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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

Aspects of Free Radical Spectroscopy 

by Trevor John Sears.

Techniques for the computer solution to the eigenvalue problem for 
the effective Hamiltonian describing the rotational levels of 
asymmetric top free radicals in the presence of an external magnetic 
field are presented. They are used to perform the analysis of 
experimentally observed data for the HOg radical and derive refined 
values for the major parameters appearing in the effective 
Hamiltonian describing the ground state of the molecule.

The detailed form of the effective spin-rotation Hamiltonian 
including its centrifugal distortion correction for an asymmetric 
top free radical is derived and a form suitable for the empirical 
fitting of experimentally observed spectra is discussed. It 
is shown that for molecules of lower than orthorhombic symmetry 
there are fewer determinable quadratic spin-rotation parameters 
than have been used previously. Similar indeterminacies exist 
among the quartic terms and the case of a molecule of orthorhombic 
symmetry is discussed in detail. The results are applied to the 
available experimental data on the spin-rotation splittings of 
the HOg, NHp and NOp radicals in their ground vibronic states.
The observation of magnetic dipole transitions between the fine 

structure states of X n SeH by laser magnetic resonance spectros­
copy is described. The.spectra are analysed in terms of the 
effective Hamiltonian for a electronic state and refined values 
for several of the major molecular parameters determined.
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CHAPTER 1.

INTRODUCTION

Free radicals play an important role in our understanding 
of chemical reaction kinetics and mechanisms and their presence 
is frequently invoked in order to explain and predict the paths 
of reactions occurring in both gas and liquid phases. The 
understanding of the geometric shape and electronic structure of 
this class of molecule is therefore very important. By their 
very nature, free radicals are short-lived and highly reactive 
species and it is only really over the past twenty years that 
sufficiently sensitive experimental techniques have been developed 
and direct spectroscopic identification of such molecules become 
possible.

The study of short-lived paramagnetic molecules by gas phase 
magnetic resonance spectroscopy is now a well established technique. 
The early work (see, for example Refs. (2) to (^)) Was performed at 
microwave frequencies. However there is a considerable increase in 
the sensitivity of the technique with increased operating frequency 
and the development of laser sources, especially in the far infra-red 
and sub-millimetre regions of the spectrum, has resulted in the 
observation of rotational spectra of molecular species whose E.P.R. 
spectra had proved elusive or which were at best poorly characterised. 
Prime examples are HOg (6, 7, ^), HCO (9), NHp (lOJ and PHp (H). 
More recently still, vibrational magnetic resonance transitions in 
some of the better known free radicals have been detected using infra­
red COg and CO gas discharge lasers (T2, t3).

As more high resolution spectral information concerning short­
lived free radicals has become available, our understanding of the 
interactions between the constituent electrons and nuclei has increased. 
Complete analyses of the observed spectra are now usually performed 
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using a large computer and the spectral line positions statistic­
ally related to parameters appearing in the effective Ha^nltonian 
for the molecule in the state in question. Chapter 2 briefly 
reviews the current state of this type of analysis and presents 
some approaches towards the solution of the problems encountered 
in the analysis in terms of the effective Hamiltonian model. The 
techniques described are illustrated in the analysis of the 
available high resolution spectra of the HOk radical.

Chapter 3 deals specifically with the spin-rotation terms in 
the effective Hamiltonian and the form of the quadratic and quartic 
terms to be used in the analysis of asymmetric top spectra are 
derived. The results are applied to the analysis of the spectra 
of HO2, NHg and NOp in Chapter 4.

Departing from asymmetric top free radicals. Chapter 5 describes 
the observation and subsequent analysis of magnetic dipole transitions 
between the fine structure components of the ground (X^n) state of the 
SeH radical. Refined values for several of the major constants 
appearing in the effective Hamiltonian for a ^n molecule are derived 
and some comment on the theoretical significance of the numbers is 
included in terms of third order contributions to the effective 
Hamiltonian.
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CHAPTER 2.

THE CALCULATION OF THE ROTATIONAL ENERGY LEVELS OF ASYMMETRIC 
TOP FREE RADICALS.

2 (I) Introduction

With present day wide availability of very powerful computers 
such as the CDC 7600 or IBM 360/195, it is possible to attempt far 
more sophisticated analyses of experimentally observed spectra 
than would have been contemplated even five years ago. This 
chapter outlines two programs developed and tested over the past 
two years, which interpret the observed spectra in terms of an 
effective molecular Hamiltonian. The Hamiltonian, which is 
considered in more detail in the next section and in Chapter 3, 
contains a finite number of molecular constants to be determined 
from the experimental data. It is the aim of the analysis to 
determine these constants, or parameters, such that the eigenvalues 
of the Hamiltonian and the molecular energy levels, as defined by the 
observed spectra coincide.

The programs referred to above represent two different approaches 
to the analysis problem, and they are considered in detail in 
sections (IV) and (V) of this Chapter respectively. The results 
of their application to the analysis of the available high resolution 
spectra of the HOg radical are presented in section (VI). We 
begin however, in section (II) by outlining the problem more fully 
and reviewing the standard least squares methods, used in the data 
reduction, which are common to both programs. Section (III) 
contains a discussion of general programming and efficiency aspects 
which are, in the main, again applicable to the approaches repres­
ented by both programs.
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2 (II) Outline of the Problem.

2 (II) a. Introduction

The position of the lines in a gas phase magnetic resonance 
spectrum of a free radical, contain, in principle, large amounts 
of information concerning the molecule's structure and its 
electronic states. The analysis of such a spectrum in terms of 
an effective molecular Hamiltonian aims to extract as much of 
this information as possible. In this type of analysis, the 
molecular energy levels, as inferred from the line positions, are 
identified with the eigenvalues of an effective Hamiltonian 
operator for the molecule in the (usually) vibronic state in question. 
The form of the Hamiltonian is derived making only physically 
acceptable assumptions regarding the molecule's geometry and the 
interactions between the individual particles from which it is 
constituted. The Hamiltonian then contains a number of empirical 
molecular constants which, when determined, will provide information 
concerning the detailed structure of the molecule.

The derivation of a suitable Hamiltonian is beyond the scope 
of this chapter, but the theory is well developed (2^ 2^ 2) 
some aspects are considered in Chapter 3. The essential property 
of the effective Hamiltonian is that its eigenstates span a single 
vibronic state of the molecule, which, for most problems considered, 
is the lowest, i.e. ground, state. For the purposes of this chapter 
it will be adequate to consider the Hamiltonian as a sum of operator 
terms, each identified with a specific contribution to the energy of 
the molecule, thus we write: 

when H^^^ and H^^ describe the rotational energy and the centrifugal 
distortion correction to it and H^^ and H^^^j the spin rotation 
interaction and its centrifugal distortion correction. H,^^ and
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Hg account for the small corrections to the molecular energy 
levels necessary when one or more of the nuclej in the molecule 
have non-zero spin; the former represents the electron-nuclear 
spin-spin interactions and the latter the electric quadrupole 
interaction between a nucleus with spin greater than ^ and the 
electric field created by the other charged particles within the 
molecule. H describes the Interaction between the molecule and 
an external magnetic field which is an essential feature of 
magnetic resonance experiments. Each individual term in (2.1) 
is composed of a product of operators representing the different 
angular momenta possessed by the isolated molecule, and the 
appropriate molecular parameters.

We wish to calculate the eigenvalues and eigenvectors of this 
Hamiltonian and the problem may be written:

Hg^^ = E ^ (2.2)

in the usual notation. The standard method of solution, and the 
one to which this chapter is devoted, is numerical. The eigen­
functions are approximated by a linear combination of basis functions 
and the Hamiltonian matrix is constructed numerically in this basis 
then diagonalised using an electronic computer. The elements of 
the diagonalised matrix then represent the eigenvalues of the 
Hamiltonian and the transformation generating the diagonalised 
matrix yields the linear combinations of the basis vectors which 
constitute the eigenfunctions.

For the problems considered in this chapter, that is specifically 
asymmetric top molecules, the most convenient rotational basis 
functions are eigenfunctions of the total rotational angular 

2 operator N and its space-and molecule-fixed z components, the so- 
called symmetric top basis functions |N K M >. The molecules of 
particular interest here possess an unpaired electron and we must 
take into account effects of spin angular momentum; this is 
represented by the spin angular momentum operator S and a convenient 
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basis set is one in which the electron spin angular momentum 
is coupled to the molecular rotational angular momentum to produce 
a resultant J. These basis functions are described by the ket 
|NKSJMj>. Similarly we must include nuclear spin angular momentum 
when the molecule possesses a nucleus with non-zero spin. The basis 
functions referred to most often in this chapter are the fully 
coupled |NKSJIFMp>, when the nuclear spin I is assumed to be coupled 
to the resultant of N and $ to give a resultant F = J f I^ and the 
I-decoupled basis set |NKSJMjIM2>. The two are discussed in 
more detail in later sections and matrix elements of the Hamiltonian 
in both bases are quoted in the literature, (_3, ]8^ J9, ^).

It is important to realise that the eigenvalues of the 
Hamiltonian do not depend on the basis set used in the calculation 
indeed in many ways the advent of high speed computers has 
eliminated the necessity for a careful choice of basis functions 
because the differences in time needed to diagonalise the Hamiltonian 
matrix set up in various different basis sets are minimal. In this 
case it is more efficient to choose a basis representation whose 
matrix elements are the simplest and easiest to set up.

The computer programs developed use an iterative procedure to 
find the 'best fit' molecular constants for the effective Hamiltonian. 
An initial set of molecular constants is employed and the matrix 
representation of the Hamiltonian is diagonalised giving eigenvalues, 
or calculated energy levels. From differences between the upper 
and lower state energy levels, calculated frequencies are obtained. 
Discrepancies between the observed and calculated frequencies, or 
in the case of magnetic resonance type experiments, fields, are 
inserted into a least squares fit to find corrections to the 
previous choice of molecular constants. With the new set of 
molecular constants, the Hamiltonian is rediagonalised. The 
iteration process continues to convergence, giving a set of constants 
for the particular model Hamiltonian which best reproduce the 
observed data.
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2 (II) b Least squares procedure

The least squares method of analysis described in this 
chapter is based on techniques described elsewhere (4), (5) and only 
a brief outline is presented here. The 'best' values of the 
Hamiltonian parameters are those for which the observed and 
calculated spectra are most nearly identical. We can quantify 
this in the case of a magnetic resonance spectrum by requiring 
that the sum of the squared residuals in the observed fields, 
that is:

=cilc) 2

be minimum, implying

calc

(2.3)

.th

Where n is the number 
Hamiltonian parameter 
observed line occurs.

of lines observed, p. refers to 
and is the field at which

the
the

We assume that for small changes in
the parameters, Apr, 
transition fields,

linear changes occur in the calculated

^calc' so that we may write:

AB calc (2.4)

We would like to find changes in the parameters such that the 
calculated and observed line positions are brought into coincidence.
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The problem may be expressed in matrix form:

D A = X (2.5)

where D is a matrix of derivatives (^B^g^^/9pj), A is a vector 

of corrections to parameters and X a vector of residuals in the 
fields. Since we have many more independent transition fields 
than parameters to be fitted the set of equations is over 
determined. If A is the vector of corrections to the parameters 
which minimises thesquered derivatives in the fields, it may be 
shown (4) to be given by:

A T T
A = (o'. D ) . . X (2.6)

and the variance-co-variance matrix, related to the correlation
matrix of the estimated parameters is given by:

: = 0 ^ (D^ . D ) " (2.7)

where 5 is the estimated standard deviation of the variances in 
the field measurements, given by:

2

(X - D a)T (X - D A) (2.8)
n - m ' '

m being the number of parameters to be fitted. The approximation.
represented by Eq. (2.4), that small changes in the Hamiltonian 
parameters produce proportional changes in the calculated fields, is 
not strictly adhered to in practice, and the calculation proceeds by 
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repeating steps (2.6) to (2.8) with the corrected parameters 
until successive values of the estimated standard deviation o 
of the fit are identical to within the estimated accuracy of an 
individual measurement, or until successive changes to the parameters 
are smaller than their respective uncertainties.

The remaining problem in the analysis as outlined above is 
the efficient calculation of the (nxm) matrix of derivatives of 
the calculated fields with respect to the parameters (D). This 
may be performed by simply incrementing each parameter in turn by 
a 'small' amount and repeating the eigenvalue calculations for the 
levels involved in each transition with these new parameter values, 
then calculating the derivatives by subtraction and division. It is 
apparent that this would be a very tedious calculation and even on 
a fast computer, the time taken for this type of calculation becomes 
prohibitively long. A more efficient calculation of the derivatives 
may be performed using a modification of the method originally due 
to Castellano and Bothner-By (5). We first relate the derivatives 
of the calculated fields to the transition frequencies by the 
implicit function theorem

(2.9)

(a\H/9B^)p. is simply the rate at which the transition tunes in 
the magnetic field and may be calculated by linear interpolation 
between points a few gauss either side of the observed field. 
The calculation of a tuning rate is required in any case to provide 
an estimate of the calculated field at which the transition occurs. 
(av^/Sp.) is related to the derivatives of the eigenvalues of the 
states involved in the transition (A^^? and A^l^ say) by:
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Sv ^ dA (i) 
a 3A (i) 

6 (2.10)

The derivatives of the eigenvalues with respect to the parameters 
can be estimated from the relationship (5^:

1 { s ( 3H ) S } (2.n) 

when S is the matrix of the eigenvector coefficients, that is the 
transformation relating the eigenstate involved in the transition 
to a linear combination of the basis states, and is 
the derivative of the Hamiltonian matrix in the basis representation 
with respect to the j^^ parameter which is straightforward to 

calculate. Evaluation of the derivatives matrix D using Eqs. (2.9) 
to (2.11) is very much more efficient than a calculation based on 
incrementation of both parameters and fields. Analysis of spectra 
obtained at zero field is simpler since, in this case, there is no 
need to calculate the tuning rates (3v./ SB.) since we observe 
energy, ie. frequency, differences between molecular energy levels 
directly.

For a well constrained problem, it was usually found that the 
standard deviation of the fit o converged to within the estimated 
accuracy of the field measurements, usually better than one gauss, 
in two or three cycles. The final best fit parameters are then 
used to make a best fit spectrum prediction.

Slight modifications are necessary to Eqs. (2.6) to (2.8) when 
the data are known to be of unequal precision, these equations then 
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take the form : (4)

A = (CF. M--. D ) X (2.6b)

6 = a^ (O"^. M"^ D )-^ (2.7b)

o^ = 1 (X - D A)^ (X - D A) (2.8b) 

n-m

where M is a known diagonal weight matrix whose non-zero elements 
2 2 are ratios of variances /o of the measurements errors.

Both programs considered in detail in later sections make use 
of the weighted formulations (2.6b) - (2.8b) and hence data of 
unequal precision may be fitted simultaneously. The matrix 
inversions necessary in the solution of these equations are carried 
out using N.A.G. library routines available as a standard package 
on the computer systems used.

2 (III) Efficient solution of the eigenvalue problem.

2 (III) a 2!ltroductjoji

Advances in computer hardware have meant that efficiency 
considerations in programming do not assume the over-riding 
importance that they once held. However, in attempting to perform 
sophisticated analyses of large amounts of high resolution data, 
one can rapidly reach limitations imposed by computer time budgets; 
therefore it is still very worthwhile to attack the problem as 
efficiently as is reasonably possible.

In the last section, we touched on this subject while discussing 
the methods available for the calculation of the derivatives matrix 
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necessary in the least squares treatment of the data and 
calculation of the best fit molecular constants. This section 
is devoted to a general outline of the methods employed for 
setting up and obtaining solutions to the eigenvalue problem for the 
Hamhltonian (2.1) on an electronic computer in the most efficient 
way.

2 (III) b Rotational BasisJ[ur^^

The construction and diagonalisation of the Hamiltonian matrix 
are processes repeated many times during a full analysis calculation 
and a^ always the most time consuming par^of the calculation. 
Sections (IV) and (V) of this chapter discuss specific approaches 
to the problem; the discussion in this section is more general. 
Before reviewing the computational aspects, it is necessary that 
the model that we are to use is more precisely defined. An 
asymmetric top rotational energy level is specified by the quantum 
numbers N, and and usually symbolised N^. (6). For each 
value of N there are 2N+1 distinct rotational energy levels which 
are uniquely identified in terms of the prolate top quantum number

Ka 
in

in

and the oblate top quantum number K . The 
increasing energy for a particular value of

energy levels arranged 
N are:

(Ka,K^) = (0,N), (1,N), (1,N-1), (2,N.l), (2,N.2), (3,N.2), ....

..., (N-1,2), (N-1, 1), (N,l), (N,0).

We note that each value of K (or K) except zero occurs twice 
succession. Also K. + K = N or N+1. a c

For reasons discussed later in this subsection, it is advantageous 
to work with functions which have a definite symmetry under the 
space-fixed inversion operation, E*. Such functions are said to 
possess a parity which may be positive or negative depending on
whether they are unchanged or change sign under the E* operation. 
The functions NKaKc are not in general eigenfunctions of E and do
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not therefore possess a well defined parity; linear combinations 
of them do however, and we define the for- parity preserving 
combinations as:

|N K ± > = 2 f K > ± (-) |N - K>1 (2.12a)

where |N K > respresents the symmetric top 
wavefunction Nu. A detailed discussion of the parity properties 
of the rotational levels of asymmetric top molecules has been given 
by Oka (2) using molecular symmetry group (8) arguments, and we 
will not debate the problems fully here. It is sufficient to 
realise that for all molecules belonging to groups containing the 
space-fixed inversion operation, the parity of a rotational level 
is well, and easily, defined. Planar asymmetric tops belong 
to this class of molecule; and it turns out that the parity of a 
rotational level is given by the quantum number K; odd K_ = 
- parity, even K = f parity. Complications arise when the 
molecule belongs to a group not containing the E* operation. In 
some cases (groups containing permutation-inversion operations) the 
parity of a level is still well defined but must be discussed in 
conjunction with spin symmetry, whereas for all other cases the 
discussion of parity is irrelevant; the molecules possess stereo­
isomers.

Later in this chapter reference will be made to Wang combinations 
of the N^ functions. The Wang combination is defined as:

|N K (±) > 2 {|N K |N - K > }, (2.12b)

and we will see that Wang (+) and parity + descriptions coincide 
when N f K is even, but are opposite when N + K is odd. The comments 
made immediately below apply equally to the Wang combination.
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Asymmetric top wavefunctions are linear combinations of the 
N„ functions and hence of the combinations (2.12a). The Ka
advantage of using a basis set composed of parity preserving 
combinations of the symmetric top functions is that the effective 
Hamiltonian (2.1) has non-zero matrix elements only between states of 
the same (+ or -) symmetry. Asymmetric top energy levels are thus 
represented by linear combinations of the + or - combinations, but 
the two sets are not mixed. For numerical calculations of the 
eigenvalues of the effective Hamiltonian the important result of the 
above discussion is that if we set up our asymmetric top Hamiltonian 
in a Wang or parity basis, it will be approximately half the size of 
that in a simple IN K> representation, and thus require considerably 
less time to construct and diagonalise.

For asymmetric tops belonging to higher symmetry groups, that 
is orthorhombic symmetry groups, it is possible to further reduce the 
size of the Hamiltonian matrix representing a given rotational level. 
This arises because the irreducible representation to which a given 
f or - combination belongs depends upon whether the K is even or odd. 
It means that, for this type of molecule, the size of the Hamiltonian 
matrix can be made to be approximately one quarter the size that it 
would be if we were to use a crude symmetric top |N K> basts repres­
entation and ignore symmetry division of the matrix.

