NZSZ, NS3 or Sg.

For a molecule in a doublet state, these terms do not alter the

form of the transformed Hamiltonian although the process of

absorbing them does cause the values of the existing parameters

to be altered. For molecules in triplet and higher multiplicity
states, the extra terms contribute to the higher degree spin

terms such as the spin-spin dipolar interactions.  Such complications
are not considered in this discussion which is restricted to doublet
states.

It will become obvious in the next section that the first
unitary transformation, Eqg. (3.24a) is associated with the
determination of parameters in the quadratic spin-rotation
Hamiltonian, the second transformation in Eq. (3.24b) with the
determinations of the quartic coefficients and so on.  The number
of determinable parameters in Hsr of given degree, therefore, is
equal to the number of independent parameters in the standard form
of the Hamiltonian Eg. (3.17), minus the number of non-zero parameters
in the appropriate unitary transformation.  The results of such an
analysis for the guadratic and quartic Hamiltonians are given in
Table 1. For orthorhombic molecules, there are three independent
parameters in both the standard and reduced forms of Héi) . This
is the expected result since there have been many successful
determinations of the diagonal components of the spin-rotation
tensor for this type of molecule. However for non-orthorhombic
molecules with a plane of symmetry, the unitary transformation can
be used to eliminate one of the five parameters in the standard
form Hamiltonian, lTeaving four determinable parameters. In the
general case (no symmetry elements) there are expected to be six
determinable quadratic spin-rotation parameters. Table 1 also
shows the numbers of determinable parameters in the guartic spin-
rotation Hamiltonian are considerably fewer than suggested by the
standard form Hamiltonians. There is a difference between the
spin-rotation reduction discussed here and the analogous rotational
reduction (16) which deserves emphasis. The number of determinable
parameters in the spin-rotational Hamiltonian depends on the symmetry
of the molecuie concerned, whereas the rotational contact trans-
formation leaves three determinable quadratic parameters, five
quartic centrifugal distortion parameters and so on, irrespective of
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the symmetry of the molecule. The details of the unifary trans-
formations for the quadratic and quartic spin-rotation Hamiltonians
are discussed in sections IV and V respectively.

3 (IV) The Quadratic Reduced Spin-Rotation Hamiltonian.

This section is devoted to the first unitary transformation,
given in Eq. (3.24a) which defines the reduced form of the
quadratic spin-rotation Hamiltonian. Three cases are discussed
(i) a molecule belonging to an orthorhombic point group (i)

a molecule with a plane of symmetry (CS) and (ii11) a molecule with
no symmetry elements (CE)' The first case is trivial since there
are no independent parameters in the unitary transformation FO

and the standard and reduced forms of Héi) are identical; as
shown in Table 1, both contain three parameters, usually taken

as e, e and e (24) or equivalently A®, B® and C° (25).

The second case, that of a molecule with a plane of symmetry,
is a common one and includes, for example, the non-symmetrical
triatomic molecule.  Table 1 indicates that the only one of the
three possible terms in F05 Eq (3.21) is allowed by symmetry,

namely:

Foo=f g (3.26)

where x is assumed to be the out-of-plane axis of the molecule.
The quadratic spin rotation Hamiltonian is defined by H2 in
Eq. (3.24a) and we need only consider :

_ u(2) (2)
H = Hrot + ng

where

Hggfc/hc R ¢

NN

(3.27)
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and
(2) . (x) (¥) » (z)
Hoy' /7 he = kqag NoSe + kgyg NySy + Koot NpS, 7
s kb2 s esny + k) s sy Y (3.28)
2 °h010 Vytz zy 001 z7y y z )

We have used X, Y and Z astheprincipal rotational constants. The
reduction of the Hamiltonian therefore involves the effect of the
transformation exp (iFO) on the angular momentum components, Na

and Sa . Although the general transformation, Eq. (3.21) is
equivalent to replacing these operators by an infinite power series
in Na and Sa the first transformation is exceptional in that it
causes Sa to be replaced simply by a Tinear combination of SX

Sy and SZ (16) (26):

1t
W

exp (miesx) SX exp (1GSX)

1

exp (-1 eSX) Sy exp (1eSX) cos eSy + 51in eSz

i

exp (- 9SX) S, exp (ieSX) ~sin eSy + Cos6S, (3.29)

where o is a dimensionless parameter, equal to foéé) in the present

application.  The corresponding transformations of Na are given by:

it
=

exp {—ieSX) NX exp (1eSX)

exp (-165,) N exp (16S) = N, + (1-cose) S + sineS,

Y y

exp (NTGSX) NZ exp (?83X) = NZ + sinesy + (1-cose) SZ

(3.30)

By use of these relationships, it is straightforward to obtain the
transformed Hamiltonian HZ' When the resultant terms are collected
together and cast in the standard form, it only remains to choose
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the parameter fééé to eliminate one of the parameters. The

most convenient choice would appear to be the elimination of the
antisymmetric part of the spin-rotation tensor, ¢ . The spin-

rotation Hamiltonian in Eq. (3.28) is therefore rewritten:

(2) o tx) (¥) (z)
Hsr / he = kg NxSx * kOWONySy * Koo NzSz
v r (k2 kW NS SN+ NS+ S N)
010 001 vz zZy 7y y z
s olz) oY)y B} -
5 (kgTg = kgop) (NS, + SN = NS = SN ) (3.3)

After the transformation, the last term in (3.31) is eliminated if

tan ({(x)

000) ~ (k<zg ) kég%)/ v+ - &

When expressed in terms of the components of the e tensor, this condition
becomes:

tan (f<x>) = (e

000 - ezy} Jle(Yy+1) - <€yy + ezz)] (3.33)

NEA

The parameters in the reduced Hamiltonian ﬁgi) in the form corres-

ponding to Eg. (3.31) are
fxx T Fxx

€. COS (f(x)) ~ & _ sin (f(x>) + 2Y [ 1-cos (f<x>)7

M2
!

vy o yy 000 vz 000 000’ -
~ - . (%) (z), o {(x)+
€y ©2y sin (foocl + €, COS (fooo) + 2711 cos(fooo)}

§ . (x)

€z + Sy (ayz + €zy> cos (fogo) +

. . - 737 o4 (x)
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-~ e_) cos (f<x>

syz i EZY ) <EyZ zy 000> *
[y *epz = 2 (Y +2) sin (7097 = o

(3.34)

Reference to Eq. (3.33) shows that féég is expected to be small

in magnitude, in which case Egs. (3.34) can be simplified by
replacing sin (féég) by féég and cos (fégg) by unity. This
approximation is equivalent to considering only the first commutator
term in the expansion of Eq. (3.5) and it is found to be reliable

in the application of the results in this section to HO2 (Chapter 4).
The transformation also generates tevrms of degree 2 in Sa but for a
doublet state, these simply make a constant contribution to the
energy levels. The rotational constants X, Y and Z are not

affected by the transformation.

The third case to be considered in this section is that of
a molecule with no elements of symmetry. No data pertaining to
this type of molecule has been found in the literature, but Table 1
shows that six determinable spin-rotation parameters are expected
since there are three independent parameters in the transformation
<féé%9 foég}gfé%g ) . The Togical choice would appear to eliminate
all three antisymmetric terms from the spin-rotation tensor in this
case, so that the non-zero parameters are those in Eq. (3.34) plus
(Exy + yx> XZ}Q The detailed form of the transformation
can be derived by expanding the relations (3.34) in the appropriate

e and (&_  +¢
d ZX

manner.

3 (V) The Reduced Quartic Spin-Rotation Hamiltonian for an

Orthorhombic Molecule.

3 (V) a The quartic spin-rotation Hamiltonian in standard form.

It can be seen from Table 1 that there are nine independent
terms in the standard form spin-rotation Hamiltonian for a molecule
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of orthorhombic symmetry. We start by relating the parameters

kpé?) in the Hamiltonian in Eq. (3.17) for this case to the

parameters n in the effective spin-rotation Hamiltonian

aBys
Hsrcd introduced in by Brown and Sears (15) and discussed in
section IT of this chapter (Eq.(3.7)). There are 21 non-zero

parameters n for an orthorhombic molecule, three of the

aBvyé
for@ L. and six of each of the forms Naape® Tagas and o8B
with o« % 8 . However the last two sets are identical because
of the equality
= (3.35)

naByS B nBayS

so that there are fifteen independent parameters in Eq. (3.7). The
angular momentum commutation relationships are then used to cast the
Hamiltonian into standard form and in the process n

aaBB’ naBaB

and become coefficients of the same terms. Following

n
BoaB
Kivelson and Wilson (27) it is convenient to define the additional

parameters

Togg - NauBB ZnaBaB (3.36)
and the non-zero coefficients are:

(x) (v) . (z) _

K300 = Mwxxx K030 T Tyyyy K003 T Nzzzz

(x) (x) _ (y) _

K920 T Myyxx K102 “Tyzxx K210 T Mxxyy

<y> - + (Z) o 3 (Z) o i

K012 © Nzzyy K201 Mxzz K021 T Tyyzz

(3.37)
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3 (V) b The transformation Hy = e 12y o172

The parameters in the quartic spin-rotation Hamiltonian are
determined by the transformation involing FZ’ that is :

A= exp (-iF,) UL+ wB Wy e (iR, (3.38)

For a molecule of orthorhombic symmetry, there are three
independent terms in the function Fy and the number of independent
terms in the quartic spin-rotation Hamiltonian can therefore be
reduced to six by a suitable choice of the transformation parameters.
The form of FZ is readily derived from the character table of any
orthorhombic group:
?1) (N NZSX+SXNZNy)+f%% (NNS. + S NN

y x'z%y Ty zox

(NNS, + SN

) N
o (NS, N.)J (3.39)

Y

The transformation in (3.28) is evaluated by rewriting it in terms
of commutators :

T S IR (LSOO B () SO (3.40)

The higher commutators in the expansion on the right hand side of
Eq. (3.38) give rise to terms of higher degree in the transformed
Hamiltonian which do not belong to the quartic spin-rotation
Hamiltonian; this is the reason for the approximate equality in
Eg. (3.38). The commutators in Eg. (3.40) are evaluated by some
tengthy algebra and the result is cast into standard form by use
of the commutation relations Eq. (3.14).
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(4) - (x) /3 3 (y) /3 3
Hee! /he = 3ikggy’ (NS, + S, NY) + kg0 (NySy + sy Ny)

(z) ;43 3
+ k003 (N> S, +5, NZ)