For molecules belonging to lower than orthorhombic symmetry 
groups it is not strictly possible to effect this second reduction 
because levels of odd and even K in the combinations (2.12) transform 
according to the same irreducible representation of the molecular 
symmetry group and are hence connected by terms in the Hamiltonian. 
However, in practice, it happens that the terms in the Hamiltonian 
which connect these basis states have only very small effects on the 
eigenvalues and these are only rarely experimentally observable. 
The computer programs, described in the next two sections, make use 
of the symmetry properties of the Wang or parity combinations of 
the symmetric rotor basis functions to minimise the size of the 
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matrices representing the Hamiltonian. The inclusion of 
the effects of matrix elements between states of odd and even 
K is optional.

For near-symmetric top molecules a further reduction in 
diagonalisation time is possible, based not on symmetry but oh 
order of magnitude considerations. in this type of molecule,
K is very nearly a good quantum number and, assuming that one 
has chosen the correct representation, the eigenvectors have one 
principal component and only small contributions from other basis 
states. We can thus truncate the Hamiltonian matrix by including 
only basis states which make an experimentally observable 
contribution to the eigenvalues. This approach is carried further 
in one of the programs developed, section (IV), where perturbation 
theory is used to reduce the size of the Hamiltonian matrix still 
further. Fig. (1) shows, diagrammatically, the form of the matrix 
for various low N rotational levels in a parity basis for a molecule 
in a singlet electronic state in the absence of an external field.

2 (III) c Treatment of spin functions.

The Hamiltonian matrix becomes larger and more complicated when 
the molecule possesses unpaired electron spin, i.e. is a free 
radical. The appropriate basis set is one in which the electron 
spin angular momentum S Is coupled to the rotational angular 
momentum N to give a resultant J. The allowed values of J are N + S, 
N +S- 1,...|N - S I . There are hence 25 + 1 fine structure states 
associated with each rotational basis vector; they may be 
represented by the |N K (±) 5 J > in the Wang representation, or 
|N K ±S J> in the parity representation. In the absence of 
external fields, the quantum number J is good, that is, the 
Hamiltonian contains no terms which mix states of different J, 
however there are terms present which mix states of different N, 
which is therefore no longer a good quantum number. The matrix 
in the Wang and parity respresentations for a molecule in a doublet 
state in the absence of external fields is shown for various low J 
values in Fig (2).
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Figure 1. Hamiltonian matrices in a parity preserving 
basis for various low N values for a molecule in a singlet 
state. The rows and columns are labelled by the K values.
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Figure 2. Hamiltonian matrix for the 4^^ levels of an 
ortho-rhombic molecule in a doublet state in (a) parity and 
(b) Wang representations in the absence of external fields.
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K 2(-)0(f>0GA2(+)2(+) ^(f) 4ao 2(-) 4.(-)
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The quantum number J is no longer a good one when the 
molecule is subjected to an external magnetic field. The 
direction of the field defines the space-fixed z axis direction 
and the projection of J on this axis is represented by M,. There 
are 2J + 1 values of Mj for a given J and M. is the only good 
quantum number in this case. The Hamiltonian matrix is now of 
infinite order and hence a complete solution to the eigenvalue 
problem cannot be achieved. To obtain eigenvalues it is therefore 
necessary to truncate the Hamiltonian matrix at a point where the 
inclusion of extra basis states makes experimentally undetectable 
changes to the required eigenvalue. Where and how this truncation 
is effected in practice is discussed in sections (IV) and (V). 
The Hamiltonian matrix for a molecule in a doublet state in an 
external magnetic field is shown diagrammatical ly in Fig. 3.

When the molecule contains one or more nucleus possessing non- 
zero spin each fine structure level is further divided into hyper­
fine levels associated, in zero field, with the allowed values of the 
quantum number F, F = J + I where I is the total nuclear spin 
angular momentum of the state in question. Again, the Zeeman terms 
in the Hamiltonian will connect states of different F when the 
molecule is subjected to a magnetic field and the projection of F 
along the field direction (PL) is then the only good quantum number, 
ie. the Hamiltonian matrix should strictly be constructed using an 
infinite basis set. Order of magnitude arguments are again used to 
decide where the necessarily finite matrix diagonalised by the 
computer is truncated.

In summary then, the exact calculation of a particular eigenvalue 
of the Hamiltonian may require the use of an infinitely large basis 
set, even when a symmetrised choice of basis functions is used. 
In this case, the matrix is truncated at points where the inclusion 
of more basis states makes a less than experimentally detectable 
change to the eigenvalue in question. For molecules possessing 
both unpaired electron and nuclear spins, the necessary basis may 
still be large. It is therefore important that the individual 
matrix elements are set up as efficiently as possible, so that
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N+2,F,K

N+1 ,F,K

N+1 iF^,K

N,F^ ,K

N.F^K

N-1,F ,K

N-1,F2,K

N-27 K

Figure 3. Diagrammatic representation of the lower half 
of the Hamiltonian matrix for a doublet state molecule in 
an external magnetic field. In the absence of nuclear 
spin hyperfine splittings, the quantum number M, is good 
and the matrix contains all states J ^jMj|. Only one 
value of the quantum number K is shown in the basis for 
reasons of clarity, the matrix will contain contributions 
from states with all possible K associated with each included 
value of N (see Fig. 2). 
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execution time is kept to a minimum. In cases where the molecule 
possesses many different angular momenta, the calculation of 
matrix elements is facilitated by the use of the spherical tensor 
approach (2» ]0, IjJ. The various operator terms in the Hamiltonian 
are expressed as components of spherical tensor operators and 
standard results from angular momentum theory are used to express 
the matrix in terms of 3, 6 and 9-j symbols. The spherical tensor 
approach is particularly well suited to computer solution and both 
programs make use of it.

In the next two sections we consider the approaches to 
solutions of the eigenvalue problem as represented by the two 
programs developed to perform complete spectrum analyses.

2 (IV) Program I.

2 (IV) a. Introduction.

This section describes a program developed with a view to the 
analysis of the spectra of near symmetric rotors in doublet states. 
Although it is restricted to this type of molecule alone, it is 
true to say that most known asymmetric top free radicals, e.g. 
NOg (^2, 13) HCO (^4), HOg (J^S, 16) fall into this category 
and the program has turned out to be a very useful one. We refer 
to it as program I. By restricting the molecular type, we are 
able to make various approximations and assumptions which dramatically 
reduce the computer time required to perform eigenvalue calculations. 
However the extremely fast execution time achieved by this program 
is at the expense of poor model accuracy in some cases, and a large 
computer storage requirement.

2 (IV) b Eigenvalue calculations: Program I.

The fast execution speed is achieved by the method used to 
construct the Hamiltonian matrix; the structure of the program 
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broadly follows that described in the previous sections. Use 
is made of the Wang factorisation of the matrix and small 
effects of matrix elements connecting states differing in K by 
one may be included by explicit 2O perturbation theory expressions 
which are added to the appropriate matrix elements, themselves 
coded explicitly in an J-decoupled basis representation. The 
matrix is truncated at elements with AK = 0, AN = ±1 and 
AJ = ±1 and the inclusion of all elements with AM. = AM^ = 0, 

±1, ±2 ..., ije. AMp = 0 is optional. The basic 6 x 6 block is 
shown in Fig (4). This block is repeated for every allowed pair 
of M,, Mj values and hence the size of the Hamiltonian matrix 
depends on the value of the nuclear spin (the program assumes that 
the molecule contains only one nucleus with non-zero spin).

The effects of matrix elements off-diagonal in K have been 
included using perturbation theory. The treatment is complete 
to second order and dominant terms up to fourth order have been 
included. K-doubling effects in K = 3 levels arise in third order 
and these have also been included. Fig. (5) shows how this process 
is achieved. There are small truncation errors associated with 
the neglect of matrix elements with AN = ±2 of the dipolar hyper­
fine and anisotropic Zeeman Hamiltonians, and other further off- 
diagonal elements of the latter operator. Comparison with a 
program which included these terms showed that these were almost 
never the dominant contributions to the program error. These arise 
due to the unreliability of the perturbation theory contributions 
in the treatment of the effects of matrix elements off-diagonal in K. 
It is these discrepancies which limit the program use to near- 
symmetric top rotors, because for more asymmetric top rotors, such 
as NHg, the perturbation theory treatment is inadequate.

The extensive use of perturbation theory in the construction of 
the Hamiltonian matrix has several drawbacks, not the least being the 
amount of programming time and effort involved in deriving,coding 
and checking the complicated perturbation theory expressions. The 
main limitation is the inexact knowledge of the accuracy of the 
calculation being performed. For example, although the approach
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N+1.K
J = N4-1/2

N . K

J = N4.1/2

0
N . K

JzN-i/2

0 0
N-1, K
J = N-1/2

0 0 0

N-1.K I

J=N-3/2 I

Figure 4. Diagram of the basic 6 x 6 building block 
for the treatment of the Hamiltonian matrix of program I. 
This block is repeated for each allowed value of M,, M 
The quantum number labels are shown in the diagonal

J-

elements.
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Figure 5. Treatment of matrix elements off-diagonal 
in the quantum number K in program I. The program 
sets up the matrix truncated at points A and the effects 
of the shaded matrix elements are collapsed into this 
central block using perturbation theory. The quantum 
number labels for the diagonal elements only are shown 
and fine structure states are not shown for reasons of 
clarity.
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used is adequate for the molecules NOg and HCO, the program 
did not reproduce more accurate calculations for HO^, although 
this last molecule is no more asymmetric than the previous ones. 
The reason for the inaccuracy lies in the large spin rotation 
interaction in HOg, a factor which had been overlooked during 
initial calculations; it causes breakdown of the third order 
treatment used in the program.

Diagonalisation of the Hamiltonian matrix is performed by 
a N.A.G. library routine FO2ABF which returns the eigenvalues in 
Order of ascending magnitude. It is necessary, therefore, to 
identify which of the eigenvalues is the one required. There are 
two general approaches to the problem. The first is to employ a 
counting method and include in the input data a number which 
identifies the state required by a simple countback from the end of 
the eigenvalue array. The second makes use of the eigenvector 
coefficient matrix which is computed by the library routine and used 
in the least squares and intensity calculations. Program I uses 
the latter approach which has the advantage that it is very general; 
countback methods run into difficulties when the calculations are 
being performed for very asymmetric top molecules (24J and the 
eigenvector analysis approach is more physically satisfying; however 
it is more difficult to program and slightly slower in terms of 
machine time.

The program has been used to analyse the available magnetic 
resonance and microwave data for NOg in its ground electronic state 
and the results are discussed in Chapter (4). It was also used to 
perform preliminary analyses of the large body of magnetic resonance 
data recently obtained (]5) from the spectrum of the HOg radical. 
With large amounts of data available the high execution speed of 
this program is at a premium and although the final analysis was 
performed using program II (considered later) various different fits 
were attempted prior to this using program I.



28

2 (V) Program II.

2 (V) a Introduction.

During the analysis of the microwave spectrum of HO2 (^G) 
it became clear that the approximations in the calculation of the 
eigenvalues made by program I were not reliable, due mainly to the 
large spin-rotation interaction in this molecule. Rather than 
continue to program the higher orders of perturbation theory 
invoked to account for the discrepancies, it was decided to design 
a program in which the accuracy of the eigenvalue calculations 
performed was more easily defined and optionally variable, by choice 
of size of basis set, to suit the problem in hand. The program, 
referred to here as program II, assumes only one nucleus in the 
molecule, has non-zero spin, although this may be of any size, and 
will perform calculations for molecules in states of any multiplicity.

2 (V) b Eigenvalue Calculations: Program II.

The size of the basis set used in a particular calculation is 
chosen by the user. It is usual to choose the smallest required 
to reproduce larger basis set calculations to within the experi­
mental accuracy, say 0.1 MHz for microwave data, slightly more for 
less accurate magnetic resonance data. The Hamiltonian matrix is 
set up in a fully-coupled, parity-conserving, basis set and 
optionally contains states with both odd and even K or assumes 
AK = 1 matrix elements make a negligible contribution to the energy 
and only includes either odd or even K basis vectors as appropriate. 
A calculation for a given rotational level can then be divided into 
four distinct steps, i.e:

1. Setting up the basis set appropriate to the calculation 
of the rotational level in question.

2. Setting up the Hamiltonian matrix in this basis.

3. Diagonalisation of the Hamiltonian matrix.
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4. Selection of the correct eigenvalue from the set of 
eigenvalues of the Hamiltonian matrix.

We will consider each of these points in turn and discuss the 
approach used in program II to solve the problems.

Firstly then, we must set up the basis set needed to calculate 
the energy of a particular rotational level reliably. Initially 
we discuss the zero field problem where F is a good quantum number 
and then outline the further complications when states of different 
F are to be included in the basis set. Given a set of quantum 
numbers N, K, parity (plus or minus one), and F, the program sets 
up a basis set which contains adjacent rotational levels which are 
connected to the level in question by operator terms in the 
Hamiltonian, and which will therefore contribute to the energy of 
the level of interest. The number of these adjacent levels included 
is defined by the user as part of the program input as two parameters 
which define respectively, which states of different N and which of 
different K are to be included in the basis. For example, a 
calculation of the energy of the rotational level 9^^ with limits on 
N mixing (idn) set at one, and units on K mixing (idk) at two would 
include the levels 8o^, 8.^^ 8.^^ 9.^, 9.^, 10.^, 10.^, 10.^ 
assuming that mixing of states of even K by terms in the Hamiltonian 
is not significant. This is a typical set of numbers and one would 
expect an adequate calculation of the energy of the 9r^ level of a 
near symmetric top molecule such as HCO or NOp using this size of 
rotational level basis set. For more asymmetric rotors such as 
NHp, it is usually necessary to include more levels of different K 
for a reliable calculation of the eigenvalue.

For these molecules, of course, we also have to tackle the problems 
of non-zero unpaired electron spin and nuclear spin. The way the 
program treats these problems is shown diagrammatical ly by the flow 
diagram. Fig (6),for the zero field case. When states of different 
F are to be included, i.e. the Zeeman Hamiltonian is to be included 
in the model, an extra loop over all possible F values for the given 
Mp is necessary. The quantum numbers of the n basis states to be
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Figure 6. Flow diagram describing the logic used to 
Toad the required basis state quantum numbers in 
program II.
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QN (NO, 1) = NA
QN (NO, 2) = KA
QN (NO, 3) = JA
QN (NO, 4) = F

KA = KA + 2
NO =NO f 1

NOTES.

1. For simplicity this describes the route followed 
by the routine when it is required to set up a 
basis set for a zero field calculation, i.e. where 
F is a good quantum number.

2. The flow diagram assumes that only states having 
quantum number K differing by even numbers are 
connected by the Hamiltonian operator. 
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used in the calculation are loaded into an n x 4 matrix 
and stored by the routine to be passed back to a second routine 
which sets up the Hamiltonian matrix using this basis set. 
The details of the quantum number storage are summarised by 
diagram (7).

The n basis states are then used to construct the Hamiltonian 
matrix and the matrix elements for all terms included in the model 
are given in the literature (3, 18, 19, 20). The matrix elements 
are coded directly in terms of 3, 6 and 9-j Symbols which are 
computed as required by separate routines. This procedure 
minimises coding problems and eliminates the practice of coding 
the long and complicated algebraic formulae used by program I, and 
makes program checking a much easier task. Versions of the program 
exist employing both the A- and S- reduced forms of the rotational 
and spin-rotational Hamiltonians (see ref (JS) and Chapter (3)). 
In the analysis of magnetic resonance data the matrix elements of 
the Zeeman Hamiltonian must be computed. This calculation is 
performed by a separate routine and the zero field and Zeeman 
matrices added immediately prior to diagonalisation. In this way 
the matrices may be used again in a subsequent calculation for the 
same rotational level at a different magnetic field simply by 
multiplying the Zeeman matrix by the appropriate field and repeating 
the addition and diagonalisation. It is important to minimise 
the number of times each matrix is set up in this way because 
re-calculation of the large numbers of 3, 6 and 9-j symbols is very 
time consuming. In the future it is possible that they will be 
stored as calculated, so making the process more efficient still.

The Hamiltonian matrix is diagonalised using N.A.G. library 
routine F02ABF which employs a Householder transformation to convert 
the symmetric matrix to symmetric tridiagonal form and the QL 
algorithm to perform the subsequent diagonalisation (^). The 
eigenvalues are returned in order of increasing magnitude with 
the eigenvectors, expressed as linear combinations of the basis 
vectors in a coefficient matrix, in the same order. The choice of
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2

no-1

no

Ni K] Fi

N? ^2 Jz Fz

Ng J3 F3

N4 K4 J4 F4

Nn.-1 Fnj

Fn.

Figure 7. Basis state quantum number storage. For 
the zero field problem each basis state is labelled 
by five quantum numbers, one of which is the parity 
which is the same for all states in the basis set. 
The quantum numbers are stored such that each row of 
the array contains all necessary to identify a particular 
basis state.
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the required eigenvalue presents some difficulty. Program I 
uses a method based entirely on a detailed analysis of the 
eigenvector coefficient matrix to pick out the eigenvector, 
and therefore eigenvalue, required. It was felt that the 
adoptation of this method for program II would require an 
unjustified amount of programming effort and, for the very much 
larger matrices involved, prove inordinately inefficient. We 
have therefore opted for a counting method when a state is 
labelled by its quantum numbers,N, K, F, or N, K, Mp in the case 
of Zeeman calculations, and an index number which counts down 
from the highest energy level of this N and K. A unique level 
classification is thus provided by five numbers; N, K, parity, 
F (or Mp) and i; reverting to our original example 9^^, F = 9, 
i = 2 would specify the second highest level of F = 9 in the 
9c^rotational level. The eigenvector coefficient matrix is used 
to pick Out the rotational level, N always, and K almost always 
being reliable for this purpose.

The extra flexibility and markedly higher sophistication of 
program II is achieved at the expense of rather slower execution 
time when compared to program I. The gains lie in the precise 
knowledge of the accuracy of the calculation being performed and 
the ease with which the model,in the form of the basis set, can 
be varied. The coding of the program is simpler, there being no 
unwieldy algebraic perturbation theory expressions, implying that 
it is easier to check and occupies less storage area in the computer, 
a factor which had become a problem with program I. Program II has 
been used in the analysis of both MOOR and magnetic resonance data 
pertaining to NHp, a highly asymmetric top molecule; the spectra 
were not amenable to analysis using program I due to the inadequacy 
of the perturbation theory treatment. Spectra of the small free 
radicals HCO, HO2 and DOp have also been successfully analysed and 
some of the results are presented in the next section, whereas others 
are given in later chapters.
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2 (VI) Application to the analysis of the microwave and magnetic 
resonance spectra of the HO^ radical.

Considerable interest has been shown in the study of the HOg 
radical during the past five years. Prior to this, although 
widely invoked as a reaction intermediate, there had been no definite 
spectroscopic identificiation. However, observation of infra-red 
and ultra-violet spectra by Paukert and Johnston ^22) and large 
numbers of lines in the L.M.R. spectrum at far infra-red wave­
lengths (1^) provided good estimates for the main constants and 
subsequently microwave spectra resulting from both a- and b- type 
transitions were recorded by Saito (f7) ^^d Beers and Howard (23). 
E.P.R. transitions at around 9GHz have also been recorded (26). 
The large number of spectroscopic results supports the suggestion 
that HOg is an important species in chemical reactions. The 
programs have been used to fit all the available high resolution 
data and determine an improved set of parameters for the molecule 
in its ground vibronic state. In the process, some minor incon­
sistences in the analysis of the microwave spectrum were removed 
and the quality of the fit of the L.M.R. data considerably improved 
(previously the latter were fitted to a very simple model).

The data were fitted to a model containing the symmetric (S-) 
reduced rotational Hamiltonian, however it was not sufficient to 
determine all the higher order constants and some were constrained 
to zero. In the process, it was confirmed that the S-reduced 
centrifugal distortion Hamiltonian gives a similar fit to that of the 
A-reduced form for the same number of parameters, but the parameters 
are less strongly correlated (T8), (24). In order to obtain a 
satisfactory fit to the magnetic resonance data, it was found necessary 
to include the rotational Zeeman effect in the analysis and the values 
for the rotational g-factors were obtained.

The precision of the microwave data was estimated to be around 
0.1 MHz, whereas that of the magnetic resonance data only approximately 
5 MHz (assuming that, on average, a magnetic resonance line tunes at 
approximately one MHz/G). Due to this large disparity in precision, 
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it proved convenient to fit the two data sets separately since 
a larger basis set is needed to calculate the microwave frequencies 
to within the experimental accuracy. It was also necessary to 
include both odd and even Ka states in the calculation since these 
are significantly mixed by off-diagonal components of the spin­
rotation tensor. None of the levels involved in the magnetic 
resonance data was significantly affected by this spin-rotation 
perturbation.

Analysis of the microwave data yielded values for the 
rotational constants, the quartic distortion constants 
and d^, the quadratic spin-rotation constants, the Fermi- contact 
parameter, and the diagonal components of the (I-S) dipolar 
hyperfine tensor. Subsequently, these parameters were constrained 
to their determined values in a fit of the magnetic resonance data 
which was used to determine the remaining quartic centrifugal 
distortion constants and some sextic ones, together with two quartic 
spin rotation parameters (the spin-rotation treatment used is 
discussed in detail in chapters (3) and (4)) and parameters 
describing the Zeeman interaction. The procedure of fitting first 
the zero field data and then the magnetic resonance data was repeated 
to ensure that convergence to the final set of parameters had been 
achieved.

The fit of the microwave data (12) is given in Table (I) and 
the constants obtained from the fit of this data in combination with 
the magnetic resonance data given in Table (II). The magnetic 
resonance data set included nine E.P.R. and one hundred and forty-one 
L.M.R. transitions, the latter chosen to be a representative sample 
of the very large data set listed by Hougan et al (1^); approximately 
two lines of each polarisation were taken for each observed rotational 
transition. The Zeeman parameters determined are given in Table(III) 
and are found to agree well with the values predicted from theory, 
(]6. 25).
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TABLE £

I'fT 01’ Tlii: MICKOl.'AV!' Smi'lEUM Ob’ 110;, Ils' Ti:;; x-A" STA'n;

Trantiition J'^-J F'+r V , /M!iz obs \i /Milzca Lc. (ubs-calc) /htlz

ioi"‘^oo b-O 65070.851 65071.02^' -0.17

2<-l A5081.82 65081.94 -0.12

1<-1 65098.44 65098.50 -0.06

1-K: 65373.01 65372.93 0.08

04-1 65396.15 65396.17 -0.02

14-1 65400.63 65400.41 0.22

2o2"'"1o1 . 24-1 130258.13 130257.92 0.21

34-2 130260.07 130259.82 0.25

IH 140 130463.68 130463.83 -0.15

24-1 130467.41 130467.67 -0.26

2 b'l 2 24-1 132959.56 132959.50 0.06

34-2 132961.99 132962.03 -0.04

14-1 119137.04 119137.01 0.03

24-1 119153.74 119153.69 0.05

1+0 119159.19 119159.29 -0.10

2n'‘'iio 2+1 136492.09 136492.07 0.02

3+2 136495.97 136495.98 -0.01

ii4 1+1 122856.61 122856.56 0.06

1+0 122858.26 122858.16 0.10

2+1 122858.92 122859.09 -0.17

616*'7o7 7+8 98117.82 98117.80 0.02

6'(-7 98121.15 98121.11 0.04

5^-«-6^ 6+7 107640.22 107640.32 -0.10

5+6 107635.51 107635.55 -0.04

717^-8o8 8+9 27474.24 27474.29 -0.05

74-8 27477.69 27477.58 0.11

6k7) 7+8 35535.41 35535.37 0.04

6+7 35530.88 35530.78 0.10

914-8] 104-9 44073.10 44072.89 0.21

9+8 44069.56 44069.61 -0.05

81+7] 9+8 37138.59 37138.37 0.22

8+7 37142.60 37142.81 -0.21

IOq, 10"^9i9 1014-9] 11+10 116451.73 116451.71 0.02

104 9 116448.40 116448.46 -0.06

9148] 10+9 110472.20 110472.40 -0.20

94 8 110476.90 110476.70 0.20
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Table I (contd.)

^ Data taken from ref. (17)

2 Frequency calculated using the parameters given in Table II. 
Standard deviation of fit estimated as 0.17 MHz
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TABLIl II

MOLBCUhAk PAllAMETBRSOF HOg IM THE X^/^" siATC IM MUZ

1

Parameter Present Work Saito (A)

A 610274.31(72) 6]0257(14)
2? 33513.838(34) 33511.95(24)

31671.662(37) 31673.46(24)

0.1151(13) 0.112(27)
3.471(23) 3.47(19)

123.616(17)2 1233
102 dj -0.698(50) -

10^ (^2 -0.811(12)2 -

2.095(94)2
9.69(14)2 —

105 bl 4.50(29)2 -

E -49569.89(58) -49546.1(23)oa
^bb -422.795(80) -431.9(13)^
E 8.645(89) 17.6(13)CO

' ^ab' 1891(11) 189(12)G
103.83,4 I89G

22.71(16)2
0.1264(75)2 -

-27.48(15) -27.6(6)
-8.34(22) -8.1(6)oa

^bb 19.68(31) 19.5(6)

The numbers in parentheses represent one standard deviation of the 
least-squares fit, in units of the last quoted place.

2
Value determined from the fit of the EPR and LMR datc3. Parameter 
constrained at this value in the fit of the. microwave data.

3
Parameter constrained at this value.

Value for e, determined from c, = e - 5//1. ba ba aZJ 
5
Value for p,^^ from b-typc transitions determined as -417.9(6) MPz.

6
Saito essentially assumed that e. = e , .
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TABU': III.

ZEEMAN PARAMETERS FOR IIO2 IN THl: X^A" STATE

Parameter Present Work Solid State (2^) Theory

2.04204(19)^ 2.0353(5) 2.04293^

2.00790(24) 2.0086(5) 2.00863

2.00152(24) 2.0042(5) 2.00219

10 3 0'/"' -9.857(41) - -10.93

-1.85(41) - -0.94

The numbers in parentheses represent one standard deviation of the 

least-squares fit, in units of the last quoted decimal place.

2
Calculated from Curl's relationship (^), using gr = 2.00232.

Electronic contribution only to the rotational g^factors (see text).
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CHAPTER 3.

THE EFFECTIVE SPIN-ROTATION HAMILTONIAN FOR AN ASYMMETRIC TOP MOLECULE.

3 (I) Introduction

The effective spin- rotation interaction is the coupling between 
the spin dipole moment and the magnetic field created by the charged 
particles (electrons and nuclei) in the molecule as they rotate. 
Information on this interaction is now available for several asymmetric 
top molecules in doublet states, derived from spectroscopic studies 
at a variety of wavelengths. Prime examples are NOp (2) (2), 
NHg (3) (4) (5), PHg (6), HCO (7), HNF (8) and HOg (9) (10). The 
principal components of the spin-rotation tensor e, have been 
determined for all these molecules; in addition, the splittings have 
been measured in a sufficient number of rotational levels that 
centrifugal distortion effects must be taken into account.

Van Vleck (T[) has derived the form of the effective spin­
rotation Hamiltonian from a consideration of the mixing of electronic 
states by the combined effects of spin-orbit coupling and the Coriolis 
term in the rotational Hamiltonian, viz.

o 3 P

where a and g run separately over the molecul (-fixed co-ordinates, 
X, y and z. He has also shown that the secoLd order (electronic) 
contribution to e^ usually predominates over the first order 
(nuclear) contribution. A similar conclusion was reached by Curl 
(]2). Centrifugal distortion corrections to the spin rotation 
interaction were first discussed by Dixon and Duxbury (1^) for 
symmetric top molecules. This work has recently been extended to 
asymmetric rotors by Cook, Hills and Curl ^T4), and by Brown and 
Sears (^5) who cast the quartic spin rotation Hamiltonian in the 
form:
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To date, workers have contented themselves by adding two 
or three of the more important terms from (3.2) to the effective 
Hamiltonian used to fit their experimental data. In this chapter 
we derive the correct form for the reduced Hamiltonian to be used 
for this purpose, that is a Hamiltonian which contains only 
determinable combinations of parameters. The result is obtained 
by following the procedure formulated by Watson (16) in his classic 
paper on the centrifugal distortion., of the rotational energy of a 
molecule. The Hamiltonian is subjected to a series of unitary 
transformatiohs which eliminate the indeterminacies. These 
transformations, and their general implications are described in 
section III. The quadratic spin rotation terms are considered in 
section IV, where it is shown that there are indeterminacies which 
have not previously been detected for molecules belonging to non- 
orthorhombic groups. Section V deals with the specific reduction 
of the quartic spin-rotation Hamiltonian for an orthorhombic 
molecule. The results are applied to the well documented examples 
of HOg, NHg and NOg in the next chapter. We begin this chapter 
With a discussion of the origin of the quartic spin rotation terms 
and show how the nagy^ parameters are related to other molecular 
properties.

3 (II) Derivation of the Effective Quartic Spin-Rotation Hamiltonian.

The derivation of the effective Hamiltonian (2.1) can be 
considered in two stages. First the removal of the effects of 
matrix elements which connect different electronic states, and 
secondly the corresponding process for the matrix elements off- 
diagonal in the vibrational state within the electronic state in 
question. The effects of such off-diagonal matrix elements are 
usually removed by some form of perturbation theory, taken to such 
an order that the resultant eigenvalues are more accurate than the 
experimental data. In the case of the construction of the effective 
vibration-rotation Hamiltonian (the first stage), it is usually 
sufficient to go to second order in perturbation theory. At this 
point in the calculation both the rotational and spin-rotational 
Hamiltonians are defined, although they are still functions of the 
nuclear (ie. vibrational) co-ordinates. The spin-rotation tensor 
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e, for example, has components which are identified as the 
coefficients of terms bilinear in rotational and electron spin 
angular momenta, N and S respectively (11).

The reduction of the vibration-rotation Hamiltonian to an 
effective Hamiltonian as given in (2.1) is the second stage in 
this process. It is most common to use a harmonic oscillator 
basis set to perform the perturbation calculation (12), since the 
contact transformation is then easy to formulate; it may however 
be most efficient in particular cases to use an enharmonic 
vibrational basis set (IS). The centrifugal distortion terms 
Hcd, and the centrifugal distortion corrections to the spin­
rotation interaction, Hsrcd, appear at this stage of the calculation. 
The quartic centrifugal distortion terms can be derived by a simple 
second order perturbation treatment (T9). We now derive the 
corresponding corrections to the spin-rotation interaction by the 
same method. These corrections arise from the dependence of the 
inertial tensor and spin-rotation tensor on the vibrational co­
ordinates Q^^

Hpot/hc - y - -dy "g "S yy’Qr + 0 (Q^Q^) (3.3)

(3.4) 

where 

a («8) 

b /aQr
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and aand g run over the molecule-fixed co-ordinates, x,y, and z. 
The first expansion is standard in vibration-rotation theory (20); 
the spin-rotation Hamiltonian has been expanded in a corresponding 
fashion. The term linear in Q in H . gives rise to the quartic 
centrifugal distortion terms in second order of perturbation 
theory:

(3.5)

(Ey-E^') ag Y6

whensT . . are the parameters introduced by Wilson and 
multiplied by f^. If the perturbation calculation is 
using a simple harmonic oscillator basis set, then

Howard (21), 
performed

^ogy^ 1
e ^ e e e 

aa gg YY 66

^r (3.6)
he 4^1

where w is a harmonic vibrational frequency in cm \ The centrifugal 

distortion corrections to the spin-rotation interaction arise in a 
similar fashion from the cross terms between H . and H to give: rot sr

"^rc/''' ' ^ ^ ^ n,g^, [N^Ng(Y, + S^^l

(3.7)

where

b (^^) 
rz 

r
^agY6 ^r

(3.8)4^hc^ U 'e: Y'

The components of both i and n tensors can be expressed more 
compactly in terms of the coupling parameters C°^ introduced by 
Watson (22).Explicitly
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r

and

in wavenumber units, when q is the dimensionless normal co-ordinate.

Equation (3.8) is an expression for the n parameters. It can 
be seen by comparison with (3.6) that there is not a rigourous 
relationship between % _ . and . since and b_(^^) are 

independent quantities. However, an approximate relationship of the 
sort derived by Dixon and Duxbury (13) can be established by further 
investigation of the coefficient b^^^L Using second order 

perturbation theory. Van Vleck (11) has shown that:

Gag = ) <o|;L|n><ngj L |o >, (3.9)

when c is a spin-orbit coupling parameter and = (I" )^ is a 
component of the inverse inertial tensor (20). The molecule-fixed 
axis system is located so that it corresponds to the principal axes 
of the equilibrium inertial tensor:

\8 = (V, le'ei"* ['=% ^6- =r‘“'’ iir " (‘’AH (3.10)

The integration in the matrix elements in (3.9) is performed over 
electronic co-ordinates and 0 an n are the labels for the different 
electronic states. To determine b ^^^^ we need to know the vibrational 

dependence of all factors on the right hand side of (3.9). Since 
is a function of nuclear co-ordinates only, it can be taken as a 
factor outside the integral over electronic co-ordinates and the 
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derivative with respect to a vibrational co-ordinate involves

<"IWgYL^|oi> = -a^/"^) <n|L^|o> + v^8 <n|L^|o>. (3.11)
3Qr I G I e ^Qr

Cl o Y Y

The orbital angular momentum operator b is independent of vibrational 
co-ordinates but the electronic wavefunctions in general are not. 
In consequence, <n|L_|o> is a function of Q^, as are <o|cLg|n> and 
(E^^E^). If we make the approximation of a crude adiabatic basis 
set (that is, the electronic wavefunctions refer to fixed nuclei at 
some reference configuration, usually the equilibrium configuration) 
then

b (ag) = 4h2C a (^Y) 
r — y r 

zhc^-peyr 
a a Y Y

^2 <o|tLg|n><n|LY|o^

"^° (Eo-En)

On substitution of this

I o a (3.12)

result in equation (3.8), we obtain

^apY^ (3.13) 
9

where B. is the rotational constant associated with the principal 
inertial axis §. Strictly speaking, the quantities in (3.13) should 
be the equilibrium values of the parameters. However, in view of 
the approximations made in obtaining the expression for b(°^) in 

(3.12), the result is probably no less reliable if the values for a 
particular vibrational level are used. Some applications of 
equation (3.13) are considered in Chapter 4.
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3 (III) General Considerations

3 (III) a The standard form fbr the spin-rotation Hamiltonian

In the last section, the origin of terms in the effective 
Hamiltonian which describe centrifugal distortion corrections to 
the spin-rotation interaction was discussed. The form of the 
Hamiltonian considered up to now (3.2) is not well suited to the 
calculation of matrix elements and therefore fitting to 
experimental data. The remainder of this chapter is devoted to 
the transformation of the quartic spin-rotation Hamiltonian (3.2) 
to yield an operator form which is suitable for the empirical 
fitting of experimental data.

We start with the effective Hamiltonian as derived in Ref. 
(21) and the last section. This Hamiltonian is an operator 
function of the components of the rotational and spin angular 
momenta, N and S, and acts only within a single vibrational level 
of a given electronic state. The general form of the Hamiltonian 
contains products of N and with the individual factors in 
arbitrary order. By use of the commutation relations for molecule 
fixed components (11) :

(3.14a)

(3.14b)

(3.14c)

it is always possible to express the general term in the form :

Sa Nz

with a = X, y or z, at the expense of introducing terms of lower
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degree. The latter can then be re-arranged into the same form 
and the process repeated to yield a sum of terms of this type. 
In this way, the general spin-rotation Hamiltonian can be expressed 
in the standard form :

P,q»r a

(3.15)

The coefficients which can be related to the components e 
^"^^ ^agyg equations (3.1) and (3.2) are in general complex. 
For application to physical systems, the Hamiltonian must be 
hermitian and invariant under the operation of time reversal, 
that is :

"sr ' "sr" = TH^^T-1 = (TH^^rl)^ (3.16)

The coefficients k^^ are transformed with their complex
conjugates by either operation while the angular momentum components
change sign under time reversal (T) but are invariant under the 
operation of hermitian conjugation (t). The combined effect of 
these operations requires that the coefficients k^^? be real and 

that the sum of the indices n, = p+q+r, be odd. The standard
form of the spin-rotation is therefore given by the restricted sum :

= ^££k(") (N/ NyS n/ S^ . S„ N/ Ny^l N/) (3.17)

n a

with n odd 
identified

and real coefficients Terms with n = 1 are
with the quadratic spin rotation Hamiltonian, H^^^

whereas those with n = 3 represent the quartic spin-rotation terms.
that is the centrifugal 
h‘£

distortion of the spin-rotation interaction
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The total number of terms of degree n (odd) in the 
standard form of H is ^^x(nfl)(n+2) so that there are nine 
terms in general in H^^? and thirty in H^^^. However, if the 

molecule possesses symmetry elements other than the identity 
operation, there are fewer terms in the Hamiltonian because of 
the requirement that H^^ transforms according to the totally 
symmetric representation of the molecular symmetry group. Terms 
in H of total degree (n+1) in angular momentum components 
transform under the molecular symmetry operations as the(n+l) 
direct product of the representations of the individual operators; 
the representations formed by the components of a molecule fixed 
rotation are listed in the character tables. Asymmetric top 
symmetry groups are sub-groups of D2L and the numbers of terms in 
the quadratic and quartic Hamiltonians for this and all other 
orthorhombic groups are given in Table 1, together with the 
corresponding number of terms expected for molecules of the groups 
Cg and C. (no symmetry elements other than the identity). It can 
be seen that there are three terms in H^^^ and nine in H^^^ for 

an orthorhombic molecule; when the molecule has only a plane of 
symmetry, the numbers are five and sixteen respectively.

Although symmetry arguments allow a certain number of 
independent terms in the Hamiltonian, it is still possible that the 
eigenvalues depend on particular combinations of these parameters only. 
In this case, an attempt to fit the Hamiltonian toobserved molecular 
spectra and thereby determine its parameters will not succeed. 
It is therefore necessary to identify all possible indeterminacies 
and to remove them by reducing the number of parameters. The reduced 
Hamiltonian has the same eigenvalues as the original operator, but 
different parameters which are linear combinations of the previous 
ones and fewer in number. The simplest example of this effect 
is in the rigid rotor problem (23), where the molecule-fixed axes 
can always be re-oriented to bring the inertial tensor into diagonal 
form. The rotational eigenvalues thus depend on no more than three 
independent principal moments of inertia and these in turn are the 
most that can be determined from the rotational energy levels.
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TABLE I

THE NUMBERS OP TERMS IN THE STANDARD AND REDUCED FORMS OF THE

SPIN-ROTATION HAMILTONIAN

Number of terms C
1

C
5

Orthorhombic

(a) Quadratic spin-rotation

H 9 5 3sr

FO 3 1 0

H 6 4 3sr

(b) Quartic spin-rotation

30 16 9sr

F2 18 8 3

H ^4) 12 8 6sr
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3 (III) b Unitary Transformations

The standard form Hamiltonian, Eq (3.17) is to be subjected 
to a series of unitary transformations to yield the reduced 
Hamiltonian H which contains determinable parameters only. The 
transformed Hamiltonian is given by

A = U'^ H U (3.18)

where U is some unitary operator (U^ = U ^) Following Watson 
(26), we choose the convenient exponent form for the unitary 
operator :

U = exp (iF) (3.19)

where the unitary condition requires F to be hermitian. If the 
transformed Hamiltonian is to be both invariant under time reversal 
and hermitian, then so must U be also. This in turn implies that 
F change sign under time reversal. Using the arguments given in 
the previous section, it can be shown that, when F is expressed in 
a standard form similar to (3.15) it has real coefficients and 
contains terms of even p + q f r only.