N I R A e NI SXN§ N)
(kX0 w200y 1) - 222y fE NS s s s e )
s k) w200 A8 - @) £ Todns, + s NS
" [ké{% - 2(v-7) 7 4 (22-2°) f0§§)](NyN§sy £ S NiNy )
v [kSZ) +2(x-z) £12) 4 (2xxS) £) TS+ S NN 2
[k - 2v-z) £12) - 2vy) £ ]<N§NZSZ N SZNZNyZ)}

(3.47)

The parameters X, Y, Z and XSE YS, 7° are the principal components
of the rotational constant and spin-rotation tensors respectively.
The coefficients in the standard form of H(d) can be referred to

as g@éi}: kpé§> + g(fé?%a f%%%, f%?% ). The interesting result
that the three parameters kééé’ kégg, kéé% are unaffected by the
transformation should be noted. Both the transformation and the
reduction to standard form generate terms which are either of higher
degree in Sa or lower degree in N&. As discussed in section IV,
such terms make contributions to other parameters in the effective
Hamiltonian (eg. the rotational constants). They have not been

investigated further,

Three of the parameters in Q<§), Eg. (3.41) can be eliminated

N . { . .
by suitable choices for fé?%, fgg% and f%%é. However this form is
not very convenient for the evaluation of matrix elements and so,

before discussing specific reductions, we rewrite Héﬁ) as:
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(4) i 2 3
Hsr /he = 3y N™ (N.S) + aZNZSz + a3N2 (N.S)
v o3 a, (NS, + NS N Y+ a (N2 e N D) (ns)
2oy (NS, + NS N sty + N7 (NS
v opa, INY(NS, NS )+ (NS +NS )N
276 T~ MV 4T+ - +74 el
b o3a, INN(NS, +NS ) + (NS, +NS )N
277 2V T+ -7 +7 4 =Tz
by ag (VAN B NS v s (8 4 N8 )
+oaag (N5, w53 e nds e s Y (3.42)
where Ni = Nx + isy, Si = SX + iSy a?§>the parameters a; to ag
are simple linear combinations of the kpqr :
_ (x) (¥) (%) (y)
ap = 3 (3kgin) + kil + kS8 4 W) (3.43a)
_op 7)o _ ) 3 431
3 = Kpo3 8y = Az - 3y (3.43b)
oo (X)L )y (x) AY) (%) (¥)
ag = alkygp’ * ko1') - 8(3kgpp + 3kgag + kygpt * kpyp”) (3.43¢)
- 1 l2) (z) (x) (v) (x) (y)
ag = 2lkopy” + kgpp) - B(3kgaq + 3kgzg * Kygpt * kpypt) (3.43d)
IR O B S R
FEENIR . A 0 X 8%
ag = 3(kypp ROBO kTZO + Kot} ) (3.43e)
- oaetx) ) (x) _ ) -
as = s(kin) - k) sl (3.43F)
o) )y Lo 0L ) (%) _ o {y)
a7 = alkygy = kg1a) - 8 (kgppm kg3p + Kyop ~ Ko7p) (3.439)
_ (z) o (z) v 0 00 o y) Co(x) (v) \
ag = hlkyor = kopy ) - b (kgpg - kgzp - Kz T korg) (3-43M)
-1 (x) (v) _ o X)) _ly) :
3 = helkzog *kgzg - Kyzp - koip ) (3.431)

The form for Héi> in Eg. (3.42) is much more convenient for the

evaluation of matrix elements, The first four terms have elements
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diagonal in the quantum number K, the next four terms have elements
with AK = 2 only and the final term has elements with AK = #4,
The transformed Hamiltonain ﬁéi) is given by the corresponding
expression involving parameters a,. which are obtained by replacing
the kpé$> in Eqs. (3.43) by kggr from Eq. (3.41)

It is evident that there are several possible ways in which
parameters can be eliminated from Eq. (3.41). We discuss two such
choices in the remainder of this section, referring to them as the
S and A reductions. They are respectively analogous to the
symmetric and asymmetric reductions of the rotational Hamiltonian
discussed by Watson (22).

3 (V) ¢ The S-reduced form of the quartic spin~rotat€on Hamiltonian.

The S-reduction corresponds to the elimination of the parameters
56’ 57 and 58 from %éﬁ>and the retention of the term involving 59,
the coefficient of the term that contains the shift operators N, and
5, to the fourth power. The latter define the spin-rotation )
contribution to the K-splitting in Tevels with K = 2 of an asymmetric

() ¢ly) (z)
top. The three parameters fG??’ fTG? and fITD are therefore chosen

< - o(x) _owly) p(x) _oly)

35 =0 =K30 " Kozo * Kiop - Kog

o pxg L ply) c(x) _oly) Lop(x) _oely)
ay =0 =kypy = kgyp = 3 (kypp -~ kg3 * Kyp0 = K370 )
s - plz) ooplz) () oply) _opx)y Lo ly)
ag = 0 = kao1 = koo1 — & (kgnp = K3~ Kypp + Ko7 )

The result is obtained if :
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£ = (pet)™! (=2[2 (v-2) - (22-7%)] [(X-7) + (¥-Z)]

(gd - k6% kiz -k

0o
b A (Z40-7) + (205 (2055 + 2v-v9) 1K) - kY

+ [20v-2) - (22-2%)] [2x-X5+ 2v-yS ] (kS2) - kéﬁ%"kggé*k%”
(3.44a)

- [2(x-2) - (22-7%)] [2%-X> + 2Y-Y°] (k



/1

where
Det = (2X-X° + 2Y - Y5){ [2(X-7) - (22-7°)] (2X-X*) -
[2(Y-2)-(22-7°) ] (2Y-Y®)}

~8(X-Y){(X-Z) + (Y-Z)}{(Y-Z) + (X-Z) - (2Z-1°)}
(3.45)

The S-reduced quartic spin-rotation Hamiltonian for a molecule of
orthorhombic symmetry can thus be written:

~(4 2 2
Al =08 wf s) + 3D SIS+ s NBs D5, (.5)

2
Nz

+ N

.+ s (3.46)

+ D :

5
NS, + dy (N

S NS+ NEY(NLS) + S (N

5
K

where the six parameters D; to dg have been introduced as the
analogues of the quartic centrifugal distorition parameters in
the S-reduced rotational Hamiltonian (22} The first and second
subscripts in the parameters BNK and DNK indicate the quantum
number dependence of the rotational and spin-rotational parts of
the operator respectively.  The non-zero matrix elements of the
S-reduced quartic Hamiltonian in a case (b) basis set, using the

phase conventions of Bowater, Brown and Carrington (28) are given by:
NKSI[ AU NKSI> = £ [0(9+1) = N(N4T) = S(S+T)]/2N(1))

S 4

; z S .2 2
K K'+ (D

x {0 v * D) K N(NeT) + Dy NE (1)) (3.47)

. 2
<N-1, KSJ( 1?K5J> = ~(K/2N) { DK C DNK N}

X [(NC-KZ) (N-0+5) (N+J+5+1) (S+I-N4T) (N+-5 )/ (2N-1) (2441 ]

PNjet

(3.48)
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aNkz2sd [RCH INKS> = 3 S £3(+1) - N(WT) - S(S+1))

X[N(NHT) = K(KeT)HO N(NT) = (KeT)(Ke2)3]2 (3.49)

N, ked,S3 L RCNKSS >= o5 ([0(3+1) - N(WT) - S(SHT)]/N(N#1))

s
2

x[IN(N+1) - K(K£1)F (N(N+1) - (Ke1)(K22)) {N(N+1) - (K£2) (K£3)3

AV

{N(N+1) - (Kz3)(Kz4)}] (3.50)

N-1, ke, SO JRUT ) NKSS > = g

X [(N-04S) (N4J4S+1 ) (S+I-N+1) (N+J-S) /(2N-1) (2N+1)] 2

2

x [(NzK) IN%- (ke1)?s 2

2 2 2. e pan b
INT =(K£2)©) IN“- (K3)C}{N7K-4}] (3.51)

The matrix elements diagonal in K have the same form as in previous
work (14, 15) although the parameters have different meanings because
of the changes introduced by the transformation. In the present case,
Eqs. (3.43) can be used to show that :

s _ (x) o 2 (y) = (X) o(y)
Dy = & (3kgpp + 3kg3p + Kypg * Kpyp )
s _ 1 olz) c(Z)y _ ps
Dy = 2 (ko1 * Kpop) Dy
S _ i) (Y)y L s
Dy = 2 (Kygo + kgy2) Dy
pS - E((z} - pS DS s

K 003 o I P Y
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o= n gy -
B = Y i ki - k- kD (3.52)

where the Qpé?> can be obtained from Eq.(3.41). From Egs.(3.52) the
six determinable combinations of parameters can be expressed in terms
of the constants of the S-reduction :

_o (X))~ s S S
My xxx k300 B DN * ZdT * 2d2
_ WYY RS L oaas S
nyyyy kOBG = DN ng + Zdz
o (z) _ s A S s s
L T R T
s(x) L oply) _ s s
(Rizy + KSYL ) = 2oy - 1245
colz) L op(z) _ S S
(ko071 * kgo1 ) = 2Dy + 2Dy
(3.53)
c(x) L oly) _ S S
(ko2 * ko12 ) = @Dy + 2Dy

The results of this section are applied to the interpretation,
of the spin-rotation splittings of NHZ in the QZBT state in Chapter 5.

3 (V) d The A-reduced form of the gquartic spin-rotation Hamiltonian.

The essential characteristic of the A-reduced form of the spin-
rotation Hamiltonian is that it has matrix elements with aK=0,+2 only
(22).  The advantage of this reduction therefore is that it is easier
to construct the Hamiltonian matrix and bring it to diagonal form by
computer methods.  Nevertheless, experience with the rotational
problem shows that the S-reduced form is to be preferred since it is
applicable to any molecule, irrespective of the value for the
asymmetry parameter «, and because it Teads to a less strongly
correlated set of parameters for a fit of the data than does the
analysis using the A-reduced Hamiltonian (22, 29). Although it seems
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likely that the same advantage will accrue to the S-reduced

form of the quartic spin-rotation Hamiltonian, it is probably too
early to dismiss the corresponding A-reduced form. We therefore
consider the essential features of the Hamiltonian at this point.