The unitary transformations are assumed to be applied 
successively to the Hamiltonian, which is equivalent to expressing 
U as a product and considering each factor separately :

U = exp (iF^) exp (iFg) exp (iF^p (3.20)

where F contains terms with n = p + q f r only:

pfq+r=n a

^pqr rGsl. From (3.20) it can be seen that :
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U^ = U"^ = .... exp (-iF^J exp (-iFg) exp (-iF^^ (3.22)

so that the transformations of increasing n can be applied in order

H = (...exp(-IF^) exp(iF2)exp(-iFg)H exp(iFQ)exp(iF2)exp(iF^)..)

(3.23)

The various stages in the transformation can thus be identified :

Hg = exp(4F^) H exp (iF^^) (3.24a)

H^^ = exp(-iF2) H exp (iF2) (3.24b)

H^ = H (3.24c)

One of the advantages of using the exponential form for the unitary 
transformation is that the process can be readily expanded in terms 
of commutators, for example:

Hg - H + i [H, Fj - i [[H, F„J, F„] + .... (3.25)

SO that the relations (3.14) can be invoked to given the transformation 
explicit form.

The transformation defined by equations (3.20) and (3.21) 
involves the components of spin angular momentum, and in this respect, 
it corresponds to a change in spin basis set. Because there is a 
mathematical connection between a matrix u of the special unitary 
group in two dimensions and a real orthogonal matrix of the rotation 
group (specifically, SU(2) is homomorphic with S0(3) = Rg), there is 
always a certain rotation R which can be associated with this change 
of basis set. Abragam and Bleaney (23J refer to the rotation as 
ficticious to distinguish it from a real rotation of the co-ordinate 
system. As a result, the parameter behaves like the component 
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of a double vector; the first subscript transforms under the 
operations of S0(3) whereas the second transforms under the 
operations of SU(2). The consequence for the present work is 
that a Unitary transformation involving S is independent of 
the corresponding transformation involving N and must be 
considered separately in the removal of indeterminacies in the 
spin-rotation Hamiltonian.

3 (III) c The reduced spin-rotation Hamiltonian.

We are concerned with the spin-rotational reduction of the 
molecular Hamiltonian to give an operator which contains determinable 
combinations of parameters only. Watson (1^), (^) has discussed 
the analogous problem of the application of a rotational contact 
transformation to the rotational Hamiltonian by a succession of 
unitary transformations of the form (3.20) of odd degree in N . 
There are extra complications in the present case in that the spin- 
rotational reduction of the rotational Hamiltonian and the 
rotational reduction of the spin-rotational Hamiltonian must also 
be considered. The commutation relationships (3.14b) and (3.14c) 
show that it is not possible to eliminate a dependence on S by 
these transformations and hence terms are generated in the spin­
rotation Hamiltonian. The simplest solution to this problem is to 
consider that the rotational contact transformation be applied first. 
This defines both the rotational and quartic and higher degree 
centrifugal distortion constants in the Hamiltonian. It also 
determines the co-ordinate system in which the standard form of the 
spin-rotation Hamiltonian Eq. (3.15) is expressed. In this discussion 
then, we only need consider the spin-rotational contact transformation, 
although it must be applied to both the rotational (H^^^) and spin- 
rotational (H^J Hamiltonians. The details of both the rotational 
and spin-rotational reductions must therefore be specified when 
quoting the results of a complete determination of parameters from 
experimental data. There is one more comment to be made before 
the implications of the spin-rotational reduction are considered. 
We are looking for terms in the Hamiltonian which are linear in S . 
However the transformations themselves generate terms of higher
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2 2 3 4 degree in S, for example, terms of the form N S , NS or S . 
For a molecule in a doublet state, these terms do not alter the 
form of the transformed Hamiltonian although the process of 
absorbing them does cause the values of the existing parameters 
to be altered. For molecules in triplet and higher multiplicity 
states, the extra terms contribute to the higher degree spin 
terms such as the spin-spin dipolar interactions. Such complications 
are not considered in this discussion which is restricted to doublet 
states.

It will become obvious in the next section that the first 
unitary transformation, Eq. (3.24a) is associated with the 
determination of parameters in the quadratic spin-rotation 
Hamiltonian, the second transformation in Eq. (3.24b) with the 
determinations of the quartic coefficients and so on. The number 
of determinable parameters in H ^ of given degree, therefore, is 
equal to the number of independent parameters in the standard form 
of the Hamiltonian Eq. (3.17), minus the number of non-zero parameters 
in the appropriate unitary transformation. The results of such an 
analysis for the quadratic and quartic Hamiltonians are given in 
Table 1. For orthorhombic molecules, there are three independent 
parameters in both the standard and reduced forms of H^^^ . This 

is the expected result since there have been many successful 
determinations of the diagonal components of the spin-rotation 
tensor for this type of molecule. However for non-orthorhombic 
molecules with a plane of symmetry, the unitary transformation can 
be used to eliminate one of the five parameters in the standard 
form Hamiltonian, leaving four determinable parameters. In the 
general case (no symmetry elements) there are expected to be six 
determinable quadratic spin-rotation parameters. Table 1 also 
shows the numbers of determinable parameters in the quartic spin­
rotation Hamiltonian are considerably fewer than suggested by the 
standard form Hamiltonians. There is a difference between the 
spin-rotation reduction discussed here and the analogous rotational 
reduction (^TG) which deserves emphasis. The number of determinable 
parameters in the spin-rotational Hamiltonian depends on the symmetry 
of the molecule concerned, whereas the rotational contact trans­
formation leaves three determinable quadratic parameters, five 
quartic centrifugal distortion parameters and so on, irrespective of 
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the symmetry of the molecule. The details of the unitary trans­
formations for the quadratic and quartic spin-rotation Hamiltonians 
are discussed in sections IV and V respectively.

3 (IV) The Quadratic Reduced Spin-Rotation Hamiltonian.

This section is devoted to the first unitary transformation, 
given in Eq. (3.24a) which defines the reduced form of the 
quadratic spin-rotation Hamiltonian. Three cases are discussed 
(i) a molecule belonging to an orthorhombic point group (ii) 
a molecule with a plane of symmetry (C ) and (iii) a molecule with 
no symmetry elements (C^). The first case is trivial since there 
are no independent parameters in the unitary transformation F 
and the standard and reduced forms of H^^^ are identical; as 

shown in Table 1, both contain three parameters, usually taken 
^aa ^bb ^^^ ^cc (—) °^ equivalently A^, B^ and C^ (^).

The second case, that of a molecule with a plane of symmetry, 
is a common one and includes, for example, the non-symmetrical 
triatomic molecule. Table 1 indicates that the only one of the 
three possible terms in F^, Eq (3.21) is allowed by symmetry, 
namely: 

where x is assumed to be the out-of-plane axis of the molecule. 
The quadratic spin rotation Hamiltonian is defined by Hg in 
Eq. (3.24a) and we need only consider :

where

/ he = XN^ + YN^ + ZN^ (3.27)
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and
H^^) / he Hw \\ + k<y> NySy + kiz) N^S^ 4-

& (k^fo (Vz " 5z"y) ^ k(^) (N^S^ y S^N^) ) (3.28)

We have used X, Y and Z astheprincipal rotational constants. The 
reduction of the Hamiltonian therefore involves the effect of the 
transformation exp (iF^) on the angular momentum components, N 
and S . Although the general transformation, Eq. (3.21) is 
equivalent to replacing these operators by an infinite power series 
in N and S the first transformation is exceptional in that it 
causes S^ to be replaced simply by a linear combination of S 
Sy and S° (16) (26):

exp (-ieS^,) S^ exp (ieS^,) = S^

exp (-i eS^) Sy exp (ieS^) = coses + sineS^

exp (-i eS^) S^ exp (ieS^,) = -sineS + coseS^ (3.29)

where 8 is a dimensionless parameter, equal to f^^^ in the present 

application. The corresponding transformations of N are given by:

exp (-ieS^J N^ exp (ieS^J = N^

exp (-ieS^ Ny exp (ieS^J = Ny f (l-cose) S + sineS^ 

exp (-ieS^J N^ exp (ieS^,) = N^ f sineS f (l^cose) S^ 

(3.30)

By use of these relationships, it is straightforward to obtain the 
transformed Hamiltonian Hg. When the resultant terms are collected 
together and cast in the standard form, it only remains to choose 
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the parameter f(^) to eliminate one of the parameters. The 

most convenient choice would appear to be the elimination of the 
antisymmetric part of the spin-rotation tensor, e . The spin­
rotation Hamiltonian in Eq. (3.28) is therefore rewritten:

"sr’/ he = k(^) N,S^ + k^NyS^ + k'^' N^S^

+ ) (k^lO + (Vz + Vz) 

i - k^01> <Vz Sz"y ' " $/,) (3.31)

After the transformation, the last term in (3.31) is eliminated if

= ("olo - k^oi)/ [2(Y . Z) - kW - k^) ] (3.32)

When expressed in terms of the components of the c tensor, this condition 
becomes:

ta"(f^oo: ' (^yz-^/C^C^ + ZjHc^ + g] (3.33)

The parameters in the reduced Hamiltonian H^^^ in the form corres­

ponding to Eq. (3.31) are

^xx " ^xx

- 'yz (foooH 

^zz = (foool " 'zz (f^ol + 2Zn-cos(fW)l 

'yz + 'zy- ('yz * 'zy' (^000' + 

['yz - ^zz - ^^^'-Z)] =i" )
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=yz - =zy = (=yz " =zy) (^000)

t=yy - 2 (Y + z; sin . 0
(3.34)

Reference to Eq. (3.33) shows that f^^^ is expected to be small 

in magnitude, in which case Eqs. (3.34) can be simplified by 
replacing sin (f^^)) by f^^) and cos (f^^^) by unity. This 

approximation is equivalent to considering only the first commutator 
term in the expansion of Eq. (3.5) and it is found to be reliable 
in the application of the results in this section to HOg (Chapter 4). 
The transformation also generates terms of degree 2 in S but for a 
doublet state, these simply make a constant contribution to the 
energy levels. The rotational constants X, Y and Z are not 
affected by the transformation.

The third case to be considered in this section is that of 
a molecule with no elements of symmetry. No data pertaining to 
this type of molecule has been found in the literature, but Table 1 
shows that six determinable spin-rotation parameters are expected 
since there are three independent parameters in the transformation 
(f(xl, fQ^^))f^§^ ) - The logical choice would appear to eliminate 
all three antisymmetric terms from the spin-rotation tensor in this 
case, so that the non-zero parameters are those in Eq. (3.34) plus

^^ v) ^^d The detailed form of the transformation 
can be derived by expanding the relations (3.34) in the appropriate 
manner.

3 (V) The Reduced Quartic Spin-Rotation Hamiltonian for an 
Orthorhombic Molecule.

3 (V) a The quartic spin-rotation Hamiltonian in standard form.

It can be seen from Table 1 that there are nine independent 
terms in the standard form spin-rotation Hamiltonian for a molecule
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of orthorhombic symmetry. We start by relating the parameters 
k(^? in the Hamiltonian in Eq. (3.17) for this case to the 

parameters n in the effective spin-rotation Hamiltonian 
Hg^j introduced in by Brown and Sears (25) and discussed in 
section II of this chapter (Eq.(3.7)). There are 21 non-zero 
parameters n . for an orthorhombic molecule, three of the

the forms o^g^g end o„gg„ 
with a :j: g . However the last two sets are identical because 
of the equality

^BaY6 (3.35)

so that there are fifteen independent parameters in Eq. (3.7). The 
angular momentum commutation relationships are then used to cast the 
Hamiltonian into standard form and in the process n _
and become coefficients of the same terms. Followinggaag
Kivelson and Wilson (27) it is convenient to define the additional
parameters

''aagg ^aagg ^^agag (3.36)

and the non-zero coefficients are:

^300 xxxx
k(y) 
^030 %yy

k(z)
^zzzz

^120 yyxx ^102 k(y) = n'xxyy

^012 ^z^y ^201 ^xxzz
k(z) 
^021 " %zz

(3.37)
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3 (V) b The transformation H^ = e ^^^ H^e^^^

The parameters in the quartic spin-rotation Hamiltonian are 
determined by the transformation involing Fg* that is :

H^^:) = exp (-IFg) {H(^^) + H(^?+ H(^/} exp (iFg) (3.38)

For a molecule of orthorhombic symmetry* there are three 
independent terms in the function Fp and the number of independent 
terms in the quartic spin-rotation Hamiltonian can therefore be 
reduced to six by a suitable choice of the transformation parameters. 
The form of Fp is readily derived from the character table of any 
orthorhombic group:

F2 = * (foil (yz\ + Sx^z^: + doi ("xW + Vz"x)

+ 4fo (\Yz + Wx" (3.39)

The transformation in (3.28) is evaluated by rewriting it in terms
of commutators :

"sr' = F^r' " ' [Hmt- ^2^ '' Pfr’ ^2! (3-40)

The higher commutators in the expansion on the right hand side of 
Eq. (3.38) give rise to terms of higher degree in the transformed 
Hamiltonian which do not belong to the quartic spin-rotation 
Hamiltonian; this is the reason for the approximate equality in 
Eq. (3.38). The commutators in Eq. (3.40) are evaluated by some 
lengthy algebra and the result is cast into standard form by use 
of the commutation relations Eq. (3.14).
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H^^^ /he

+ k^^chz + ^z":'

[kiS2 + 2(X-Z) f^li - (2Z-Z=) fj^i ](N,n2 S, . S^n2 N^,

. [k(z) . 2(Y.X) f{y) - (2X.X:) f{^^](N^N^S^ + S^N//)

+ [k({) - 2(Y.Z) f(x{ f (2z_z=) fo{^)](yh + y^y )

+ [k^oi + ̂ (x-z) dfo + (^x-x:, fix’ KN^N^S^ . s^n^n/)

+ [k^li - 2(Y-Z) fi^) - (2Y.Y=) f(^{ ](NZN^S^ + S^\N/), 

(3.41)

The parameters X, Y, Z and X , Y , Z are the principal components 
of the rotational constant and spin-rotation tensors respectively. 
The coefficients in the standard form of H^^^ can be referred to 

fiin ). The interesting result 
that the three parameters kinn* are unaffected by the
transformation should be noted. Both the transformation and the 
reduction to standard form generate terms which are either of higher 
degree in S^ or lower degree in N . As discussed in section IV, 
such terms make contributions to other parameters in the effective 
Hamiltonian (eg. the rotational constants). They have not been 
investigated further.

Three of the parameters in H^^^, Eq. (3.41) 
f^Q^ and However this form is

can be eliminated
by suitable choices for fl^j,

101
not very convenient for the evaluation of matrix elements and so, 
before discussing specific reductions, we rewrite H^^^ as:
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H(^)/hc = a^ (N.S) agN^JN.S)

+ i a. f N S ) f + N S ) N^}

+ i »o ( a 5 N^5 a a S N (3.42)

where N^ = N ±
are simple linear

is, S = S ± is, and the parameters a^ 
combinations of the k ' ^:

to ag

^1 ' « (^^300? ^1^030^ ^120^ ^ZIG?^ (^^^^^^

^2 ^{^3^ " ^1
^3 ' ^4 (3.43b)

^3 ^(^10^^ '^ ^012^) " ^(^^300 ^^030 ^120^ ^210?) (^'^^^^) 

^4 ^^^2Cn^ ^021^) " ^(^^300 ^^03^ "^ ^120^ ^210^) (^^^^^)

=5 =^(400 -^030^ "h^gf +^210^^ (3-43e)

^6 " ^(^3^0 " 1^030 ^120 ' ^210 (^^^^^^

^7 *(^102 " ^012^ " (^300" "^030 ^120 " ^210p (^^^^^l)

^8 ^(^201 " ^021 ) " ^ (^300 " "^030 ^120 ^21o)

^9 ^6(k^Q^ + k^^) - kjgo - k^{^| ) (3.43i)

The form for H^^^ 
sr in bq. (3.42) is much more convenient for the 

evaluation of matrix elements. The first four terms have elements 



69

diagonal in the quantum number K, the next four terms have elements 
with AK = ±2 only and the final term has elements with AK =. ±4. 
The transformed Hamiltonain is given by the corresponding 
expression involving parameters a which are obtained by replacing 
the kp(°) in Eqs. (3.43) by k^^^ from Eq. (3.41)

It is evident that there are several possible ways in which 
parameters can be eliminated from Eq. (3.41). We discuss two such 
choices in the remainder of this section, referring to them as the 
S and A reductions. They are respectively analogous to the 
symmetric and asymmetric reductions of the rotational Hamiltonian 
discussed by Watson (^).

3 (V) c The S-reduced form of the quartic spin-rotation Hamiltonian.

The S-reduction corresponds to the elimination of the parameters 
Bg, By and Bg from H^^^and the retention of the term involving ag, 

the coefficient of the term that contains the shift operators N^ and 
S^ to the fourth power. The latter define the spin-rotation 
contribution to the K-splitting in levels with K = 2 of an asymmetric 
top. The three parameters fg^j, fig^ and fj^^ are therefore chosen 

so that :

^6
0 = E(x) _ c(y) + k(x) _ b(y) 

^300 ^^030 ̂120 ^210 

^7
n = c(x) _ b(y) _ 1 ,L(x) _ r/y) c(x) _ r(y) .

^102 ^012 ^ ^^300 ^030 ^120 ^210

^8 ^201 ^021 " '^300 ^030 ^120 ^210

The result is obtained if : 
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f(^) = (Det)"^ {-2[2 (Y-Z) - (2Z-Z^)] [(X-Z) + (Y-Z)]

(^300 ' 1^030 ^120 " ^2T0

+ [4(X-Y)(X-ZfY-Z) f (2X-X^)(2X-X^ + 2Y-Y^)](k(n! - k^Yl )

+ [2(V-Z) - (2Z-Z=)3 r2x-x=4. 2Y-YSl(k(^> - kt|>-k^00 )

(3.44a)

f{^;{ = (Det)"^ {2[2(X-Z) - (2Z-Z^)] [(X-Z) + (Y-Z)]

^'300 .030 120 ^210^

+ [4(X-Y)(X-Z+Y-Z) + (2Y-Y^)(2X-X^+2Y-Y^)] (kjg) - k^^))

- [2(X-Z] - (2Z-Z")] [ZX-X= + 2Y-Y=] (k(^) - kl^l - k^ t k^)]

(3.44b)

and

f^jg) = (Det)'^ { - [(2X-X^){2(X-Z) - (2Z-Z^)}-(2Y-Y^){2(Y-Z)-(2Z-Z^)

(^300 " "^030 ^120 " ^210

- 2 (X-Y) [(2X-X^) + (2Y-Y^) ] (k(g) - k(^^ )

+ 4 (X-Y) [(X-Z) f (Y-Z) - (2Z-Z")](k(^) - k(|) - k(g) f k(^))}

(3.44c)
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where

Det = (2X-X^ + 2Y - Y^){ [2(X-Z) - (2Z-Z^)] (2X-X^) - 

[2(Y-Z)-(2Z-Z^)] (2Y-Y^)}

-8(X-Y){(X-Z) + (Y-Z)}{(Y-Z) + (X-Z) - (2Z-Z^)} 
(3.45)

The S-reduced quartic spin-rotation Hamiltonian for a molecule of 
orthorhombic symmetry can thus be written: 

"sr' = °N "z^z + Hz^z ^^'+ %"z (^'^1

+ °K "z "z^z + 4 ("! "!)(^-S) + 4 (N^S^ + N^ SJ (3.46)

where the six parameters D^ to dp have been introduced as the 
analogues of the quartic centrifugal distorition parameters in 
the S-reduced rotational Hamiltonian (22). The first and second 
subscripts in the parameters D^^ and D^^ indicate the quantum 
number dependence of the rotational and spin-rotational parts of 
the operator respectively. The non-zero matrix elements of the 
S-reduced quartic Hamiltonian in a case (b) basis set, using the 
phase conventions of Bowater, Brown and Carrington (28) are given by: 

<NKSJ|H^^)|NKSJ> = {[J(J+1) - N(N+1) - S(S+1)]/2N(N+1)}

X {D^ K^ + (D^^ + D^^) K^ N(N+1) + og N^ (N+1)^} (3.47)

<N-1, KSJ |H(^)|NKSJ> = -(K/2N){ o! K^ + N^l 
bl l\ N (\

X [(N^-K^)(N-J+S)(NfJ+Sfl)(SfJ-N+l)(N+J-S)/(2N-l)(2N+l)]^ 

(3.48)
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<N,K±2SJ |H(^?|NKSJ> = & d^ {J(J+1) - N(N+1) - 5(5+1)}

x[{N(N+l) - K(K±1)}{ N(N+1) - (K±1)(K±2)}]^ (3.49)

<N, K±4,5J I A(^?|NK5J >= & d| {[J(J+1) - N(N+1) - 5(5+l)yN(N+l)}

x[{N(N+1) - K(K+1)} {N(N+1) - (K±1)(K±2)} {N(N+1) - (K±2)(K±3)}

{N(N+1) - (K+3)(K±4)}]^ (3.50)

<N-1, K±4, SJ |A(^?| NK5J > = ^dg /N

X [(N-J+S)(N+J+5+l)(S+J-N+l)(N+J-S)/(2N-l)(2N+l)] ^

X [(NfK) {Nf^- (K+1)^} {N^ -(K±2)^} {N^^- (K±3)^}{N;K-4}] ^ (3.51)

The matrix elements diagonal in K have the same form as in previous 
work (]4, 25) although the parameters have different meanings because 
of the changes introduced by the transformation. In the present case 
Eqs. (3.43) can be used to show that :

^N (^^300 ^^03^ ^12^ ^210 

^NK ' (^201 ^0^1) ' ^N

^NK " (^102 ^0^2) ' [^N

'^K ^003 ' '^N ^NK
s

KND
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(^300 ' '^OSO)

^2 " *^030 " ^123 " ^2To) (3.52)

where the k^^? can be obtained from Eq.(3.41). From Eqs.(3.52) the 

six determinable combinations of parameters can be expressed in terms 
of the constants of the S-reduction :

^zzzz / ^303 "^K

(^120 ^210 ) " ^^^^2

(^201 ^0^1 ) " ^^NK ^4
(3.53)

The results of this section are applied to the interpretation, 
of the spin-rotation splittings of NH2 in the X B-, state in Chapter 5.

3 (V) d The A-reduced form of the quartic spin-rotation Hamiltonian.

The essential characteristic of the A-reduced form of the spin­
rotation Hamiltonian is that it has matrix elements with AK=0,±2 only 
(22). The advantage of this reduction therefore is that it is easier 
to construct the Hamiltonian matrix and bring it to diagonal form by 
computer methods. Nevertheless, experience with the rotational 
problem shows that the S-reduced form is to be preferred since it is 
applicable to any molecule, irrespective of the value for the 
asymmetry parameter K, and because it leads to a less strongly 
correlated set of parameters for a fit of the data than does the 
analysis using the A-reduced Hamiltonian (2^, 39). Although it seems
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likely that the same advantage will accrue to the S-reduced 
form of the quartic spin-rotation Hamiltonian, it is probably too 
early to dismiss the corresponding A-reduced form. We therefore 
consider the essential features of the Hamiltonian at this point.

The A-reduction is effected by the elimination of the 
parameters a^, a^ and ag in H^^^, obtained from Eq. (3.42). it 

can be seen that two terms including the squares of the shift operator 
N± and/or S± are retained, namely those with coefficients a^ and ag. 
The former defines the K-splitting effects on the spin-rotation 
coupling for levels with K = 1 in first order while the latter produces 
the splitting of levels with K = 2 in second order. The A-reduced 
quartic spin-rotation Hamiltonian for an orthorhombic molecule can 
then be written :

2 f (N.S] 

(3.54)

where the parameters A^ A^.^ etc. have been introduced by analogy 

with the corresponding quartic centrifugal distortion constants. 
The matrix elements in a case (b) basis set are :

<NKSJ [H^^? I NKSJ> ={[J(J+1)-N(N+1)-S(S+1)] / 2N(N+1)}

X (A^ K'^ + (A^^ +A^g ) K^ N(N+1) f A^ N^(N+1)^} (3.55)

<N-1, KSJ |A(^:) INKSJ >= -(K/2N) fA^X^ + A,^^ N^ }

x[(N^-K^)(N-J+S)(N+JfS+l)(S+J-N+l)(N+J-S)/(2N-l)(2N+l)] ^ (3.56)
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<N,K±2SJ |H(^? INKSJ > = {[J(Jf1)-N(N+l)-S(Sfl)] /2N(N+1)} 

x[{N(N+l)-K(K±l)}{N(N+l)-(K±l)(K+2)}]kpS N(N+1) f &5^ [K^+(K±2)^])

(3.57)

<N-1, K±2 SJ IH^^? I NKSJ > = -i(6g7N){ K(N±K) f (K^:2)(N±Kf2)} 

x[(N+K-l)(N±K+1)(N+K-2)(N+K)(N-J+S)(N+J+S+T)(S+J-N+T)(N+J-S)/(2N-l)(2N+1)]^ 

(3.58)

The explicit expressions for the transformation parameters f^^^ 

which effect the A-reduction have not been considered. If required 
they may be derived from the conditions:

^6 ' ^300 " ^03^ ^12^ ' ^210

3; - 0 = kjg^ - k(^^ - i (k^Q^ - k^^^ + kjgo - k^^^ )

^9 ° " ^300 ^030 " ^128 " ^210

with the values for taken from Eq. (3.41)^pqr

The A-reduced Hamiltonian has been applied by Cook, Hills and 
Curl (1_4) in their fit of the spin rotation splittings of NHp in the 
ground state. They made the approximation that the effects of the 
matrix elements off-diagonal in N, Eqs (3.56) and (3.58) were negligible 
in their analysis. It can be seen from Eq. (3.55) that it is not then 
possible to separate A^^ and and only five parameters may be 
determined.
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CHAPTER 4.

APPLICATIONS

4(1) The determination of the quadratic spin-rotation parameters 
for HO2 in the X^A'' state.

The derivation of a reduced form of the quadratic spin-rotation 
Hamiltonian suitable for the empirical fitting of spectral data has 
been discussed in Chapter 3. For a molecule with a plane of 
symmetry only (C ) there are four determinable parameters, not five 
as suggested by the unreduced Hamiltonian. The implications of 
this result are explored in this section, using data that relate 
to the spin-rotation splittings of HOp in the X^A" state.

The microwave spectrum of HOp has been observed and analysed 
by Saito (IJ- ^t involves both a- and b-type transitions between 
rotational levels with K, = 0 and 1. Saito found that he was not 
able to determine both the expected off-diagonal components, e^^ 
and e^^, of the quadratic spin-rotation tensor and so he fitted the 
data with the assumption that e^^ = E^ . In section V of Chapter 2 
an outline is given of the more sophisticated analysis of all the 
published high resolution data for this molecule (2* 2, 3^ as 
performed by Barnes, Brown, Carrington, Pinkstone, Sears and 
Thistlethwaite (2) but the same conclusion as Saito was reached 
with regard to the off-diagonal components of the spin-rotation tensor. 
A different constraint was imposed in the fit, namely:

based on a simple theoretical model in which the spin-rotation 
interaction is attributed solely to spin-orbit coupling affects in 
the oxygen atoms. It can be seen from Chapter 3 that the indeterminacy 
revealed by these analyses is not caused by shortage of data, but 
rather is inherent in the form of the spin-rotation Hamiltonian. 
Under no circumstances is it possible to determine more than four 
spin-rotation parameters for this type of molecule.
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The analysis outlined in Chapter 2 has been repeated using 
the reduced quadratic spin-rotation Hamiltonian, H^^^^, described 

in Chapter 3. The computer program used was program II 
suitably modified to take account of the transformation of the 
spin-rotation Hamiltonian. The calculations were performed with 
a symmetric rotor basis set truncated at AN = ±1 and AK = +4 , 
sufficient to reproduce "full" basis calculations to within the 
experimental accuracy (0.1 MHz for the microwave frequencies). 
In the least squares fit, all the parameters apart from the 
quadratic spin-rotation constants were fixed at the values obtained 
in the previous analysis; this included the quartic spin-rotation 
terms. The fit of the microwave data to the four parameters 
of Hg^^^^ Eq. (3.34), is identical in quality to that obtained 

previously when the relationship (4.1) was imposed. The values 
of the parameters determined in this way are given in Table I. 
For comparison, the values obtained in the other two analyses (1), 
(2), are also given.

The results are very satisfactory. The parameters S, E,^ 
and (Cg^ f e^^) are modified in the revised fit, whereas e- is 
essentially unaltered, in accord with expectation. Columns 3 and 4 
of Table I are the results for two different reduced forms of H^. 
In the earlier work, column 3, the constraint = BG^,/A was 
imposed, corresponding to a transformation parameter.

f, = tan'l{(A£:^g - BEg[,)/[A(Et,^ - 2B) - 61=^^ - 2A)]1 (4.2)

when U = exp(ifiS). In the present analysis, we have chosen to 
eliminate the antisymmetric part of the spin-rotation tensor so that 
Gy = Gc This is achieved by the transformation parameter fg where

- E,^)/[2(A f B) - (43)

The transformation of from the reduction of column 3 to that 
of column 4 is therefore achieved by U = exp(i{f2 - fi}S) and the 
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TABLE I

QUADRATIC SPIN-ROTATION PARAMETERS OF HO2 IN THE X^A" STATE IN GHZ

Parameter Saito ( 1 ) Barnes et aZ (^) This work Predicted^

-49.5688(23)^'^^ -49.56989(58) -49.57115(57) -49.57242

-0.4319(13)^ -0.422795(80) -0.422573(80) -0.422651

0.0176(13) 0.008645(89) 0.008623(89) 0.008645

. . , 1.891(11)® • • • * • *

0.378(24) e . . 0.3879(11) 0.3880

Values predicted from Eq. ( 3.34)

b The numbers in parentheses represent one standard deviation of the least 
squares fit, in units of the last quoted decimal place. 

Value corrected for D^ = 0.02271 GHz (2).

This value determined from a-dipole transitions. Value for e^^ from Z)-type

transitions determined as -0.4179(6) GHz.

Value obtained from fit subject to the constraint e, = e . = 0.1038 GHz.6a co
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relationship between the two sets of parameters is given by Eqs. 
(3.33) and (3.34) on the understanding that the right hand sides of 
these equations refer to the first reduction rather than the unreduced 
form of the Hamiltonian. Eq. (3.34) can be used to predict the 
parameters to be obtained from reduction 2 and the results of such 
a calculation are given in the last column of Table I. The 
agreement with the parameters obtained in the least squares fit is 
highly satisfactory and is a pleasing confirmation of the present 
approach. However, it does not provide any independent support 
for the relationship given in Eq. (4.1) proposed by Barnes et al 
(2J, since it is possible to go from one form of H^^^^ to the 

other by a unitary transformation. Finally we note that, in his 
analysis (IJ, Saito in effect used the same reduced form for H^^^ 

as described here. His value for ^^ + e,g is therefore in good 
agreement with that determined by the least squares fit.

4 .^1% The effective spin-rotation Hamiltonian for NHo in the 
state.

4 .^1).a . The determination of the spin-rotation parameters for 
the X B, state.

The recent observation of microwave-optical double resonance 
transitions in the NHg radical by Cook, Hills and Curl (4), (5^, has 
produced a large amount of high quality data on the rotational levels 
of the molecule in the X B, state. In particular, the observation 
of magnetic dipole transitions between the two spin componehtsof a 
given rotational state provides direct information about the size 
of the spin-rotation splittings in many of the lower rotational 
levels(5). The availability of this data makes NHp an ideal 
candidate for treatment in terms of the theoretical description 
of the spin-rotation interaction previously outlined. Curl and his 
co-workers (6), (7J have interpreted these splittings in terms of 
three quadratic and five quartic spin-rotation parameters; their 
approach is essentially that of the A-reduced Hamiltonian discussed 
in section 3 V (d). By invoking planarity relationships and 
neglecting some parameters, they were able to determine values for 
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five n^gg parameters.

For the reasons given in section 3.V(d), the data havebeen 
analysed using the S-reduced Hamiltonians for both the centrifugal 
distortion (.36) and for the quartic spin-rotation terms. This 
has been done in an attempt to establish whether the six parameters 
in Eq. (3.46) can be determined and, if so, how they can best be 
interpreted. The M.O.D.R. frequencies were taken from Ref (6) 
and they are reproduced in Table 11. In a more recent paper (7), 
Hills, Lowe, Cook and Curl have measured the magnetic dipole 
transition frequencies between the states 3^^ and 4,^ and remeasured 
the spin-rotation splitting in the 4^9 level. Professor R.F. Curl 
(8), has kindly provided values for these frequencies, for inclusion 
in the analysis (ck^; J = 7/2 ^4^^; J = 7/2, v = 5350.56 MHz; 
see also Table II). The data were fitted using the program 
described in the previous subsection and Chapter 2, Section V. 
Since NHg (k = -.3846) is a more asymmetric rotor than HOp 
(k = -.9936), a larger basis set was necessary and the calculations 
were performed in a full basis set for the zero-field problem 
(AN = ±1).

Initially, the constants determined by Davies et al (9), in 
their fit of the far infra-red L.M.R. data were used, converted to 
the S-reduced form using the relationships given by Watson ^36). 
However numerical tests on the A to S transformation showed that 
it was not sufficiently reliable for such a light molecule as NHg 
(the equations given by Watson are simply the leading terms in a 
series expansion). Since the fit of the M.O.D.R. spin-rotation 
splittings is quite sensitive to the values of the rotational 
parameters (6), a representative sample of the L.M.R. data was 
refitted to the S-reduced Hamiltonian, taking approximately two Zeeman 
lines per polarisation for each rotational transition. Nuclear 
hyperfine effects were suppressed by taking the flux density for 
the centre of the hyperfine pattern; this was the procedure
followed by Davies et al in their analysis (9). Additional
information on the separations has been- 4^^ and Sgg 6^g
provided by the measurement of magnetic (7), (8) and electric (4^, 
(.1^)^^P°^^ transition frequencies respectively. The appropriate 
M.O.D.R. frequencies were therefore included in the least squares 
fit, weighted 100 times more heavily than the L.M.R. data. The 
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TABLE 11

THE LEAST SQUARES FIT OF SPIN ROTATION SPLITTINGS OF NHg IN THE X^B^ STATE

^obs-calc'^^^ '"dbs/MHz (^ '^obs-calc^^^

^0 3 2374.83 0.24 41 3 6334.92^ - 0.08

4o4 2843.99 -0.63 514 7383.43 -0.20

Sos 3114.88 -0.38 615 8198.18 -0. 06

606 3255.77 -0.01 ^22 12307.36 0.03

7o7 3329.73 -0.15 42 3 10733.25 0.53

8o8 3371.81 0.06 ^24 10001.66 0.28

^11 6931.97 -0.44 625 9696.00 -0.28

2i2 4418.62 -0.56 726 9614.17 -0.24

31 3 3680.93 0.43 42 2 10884.92 -0.02

41 A 3426.51 0.39 523 10561.24 -0.67

315 3352.07 0.10 624 10870.36 -0.65

616 3346.92 0.54 72 5 11556.36 0.87

717 3363.10 -0.07 221 'V15842^ 0.94

110 7956.05 0.30 220 -visigo*^ -10.4

211 6120.54 0.65 321 'v^l2273^ -5.7

312 6083.21 0.33

Calculated frequencies obtained using the parameters in Table Illand a full basis set. 
Standard deviation of fit = 0.49 MHz.

R. F. Curl, private communication (_^).

Approximate frequencies only. Included in the fit but with relative weight 0.01.
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basis set was truncated at AN = ±1 and AK =±6 in performing the 
calculation. The electron spin g-factors were constrained at 
the values calculated from Curl's relationship (l^) which should 
be reliable for NHp. As in the previous fit of the L.M.R. and 
E.P.R. data of HOg (^; and chapter 2), the inclusion of terms 
that describe the rotational Zeeman effect produced a significant 
improvement in the least squares fit.

In the fit of the L.M.R. data, the nine quadratic and quartic 
spin-rotation parameters were fixed at the values obtained from the 
fit of the M.O.D.R. frequencies. The latter were then re-fitted 
using the improved rotational constants and the process repeated 
iteratively until it had converged. The final values of the 
parameters obtained are given in Table III, they have been obtained 
from a fit to a data set which included rotational levels up to 
N = 7 and K = 4 and can be used to calculate reliable term values 
within this range of quantum numbers. All the parameters listed 
are better determined than in previous work (T2), (5) and in particular 
we note that all six quartic spin-rotation parameters are determined 
(i.e. it has proved possible to separate D^^^ and DLu^). Furthermore 
we have been able to determine all three components of the rotational 
g-tensor. The values obtained are consistent with the predictions 
of the simple formula for the electronic contribution to gp^"(2):

q
'"r (4.4)

when is the atomic spin-orbit coupling parameter (suitably weighted
if necessary). The appropriate value for c in the present case is 
that for the N atom, 76 cm" (13) which leads to

g^^^(el) = -4.07 X 10'3, (el) = -5.94 x 10'^

(el) = -5 X 10'6

The nuclear contribution to the rotational g-factor is expected to 
be a positive quantity ~ lo'^for a magnetic moment expressed in 
Bohr magnetons.
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TABLE III

MOLECULAR PARAMETERS OF THE NH2 RADICAL IN THE GROUND STATE^

Fit of L.M.R. data Fit of M.O.D.R. data

A 710.3024(10)^ e^^ -9.26754(62)

B 588.22258(61) e^^ -1.35262(20)
C 245.0641(13) e^^ 0.01099(10)

103 jg

2.8917(23) 104 Z)^s 2.786(29)
-0.111148(78) 103 D^^^ -1.65(51)
0.645469(97) 10^ (^;y/+%m^®) -3.195(56)

-1.25966(88) 10^ 0^ 3.295(27)
-1.286(11) 104 (f^g 1.480(17)

105 dg^ 1.21(14)

lOG Ag

-1.368(30) 
1.425(93) 
1.314(11) 
0.64(24)

10^ g '^
IQ:* g/t 
104 ^^00

-4.986(95)
-4.94(76)
2.50(76)

Values in GHz (where appropriate).