The A-reduction is effected by the elimination of the
parameters &, d; and &g in Qgi), obtained from Eq. (3.42). It
can be seen that two terms including the squares of the shift operator
Nt and/or S+ are retained, namely those with coefficients 55 and 58'
The former defines the K-splitting effects on the spin-rotation
coupling for Tevels with K = 1 in first order while the latter produces
the splitting of levels with K = 2 in second order. The A-reduced
guartic spin-rotation Hamiltonian for an orthorhombic molecule can

then be written :

~(4) s 2 S e 2 s
Hop” = By N0 (NLS) 3 ay TNTNGS, + NS NPT+ apy N, (RLS)
S 3 S 2 2
fad s s (Ve nE) (us)
(3.54)
srey (N N NS+ NS (V4 e

where the parameters A§ AN? etc. have been introduced by analogy
with tne corresponding quartic centrifugal distortion constants.
The matrix elements in a case (b) basis set are :

o ,
<tiksd AL INKSO> = [3(a+T)-N(N+1)-S(5+1)] / 2N(N+1))
s 4 g $ Z , AP -
x by KT+ (Byp Thgr ) KEN(NT) + ag NE(NT)) (3.55)

i (4 . 5,2 s 2
N-1, KSJ [Hy L/ [NKSI> = -(K/2N) (8K™ + syy N}

o

X [(NP-KZ) (N=0+5 ) (N+J+5+1 ) (S+I-N+1) (N+-S)/ (2N-1) (2N+1)] 2 (3.56)

=
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N,ke25d [ALT) [NKSO > = ([0(3+1)-N(N+T)-S(S+1)] /2N(N+T)3
XN =K (Ke D)3 ON () - (Ke1) (ke2) 1] B ) + 385 TkPo(ke2) ]

(3.57)

-1, K2 5 |AU) INKsa > = 3 (aS/N)C R(NEK) + (Ke2) (N2Ke2)3

x[(N;K»T)(NiK+I)(N;K~2){N;K)(N~J+S)(N+J+S+?)(S+J~N+T)(N+J~S)/(2N~?)(2N+?)]%

(3.58)

The explicit expressions for the transformation parameters fégz
which effect the A-reduction have not been considered. If required

they may be derived from the conditions:

£
SR G S I 0 2 B CO A 62,
35 = 0 =k3py - Kgzg *+ Kypg - Ko1g
> _n o otx) Cely) c{(x) (v) . o) _ ply)
a; =0 =kygp = kgyo = 2 (k3gn ~ Kgzg *+ Kiog - Ko )
s gl ety oy gy
39 = 0 =K3a0 * kg3g = Kyo0 ~ K210

with the values for ﬁpéﬁ> taken from Eq. (3.41)
The A-reduced Hamiltonian has been applied by Cook, Hills and
Curl (14) in their fit of the spin rotation splittings of NH2 in the
ground state. They made the approximation that the effects of the
matrix elements off-diagonal in N, Egs (3.56) and (3.58) were negligible
in their analysis. It can be seen from Eg. (3.55) that it is not then
s s

possible to separate by and A,

KN and only five parameters may be

determined,
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CHAPTER 4.

APPLICATIONS

4(1) The determination of the guadratic spin-rotation parameters
for HO, in the X2A'' state.

The derivation of a reduced form of the quadratic spin-rotation
Hamiltonian suitable for the empirical fitting of spectral data has
been discussed in Chapter 3. For a molecule with a plane of
symmetry only {CS) there are four determinable parameters, not five
as suggested by the unreduced Hamiltonian. The implications of
this result are explored in this section, using data that relate
to the spin-rotation splittings of HOZ in the i2Aa'state.

The microwave spectrum of HO, has been observed and analysed
by Saito (1). It involves both a- and b-type transitions between
rotational levels wiﬁtha = 0 and 1. Saito found that he was not
able to determine both the expected off-diagonal components, €ah
and €ha’ of the quadratic spin-rotation tensor and so he fitted the

data with the assumption that e = €h 4" In section V of Chapter 2

an outline is given of the moreazaphisticated analysis of all the
published high resolution data for this molecule (1, 2, 3) as
performed by Barnes, Brown, Carrington, Pinkstone, Sears and
Thistlethwaite (Z2) but the same conclusion as Saito was reached

with regard to the off-diagonal components of the spin-rotation tensor.

A different constraint was imposed in the fit, namely:
*ba B Eab/A (4.1)

based on a simple theoretical model in which the spin-rotation
interaction is attributed solely to spin-orbit coupling affects in

the oxygen atoms. It can be seen from Chapter 3 that the indeterminacy
revealed by these analyses is not caused by shortage of data, but

rather 1s finherent in the form of the spin-rotation Hamiltonian.

Under no circumstances is it possible to determine more than four
spin-rotation parameters for this type of molecule.
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The analysis outlined in Chapter 2 has been repeated using
the reduced gquadratic spin-rotation Hamiltonian, ﬁsr(Z)’ described
in Chapter 3. The computer program used was program II
suitably modified to take account of the transformation of the
spin-rotation Hamiltonian. The calculations were performed with
a symmetric rotor basis set truncated at AN = x1 and AK = 24 ,
sufficient to reproduce "full" basis calculations to within the
experimental accuracy (0.1 MHz for the microwave frequencies).

In the Teast squares fit, all the parameters apart from the
quadratic spin-rotation constants were fixed at the values obtained
in the previous analysis; this included the quartic spin-rotation
terms. The fit of the microwave data to the four parameters

of ésr<2) Eq. (3.34), is identical in quality to that obtained
previously when the relationship (4.1) was imposed. The values
of the parameters determined in this way are given in Table I.

For comparison, the values obtained in the other two analyses (1),
(2), are also given.

The results are very satisfactory. The parameters gaa’ gbb
and (g, + Eba} are modified in the revised fit, whereas QCC is
essentially unaltered, in accord with expectation. Columns 3 and 4
of Table I are the results for two different reduced forms of Hsr‘
In the earlier work, column 3, the constraint gba = Béab/A‘was
imposed, corresponding to a transformation parameter.

fi = tan (A, - Bgab)/{A<gbb - 2B) - B(e,, - 2A)]} (4.2)

when U = exp(éflsc), In the present analysis, we have chosen to
eliminate the antisymmetric part of the spin-rotation tensor so that

€sh = Eba This 1is achieved by the transformation parameter f, where
fo = taﬂ”'{(eba - e )/ [2(A + B) - (€45 * pp) ]} (4.3)

The transformation of HSV(Z} from the reduction of column 3 to that
of column 4 is therefore achieved by U = exp(i{f, - fl}SC) and the
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relationship between the two sets of parameters is given by Egs.
(3.33) and (3.34) on the understanding that the right hand sides of
these equations refer to the first reduction rather than the unreduced
form of the Hamiltonian. Eq. (3.34) can be used to predict the
parameters to be obtained from reduction 2 and the results of such
a calculation are given in the last column of Table I.  The
agreement with the parameters obtained in the Teast squares fit is
highly satisfactory and is a pleasing confirmation of the present
approach. However, it does not provide any independent support
for the relationship given in Eg. (4.1) proposed by Barnes et al
(2) to the
other by a unitary transformation. Finally we note that, in his
analysis (1), Saito in effect used the same reduced form for ﬁsr<2)
as described here. His value fore, + Eba is therefore in good

ab
agreement with that determined by the least squares fit.

(2), since it is possible to go from one form of ﬂsr

4.01). The effective spin-rotation Hamiltonian for NH, in the

X° B, state.

4.0T).a . The determination of the spin-rotation parameters for
2

§§2 in the X BE state.

The recent observation of microwave-optical double resonance
transitions in the NHZ radical by Cook, Hills and Curl (4), (5), has
produced a large amount of high quality data on the rotational Tevels
of the molecule in the Xz 8? state, In particular, the observation
of magnetic dipole transitions between the two spin componentsof a
given rotational state provides direct information about the size
of the spin-rotation splittings in many of the Tower rotational
tevels(5).  The availability of this data makes NH, an ideal
candidate for treatment in terms of the theoretical description
of the spin-rotation interaction previously outlined. Curl and his
co-workers (6), (7) have interpreted these splittings in terms of
three guadratic and five guartic spin-rotation parameters; their
appreoach is essentially that of the A-reduced Hamiltonian discussed
in section 3V (d). By invoking planarity relationships and
neglecting some parameters, they were able to determine values for
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five Mgy parameters.

For the reasons given in section 3.Y(d), the data have been
analysed using the S-reduced Hamiltonians for both the centrifugal
distortion (36) and for the quartic spin-rotation terms. This
has been done in an attempt to establish whether the six parameters
in Eq. (3.46) can be determined and, if so, how they can best be
interpreted. The M.0.D.R. frequencies were taken from Ref (6)
and they are reproduced in Table II. In a more recent paper (7),
Hills, Lowe, Cook and Curl have measured the magnetic dipole
transition frequencies between the states 33% and 413 and remeasured
the spin-rotation splitting in the 4}3 level. Professor R.F. Curl
(8), has kindly provided values for these frequencies, for inclusion
in the analysis (331; J = 7/2~+423; J = 7/2, v = 5350.56 MHz;
see also Table II). The data were fitted using the program
described in the previous subsection and Chapter 2, Section V.

Since NHZ (k = -.3846) is a more asymmetric rotor than HO2

(k. = -.9936), a larger basis set was necessary and the calculations
were performed in a full basis set for the zero-field problem

(AN = £1),

Initially, the constantsdetermined by Davies et al (9), in
their fit of the far infra-red L.M.R. data were used, converted to
the S-reduced form using the relationships given by Watson (36).
However numerical tests on the A to S transformation showed that
it was not sufficiently reliable for such a light molecule as NH2
(the equations given by Watson are simply the Teading terms in a
series expansion). Since the fit of the M.0.D.R. spin-rotation
splittings is quite sensitive to the values of the rotational
parameters (6), a representative sample of the L.M.R. data was
refitted to the S-reduced Hamiltonian, taking approximately two Zeeman
lines per polarisation for each rotational transition. Nuclear
hyperfine effects were suppressed by taking the flux density for
the centre of the hyperfine pattern; this was the procedure
followed by Davies et al in their analysis (9). Additional
information on the 33~é - 433 and 523 - 6?6 separations has been
provided by the measurement of magnetic (7), (8) and electric (4),
(10)dipole transition frequencies respectively. The appropriate
M.0.D.R. freguencies were therefore included in the least squares
fit, weighted 100 times more heavily than the L.M.R. data. The
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basis set was truncated at AN = z1 and AK =#6 in performing the
calculation. The electron spin g-factors were constrained at
the values calculated from Curl's relationship (11) which should
be reliable for NHZ' As in the previous fit of the L.M.R. and
E.P.R. data of HOZ (2, and chapter 2), the inclusion of terms
that describe the rotational Zeeman effect produced a significant
improvement in the least squares fit.