From a fit of 60 L.M.R. data points 0^) and three M.O.D.R. frequencies (8 , 10). 
Standard deviation of fit = 6.8 MHz. Spin-rotation parameters. constrained to 
values obtained from M.O.D.R. fit. Electron spin g-factors fixed at the values 
obtained from Curl's relationship (11), viz. g ^ = 2.00884, g = 2.00406 and . 
gTg"::^ = 2.00230. ^ ^

From a fit of 31 M.O.D.R. spin-rotation splittings (_^,^). Rotational and 
centrifugal distortion constants constrained to values obtained from L.M.R. fit.

The nvunbers in parentheses represent one standard deviation of the least-squares 
fit, in units of the last quoted decimal place.

All other sextic centrifugal distortion constants (Z/ , h-^ and /i3) constrained 
to zero.
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4.(11) b The interpretation of the quartic spin-rotation parameters 
for NH^ in the X Bi state.

The values for the quartic spin-rotation parameters for NHp can 
be used to determine six linear combinations of the n parameters in 
the effective Hamiltonian Eq. (3.7). The relations appropriate to 
the S-reduced Hamiltonian are given in Eq. (3.53), and the results 
of such a calculation are given in Table IV. Eqs. (3.53) show 
that it is possible to determine the three "diagonal" components, 
T and it is interesting to compare these results with the 
predictions of the formula derived in section 3 (II) which relates 
the quartic rotational and spin-rotational parameters:

T - £ (4.5)

where B^ is the Rotational constant associated with the principal 
inertial axis g. This relationship is based on the assumption that 
the electronic wavefunctions and eigenvalues are independent of 
vibrational coordinates . The values for the three n parameters 
calculated from Eq. (4.5) with the constants in Table III are also 
given in Table IV. It can be seen that, although the results are 
of the right order of magnitude, they underestimate the value in 
each case (by a factor of ~2 for 4nd nkL.,). Similar 
conclusions were reached in other applications of (4.5) (]^, J^, 
section 4(111^1, so that some measure of the reliability of the formula 
is now apparent. For NH^, the three parameters n all depend on 
the variation of the spin-rOtation interaction with the vibrational
o-ordinates Q^ (symmetric stretch) and Qp (bend

arises primarily from the admixture of the A 2
. The parameter 
Al state (16), and

the strong dependence of the separation between A and X states on 
the bending co-ordinate is well established (U, 18^). For the case 
^^^^aaa ^^^^' ^^^ assumptions on which Eq. (4.5) is based are patently 
incorrect and its failure is not surprising.

Hills et al (7, 5)
A-reduced form of H ' ' sr

have determined five parameters of the
in their analysis. They were able to
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TABLE IV

QUARTIC SPIN-ROTATION PARAMETERS FOR NH2 IN THE X^B^ STATE IN Wz

Parameter This work Hills et al ( 7) Calculated^

^aaaa 30.03(28) 30.7(2) 14.70

0.5978(54) 0.624(5) 0.395

0.0070(54) O.o’’ _ -0.0006

(k2o/°^ + k210^°^)

(ki02^^^ + koiz^''))

0.413(19)

-2.8(10)

-2.5(10)

-2.3(10) -3.9(5)

-12.6(15) -12.8(5)

1.22(10) 1.5(3) ...

4.5/" 5.0^

Calculated from Eq. (4.5) and the parameters in Table HI-

This value assumed to be zero.

’12,^Q constrained to the value P^^^(^/A) (e^^) in this determination.
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relate these parameters to the n^gg of Eq. (3.7), by imposing the 
planarity relationships and assuming all n^gg^to be zero. The 
three planarity relationships which can be derived from the work of 
Oka and Morino ^T9) are:

^ccaa
2

(C/A) ^aaaa f
2

(C/B) ^bbaa (4.6a)

^ccbb
2

(C/A) ^aabb +
2

(C/B) ^bbbb (4.6b)

^cccc
2

(C/A) ^aacc +
2

(C/B) ^bbcc (4.6c)

These equations refer strictly to the equilibrium values for the n 
parameters rather than to the values in a particular vibrational 
level. However experience with corresponding relationships for the 
rotational centrifugal distortion constants (20^ 36) suggests that 
Eqs. (4.6) should be quite reliable. The assumption that the n__g 
are negligible for NHg is not so well-founded since it is based on 
Eq. (4.5) and the observation that E^ is very small (Table ill). 
We have already demonstrated that Eq. (4.5) does not hold well for this 
molecule but possibly its order-of-magnitude level of reliability is 
sufficient; it is certainly true that n is very small (Table IV) 
By making these assumptions, Hills et al (7) were able to determine 
5 of a possible 11 non-zero parameters, namely, ^hbbb' ^aabb 
^bbaa ^^^ (^abab ^baba^' ^^ ^^^ only possible to separate 
^abab n^g^g by using the relationship

^abab^^baba (4.7)(A/B)(=bb/=.a

derived from Eq. (4.5). Again the reliability of this relationship 
is questionable but since the n parameters involved depend on the 
variation of e^^ and e with the antisymmetric stretching co-ordinate 
(Qg) only, it is possible that the results are better in this particular 
application. The values obtained by Hills et al are given in Table IV.

I he analysis performed here shows that the 6 parameters of the 
$-reduction (D^^, D^^^, D^^^, D^^, d/^, d2^) can be used to determine
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the 6 coefficients n^^gg. n^^^^, (k <5' t k <^h.

(k 201 ^ 021 ) ^"^^ (^ 102 ^ 012 )' ^^^ latter three

parameters can be related to the three n , which are known, 
and the six k^ by use of Eqs. (3.41), (3.44) and (3.45).
For a symmetric triatomic molecule, the k^^/ are from Eqs. (3.37)

to be zero,

^ccbb - ^^ccbb

^aabb " ^aabb ^^^abab

^bbcc - ^bbcc

k..2")
^aacc - ^aacc

k201^^^ ^bbaa " ^bbaa ^^^baba

ko21^
ccaa ccaa

Even if and are assumed u w d o G
parameters (n,'^. n^^,,. n^,,.

there are still four
and n^g^^) to be determined from

three experimental quantities. The imposition of the two planarity 
conditions, Eqs. (4.6a) and (4.6b) does not help because two extra 
parameters (n^ab ^^^ n^b) are introduced in the process. We 
therefore follow Hills et al (2) and invoke the extra constraint
OT Eq. (4./J in order to determine n LL 
three combinations (k^^' f kV^n)* k 

\ 1 ^ U Z. 1 \J

, n

201

bbaa'2^ "baba !^ 
+ (k^z^) and (k^,)f

ko The results of this calculation are given in Table IV where
it can be seen that there is good agreement with the earlier workers, 
particularly for the parameters n and n, ,,, whose values are not adad DDDu
dependent on the assumptions made in the calculation. The fact that 
the values for the other three parameters are close to those Of Hills 
et al (7), may just be an indication that the same assumptions are
involved in both treatments.
to Eq. (4.7) between n g^^ and

Certainly the relationship analogous 

^bbaa

"aabb "g^j^igg (A/B) (^bb / 'aa) (4.8)
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is not well satisfied by our results (^laabb^^bbaa 0.178
compared with the value of 0.267 from Eq. (4.8))

In conclusion, the analysis of the quartic spin-rotation 
parameters with the aid of the planarity relationships, does not 
seem to be very fruitful. This observation is in contrast to 
that for the quartic centrifugal distortion constants, where 
successful determinations of the non-zero I's have been made by 
invoking the planarity conditions (36^. It seems likely that 
the interface between experiment and interpretation for the spin­
rotation problem will be established at the level of the parameters 
[L^ etc., in the effective Hamiltonian, Eq. (3.46). Model 

vibrational potential energy surfaces for NHg are becoming available 
(^, 22) and it would be extremely interesting to estimate the 
quartic spin-rotation parameters from these potential surfaces.

4 ^II) A determination of Zeeman parameters for NOp in its ground 
state

4 ^II) a Introduction.

Nitrogen dioxide has long been used as a prototype for studying
interactions characteristic of open-shell molecules, as can be judged
from the size of its literature. It has been studied extensively 
in its ground 4% state by both microwave (23, 24) and infra-red 

1 4 
techniques (25^ 26) so that rotational, spin-rotational and N 
hyperfine constants are well determined. The E.S.R. spectrum has 
been recorded in a variety of solid state environments (27, 28). 
The gas phase E.P.R. spectrum is very much more complex (29), and 
only selected parts of it have been analysed to date (30). Finally 
some far infra-red L.M.R. spectra have been obtained (3}); these 
data provide information on higher rotational levels. Curl (11), 
has derived an extremely useful relationship between the electron 
spin-rotation coupling constants e^^ and the g-tensor components
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(4.9)

where g^ is the free spin g-factor, I^_ is a component of the inertial 
tensor and a, g and y i^un over the three cartesian components in 
a molecule-fixed axis system *. This relationship is rather well 
satisfied by the spin-rotation constants » as determined from the 
microwave spectrum (23) and the g-tensor components from the solid 
state work (27) and this was used by Curl in support of his relation­
ship. It was therefore disconcerting when the analysis of the L.M.R. 
spectrum suggested markedly different values for the g-tensor 
components (31J, especially as the molecule was studied in the gas 
phase where results are free from solid state lattice effects.

In this section extended measurements and assignments of 
magnetic dipole transitions in the gas phase E.P.R. spectrum of 
NOg are described. These data, in conjunction with the L.M.R. 
data, have been fitted to an effective Hamiltonian which includes 
a description of the centrifugal distortion of the spin-rotation 
interaction and improved values for the g-tensor components, which 
conform closely to the predictions of Curl's relationship, have 
been determined. It was the neglect of the quartic spin rotation 
terms which led to the apparent conflict with Curl's relationship 
in the earlier analysis.

4(III) b Experimental Details.

The E.P.R. spectrum of nitrogen dioxide was recorded with a 
Decca X-3 spectrometer using Zeeman modulation at a frequency of 
100 kHz. A rectangular TE^og cavity resonant at 9270 MHz was 
placed in the field of a Varian 12 in. magnet and a static sample 
of gas introduced in a quartz sample tube. Optimum gas pressure 
was found to be about 0.25 torr; above this pressure line 
broadening was observed.

Accurate field measurements were made with an AEG proton

*contrary to Curl, the second subscript of g^g and e^ refers to the 
component of the spin angular momentum, Sg. 



93

fluxmeter and were corrected for the field difference between 
the proton probe, which was mounted on the magnet pole-face, and the 
sample in the centre of the magnet gap. Each observed line 
position quoted in Table V, is the average of at least five scans 
through the line. The spectrometer operating frequency was 
monitored continuously by a Hewlett Packard 5245L counter with a 
5255A frequency convertor, although it was very nearly constant 
under the conditions of the experiment.

The transitions observed were of the same type as those 
studied earlier by Burch et al (30), and are discussed in more 
detail in section 4.111 (d). Under the experimental conditions 
the lines were several gauss wide and the signal to noise ratio 
less than 20:1, even with a 3 s time constant. The accuracy of an 
individual measurement was estimated to be about one gauss.

4 ^II) c Theoretical Background.

The effective Hamiltonian for the rotational energy levels 
of an asymmetric top in a doublet state has been discussed by Van 
Vleck (32J, Lin (33) and Raynes (34) and takes the form:

"eff = "ret + "cd + "sr "sred + "hfs + "q " "z (4-1°)

Here, H^^ is the rigid rotor Hamiltonian
sextic centrifugal distortion corrections

and H_j the quartic and
to the rotational energy.

H and H^^^j are the quadratic and quartic spin-rotation Hamiltonians
which have been discussed in detail 
the magnetic hyperfine interactions

in Chapter 3, while
14 "TS

represents
between the N nucleus and the

unpaired electron spin and consists of the Fermi-contact and spin-spin
dipolar contributions. The nuclear electric quadrupole interaction 
is represented by Hn and the interaction of the molecule with the 
external magnetic field by Hy. The explicit forms for the various 
terms are given in many places in the literature. As discussed in 
Chapter 2, it has been convenient to use the spherical tensor 
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formulations for the operators given by Bowater et al (35), and the 
quartic and sextic centrifugal distortion Hamiltonians as given by 
Watson (36). The spin-rotation Hamiltonian was taken in the form 
discussed in Chapter 3, as applicable to an orthorhombic molecule.

The reliable determination of the molecular Zeeman parameters 
depends critically upon the use of the correct zero-field 
Hamiltonian, as will be seen in the next sub-section. In particular, 
it is important to include a description of the centrifugal distortion 
of the spin-rotation interaction. Program I was used to analyse 
the data, the approximations inherent in its structure were checked 
against a more accurate program and the eigenvalues were found to 
be reliable to within 0.1 MHz for the problem in hand.

4 $11) d Results and Analysis.

Magnetic dipole transitions within the Fi spin component of 
a given rotational level have been studied with an E.P.R. spectro­
meter at 9.3 GHz. A typical transition is shown in Figure 1; 
the nuclear hyperfine splitting has been suppressed for the sake of 
clarity. Although the F^ and Fg spin component labels are 
strictly only defined in the zero field limit (where J is a good 
quantum number), all the M. levels which correlate with a particular 
spin component are characterised by the appropriate label. Hougan 
(37) has suggested a different way of labelling Zeeman levels, but 
the scheme adopted here has the advantages that it is independent 
of the size of the spin-rotation splitting and of the magnetic 
field. The transitions studied in this work are of the same type 
as those studied earlier by Burch et al (30), although the measure­
ments reported here are more extensive than theirs. The complete 
data set is listed in Table V together with the quantum number 
assignments. A section of the observed spectrum is shown in Figure 2.

The far infra-red L.M.R. data together with the E.P.R. data 
reported here were fitted simultaneously to the effective Hamiltonian 
discussed previously using the unweighted least squares method 
described in Chapter 2. The success of this process depended on
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Figure T. The energy levels of the 2^^ rotational 
state of NO^ as a function of magnetic field. The 
labelling of the spin components is indicated together 
with the type of transition observed in the E.P.R. 
experiment. All the levels which correlate with 
the upper spin component in the zero-field limit are 
labelled F^ and those which correlate with the lower 
are labelled Fg (see Table V). The ^^N hyperfine 
structure has been suppressed.
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Figure 2. Section of the observed spectrum around 
6170 G. The drawing shows the hyperfine triplets 
assigned to transitions occurring within the a) 8^^ 
and b) 431 rotational levels.
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Table V Data and results of least-squares fits

TRANSITION FLUX DENSITY/G CAIC/G (O-C)/G CALC/C (O-C)/G

N' K + N' ' K" ^j" Fit 1 Fit 2

(a) 1^A ttansitiona of type F^ + Fp

8 2 -6) 1 7 1 1 1011.6^ 1011.77 -.17 1011.65 -.05
8 2 —64 0 7 1 0 1058.8 1058.29 .51 1058.15 .65
8 2 -1 7 1 -1 1107.1 1107.21 -.10 1107.04 .06
8 2 -1 7 1 -1 1104.3 1104.42 -.12 1104.13 .17

8 2 1 7 1 -5) 1 1008.3 1008.41 . 11 1008.18 .12

8 2 -7) 7 1 "6^ -1 1185.0 1185.02 -.02 1184.60 .40

9 2 If 1 8 1 0 1698.5 1698.84 ", 34 1699.06 -.56

9 2 -1 8 1 "8) -1 2115.3 2115.45 -.15 2115.57 -.27
9 2 7) 1 8 1 6) 1 1469.0 1468.81 .19 1469.38 -.38

9 2 1 8 1 1 1914.5 1914.77 -.26 1914.72 -.22

9 2 1 8 1 1 2091.4 2091.31 .09 2091.05 .35

9 2 -7) 0 8 1 -6 ^ 0 2099.2 2099.62 -.42 2099.39 -.19

9 2 -6{ -1 8 1 -1 2105.0 2105.27 -.27 2105.02 -.02

9 2 -1 8 1 "I 2204.6 2204.48 .12 2204.16 .44

5 3 -1» 0 6 2 0 5394.4° 5393.05 1.35 5394.69 -.28

5 3 0 6 2 "Si 0 6651.8^ 6652.27 -.47 6651.77 .03

6 3 0 7 2 3i 0 2746.2^'^ 2745.07 1.13 2745.54 .65

6 3 "4! 0 7 2 0 4604.cf'^^ 4601.70 2.30 4603.27 .73

(b) EPR transitions recorded at: 9270,,3 MHz and of type Fi + Pl

2 2 "1) 1 2 2 "2) 1 5372.1 5372.40 -.30 5372.28 -.18

2 2 0 2 2 -2| 0 5424.5 5423.31 1.19 5423.20 1.30

2 2 "I 2 2 -1 5474.5 5474.71 -.21 5474.60 -.10

10 4 1 10 4 -lOi 1 5558.6 5558.54 .06 5558.32 .28

10 4 -9) 0 10 4 -lOi 0 5612.2 5612.65 -.15 5612.42 .08

10 4 -9) -1 10 4 -10^ -1 5667.3 5667.24 .06 5667.01 .29

5 3 -4j 1 5 3 1 5684.3 5683.48 .82 5683.25 1.05

5 3 0 5 3 0 5735.7 5736.19 -.49 5735.96 -. 26

5 3 -4) -1 5 3 -1 5789.3 5789.37 -.07 5789.13 .17

9 4 1 9 4 1 5809.6 5809.58 .02 5809.38 .22

9 4 0 9 4 -9) 0 5863.3 5863.37 -.07 5863.17 .13

9 4 -8i -1 9 4 -9j -1 5917.1 5917.63 -.52 5917.42 - ,32

8 4 1 8 4 -8i 1 6106.9 6108.21 -1.31 6108.05 -1.15

8 4 -7^ 0 8 4 -8) 0 6160.2 6161.60 -1.40 6161.44 -1.24

8 4 -1 8 4 -8j -1 6216.4 6215.42 .98 6215.25 1.15

4 3 -3j 1 4 3 1 6141.6 6143.07 -1.47 6142.93 -1.33

4 3 0 4 3 ^4) 0 6194.2 6194.82 - ,62 6194.68 -.48

4 ' 3 -3) -1 4 3 "4 j -1 6247.1 6247.00 .10 6246.85 .25



100

Table V (concd)

^IMR transitions observed at a frequency of 890760.7 MHz.

TRANSITION FLUX DENSITY/G CALC/G (O-C)/G CALC/G (O-C)/G
N' K' "j' 4- N" K" "j" M^/' Fit 1 Pit 2

12 5 -lli 1 12 5 -121 1 6288.6 6288.88 -.28 6288.98 -.38
12 5 -lli 0 12 5 -121 0 6343.4 6342.90 .51 6342.99 .41
12 5 -Hi "1 12 5 -121 -1 6396.9 6397.33 -.43 6397.43 -.53

7 4 1 7 4 -71 1 6468.3 6469.15 -.65 6469.05 -.55
7 4 0 7 4 -71 0 6522.6 6522.01 .59 6521.90 .69
7 4 *6 j -1 7 4 -71 -1 6575.0 6575.28 -.28 6575.17 -.17

11 5 -10) 1 11 5 -111 1 6560.2 6560.03 .17 6560.15 .04
11 5 -loi 0 11 5 -111 0 6615.3 6613.77 1.53 6613.89 1.41
11 5 -lOi -1 11 5 -111 -1 6667.6 6667.91 -.31 6668.02 -.42
3 3 1 3 3 -31 1 6752.8 6752.18 .62 6751.95 .85
3 3 -2i 0 3 3 -31 0 6802.8 6802.61 .19 6802.38 .42
3 3 -2i 3 3 -31 -1 6852.9 6853.43 -.53 6853.20 -.30

10 5 -9i 1 10 5 -101 1 6873.7 6873.33 .37 6873.49 .22
10 5 0 10 5 -101 0 6926.6 6926.72 -.12 6926.87 -.27
10 5 -9i -1 10 5 -101 -1 6979.8 6980.49 -.69 6980.63 -.83

6 4 -5i 1 6 4 —6 ^ 1 6913.4 6912.62 .78 6912.58 .82
6 4 -5i 0 6 4 0 6965.1 6964.79 .31 6964.75 .35
6 4 -1 6 4 -81 -1 7016.0 7017.34 -1.34 7017.29 -1.29
9 5 -8i 1 9 5 -91 1 7240.2 7239.25 .95 7239.44 .76
9 5 -8) 0 9 5 -91 0 7292.4 7292.21 .19 7292.39 .01
9 5 -8) 1 9 5 -91 -1 7345.2 7345.53 -.33 7345.71 -.51
5 4 -41 1 5 4 -31 1 7465.3 7465.17 .13 7465.13 .17
5 4 -41 0 5 4 -51 0 7516.1 7516.43 -.33 7516.39 -.29
5 4 -44 5 4 -51 -1 7567.4 7568.04 -, 44 7568.00 -.60

8 5 1 8 5 -81 1 7670.8 7671.44 -, 64 7671.67 -.87

8 5 -71 0 8 -81 0 7724.8 7723.86 .94 7724.08 .72

8 5 -71 -1 8 5 7777.0 7776.61 .39 7776.84 .16
4 4 -31 1 4 4 -4^ 1 8154.0 8154.30 -.30 8153.93 .07
4 4 -31 0 4 4 0 8203.1 8204.40 -1.30 8204.02 -.92

4 4 -31 -1 4 4 -41 -1 8254.6 8254.83 -.23 8254.45 .15

5 5 -41 1 5 5 -51 1 9552.0 9551.89 .11 9551.39 .61

5 5 -41 0 5 -51 0 9601.6 9601.74 -.14 9601.23 .37
5 5 -41 -1 5 5 -51 -1 9652.1 9631.89 .21 9651.37 .73

LMR transitions observed at a frequency of 964315.4 MHz .

^These LMR transitions are of type F; + r^.
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Tabic VI: Zero Field Parameters for NO; in GHz

Parameter^ Parameter^

A 239.90489 5.40676(7)'^''^

B 13.002238 ^66 0.00765(2)

C 12.304844 -0.09524(2)

9.01416 X 10"^ 0.14723(3)

-5.8416 X 10-4 -0.02216(7)

8.05872 X IQ-^ ^62, 0.03985(5)

9.5304 X 10-7

1.23814 X 10-4 0.00045(6)

(^6)Q -0.00171(4)

1.5889 X 10

*NK -1,109 X 10'8

-5.9054 X lO'^

"K 8.83189 X 10-5

6.5954 X 10-i2

-

*K -2.3384 X lO'G

1.064 X 10'7

From reference ^^ t

From reference ^3] :

Corrected from the value given in ^^ by -5.0 MHz (see text).

The numbers in parentheses represent one standard deviation, in units of 

the last quoted decimal place.

e
Sextic distortion parameters defined in reference [2g.
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Table VII Parameters for NO2 from fits of the Zeeman Data

Parameter Solid state {Z^ urn. ^1] This work, 1. This work, 2. Theory

5.100(28)^ -5.069(27) -3.628

(0^^+ [^)/MHz - 4.2(10) X 10-2 4.7(9) X lO'^ 2.80 X lo'Z

-9.73 X 10-6

1.9910(5) 2.0030 1.99049(27) 1.98993(9) 1.99105^

2.0015(5) 2.0205 2,00256(190) 2.00204(276) 2.00203

2.0057(5) 2.0155 2.00716(190) 2.00844(276) 2.00619

2.0036(5) 2.0180 2.00486(27) 2.00524(9) 2.00411

T2(g,)^ c -0.0113(24)

Tg(gr) G -0.00081(18)

C : d

The numbers in parentheses represent one standard deviation of the least-squares fit, 
in units of the last quoted decimal place.

For definition, see reference [35%.

Not determined within 4 * IO""*.

Not determined within 10 "^i

Calculated assuming g =» 2.00232.
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the availability of reliable zero field parameters, and on the 
inclusion of terms in the quartic spin-rotation Hamiltonian. 
Unfortunately the accurately measured microwave frequencies 
(23^ 24) involve b-dipole transitions between levels with Ka = 0 
and 1 and it is not possible to determine separate values for 

and from this data; the value quoted for in the fit QG N da _ 
of the microwave data (23J is actually the value for (e f Du/) 
The value for was therefore corrected using the value of Du^ 
determined from preliminary fits of the magnetic resonance data 
(-5.0 MHz). The best available values for the zero field parameters 
are given in Table VI. The spin-rotation and N hyperfine 
parameters are taken from the work of Lees et al (23). The 
rotational and centrifugal distortion constants have been determined 
by Lafferty and Sams (26J from a simultaneous fit of microwave and 
infra-red data, appropriately weighted.

In the least squares fit of the magnetic resonance data, the 
values for the molecular Zeeman parameters and some of the quartic 
spin-rotation constants were allowed to vary. It did not prove 
possible to determine values for all the predicted quartic spin­
rotation parameters; nitrogen dioxide is a less asymmetric top 
than NHp and the available data are less extensive. However, values 
for the dominant parameters D^ and (DL^ + were determined, 
the other expected quartic spin rotation parameters (Du^^-D^u^, D^^, 
di^ and 62^) were constrained to zero.

The results of two fits are shown in Table V. In the first, 
the data were fitted to D^^, D^^^ + Duu^ and the three principal 
components of the spin g-tensor. In the second fit, terms from 
the rotational Zeeman interaction were added and the two dominant 
rotational g-factors were determined in addition to the parameters 
varied in the first fit. Both fits are very satisfactory, since 
they are consistent with the experimental data to their quoted 
precision. The major difference between the two is that the 
inclusion of the rotational Zeeman terms reduces the slightly 
larger residuals associated with the laser magnetic resonance 
transitions 633 +726 ^^d 633 -*-624. The parameters determined in 
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this way are listed in Table VII, together with the results of 
previous determinations and some theoretical estimates based on 
equations (4.5) and (4.9).

4 (III) e Discussion.

The aim of this study was to determine the three principal 
components of the electron spin g- tensor from a large body of 
magnetic resonance data for NOg in the gas phase. The extent to 
which it has been achieved can be judged from Table VII. It can 
be seen that the components are reasonably well determined, g,, and 
g rather less so that g__. In fact the data determine and 
(g,^ + g^) better as can be seen from Table VII. The difference 
between g^^ and g primarily affects levels with K = 1 and only 
a few transitions involving such levels are included in the data. 
Close scrutiny of Table VII reveals that, although the g-factors 
are not inconsistant with Curl's relationship, they do not provide 
really positive support for it. It proved much more difficult to 
determine reliable g-factors for a gas phase molecule than had been 
anticipated. This is partly because the data are relatively 
insensitive to these parameters (the quality of the fit of the data 
in Table V with the g-tensor components fixed at the values predicted 
by Curl's relationship is only slightly worse than that of the two 
fits shown) and partly because the data are more sensitive to certain 
zero field parameters. This sensitivity was exploited to determine 
two of the quartic spin-rotation parameters, but the reliability of 
the fit has depended critically upon the availability of good zero­
field frequencies and particularly on the determination of centrifugal 
distortion constants from the analysis of the infra-red spectrum (26).

The satisfactory feature of the analysis is that the far infra­
red L.M.R. data can be fitted with g-factors in essential agreement 
with the predictions of Curl's relationship; this conclusion holds 
irrespective of whether rotational Zeeman terms are included or not.
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The g-factors from the gas phase study are also consistent with 
the values obtained from the solid state E.S.R. spectrum (27), as 
can be seen from Table VII. The difficulty experienced in 
determining the electron spin g-factors has made it doubly 
important to assess Curl's relationship. In the study of short­
lived polyatomic free radicals in the gas phase by magnetic resonance 
techniques, it is rare that the data are sufficient to determine the 
molecular Zeeman parameters independently (see» for example (12J and 
(T4)). In this case, it becomes vital to have an alternative way 
of estimating these g-factors. It would appear that Curl's 
relationship Eq. (4.8) is reliable for this purpose, at least for 
molecules containing elements in the first and second rows of the 
Periodic Table. Curl established his relationship in terms of 
second-order perturbation contributions to g. and e^ , neglecting 
the first-order contribution in each case on the grounds that it 
was much smaller in magnitude. Watson (38) has recently shown 
that, even for these first-order contributions. Curl's relationship 
holds well, that is to the order of a where a is the fine structure 
constant. However, if heavier elements are involved, a breakdown 
in Curl's relationship is anticipated since third and higher-order 
perturbation contributions involving the spin-orbit interaction can 
become significant. There are some suggestions that this situation 
is reached when heavier elements are contained in the molecule; for 
example in Sg (39) and SeO (40).

The magnitude of the quartic spin-rotation parameters determined 
in the course of the analysis has been commented upon in section 
4 (II) b . The approximate formula (4.5) appears to underestimate 
the size of these parameters in all cases; in the case of NOg it 
is reliable to about 30 per cent. The size of the rotational 
g-factors can be compared with the values calculated from the 
appropriate relationship derived by Barnes et al (2) and quoted in 
section 4(11) a, Eq. (4.4). The value for c was taken to be an 
average of the values for the two oxygen and nitrogen atoms contained 
in the molecule whence:
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0
T 0 (9r) = -.00083

T^ (QyJ = -.00117
0

T 2 (g^) = -0.15 X 10

These numbers do not agree well with those determined in 
the fit. This is probably due to the latter being used by the 
program to take up small discrepancies in the zero field 
frequencies, high-lighting again the need for a good set of zero 
field parameters.
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CHAPTER 5.

THE OBSERVATION OF MAGNETIC DIPOLE TRANSITIONS IN X H SeH BY 
LASER MAGNETIC RESONANCE SPECTROSCOPY.

5 (I) Introduction

Selenium hydride has an inverted n ground electronic state 
which is well described in terms of Hunds' case (a) functions (J^). 
Under these circumstances, the projections of the electronic 
orbital (A) and spin (^) angular momenta and their sum (n) along 
the internuclear axis are all well defined. For a n molecule, 
the possible values of |oj are 3/2 and 1/2 and these are associated 
with the fine structure states and The separation 
between these states is primarily determined by the spin orbit and 
rotational constants appearing in the effective Hamiltonian 
describing the ground electronic state of the molecule.

Recent analysis of the electronic emission spectrum
(B X n) of SeH (2^ ^) has resulted in much improved values for 
the major molecular constants. Using these results it is possible 
to predict that in SeH the fine structure states are separated by 
approximately 1780 cm"^; a frequency which lies within the operating 
range of a CO gas discharge laser. Fig (1) is a diagram showing the 
lower rotational levels associated with each fine structure state. 
This chapter describes the observation of transitions which occur 
between the rotational levels of the two fine structure states by 
the technique of laser magnetic resonance spectroscopy and the 
subsequent analysis of the spectrum in conjunction with previously 
reported E.P.R. data (4j. Electric dipole transitions between the 
components of a n electronic state are forbidden in a case (a) 
representation and the observation of the spectrum relied upon the 
interaction of the molecules' magnetic dipole moment with the laser 
radiation. Aspects of the intensity of electric and magnetic 
dipole transitions between the states in question are discussed in 
section 5 (III) b.



Figure 1. Relative energy level diagram showing the 
lower rotational levels associated with the two fine 
structure components of the X n state of SeH. 
Lambda-doubling has been omitted for reasons of clarity.
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This chapter is divided into three main sections; the 
experimental techniques are described immediately following this 
section and a summary of the theoretical background is presented 
in section III. The results are discussed in the last section 
of the chapter; as a result of the analysis of the L.M.R. and 
E.P.R. spectra it has proved possible to determine refined values 
for several of the major parameters appearing in the effective 
molecular Hamiltonian. High resolution spectroscopic studies 
of molecules containing heavy atoms such as selenium are of 
interest because the large spin orbit effects associated with them 
testthe validity of some of the assumptions involved in the 
derivation of the effective Hamiltonian for the n electronic state 
(5, ^, 7). Some discussion of this aspect of the analysis is 
included in sections 5 (III) and 5 (IV).

5 (II) Experimental Details.

The spectra were recorded using the CO L.M.R. spectrometer 
described by Brown et al (8). The laser beam is directed through 
an absorption cell which is situated between the pole-faces of a 
Varian 15" magnet and focussed on to a gold-doped germanium detector 
which operates at liquid nitrogen temperatures. The laser is a 
modified Edinburgh Instruments PL3 instrument. The gain tube 
operating temperature may now be varied between 0^ and -100° centi­
grade; this greatly increases the number of accessible lines on 
which the laser may be made to oscillate and, generally, the lower 
operating temperatures provide greater gain and therefore larger 
output powers at a given frequency. There is a drawback to this 
low temperature operation in that the laser may oscillate at several, 
closely spaced frequencies,at one time. This process is known as 
multilining and the problem may be partially overcome by the use of a 
higher dispersion grating. However this is not a complete solution 
and the presence of several different laser frequencies can cause 
complication of the observed spectrum.
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The magnetic field is modulated at a frequency of around 
25 kHz by means of a pair of copper Helmholtz coils mounted between 
the pole faces of the electromagnet and the sides of the absorption 
cell and the molecular species of interest generated in a continuous 
flow system in the centre of the field gap. A spectrum is obtained 
by sweeping the magnetic field while operating at a fixed laser 
frequency and detecting the absorption lines by means of conventional 
lock-in amplification.

The absorption cell itself is constructed of glass with 
calcium fluoride windows to minimise unwanted absorption of the 
infra-red radiation. Two entry and one (pumped) exit ports allow 
various mixtures of reactants to be used to generate the transient 
species to be studied. Selenium hydride radicals were generated 
by the reaction of the products of a microwave discharge in water 
vapour with selenium metal powder which was glued to the sides of 
the absorption cell using a rubber based adhesive. Optimum water 
vapour pressure was about one torr and under these circumstances 
the metal sample lasted for about half a day. The spectra were also 
detected when fluorine atoms, from a microwave discharge in CF,, were 
reacted with HgSe in the absorption cell. The signal to noise ratio 
was not high, typically less than 25:1 even with a 3s output time 
constant.

In the normal configuration of the system, the electric vector 
of the laser radiation and the space-fixed z direction, as defined 
by the applied magnetic field, are perpendicular. For reasons 
discussed in section 5 (III), the observation of particular types of 
transition in the SeH radical requires the two to be parallel to one 
another. Rotation of the plane of polarisation of the laser 
radiation through 90° was achieved by the use of three Fresnel 
rhombs made of calcium fluoride and mounted back to back. The use 
of this optical device enabled the observation of both AM = 0 and 
AM = +1 transitions. The advantage of the use of the rhombs over 
the more conventional mirror arrangement is that the rotation of the 
plane of polarisation is performed without moving the beam more than 
a few millimeters off axis so avoiding the re-aligning of both the 
absorption cell and the detector.
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Under the conditions of the experiment, the spectral 
linewidth was determined by the Doppler spread in the velocities 
of the SeH radicals. At 300K and 1780cm'T the Doppler line width 
is estimated to be approximately 50 MHz. Individual lines may 
appear wider than others on the spectrum however, because different 
transitions tune at different rates in the magnetic field. Some 
discussion of these aspects of the experiment is included in 
section 5 (III) c. The magnetic fields were measured with an 
A.E.G. proton fluxmeter and are estimated to be accurate to within 
+10G.

5 (III) Theoretical Background.

5 (III) a The effective Hamiltonian for a ^1 molecule.

The problems encountered in the derivation of a spectro­
scopically useful effective Hamiltonian for a ^n molecule have been 
discussed at length by a number of authors (References ^ to 21) 
and in this short section, no attempt is made to justify either the 
form or content of the Hamiltonian operator in any detail. An 
effective Hamiltonian for the selenium hydride radical which is 
adequate to reproduce the experimental data is given by:

"eff= "so -^ "rot " "cd " Hsr HlD " ^dLD " "z <5-')

where H^^ represents the spin orbit coupling energy and H^^^ and H ^ 
the rotational energy and its centrifugal distortion correction 
respectively. H^^ is the electron spin-rotation interaction which, 
for the present application, makes a contribution to the molecular 
energy levels which is indistinguishable from that of the centrifugal 
distortion correction to the spin orbit coupling energy (H). H||^ 
and H^jig represent the lambda doubling energy correction and the 
corresponding centrifugal distortion term. Finally H represents 
the interaction of the molecule with an externally applied magnetic 
field. The operator forms for the various terms in (5.1) were taken 
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from Brown et al (9). The Hamiltonian makes no reference to 
hyperfine effects; they are not expected to be resolved since 
the hyperfine splitting in SeH is less than the experimental 
linewidth.

Discussion in this section is limited to the lambda doubling 
and Zeeman contributions to the effective Hamiltonian. These 
effect minor perturbations to the crude energy level diagram given 
in Fig. (1); the form of the diagram is determined by the spin 
orbit and rotational contributions to the Hamiltonian.

To a first approximation, the levels associated with each fine 
structure component in a n electronic state are orbitally doubly 
degenerate. However spin orbit and rotational mixing of higher 
electronic states lifts this degeneracy with the result that each 
level in Fig. (1) should be shown as a closely spaced doublet. 
This phenomenon is known as lambda type doubling and is discussed 
by Mulliken and Christy (^O) and Brown et al (9). In the case of 
SeH in its X n, the major contaminating state is probably the 
A z state which lies approximately 30900 cm^' to higher energy (13). 
Mulliken and Christy derived expressions for the lambda doubling 
parameters appearing in the effective Hamiltonian by the use of 
second order perturbation theory on the assumption that contamination 
is by % states only; however the lambda doubling parameters 
determined in the fit include second and higher order contributions 
from all the excited electronic states of the molecule connected to 
the ground state by the spin orbit and rotational terms in the 
complete molecular Hamiltonian. The higher order contributions are 
expected to be significant in SeH where the spin orbit constant, A, 
is large. To obtain a satisfactory fit to the experimental data, 
it was found necessary to include the (two) terms in the Hamiltonian 
describing the centrifugal distortion correction to the lambda doubling 
energy. The origins of these terms has been discussed by Brown et al 
(9) and Mizushima (11) and will not be elaborated upon here. Although
the inclusion of the parameters D and D^ describing this effect was
required before an adequate fit to the data could be performed, the 
data were not sufficient to determine them unambiguously and they
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were constrained to the values predicted by the formulae:

D = -2 D p
P _

B

Dq = -4 D q

B

(5.2)

(where D Is the quartic centrifugal distortion constant and B the 
rotational constant) as derived In Reference (JH) on the assumption 
that the electronic wavefunctions are Independent of the vibrational 
co-ordinates. The effective Zeeman Hamiltonian used to analyse 
the data was taken In the form derived by Carrington et al (J_5, ^6) 
and quoted by Brown et al (2). There are six determinable parameters 

2 
for a molecule In a nstate. Relationships between some of the 
g-factors can be derived by the use of second order perturbation 
theory on the assumption that the n state Is perturbed by z 
states only (2, 2_5, ^6) and these relationships were found to be 
quite reliable for OH (2). Their reliability Is questionable for 
SeH however, because of the large spin orbit effects associated with 
the heavy atom. It was found necessary to Include some third order 
contributions to the Zeeman Hamiltonian, which have the effect of 
making corrections to terms already Included In the model, during 
the data analysis. These are discussed In section IV.