In the fit of the L.M.R. data, the nine quadratic and quartic
spin-rotation parameters were fixed at the values obtained from the
fit of the M.0.D.R. frequencies. The Tatter were then re-fitted
using the improved rotational constants and the process repeated
iteratively until it had converged. The final values of the
parameters obtained are given in Table III, they have been obtained
from a fit to a data set which included rotational levels up to
N =7and K =4 and can be used to calculate reliable term values
within this range of quantum numbers. A1l the parameters Tisted
are better determined than in previous work (12), (5) and in particular
we note that all six quartic spin-rotation parameters are determined
(1.e. it has proved possible to separate DNKS and DKNS>” Furthermore
we have been able to determine all three components of the rotational
g-tensor.  The values obtained are consistent with the predictions
1

of the simp

e formula for the electronic contribution to grau(Z):

6,5 (e1) = -le_l/2 (4.4)

¢ spin-orbit coupling parameter (suitably weighted
if necessaryj. The appropriate value for ¢ in the present case is

e W -t ~ @ § - i
that for the N atom, 76 cn {13) which leads to

(e1) = -4.07 x 1073, ¢ "% (el) = -5.94 x 1074

o N .

9, {eiy = -5 x 10°

The nuclear contribution to the rotational g-factor is expected to
be a positive quantity ~ 10 *for a magnetic moment expressed in

Bohr magnetons.
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4000 b The interpretation of the quartic spin-rotation parameters
for NH, in the {°B; state.

The values for the quartic spin-rotation parameters for NH2 can
be used to determine six Tinear combinations of the n parameters in
the effective Hamiltonian Eq. (3.7). The relations appropriate to
the S-reduced Hamiltonian are given in Eq. {3.53), and the results
of such a calculation are given in Table IV. Egs. (3.53) show
that it is possible to determine the three "diagonal" components,
U and it is interesting to compare these results with the
predictions of the formula derived in section 3{II)which relates
the quartic rotational and spin-rotational parameters:

/28

Tupys © £’ P, (4.5)

where B, is the rotational constant associated with the principal
inerﬁia? axis £. This relationship is based on the assumption that
the electronic wavefunctions and eigenvalues are independent of
ibrational coordinates | The values for the three U parameters
alculated from Eq. (4.5) with the constants in Table Iifare also
ble IV. It can be seen that, although the results are
1t order of magnitude, they underestimate the value in
by a factor of ~2 for Naaaa &Nd nbbbb), Similar
conciusions were reached in other applications of (4.5) (14, 15,
section 4(II1)), so that some measure of the reliability of the formula
1s now apparent., For er, the three parameters N all depend on
the variation of the spin-rotation interaction with the vibrational
co-ordinates Q (symmetric stretch) and QZ (b@ad) The parameter

i

e arises primaritly from the admixture of the A A; state (16), and

D
aa
the strong dependence of the separation between A and X states on
the bending co-ordinate is well established (17, 18). For the case

Gf?éaaa then, the assumptions on which Eqg. (4.5) is based are patently

incorrect and its faiiure is not surprising.
Hills et al (7, B) have determined five parameters of the

A-reduced form of H in their analysis. They were able to
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relate these parameters to the gy of Eq. (3.7), by imposing the
planarity relationships and assuming all naﬁccto be zero. The
three planarity relationships which can be derived from the work of

Oka and Morino (19) are:

2 2

Necaa ~ (C/A) Nsaaa + (C/B) "bbaa (4.62)
2 2 .

Necbb = (C/A) maapp ¥ (C/B) mpppy (4.6b)
{ 2 2

Necce = (CA) mgaee * (C/B) mppec (4.6¢c)

These equations refer strictly to the equilibrium values for the n
parameters rather than to the values in a particular vibrational

tevel. However experience with corresponding relationships for the
rotational centrifugal distortion constants (20, 36) suggests that

Egs. (4.6) should be quite reliable. The assumption that the Neace
are negligible for NHZ is not so well-founded since it is based on

Eq. (4.5) and the observation that €cc is very small (Table III).

We have already demonstrated that Eq. (4.5) does not hold well for this
motecule but possibly its order-of-magnitude Tevel of reliability is

sufficient; 1t is certainly true that n is very small (Table IV)

ccee
imptions, Hills et al (7) were able to determine

o

By making these assi
1

5 of a possibl I non-~ze) T
5 of & possible 11 non-zero  parameters, namely, Naaaa® "bbbb® Naahb,

n, nd & ( T It f i
Tohaa M9 2 (Mapan * Mhana! [t was only possible to separate
Moo @nd ng . by using t ati i
abab 2N9 Npapa P using the relationship

nabab/nbabﬂ - <A/8)(Ebb/gaa> (4.7)
derived from Eqg. (4.5). Again the reliability of this relationship

is guestionable but since the n parameters involved depend on the
variation of €oh and €ec with the antisymmetric stretching co-ordinate
{Q3} only, 1t is possible that the results are better in this particular

application. The values obtained by Hills et al are given in Table IV.

The analysis performed here shows that the 6 parameters of the

SSSDSE}S

N v Unk o KN“E Ko dig, dzg) can be used to determine

S-reduction (D
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C - (D) c (c)
the 6 coefficients Naaaa® Mbbbb® Mecce’ (k o Foksip )

- ~ ! ~ .
(k ég% Tk é?{ ) and (k §§§ + k éf% ). The Tatter three

parameters can be related to the three Neoaa’ which are known,

and the six ko () by use of Eqs. (3.41), (3.44) and (3.45).
For a symmetric triatomic molecule, the kpéi> are from Eqs. (3.37)
(b) - , _
SHY B Teebb " "ecbb
(b) ; = _
SUE - Naabb - aabb  2abab
(c) _ \ _
k210 h Tobee - "bbee
(c) _ : _
Ko12 " Naacc - Naace
(a) _ s _
k201 N Tbbaa = Mpbaa F%Mpaba
. (a‘ _ t -
K021 - Tccaa Tccaa
Fven if Mhb e and aacc are assumed to be zero, there are still four
parameters (”a;bbﬂ ﬂbéaa’ Necaa and ”ccbb) to be determined from

three experimental quantities. The imposition of the two planarity
conditions, Egs. (4.6a) and {4.6b) does not help because two extra
are introduced in the process. We

Cr

narameters (i Loand n, )
v Mabab " Thaba/

therefore follow Hills et al (7) and invoke the extra constraint

L

of £q. {4.7) in order to determine Naabb? Mbbaa and M aba from the

chy inati (b)), () (a)” " r(a) (D)

§§Z?e combinations (ki g + kyi0)s Kygy * (kgop) and (kygst

Ko1s) The results of this calculation are given in Table IV where
it can be seen that there is good agreement with the earlier workers,
articularly for the parameters o I .. hose values are not
& cu 'y Tor the para ers Naaaa and Tohbh W e e

dependent on the assumptions made in the calculation. The fact that

the values for the other three parameters are close to those of Hills
et al (7), may just be an indication that the same assumptions are
involved in both treatments. Certainly the relationship analogous
to

Eq. (4.7) between Naabh A4 Mgy o

"aabb / Mbbaa (A/B) (e,
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is not well satisfied by our results (aabp/ Thbaa = 0-178
compared with the value of 0.267 from Eqg. (4.8))

In conclusion, the analysis of the quartic spin-rotation
parameters with the aid of the planarity relationships, does not
seem to be very fruitful. This observation is in contrast to
that for the quartic centrifugal distortion constants, where
successful determinations of the non-zero t's have been made by
invoking the planarity conditions (36). It seems likely that
the interface between experiment and interpretation for the spin-
rotation problem will be established at the level of the parameters
DN5 etc., in the effective Hamiltonian, Eq. (3.46). Model
vibrational potential energy surfaces for NHz are becoming available
(21, 22) and it would be extremely interesting to estimate the

quartic spin-rotation parameters from these potential surfaces.

4 (ITI) A determination of Zeeman parameters for NO, in its ground

state.

4 (111) a Introduction.

Nitrogen dioxide has long been used as a prototype for studying
interactions chavacteristic of open-shell molecules, as can be judged
from the size of its literature. It has been studied extensively
in 1ts ground 2A1 state by both microwave (23, 24) and infra-red

techniques (25, 26) so that rotational, spin-rotational and IHN
hyperfine constants are well determined. The E.S.R. spectrum has
been recorded in a variety of solid state environments (27, 28).

The gas phase E.P.R. spectrum is very much more complex (29), and
only selected parts of it have been analysed to date (30). Finally
some far infra~-red L.M.R. spectra have been obtained (31); these
date provide information on higher rotational Tevels. Curl (11),

has derived an extremely useful relationship between the electron
spin-rotation coupling constants €0 and the g-tensor components

L0y

af’
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where e is the free spin g-factor, Ias is a component of the inertial
tensor and a, 8 and v run over the three cartesian components in

a molecule-fixed axis system *.  This relationship is rather well
satisfied by the spin-rotation constants, as determined from the
microwave spectrum (23) and the g-tensor components from the solid
state work (27) and this was used by Curl in support of his relation-
ship. It was therefore disconcerting when the analysis of the L.M.R.
spectrum suggested markedly different values for the g-tensor
components (31), especially as the molecule was studied in the gas
phase where results are free from solid state lattice effects.

In this section extended measurements and assignments of
magnetic dipole transitions in the gas phase E.P.R. spectrum of
NSZ are described. These data, in conjunction with the L.M.R.
data, have been fitfed to an effective Hamiltonian which includes
a description of the centrifugal distortion of the spin-rotation
interaction and improved values for the g-tensor components, which
conform closely to the predictions of Curl's relationship, have
been determined. It was the neglect of the gquartic spin rotation
terms which led to the apparent conflict with Curl's relationship

4{111) b  Experimental Details.

The E.P.R. spectrum of nitrogen dioxide was recorded with a
Decca X-3 spectrometer using Zeeman modulation at a frequency of

100 kHz. A rectangular TEyp, cavity resonant at 9270 MHz was

placed in the field of a Varian 12 in. magnet and a static sample

¥

o3

~

T gas introduced in a quartz sample tube.  Optimum gas pressure
was found to be about 0.25 torr; above this pressure line

broadening was observed.
Accurate field measurements were made with an AEG proton

*contrary to Curl, the second subscript of 9ep and eyg refers to the
component of the spin angular momentum, Sg-
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fluxmeter and were corrected for the field difference between

the proton probe, which was mounted on the magnet pole-face, and the
sample in the centre of the magnet gap. Each observed line
position quoted in Table V, is the average of at least five scans
through the line. The spectrometer operating frequency was
monitored continuously by a Hewlett Packard 5245L counter with a
5255A frequency convertor, although it was very nearly constant
under the conditions of the experiment.