The eigenvalues of the effective Hamiltonian were calculated 
using a program written by Drs. D.J. Milton and C.M.L. Kerr. The 
Hamiltonian matrix Is constructed In a parity conserving case (a) 
basis:

In |a|; J M. |fi|; ± > = 1 { InA; SZ; J M-n> ± 
4

d Sfs S-Z; J M. - n> }
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in the usual rotation, s is only included in the case of z 
electronic states and is even or odd according to the symmetry 
( z^ or z" ) of the state in question. The matrix for a 
particular value of J in the absence of a magnetic field is then 
of Order 2 x 2 with only the basis functions:

|n|A|; J M. ,n = 3/2I ±> and |n|A|; JM,|Q = 1/2|;±>

involved. As in the case of the eigenvalue problem for asymmetric 
top molecules (discussed in chapter 2) the matrix is strictly 
infinite when the Zeeman Hamiltonian is included in the model.
However truncation of the matrix 
errors in the calculation of the 
included in the data.

at AJ = ±2 produced no significant 
energy of the rotational levels

5 (III) b. Transition intensity considerations.

In the introductory section of this chapter it was asserted 
that the observation of transitions between the fine structure 
states in X n SeH is dependent upon magnetic dipole intensity. 
It is unusual in L.M.R. spectroscopy to detect magnetic dipole 
transitions since, in general, they are expected to be approximately 
10^ times weaker than the corresponding electric dipole transitions 
when the molecule has an electric dipole moment of the order of one 
Debye (2). In order to understand how, in this particular case, 
the magnetic dipole transitions between the fine structure states 
are actually more easily observed than the corresponding electric 
dipole ones, it is necessary to examine the matrix elements of both 
the electric and magnetic dipole moment operators between the 
molecular eigenstates in question.

The fine structure components
by eigenfunctions of the effective

2the n electronic state, which are

2n]y IT gy are represented 
molecular Hamiltonian (5.1) for
in turn expressed as linear

2

combinations of case (a) 
the case of X n SeH, the

basis functions | nA; Sz; JnM >. In 
quantum number 0 is very nearly good and 

to this approximation the intensity of the transition between the 
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n = 3/2 and n = 1/2 components of the electronic state may be 
represented by the square of the matrix element of the magnetic 
or electric dipole moment operator betv/een the pure case (a) 
functions. The molecular magnetic dipole moment Is represented 
by with

where S and L are the total electron spin and orbital angular 
momenta respectively, g^ and g^^ the spin and orbital g-factors and 
Pg the Bohr magneton. We are interested in the probability of a 
transition between two case (a) states, i.e:

(Intensity)^ a

|<n'A'; S'z'; j'fi'M,^'| p^.T^B) lnA;Sz;JfiM_j>|2 (5.4)

where B is the magnetic field vector of the applied radiation. This 
expression may be evaluated using standard angular momentum results 
to give:

(Intensity)^2 ^^

^ Tip (B) (-)'^'- 

p -M.' P u

q'[(2J*+ 1)(2J + 1)]^^1' r J' 1

M-i q u

^^^ ^L T'B ^^^q (U lnA> } (5.5)
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It is evident that magnetic dipole transitions between states 
differing in n are fully allowed. This result must be compared 
with the analogous one for the electric dipole moment operator

P (5.6)

interacting with the electric vector of the applied radiation:

(Intensity) a

|<n^ ; S'z'; J'n'Mj'| T^(E)| nA; SZ; JnMj>|^ (5.7)

which may be evaluated to give:

1
(Intensity) ^ a

'nn' ^AA" ^SS'^ZZ

P

J' 1

-Mj' P

J

(5.8)

Since the dipole moment (p^^ lies along the internuclear axis the 
only non-zero component of the first rank spherical tensor T^ (tj) 
is Tg (pj; consequently electric dipole transitions between states 
differing in n are rigorously forbidden in a pure case (a) 
representation.
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The above results hold so long as |n| is a good quantum 
number, that is, while the eigenfunctions of the effective 
Hamiltonian are accurately represented by single case (a) 
functions. However, there are terms in the rotational 
Hamiltonian which connect the |n| = ^ and 3/2 states for a 
given value of J; the true eigenfunctions are thus linear 
combinations of case (a) basis functions of different n and 
therefore electric dipole transitions between the two components 

2 
of a n state are not completely forbidden. The rotational 
mixing of states of differential can also be expected to modify 
the magnetic dipole transition intensities slightly.

A computer program has been developed (17) to calculate 
the relative intensities of both magnetic and electric dipole 
transitions between the fine structure components in X ^n SeH. 
Reference to the energy level diagram (Fig. 1) and Equations 
(5.5) and (5.8) suggests that we can expect transitions with 
AJ = -1, 0 and f 1; these are labelled P, Q and R branches 
respectively. Table (1) shows the computed ratios of electric 
to magnetic dipole intensities for P and R branch lines in the 

transition in SeH. The calculations neglect the 
effects of A-doubling and the rotational mixing is estimated 
from the values of the spin orbit and rotational constants for 
the molecule.

Table 1. Computed ratios of electric to magnetic dipole intensities 
for the low J lines in the - n % spectrum of SeH. 
The corresponding ratio for al) Q-branch lines is 
5.45 X 10'2 (see text)

J R-Branch P-Branch
3/2 5.44 X 10"^ 5.45 X 10
5/2 5.43 5.44
7/2 5.43 5.44
9/2 5.42 5.43
11/2 5.41 5.43
13/2 5.39 5.42
15/2 5.38 5.41
17/2 5.36 5.39
19/2 5.35 5.38
21/2 5.33 5.36
23/2 5.31 5.35
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The dipole moment of SeH was taken to be 0.49 Dobye (28). It 
can be seen that in all cases, the magnetic dipole intensity 
is approximately twenty times the electric dipole intensity. 
The ratio of the electric to magnetic dipole intensity for Q 
branch lines is independent of the quantum number J. This result 
is discussed in Ref. (T?)* the ratio is equal to (p B /PpA)^

The entries in Table 1 imply that the observed spectrum is 
of the magnetic dipole type.With the given signal -tb-noise 
it is very unlikely that even the strongest electric dipole 
transitions could be observed. The transitions observed in the 
experiment described in thischapter are between individual (Mk) 
components of a given rotational level, however the same ratio of 
electric to magnetic dipole intensity is to be expected.

5 (III) c Tuning rates and spectrum isotope structure.

The successful observation of a L.M.R. spectrum depends upon 
the tuning of the molecular transition into co-incidence with the 
fixed laser frequency by means of a variable magnetic field. The 
behaviour of the molecular energy levels in the presence of an 
external magnetic field is described by the Zeeman terms in the 
effective Hamiltonian (5.1) and the rate at which a transition 
frequency tunes with applied field is given by the difference in 
the rates at which the levels connected by the transition tune, 
ihe dominant terms in the Zeeman Hamiltonian for molecule derive 
from the interaction of the electronic spin and orbital angular 
momenta with the magnetic field. Explicitly these are : 
(see for example Ref. (9J)

“z*’ ‘ 5sVb t‘(S). t‘(B) + g^ng t‘(L). t‘(B) (5.9)

where B is the flux density. The diagonal matrix element in a 
case (a) representation is given by :
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PgB^ Mj 0 { g^z f g^ A }

J (J + 1)

(5.10)

and this gives us the first order contribution to the energy of 
a rotational level associated with the case (a) quantum numbers 
discussed previously. If we assume that g = 2.0 and g, = 1.0 
then for the Hi. component, there is no contribution from the 

72 
Zeeman Hamiltonian (5.9) to the energy of a rotational level 
because g^z + g. A = 0. There will of course be some contribution 
to the energy of these levels derived from the rotational mixing of 
IT} character discussed in the previous sub-section and from other 

terms in the full effective Zeeman Hamiltonian for the n state 
discussed by Brown et al (9). These however represent small 
perturbations to the molecular energy levels and the form of the 
observed spectrum can be readily understood in terms of the Zeeman 
effect in the manifold. Figure 2 shows the energy levels 
associated with the J = 3/2 rotational level for the two fine structure 
components in SeH, and it is evident that nearly all tuning occurs 
in the manifold as predicted by Eq. (5.10). Using Eq. (5.10) 
we can construct a table of relative tuning rates for transitions 
from various M. components of low rotational levels associated with 
the n = 3/2 component. This is shown in Table II. As might be 
predicted from (5.10) the fastest tuning transitions for a given J 
arise from the largest magnitude M. components.

J
|Mj| 1/2 3/2 5/2 7/2 9/2 11/2

3/2
5/2

0.56 1.68
0.24 0.72 1.20

7/2 0.13 0.40 0.67 0.93
9/2 0.08 0.25 0.42 0.59 0.76
11/2 0.06 0.18 0.32 0.45 0.57 0.70

Table II. Tuning rates (in MHz /G) for transitions from various 
Mj components of low rotational levels in the 

component. Calculated using Eq. (5.10)
assuming no Zeeman shifts in the manifold
and pg = 1.3996 MHz/G
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Figure 2. The energy levels of the J = 3/2 rotational 
state of SeH as a function of magnetic field. The 
lambda doubling in the ^F^/g (Fi) component is too small 
to be shown on the diagram.
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Selenium has four main naturally occurring isotopes viz.
^^Se (9%), ^^Se (24%), ®°Se (50%) and ^^Se (9%) and the 
observed spectrum is expected to show evidence of transitions 
occurring in molecules containing these different mass nuclei. 
The case of Q^branch (AJ = 0) transitions is discussed in detail; 
similar but not identical results apply for the P- and R- branches 
of the spectrum. The Q-branch frequencies between the fine 
structure components in SeH may be approximated by the formula:

V (J) = - (A-2B) - 2B{(J f ^) - 1} (5.12)

A

+ (small correction terms)

in zero field where A is the spin orbit coupling constant and B 
the rotational constant. For X^n SeH the spin orbit constant is 
much larger than the rotational constant and the second term in 
(5.12) represents only a minor J-dependant perturbation to the 
frequency -(A-2B). In the present case, the spin orbit constant 

/78\ /80\
is negative and since, for the two most abundant isotopes, S 
the Q-branch spectrum is predicted to consist of closely spaced 
doublets the lower frequency component being approximately double the 
intensity of the other due to the relative isotope abundances. 
Calculation of the relative sizes of the rotational constants for 
^^SeH and ^^SeH suggests a separation between the doublet components 

of approximately 150 MHz so that this isotope splitting is predicted 
to be an observable feature of the spectrum; the Doppler linewidth 
being approximately 1/3 of this value.

The situation in the case of a swept field - fixed frequency 
experiment is more complicated but in the end more revealing. The 
possible situations are summarised in Figure 3. Depending on 
whether the molecular frequency (v ) is above or below the laser 
frequency (v^), the line associated with the more abundant ^^Se 
containing molecules lies to lower or higher magnetic field 
respectively. In frequency terms the separation between the lines
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Figure 3. Spectrum isotope structure in a swept field -
fixed frequency experiment. The possibilities are
a) V, <v when the line associated with molecules 

80 containing the Se isotope is observed at lower magnetic
field and b) where the lower field line is associated 

I 78
with those containing the Se isotope. The effects are 
exaggerated for clarity.
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12.0 12.4 12.8

Flux density / kgauss

Figure 4. Parallel Q (^^2) spectrum observed on the 
1780.24 cmr^ laser line showing clearly the (labelled) 
isotope structure.
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Table Ill Data and results of least squares fit

J' parity’ J" Mj" parity" field/G
— 1 

freq/cm z: / “io-c freq/cm

1^ li + li li + 12177.0 1780.23963^®) -0.67x10-3^)

li -1] li -li - 8484.6 1779.15798 O.17x1O~2

li -i - li -li - 8390.0 1779.15798 -0.14x10-2

4i -4] - 4i -4i 5368.3 1784.33618 -0.60x10-3

4] -3] - 4i -3i 6909.0 1784.33618 0.49x10-3

4j -2] - 4i -2i - 9748.0 1784.33618 -0.70x10-3

li + li i 7686.75 0.29117 0.17x10-3

i + li -i 7705.91 0.29117 -0.15x10-3

1] -i li -li 7725.02 0.29117 -0.54x10-3

1] li - li i + 7711.75 0.29117 -0.12x10"^

1] i - li -i + 7731.52 0.29117 -0.89x10-3

li -i - li -li + 7751.36 0.29117 -0.93x10-3

2i -li + 2i -2i - 17609.6 0.29117 0.55x10-^*
2i -i + 2i -li - 17723.1 0.29117 -0.86x10-3

2] i + 2i -i - 17841.3 0.29117 -0.48x10-3

2i li 2i i 17969.7 0.29117 -0.69x10-5

2i 2i + 2i li - 18110.5 0.29117 -0.29x10-**
2i -li - 2i -2i + 17374.1 0.29117 -0.32x10-3

2] -i 2i -li 17487.0 0.29117 0.43x10-3
2i i 2i -i 17609.6 0.29117 -0.14x10-**
2i li - 2i i + 17738.9 0.29117 0.12x10-**
2] 2i - 2i li 17880.1 0.29117 0.17x10-**

(a) Laser frequencies calculated from the Dunham coefficients of KiUal et al [21].

(b) L.M.R. transition frequencies taken to be ten times less precise in the fit.

(c) E.P.R. measurements from Carrington et al. 116]. Note that Table 2 of this
reference contains some misassignments of the Mj quantum number.
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Table IV. Molecular Constants for Sell in the X^H State^^^

A -1763.34763(41)^^) g^ 2.00122^®)

B 7.791^®) g^' 1.00072(24)^^)

103 D 0.342^®) gj^ 0.0349^*^)

P + 2q 1.13526(25)*'*’) 103 g^ -0.321(71)^*’)

102 q -0.600403(93) (*’) g^' 0.1075(28)^*’)

Id

Y

-0.996^^*) 10^ g ®' o.igi^'^)

0.108^"^)

-0.6733^®)

(a)„ , . -1Values in cm (where appropriate)

^^^This work. The number in parenthesis is one standard deviation, expressed

in units of the last quoted decimal place. The fit was performed with A^

constrained to zero.

(c) oValue from the analysis of the 1500 A band system of SeH [2]. The parameter

was constrained to this value in the fit.

^^^Parameter value estimated from a theoretical relationship derived by second

order perturbation theory [9,14] and constrained in the fit.

(e) .gg estimated from the free electron value with corrections for relativistic

effects and for spin-orbit mixing of other electronic states by third

order perturbation theory (see text).
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associated with molecules containing the two more abundant 
selenium isotopes is always approximately 150 MHz. However 
in a swept field experiment their separation in gauss will 
depend on the tuning rate associated with the particular transition. 
In principle then, the isotope structure of a given line in the 
L.M.R. spectrum gives information on both the sign and magnitude 
of the tuning rate of the molecular transition, giving rise to the 
absorption. This information can then be compared with the 
entries in Table II and analysis of the spectrum is made considerably 
easier.

5 (iV) Results and Discussion.

Magnetic dipole transitions between the fine structure components 
of the X IT state of SeH have been observed at a frequency of around 
1780 cm"^. Typical transitions within the Q(3/2) branch are shown 

in Figure 2 and a portion of the observed spectrum showing clearly 
the isotope structure predicted in the previous section is reproduced 
in Figure 4. All lines observed were assigned to belong to the 
Q-branch of the spectrum and although low J P-branch transitions 
of AMj = ±1 polarisation are predicted to be both equally intense 
and have favourable tuning rates, extensive searches failed to 
reveal any trace of them. This failure is probably due to the 
sparser nature of the P-branch region of the spectrum; however 
calculations suggested close coincidence between the P(5/2) spectrum 
and the 1742 cm"^ laser frequencies and it is unfortunate that no 
spectra were observed in this region. The observed line positions 
are quoted in Table III together with their quantum number 
assignments. They were combined with the previously observed (4J 
E.P.R. data (also quoted in Table III) in a least squares fit to 
the parameters appearing in the effective Hamiltonian (5.1).

The complete data set listed in Table III was insufficient to 
determine all the parameters appearing in the effective Hamiltonian 

2 
for a IT state, and some approximations were necessary in order to 
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extract the maximum number of parameters reliably. Although 
the rotational constant could be determined from the second 
order Zeeman shifts in the E.P.R. data both it and the quartic 
centrifugal distortion constant (D) were better determined in 
the analysis of the electronic emission data performed by 
Bollmark et al (^) and were constrained at their values in the 
final analysis. Similarly, the value adopted for y, the spin 
rotation coupling constant, was calculated from the value for Ag 
(the centrifugal distortion correction to A) determined by the 
previous authors using the formula derived by Brown and Watson (J^).

The fit of the data shown in Table III was obtained by allowing 
the values of A, pf2q, q, g^' , g^ and g^ to vary. D^gq ^^d 
and g^' and gV were fixed at values predicted by the formulae derived 
by Veseth (14) and Brown et al (^) using second order perturbation 
theory suitably corrected to include the dominant third order 
contributions discussed below. It should be emphasised that fits 
of similar quality to the one shown could be obtained by allowing 
other combinations of g-factors to vary, however the value for the 
spin anisotropy g-factor, g, was particularly poorly determined 
(ie. highly correlated with other parameters) by the data. The 
data was also sensitive to the sum of g/ (the effective orbital 
g-factor) and g (the effective spin g-factor) only; consequently 
the two could not be separately determined in the fit.

For SeH the largest third order contributions to the effective 
Zeeman Hamiltonian arise from terms which include the spin-orbit 
operator twice that is of the form H^^ x H x H^. These yield 
contributions to the values of gj, g and g^ in the effective 
Hamiltonian which may be evaluated if we make the approximation that 
only the A z state significantly contaminates the ground state. 
They are :

9^ = 9^' (9^ - 9g) (5.13)a
2

9s = 9s^^^ + (9^ - 9s) (5.13)b

91 = 9i(^) + a" (^ - gj (5.13)c 
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where

2 0 9 2 2
“ i I ^so I ^ ^ ^ I '^(^^)

and aE 1s the separation between the X n and A z electronic 
states (a negative quantity). 9^^\ 9p^ and gj^^ are the values 

of the g-factors before the third order contributions are taken 
into account. The correction to g, is evidently very small 
however those to g and g|_ are significant. In the fit the value 
of g^ was constrained at 2.00122 a figure arrived at after making 
relativistic corrections to the free spin g-value of 2.002319 
and including the third order contribution above. The latter 
correction together with the Ag^^ second order correction derived 
by Brown et al (1_9) predicts a value of 1.0079 for g^ which is in 
accordance with that determined In the fit and to some extent 
vindicates the approximations made in the third order perturbation 
theory treatment.

The largest third order contributions to the other g-factors 
were also Investigated. For g^ and g® (the rotational and 
'off-diagonal‘ lambda doubling g-factors respectively) the largest I 
third order terms are of the form H _ x H . x H while for q, so rot z 
(the second lambda doubling g-factor) terms of the form H^^ x H^^ x H^ 
contribute. This last correction Is significant, being of the order 
of 10% of the second order contributions and additive and this is in 
line with the experimental results; the value of g-j' determined Is 
larger than the figure estimated by the second order relationships 
derived by Brown et al (2). The third order contributions to g^' 
are very small suggesting that the second order relationships (2) 
should be reliable in this case, however those to g^ lead to extra 
terms in the effective Hamiltonian; these were not investigated 
further since the data were not adequate to determine all the terms 
already Included.

The values determined for g^' and g^ in the fit should not be 
regarded as definitive because they are sensitive to the value 
adopted for g^ which was estimated from the second order relationship
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given by Brown et al (9J, the third order contribution (5J3)c is 
negligible in this case. However the values for the parameters 
appearing in the zero field effective Hamiltonian, ie. A, p and q 
are comparatively insensitive to the values of the g-factors and 
can thus be accepted with some confidence. The observation of 
a P-branch transition would allow a better estimate of the 
rotational constant and the smaller g-factors, however the former 
should be available in the near future from analysis of the far 
infra-red L.M.R. spectrum recently obtained by Davies et al (20).
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