The transitions observed were of the same type as those
studied earlier by Burch et al {30), and are discussed in more
detail 1in section 4.III (d). \Under the experimental conditions
the lines were several gauss wide and the signal to noise ratio
less than 20:1, even with a 3 s time constant. The accuracy of an
individual measurement was estimated to be about one gauss.

4 (11) ¢ Theoretical Background.

The effective Hamilitonian for the rotational energy levels
of an asymmetric top in a doublet state has been discussed by Van
Vieck (32), Lin (33) and Raynes (34) and takes the form:

H oo = H + H + H + H + H

eff rot cd sr sred - HQ * HZ (4.10)

hfs

Here, H rot is the rigid rotor Hamiltonian and Hcd the quartic and
sextic ef trifugal distortion corrections to the rotational energy.
are the quadratic and guartic spin-rotation Hamiltonians
which have ee; discussed in detail in Chapter 3 while th represents
the magnetic hyperfine interactions between the N nucleus and the
unpaired electron spin and consists of the Fermi-contact and spin-spin
dipolar contributions T tear electric quadrupole interaction

c
and the interaction of the molecule with the

external magnetic field by HZN The explicit forms for the various
terms are given in many places in the Titerature. As discussed in

Chapter 2, it has been convenient to use the spherical tensor
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formulations for the operators given by Bowater et al (35), and the
quartic and sextic centrifugal distortion Hamiltonians as given by
Watson (36). The spin-rotation Hamiitonian was taken in the form
discussed in Chapter 3, as applicable to an Orthorhombic molecule.

The reliable determination of the molecular Zeeman parameters
depends critically upon the use of the correct zero-field
Hamiltonian, as will be seen in the next sub-section. In particular,
it is important to include a description of the centrifugal distortion
of the spin-rotation interaction. Program I was used to analyse
the data, the approximations inherent in its structure were checked
against a more accurate program and the efgenvalues were found to
be reliable to within 0.1 MHz for the problem in hand.

4 411) d Results and Analysis.

Magnetic dipole transitions within the Fy spin component of
a given rotational Tevel have been studied with an E.P.R. spectro-

meter at 9.3 GHz. A typical transition is shown in Figure 1;
the nuclear hyperfine splitting has been suppressed for the sake of
clarity

Although the Fy; and F, spin component labels are
strictly only defined in the zero field limit (where J is a good
umber), all the M, levels which correlate with a particular
spin component are charac terised by the appropriate label. Hougan
(37) has suggested a different way of labelling Zeeman levels, but
the scheme adopted here has the advantages that it is independent

of the size of the spin-rotation splitting and of the magnetic

by
d

ield. ne transitions studied in this work are of the same type

as those studied earlier by Burch et al (30), although the measure-

ments reported here are more extensive than theirs. The complete
data set is listed in Table V together with the quantum number
assignments. A section of the observed spectrum is showrn in Figure 2.

The Tar infra-ved L.M.R. data together with the E.P.R. data
reported here were fitted simultaneously to the effective Hamiltonian
discussed previously using the unweighted least squares method

described in Chapter 2. The success of this process depended on
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Figure 1.  The energy levels of the 2,5 rotational
& as a function of magnetic field. The
abelling of the <pin components is indicated together

{
i

S

with the type of transition observed in the E.P.R.

0
experiment. A1l the M, levels which correlate with
i

the upper spin component in the zero-field Timit are
labelled Fy; and those which correlate with the Tower
are labelled F, (see Table V). The 1*N hyperfine

structure has been suppressed.
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Figure 2.  Section of the observed spectrum around
6170 G.  The drawing shows the hyperfine triplets
assigned to transitions occurring within the a) 8,
and b) 43; rotational Tevels.
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Table V  Data and results of least~squares fits

TRANSITION FLUX DENSITY/G  CALC/G  (0-C)/G  CALC/G  (0~C)/G

1 ¥ ¥ 1 1] 1" i it 3 1
N K MJ MI « N K MJ MI Fit 1 Fit 2

(a) LMR transitions of type F, +« Fy.

8 2 =6} 1 7 1 -6} 1 1011.6 1011.77 -.17 1011.65 -.05
8 2 -~6% 0 7 1 -6} o 1058.8 1058.29 .51 1058.15 .65
8 2 =64 -1 7 1 -6} -1 1107.1 1107.21 -.10 1107.04 .06
8 2 -6 -1 7 1 -5} -1 1104.3 1104.,42 -.12 1104.13 .17
8 2 -6} 1 7 1 =5f 1 1008.3 1008, 41 -.11 1008.18 .12
8 2 =7} -1 7 1 -6f =1 1185.0 1185.02  ~.02 1184.60 .40
g 2 14 1 8 1 2k o 1698.5 1698.84  ~.34 1699.06 ~.56
g 2 -6} -1 8 1 -6} -1 2115.3 2115.45  =.15 2115.57  =.27
g 2 71 8 1 6} 1 1469 .0 1468.81 .19 1469.38  ~,38
g 2 -4 1 8 1 =34 1 1914.5 1914.77 =.26 1914.72 -,22
g 2 -8 1 8 1 -74 1 2091.4 2091.31 .09 2091.05 .35
g 2 -7} 8 1 ~6§} © 2099.2 2099.62 - 42 2099.39 ~-.19
g 2 -6} -1 8 1 =5} -1 2105.0 2105.27  =.27 2105.02 -.02
9 2 -8} -1 8 1 =73 -1 2204.6 2204 .48 L12 2204.16 A
5 3 -1 o 6 2 -2 0 5394.4° 5393.05 1.35 5394,69 -.28
5 3 =4 0 6 2 ~5, o© 6651.8° 6652.27 - b7 6651.77 .03
6 3 24 o 7 2 30 2746.2°°¢ 2745.07 1.13 2745.54 .65
6 3 -4} 0 7 2 =5} 0 4604.0°*¢ 4601.70  2.30  4603.27 .73

(b) EPR trsusitions recorded at 9270.3 MHz and of type Fj < F

[
o O o

2 2 =1y 12 2 =2} 1 5372.1 5372.40  ~.30  5372.28  -.18
2 2 -1} o 2 2 -21 o0 5424,5 5423,31  1.19  5423.20  1.30
2 -1 -1 2z -2F -1 5474,5 5474,71  =.21  5474.60  ~.10

4 =93 1 10 4 ~10} 1 5558.6 5558,54 .06 5558.32 .28

& =9} 0 10 & -10f 0 5612.2 5612.65  -.15  5612.42 .08

L -9} -1 10 & -10} -1 5667.3 5667.24 06 5667.01 .29

5 3 =4y 1 5 3 -5% 1 5684.3 5683.48 .82 5683.25  1.05
5 3 =44 o0 5 3 -5} 0 5735.7 5736.19  -.49  5735.96  -.26
s 3 =4} -1 5 3 =5} -1 5789.3 5789.37  ~.07.  5789.13 .17
9 4 =8} 1 9 & =9} 1 5809.6 5809,58 .02 5809.38 .22
9 4 =8} ©o 9 4 -9} O 5863.3 5863.37  ~.07  5863.17 .13
9 4 -8, ~1 8 4 -9} -1 5917.1 5917.63  -.52  5917.42  =.32
& 4 ~75 1 & 4 -8f 1 6106.9 6108.21 ~1.31  6108.05 ~1.15
8 4 =75 0 8 4 =8 O 6166.2 6161.60 ~1.40  6161.44  =1.24
8 4 ~7F -1 8 4 -8f -1 6216.4 6215.42 .98 6215.25  1.15
& 3 =3 1 & 3 ~4F 1 6141.6 6143.07 ~1.47  6142,93 -1.33
4 3 =31 o 4 3 =&} O 6194.2 6194.82  —.62  6194.68  ~.48
4 3 =3F -1 & 3 -4} -1 6247.1 6247.,00 L1000 6246.35 .25
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Table V (contd)

TRANSITION FLUX DENSITY/G  CALC/G ©-Cy/6 CALC/G  (0~C) /G
N' K' MJ' MI' < N K" MJ" MI" Fit 1 Fit 2
12 5 =-11f 1 12 5 ~124 6288.6 6288.88 -.28 6288.98  ~.38
12 5 =114 o 12 5 ~124 © 6343.4 6342.90 51 6342.99 WA
12 5 =11} -1 12 5 =123 -1 6396.9 6397.33 .43 6397.43  ~,53
7 4 -6} 7 4 -7 1 6468.5 6469.15 ~.65 6469.05 ~.55
7 4 =6} o© 7 4 74 0 6522.6 6522.01 .59 6521,90 .69
7 4 -6} -1 7 4 -7} =1 6575.0 6575.28 ~.28 6575.17 -.17
11 5 -10} 11 5 11} 6560.2 6560.03 .17 6560.15 .04
11 5 ~-10} © 115 -1 o 6615.3 6613.77 1.53 6613,89 1.41
11 5 =10} -~ 11 5 =11} -1 6667.6 6667.91 -.31 6668.02 ~. 42
3 -2} 3 =34 6752.8 6752.18 .62 6751.95 .85
3 =24 o 3 -3} o 6802.8 6802.61 .19 6802,38 42
303 =24 -1 3 ] 6852.9 6853.43 -.53 6853.20  =.30
16 5 -9 10 5 ~10} 6873.7 6873.33 .37 6873,49 .22
10 5 -84 0 16 5 =10} 0 6926,6 6926.72 -.12 6926.87 -,27
6 5 -9} =1 0 5 -0t -~ 6979.8 6980.49 -.6% 6980,63 -.83
6 4 =5} 6 4 -6} 6913.4 6912.62 .78 6912,58 .82
6 4 =54 0 6 4 -6F 0 6965,1 £€96%.79 .31 6964.75 .35
6 4 -5 - 6 4 -6} - 7016.0 7017.34 -1.34 7017.29 ~1.29
$ 5 -84 1 9 5 -9} 1 7240,2° 7239.25 .95 723944 .76
9 5 -8f 0 9 5 =95 0 7292.4 7292.21 .19 7292,39 Lol
g 's =8} ~ g 5 -9} - 7345.2 7345.53 ~.33 7345.71 -.51
5 4 ~4) 5 4 ~5} 7465.3 7465,17 .13 7465,13 .17
5 4 ~4f 0 5 4 -5} 0 7516.1 7516.43 -.33 7516.39 ~.29
5 &4 -4f =1 5 4 ~5} = 7567.4 7568.04 - b4 7568,00 -.60
g8 5 =74 g8 5 -8} 7670.8 767144 ~.64 7671.67 - .87
8 5 =74 0 8 5 -8, 0 7724.8 7723.86 .94 7724.08 L72
8 5 =74 - 8 5 S 7777.,0 7776.61 .39 7776, 84 .16
& 4 =34 1 4 4 ~4} 8154.0 8154,30 ~.30 8153.93 .07
4 4 =34 0 4 4 -4y 0 8203.1 8204.40  -1.30 8204 .02 -.02
L 4 =3% - 4 4 -4} - 8254.6 8254.,83 -.23 8254.45 15
55 =43 1 55 -5} 1 9552.,0 9551,89 11 9551,39 .61
5 5 =4k 0 5 5 -5 0 9601.6 G601.74 - 14 9601.23 37
5 5 4} ~1 5 5 ~55 = 9652.1 9651.89 21 9651.37 73

4IMR transitions observed at a frequency of 830760.7 MHz.

b

“These LMR transitions are of type Fy « Fy.

IMR transitions observed at a frequency of 964315.4 Miz .
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Table VI: Zero Field Parameters for NO, in GHz

Parameter> Parameterb
A 239.90489 € 5.40676(7) ¢4
] 13.002238 hp 0.00765(2)
C 12.,304844 e ~0,09524(2)
[s{s
. 9.01416 x 1078 ay 0.14723(3)
- ~ -
Bk 5.8416 x 10 T, 0.02216(7)
-7
Ay 8.05872 x 10 Ty 0.03985(5)
8y 59,5304 x 1077
5& 1.23814 % 107" (aa)Q 0.00045(6)
(bb)Q ~0,00171(4)
@Ne 1.5889 x 107}
& - 8
@NK 1.109 x 10
- i
. 5,9054 x 10 2
oy 8.83189 x 1075 i
by 6.5954 x 10712 f
- - .
- ~6
by 2,3384 x 10

Ly 1.064 x 1077

2 From reference ?6]

From reference P3]

o
Corrected from the value given in ?3} by ~5.0 MHz (see text).

d . Cs . B
The numbers in parentheses represent one standard deviztion, in units of

the last quoted decimal place,

e N . . . - "y
Sextic distortion parameters defined in reference L26].
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Table VII  Parameters for NO, from fits of the Zeeman Data

Parameter Solid state @ﬁ LMR Bﬂ This work, 1. This work, 2. Theory

(i) a
Dy MHz - - 5,100(28) ~5.069(27) ~3.678

4,2(10) % 1072 4.7(9) x 1072 2.80 x 10 2

¥

(o) + 3 oz -

SS)MHZ - - - - ~9.73 x 1076
giz) 1.9910(5) 2,0030  1.99049(27) 1.98993(9) 1.99105°
ggg) 2.0015(5) 2.0205  2.00256(190) 2.00204(276) 2.00203
EZ) 2.0057(5) 2,055  2.00716(190) 2.00844(276) 2.00619
%(géz) + géz) ) 2.0036(5) 2.0180  2.00486(27) 2.,00524(9) 2.00411
O b )
To(gr) - ¢ - ~0.0113(24) -
?gﬁgr) - ¢ - ~0.00081(18) -
2
Tz(gr) ’ - c - d -

a . ! . . .
The numbers in parentheses represent one standard deviation of the least-squares fit,

in units of the last quoted decimal place,
For definition, see reference [35].

Not determined within 4 x 107%,

Not determined within 107,

Calculated assuming g, = 2.00232,
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the availability of reliable zero field parameters, and on the
inclusion of terms in the quartic spin-rotation Hamiltonian.
Unfortunately the accuraiely measured microwave frequencies
(gQ,,gg) involve b-dipole transitions between levels with Ka = 0
and 1 and it is not possible to determine separate values for

€aa and DKS from this data; the value quoted for €34 in the fit
of the microwave data (23) is actually the value for (saa + DKS)
The value for €4q WAS therefore corrected using the value of DK
determined from preliminary fits of the magnetic resonance data
(-5.0 MHz). The best available values for the zero field parameters

14
are given in Table VI. The spin-rotation and N hyperfine

S

parameters are taken from the work of Lees et al (23). The
rotational and centrifugal distortion constants have been determined
by Lafferty and Sams (26) from a simultaneous fit of microwave and
infra-red data, appropriately weighted.

In the least squares fit of the magnetic resonance data, the
values for the molecular Zeeman parameters and some of the quartic
spin-rotation constants were allowed to vary. It did not prove
possible to determine values for all the predicted quartic spin-
rotation parameters; nitrogen dioxide is a less asymmetric top
than NH2 and the available data are less extensive. However, values
for the dominant parameters DKS and (DKNS + DNKS) were determined,
the other expected quartic spin rotation parameters <DKNS”DNKS’ DNS,

S S .
d;” and d,”) were constrained to zero.

The results of two fits are shown in Table V. In the first,
the data were fitted to DKS, DKNS + DNKS and the three principal
components of the spin g-tensor. In the second fit, terms from
the rotational Zeeman interaction were added and the two dominant
rotational g-factors were determined in addition to the parameters
varied in the first fit. Both fits are very satisfactory, since
they are consistent with the experimental data to their quoted
precision. The major difference between the two is that the
inclusion of the rotational Zeeman terms reduces-the slightly
larger residuals associated with the Taser magnetic resonance
transitions 633 <7, and 533 «6,,. The parameters determined in
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this way are listed in Table VII, together with the results of
previous determinations and some theoretical estimates based on
equations (4.5) and (4.9).

411D e Discussion.

The aim of this study was to determine the three principal
components of the electron spin g-tensor from a large body of
magnetic resonance data for N02 in the gas phase. The extent to
which it has been achieved can be judged from Table VII. It can
be seen that the components are reasonably well determined, Ih and
9ec rather less so that 9g5- 1IN fact the data determine 9aa and
(gbb + gcc) better as can be seen from Table VII. The difference
petween Ip and Iee primarily affects levels with Ka = 1 and only
a few transitions involving such levels are included in the data.
Close scrutiny of Table VII reveals that, although the g-factors
are not inconsistant with Curl's relationship, they do not provide
really positive support for it. It proved much more difficult to
determine reliable g-factors for a gas phase molecule than had been
anticipated. This is partly because the data are relatively
insensitive to these parameters (the quality of the fit of the data
in Table V with the g-tensor components fixed at the values predicted
by Curl's relationship is only slightly worse than that of the two
fits shown) and partly because the data are more sensitive to certain
zero field parameters. This sensitivity was exploited to determine
two of the quartic spin-rotation parameters, but the reliability of
the fit has depended critically upon the availability of good zero-
field frequencies and particularly on the determination of centrifugal
distortion constants from the analysis of the infra-red spectrum (26} .

The satisfactory feature of the analysis is that the far infra-
red L.M.R. data can be fitted with g-factorsin essential agreement
with the predictions of Curl's relationship; this conclusion holds
irrespective of whether rotational Zeeman terms are included or not.
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The g-factors from the gas phase study are also consistent with

the values obtained from the solid state E.S.R. spectrum (27), as
can be seen from Table VII. The difficuily experienced in
determining the electron spin g-factors has made it doubly

important to assess Curl's relationship. In the study of short-
Tived polyatomic free radicals in the gas phase by magnetic resonance
techniques, it is rare that the data are sufficient to determine the
molecular Zeeman parameters independently (see, for example (12) and
(14)). In this case, it becomes vital to have an alternative way
of estimating these g-factors. It would appear that Curl's
relationship Eq. (4.8) is reliable for this purpose, at least for
molecules containing elements in the first and second rows of the
Periodic Table. Curl established his relationship in terms of
second-order perturbation contributions to 908 and £u8° neglecting
the first-order contribution in each case on the grounds that it
was much smaller in magnitude. Watson (38) has recently shown
that, even for these first-order contributions, Curl's relationship
holds well, that is to the order Ofcg where o 1s the fine structure
constant., However, if heavier elements are involved, a breakdown
in Curl's relationship is anticipated since third and higher-order
perturbation contributions involving the spin-orbit interaction can
become significant. There are some suggestions that this situation
is reached when heavier elements are contained in the molecule; for
example in S, (39) and Se0 (40).

The magnitude of the quartic spin-rotation parameters determined
in the course of the analysis has been commented upon in section
4(II) b . The approximate formula (4.5) appears to underestimate
the size of these parameters in all cases; 1in the case of NOZ it
is reliable to about 30 per cent. The size of the rotational
g-factors can be compared with the values calculated from the
appropriate relationship derived by Barnes et al (2) and quoted in
section 4 (IT) a, Eq. (4.4). The value for r was taken to be an
average of the values for the two oxygen and nitrogen atoms contained
in the molecule whence:
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0
Tof(g) = -.00083 .
T, (g) =-0.15x10
r
Tzo(gr) = -.00117

These numbers do not agree well with those determined in
the fit. This 1is probably due to the latter being used by the
program to take up small discrepancies in the zero field
frequencies, high~lighting again the need for a good set of zero
field parameters.
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CHAPTER 5.

THE OBSERVATION OF MAGNETIC DIPOLE TRANSITIONS IN izﬂ SeH BY
LASER MAGNETIC RESONANCE SPECTROSCOPY.

5 (I) = Introduction

Selenium hydride has an inverted 2H ground electronic state
which is well described in terms of Hunds' case (a) functions (1).
Under these circumstances, the projections of the electronic
orbital (A) and spin () angular momenta and their sum (Q) along
the internuclear axis are all well defined. For a °T molecule,
the possible values of |a] are 3/2 and 1/2 and these are associated
with the fine structure states 2H3/2 and ZH?/Z. The separation
between these states is primarily determined by the spin orbit and
rotational constants appearing in the effective Hamiltonian
describing the ground electronic state of the molecule.

Recent analysis of the electronic emission spectrum
(ézz - i2n} of SeH (2, 3) has resulted in much improved values for
the major molecular constants. Using these results it is possible
to predict that in SeH the fine structure states are separated by
approximately 1780 cm"?; a frequency which Ties within the operating
range of a CO gas discharge laser. Fig (1) is a diagram showing the
Tower rotational Tevels associated with each fine structure state.
This chapter describes the observation of transitions which occur
between the rotational levels of the two fine structure states by
the technique of laser magnetic resonance spectroscopy and the
subsequent analysis of the spectrum in conjunction with previously
reported £E.P.R. data (4). Electric dipole transitions between the
components of a 2ﬂ electronic state are forbidden in a case (a)
representation and the observation of the spectrum relied upon the
interaction of the molecules’ magnetic dipole moment with the laser
radiation. Aspects of the intensity of electric and magnetic
dipole transitions between the states in question are discussed in
section 5 (II1) b,
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Figure 1., Relative energy level diagram showing the
fower rotational levels associated with the two fine
structure compornents of the %ZH state of SeH.
Lambda-doubling has been omitted for reasons of clarity.
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This chapter is divided into three main sections; the
experimental techniques are described immediately following this
section and a summary of the theoretical background is presented
in section III. The results are discussed in the Tast section
of the chapter; as a result of the analysis of the L.M.R. and
E.P.R. spectra it has proved possible to determine refined values
for several of the major parameters appearing in the effective
molecular Hamiltonian. High resolution spectroscopic studies
of molecules containing heavy atoms such as selenium are of
interest because the large spin orbit effects associated with them
test-the validity of some of the assumptions involved in the
derivation of the effective Hamiltonian for the 1 electronic state
(5, 6, 7). Some discussion of this aspect of the analysis is
included in sections 5 (IIl) and 5 (IV).

5 (II) Experimental Details.

The spectra were recorded using the CO L.M.R. spectrometer
described by Brown et al (8). The laser beam is directed through
an absorption cell which is situated between the pole-faces of a
Varian 15" magnet and focussed on to a gold-doped germanium detector
which operates at liquid nitrogen temperatures. The laser is a
modified Edinburgh Instruments PL3 instrument. The gain tube
operating temperature may now be varied between 00 and -1000 centi-
grade; this greatly increases the number of accessible Tines on
which the laser may be made to oscillate and, generally, the Tower
operating temperatures provide greater gain and therefore larger
cutput powers at a given frequency. There is a drawback to this
tow temperature operation in that the laser may oscillate at several,
closely spaced frequencies,at one time. This process is known as
multilining and the problem may be partially overcome by the use of a
higher dispersion grating. However this is not a complete solution
and the presence of several different laser frequencies can cause

complication of the observed spectrum.
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The magnetic field is modulated at a frequency of around
25 kHz by means of a pair of copper Helmholtz coils mounted between
the pole faces of the electromagnet and the sides of the absorption
cell and the molecular species of interest generated in a continuous
flow system in the centre of the field gap. A spectrum is obtained
by sweeping the magnetic field while operating at a fixed laser
frequency and detecting the absorption Tines by means of conventional
lock-in amplification.

The absorption cell itself is constructed of glass with
calcium fluoride windows to minimise unwanted absorption of the
infra-red radiation. Two entry and one (pumped) exit ports allow
various mixtures of reactants to be used to generate the transient
species to be studied. Selenium hydride radicals were generated
by the reaction of the products of a microwave discharge in water
vapour with selenium metal powder which was glued to the sides of
the absorption cell using a rubber based adhesive. Optimum water
vapour pressure was about one torr and under these circumstances
the metal sample lasted for about half a day. The spectra were also
detected when fluorine atoms, from a microwave discharge in CF4, were
reacted with HZSe in the absorption cell. The signal to noise ratio
was not high, typically less than 25:1 even with a 3s output time
constant.

In the normal configuration of the system, the electric vector
of the laser radiation and the space-fixed z direction, as defined
by the applied magnetic field, are perpendicular. For reasons
discussed in section 5 (III}, the observation of particular types of
transition in the SeH radical requires the two to be parallel to one
another. Rotation of the plane of polarisation of the laser
radiation through 90° was achieved by the use of three Fresnel
rhombs made of calcium fluoride and mounted back to back.  The use
of this optical device enabled the observation of both aAM = 0 and
AM = +1 transitions.  The advantage of the use of the rhombs over
the more conventional mirror arrangement is that the rotation of the
plane of polarisation is performed without moving the beam more than
a few millimeters off axis so avoiding the re-aligning of both the
absorption cell and the detector.
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Under the conditions of the experiment, the spectral
Tinewidth was determined by the Doppler spread in the velocities
of the SeH radicals. At 300K and 1780cm~! the Doppler Tine width
is estimated to be approximately 50 MHz. Individual Tines may
appear wider than others on the spectrum however, because different
transitions tune at different rates in the magnetic field. Some
discussion of these aspects of the experiment is included in
section b (III) c¢. The magnetic fields were measured with an
A.E.G. proton fluxmeter and are estimated to be accurate to within
+10G.

5 (IIT) Theoretical Background.

5 (II1) a The effective Hamiltonian for a “Tmolecule.

The problems encountered in the derivation of a spectro-
scopically useful effective Hamiltonian for a 1 molecule have been
discussed at length by a number of authors (References 5 to 11)
and in this short section, no attempt is made to justify either the
form or content of the Hamiltonian operator in any detail. An
effective Hamiltonian for the selenium hydride radical which is
adeguate to reproduce the experimental data is given by:

H = H +H

eff SO rot + H + H

ca *Hgp FH g+ A

cdLD + Hz (5.1)

where Hsc represents the spin orbit coupling energy and H and Hcd

the rotational energy and its centrifugal distortion carrggiion
respectively. Hsr is the electron spin-rotation interaction which,
for the present application, makes a contribution to the molecular
energy levels which is indistinguishable from that of the centrifugal
distortion correction to the spin orbit coupling energy (12). HLD
and HchD represent the Tambda doubling energy correction and the
corresponding centrifugal distortion term. Finally HZ represents
the interaction of the molecule with an externally applied magnetic

field.  The operator forms for the various terms in (5.1) were taken
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from Brown et al (9). The Hamiltonian makes no reference to
hyperfine effects; they are not expected to be resolved since
the hyperfine splitting in SeH is less than the experimental
Tinewidth.

Discussion in this section is Timited to the lambda doubling
and Zeeman contributions to the effective Hamiltonian. These
effect minor perturbations to the crude energy level diagram given
in Fig. (1); the form of the diagram is determined by the spin
orbit and rotational contributions to the Hamiltonian.

To a first approximation, the levels associated with each fine
structure component in a 2y electronic state are orbitally doubly
degenerate.  However spin orbit and rotational mixing of higher
electronic states 1ifts this degeneracy with the result that each
Tevel in Fig. (1) should be shown as a closely spaced doublet.

This phenomenon is known as Tambda type doubling and is discussed

by Mulliken and Christy (10) and Brown et al (9). In the case of
SeH in its izﬂ, the major contaminating state is probably the

A% state which lies approximately 30900 em™! to higher energy (13).
Mulliken and Christy derived expressions for the Tambda doubling
parameters appearing in the effective Hamiltonian by the use of
second order perturbation theory on the assumption that contamination
is by ’L states only; however the lambda doubling parameters
determined in the fit include second and higher order contributions
from all the excited electronic states of the molecule connected to
the ground state by the spin orbit and rotational terms in the
complete molecular Hamiltonian. The higher order contributions are
expected to be significant in SeH where the spin orbit constant, A,
is large. To obtain a satisfactory fit to the experimental data,

it was found necessary to include the (two) terms in the Hamiltonian
describing the centrifugal distortion correction to the lambda doubling
energy. The origins of these terms has been discussed by Brown et al
(9) and Mizushima (11) and will not be elaborated upon here.  Although
the inclusion of the parameters D_ and Dq describing this effect was
required before an adequate fit to the data could be performed, the
data were not sufficient to determine them unambiguously and they
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in the usual rotation, s is only included in the case of I
electronic states and is even or odd according to the symmetry

( ¥ or £~ ) of the state in question. The matrix for a
particular value of J in the absence of a magnetic field is then
of order 2 x 2 with only the basis functions:

Inlals J MJ o =3/2] 5 +> and |n|Ar]s JMJ]Q = 7/2];i>

involved. As 1in the case of the eigenvalue problem for asymmetric
top molecules (discussed in chapter 2) the matrix is strictly
infinite when the Zeeman Hamiltonian is included in the model.
However truncation of the matrix at AJ = #2 produced no significant
errors in the calculation of the energy of the rotational Tevels
included in the data.

5 (IIT) b. Transition intensity considerations.

In the introductory section of this chapter it was asserted
that the observation of transitions between the fine structure
states in X' SeH is dependent upon magnetic dipole intensity.

It is wunusual in L.M.R. spectroscopy to detect magnetic dipole
transitions since, in general, they are expected to be approximately
10% times weaker than the corresponding electric dipole transitions
when the molecule has an electric dipole moment of the order of one
Debye (7). 1In order to understand how, in this particular case,
the magnetic dipole transitions between the fine structure states
are actually more easily observed than the corresponding electric
dipole ones, it is necessary to examine the matrix elements of both
the electric and magnetic dipole moment operators between the

molecular eigenstates in question.

The fine structure components ZH]/Z 2H 3/, are represented
by eigenfunctions of the effective molecular Hamiltonian (5.1) for
the “n electronic state, which are in turn expressed as linear
combinations of case (a) basis functions | nA; SI; JQM]>. In
the case of izﬂ SeH, the guantum number Q is very nearWquood and
to this approximation the intensity of the transition between the
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It is evident that magnetic dipole transitions between states
differing in @ are fully allowed. This resuit must be compared

with the analogous one for the electric dipole moment operator
Has

= T (» (5.6)

interacting with the electric vector of the applied radiation:

(Intensity) o O

N Vo v " 1 2
|<nk 3 Sz 5 Ja MJ Il,l_e T(E)| nns Sz; JQMJ>S (5.7)

which may be evaluated to give:

1
(Intensity)

2
o
e

p RV
MJ p M

XZ[(za’m(zamﬁ I

<nfTg ()] > (5.8)
q )
- q Q

Since the dipole moment (Be) Ties along the internuclear axis the
only non-zero component of the first rank spherical tensor 7! (u)
is Té (u)s consequently electric dipole transitions between states
differing in @ are rigorously forbidden in a pure case (a)
representation.
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The above results hold so Tong as |@| is a good quantum
number, that is, while the eigenfunctions of the effective
Hamiltonian are accurately represented by single case (a)
functions. However, there are terms in the rotational
Hamiltonian which connect the |o] = 3 and 3/2 states for a
given value of J; the true eigenfunctions are thus Tinear
combinations of case (a) basis functions of different o and
therefore electric dipole transitions between the two components
of a I state are not completely forbidden. The rotational
mixing of states of different|n| can also be expected to modify
the magnetic dipole transition intensities slightly.

A computer program has been developed (17) to calculate
the relative intensities of both magnetic and electric dipole
transitions between the fine structure components in X T SeH.
Reference to the energy level diagram (Fig. 1) and Equations
(5.5) and (5.8) suggests that we can expect transitions with
Ad = -1, 0 and + 1; these are labelled P, Q and R branches
respectively. Table (1) shows the computed ratios of electric
to magnetic dipole intensities for P and R branch Tines in the

an 2y transition in SeH.  The calculations neglect the

3 3/

e
effects of A-doubling and the rotational mixing is estimated
from the values of the spin orbit and rotational constants for

the molecule.

J R-Branch P-Branch

3/2 5.44 x 107¢ 5.45 x 1072

5/2 5.43 5.44

7/2 5.43 5.44

9/2 5.42 5.43

11/2 5.41 5.43

13/2 5.39 5.42

15/2 5.38 5.417

17/2 5.36 5.39

19/2 5.35 5.38
21772 5.33 5.36
23/2 5.31 5.35

Table 1. Computed ratios of electric_to magngtic dipole intensities

for the Tow J lines in the "} - "1 3% spectrum of SeH.
The corresgonding ratio for all Q-branch lines is

5.45 x 107¢ (see text)
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The dipole moment of SeH was taken to be 0.49 Debye (18). It

can be seen that in all cases, the magnetic dipole intensity

is approximately twenty times the electric dipole intensity.

The ratio of the electric to magnetic dipole intensity for Q
branch lines is independent of the quantum number J.  This result
is discussed in Ref. (17), the ratio is equal to (uB /ugh)*

The entries in Table 1 imply that the observed spectrum is
of the magnetic dipole type.With the given signal-to-noise
it is very unlikely that even the strongest electric dipole
transitions could be observed. The transitions observed in the
experiment described in thischapter are between individual (MJ)
components of a given rotational level, however the same ratio of
electric to magnetic dipole intensity is to be expected.

5 (IIT) ¢ Tuning rates and spectrum isotope structure.

The successful observation of a L.M.R. spectrum depends upon
the tuning of the molecular transition into co-incidence with the
fixed Taser frequency by means of a variable magnetic field. The
behaviour of the molecular energy levels in the presence of an
external magnetic field is described by the Zeeman terms in the
effective Hamiltonian (5.1) and the rate at which a transition
frequency tunes with applied field is given by the difference in
the rates at which the levels connected by the transition tune.
The dominant terms in the Zeeman Hamiltonian for “T molecule derive
from the interaction of the electronic spin and orbital angular
momenta with the magnetic field. Explicitly these are :

(see for exampie Ref. (9))

where B is the flux density. The diagonal matrix element in a
case (a) representation is given by :
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“BBO MJ Q1 9 z + g A } (5.10)
J (d+1)

and this gives us the first order contribution to the energy of

a rotational level associated with the case (a) quantum numbers
discussed previously. If we assume that 9, = 2.0 and g, = 1.0

then for the 2mb component, there is no contribution from the
Zeeman Hamiltonian (5.9) to the energy of a rotational level

because gz + g A= 0. There will of course be some contribution
to the energy of these levels derived from the rotational mixing of
ZH%Z character discussed in the previous sub-section and from other
terms in the full effective Zeeman Hamiltonian for the °I state
discussed by Brown et al (9). These however represent small
perturbations to the molecular energy levels and the form of the
observed spectrum can be readily understood in terms of the Zeeman
effect in the Znié manifold. Figure 2 shows the energy levels
associated with the J = 3/, rotational level for the two fine structure
components in SeH, and it is evident that nearly all tuning occurs
in the “13, manifold as predicted by Eq. (5.10). Using Eq. (5.10)
we can construct a table of relative tuning rates for transitions
from various MJ components of low rotational levels associated with
the @ = 3/p component.  This is shown in Table II. As might be
predicted from (5.10) the fastest tuning transitions for a given J

arise from the largest magnitude M, components.

J

; )MJ{ 1/2 3/2 5/2 7/2 9/2 11/2
3/2 0.56 1.68
5/2 0.24 0.72 1.20
7/2 0.13 0.40 0.67 0.93
9/2 0.08 0.25 0.42 0.59 0.76
11/2 0.06 0.18 0.32 0.45 0.57 0.70

Table II. Tuning rates (in MHz /G) for transitions from garious
MJ components of Tow rotational Tevels in the 13,
component. Calculated using Eq, (5.10) z
assuming no Zeeman shifts in the anﬁ manifold
and ug = 1.3996 MHz/G
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Figure 2.  The energy levels of the J = 3/2 rotational
state of SeH as a function of magnetic field. The
lambda doubling in the 2H3/2 (Fy) component is too small
to be shown on the diagram.
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Selenjum has four main naturally occurring isotopes viz.
7%se (9%), ®se (24%), °%Se (50%) and %%Se (9%) and the
observed spectrum is expected to show evidence of transitions
occurring in molecules containing these different mass nuclei.
The case of (Q-branch (AJ = Q) transitions is discussed in detail;
similar but not identical results apply for the P- and R- branches
of the spectrum.  The Q-branch frequencies between the fine
structure components in SeH may be approximated by the formula:

v (9) = - (A-2B) - 28"+ 3)" - T3 (5.12)

A

+ (small correction terms)

in zero field where A is the spin orbit coupling constant and B

the rotational constant. For X°T SeH the spin orbit constant is
much larger than the rotational constant and the second term in
(5.12) represents only a minor J-dependant perturbation to the
frequency -(A-2B). In the present case, the spin orbit constant

is negative and since, for the two most abundant isotopes, B(7B)> B<80)
the Q-branch spectrum is predicted to consist of closely spaced
doublets the Tower frequency component being approximately double the
intensity of the other due to the relative isotope abundances.
Calculation of the relative sizes of the rotational constants for
78$eH.and 8OSeH suggests a separation between the doublet components
of approximately 150 MHz so that this isotope splitting is predicted
to be an observable feature of the spectrum; the Doppler Tinewidth
being approximately 1/3 of this value.

The situation in the case of a swept field - fixed frequency
experiment is more complicated but in the end more revealing. The
possible situations are summarised in Figure 3. Depending on
whether the molecular frequency (vm) is above or below the laser
frequency (v}), the 1ine associated with the more abundant 80ge
containing molecules lies to lower or higher magnetic field
respectively. In frequency terms the separation between the lines
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Figure 3. Spectrum isotope structure in a swept field -
fixed frequency experiment.  The possibilities are

a) vy < when the line associated with molecules
containing the 805 isotope is cbserved at Tower magnetic
field and b) vy v where gge Tower field line is associated
with those containing the Se isotope. The effects are

exaggerated for clarity.
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associated with molecules containing the two more abundant

selenium isotopes is always approximately 150 MHz.  However

in a swept field experiment their separation in gauss will

depend on the tuning rate associated with the particular transition.
In principle then, the isotope structure of a given line in the
L.M.R. spectrum gives information on both the sign and magnitude

of the tuning rate of the molecular transition, giving rise to the
absorption.  This information can then be compared with the

entries in Table II and analysis of the spectrum is made considerably

easier.

5 (IV) Results and Discussion.

Magnetic dipole transitions between the fine structure components
of the X°T state of SeH have been observed at a frequency of around
1780 cm"g. Typical transitions within the Q(3/2) branch are shown
in Figure 2 and a portion of the observed spectrum showing clearly
the isotope structure predicted in the previous section is reproduced
in Figure 4. A11 Tines observed were assigned to belong to the
Q-branch of the spectrum and although Tow J P-branch transitions
of AMJ = +1 polarisation are predicted to be both equally intense
and have favourable tuning rates, extensive searches failed to
reveal any trace of them. This failure is probably due to the
sparser nature of the P-branch region of the spectrum; however
calculations suggested close coincidence between the P(5/2) spectrum
and the 1742 cm™! Taser frequencies and it is unfortunate that no
spectra were observed in this region. The observed Tine positions
are quoted in Table III together with their gquantum number
assignments.  They were combined with the previously observed (4)
E.P.R. data (also quoted in Table III) in a Teast squares fit to
the parameters appearing in the effective Hamiltonian (5.1).

The complete data set Tisted in Table III was insufficient to
determine all the parameters appearing in the effective Hamiltonian
for a “m state, and some approximations were necessary in order to
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extract the maximum number of parameters reliably. Although

the rotational constant could be determinied from the second

order Zeeman shifts in the E.P.R. data both it and the quartic

centrifugal distortion constant (D) were better determined 1in

the analysis of the electronic emission data performed by

Bollmark et al (2) and were constrained at their values in the

final analysis. Similarly, the value adopted for vy, the spin

rotation coupling constant, was calculated from the value for AD

(the centrifugal distortion correction to A) determined by the

previous authors using the formula derived by Brown and Watson (12).
The fit of the data shown in Table III was obtained by allowing

the va?ues of A, pt+2q, q, gL', 9p, and 97' to vary. Dy o and Dy

and g$ and gy were fixed at values predicted by the formulae derived

by Veseth (14) and Brown et al (9) using second order perturbation

theory suitably corrected to include the dominant third order

contributions discussed below. It should be emphasised that fits

of similar quality to the one shown could be obtained by allowing

other combinations of g-factors to vary, however the value for the

spin anisotropy g-factor, g, was particularly poorly determined

{ie. highly correlated with other parameters) by the data. The

data was also sensitive to the sum of gi (the effective‘orbitai

g-factor) and 9 (the effective spin g-factor) only; consequently

the two could not be separately determined in the fit.

For SeH the largest third order contributions to the effective
Zeeman Hamiltonian arise from terms which include the spin-orbit
operator twice that is of the form Hso X HSO X Hz‘ These yield

contributions to the values of gg, g. and 94 in the effective

s
Hamiltonian which may be evaluated if we make the approximation that

~2 s .
only the A"z state significantly contaminates the ground state.

They are
1 2 \
o = o'V - (g -9 (5.13)a
2
2
o = oV +a® (g - g (5.13)b
9 = g2 4,2 (9 - 9) (5.13)c
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given by Brown et al (9), the third order contribution (5.13)c is
negligible in this case. However the values for the parameters
appearing in the zero field effective Hamiltonian, ie. A, p and g
are comparatively insensitive to the values of the g-factors and
can thus be accepted with some confidence. The observation of

a P-branch transiticn would allow a better estimate of the
rotational constant and the smaller g-factors, however the former
should be available in the near future from analysis of the far
infra-red L.M.R. spectrum recently obtained by Davies et al (20).
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