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Abstract: We formulate a renormalisation procedure for IR divergences of tree-level in-in
late-time de Sitter (dS) correlators. These divergences are due to the infinite volume of
spacetime and are analogous to the divergences that appear in AdS dealt with by holographic
renormalisation. Regulating the theory using dimensional regularisation, we show that
one can remove all infinities by adding local counterterms at the future boundary of dS
in the Schwinger-Keldysh path integral. The counterterms amount to renormalising the
late-time bulk field. We frame the discussion in terms of bulk scalar fields in dSd+1, using the
computation of tree-level correlators involving massless and conformal scalars for illustration.
The relation to AdS via analytic continuation is discussed, and we show that different versions
of the analytic continuation appearing in the literature are equivalent to each other. In
AdS, one needs to add counterterms that are related to conformal anomalies, and also to
renormalise the source part of the bulk field. The analytic continuation to dS projects
out the traditional AdS counterterms, and links the renormalisation of the sources to the
renormalisation of the late-time bulk field. We use these results to establish holographic
formulae that relate tree-level dSd+1 in-in correlators to CFT correlators at up to four points,
and we provide two proofs: one using the connection between the dS wavefunction and the
partition function of the dual CFT, and a second by direct evaluation of the in-in correlators
using the Schwinger-Keldysh formalism. The renormalisation of the bulk IR divergences is
mapped by these formulae to UV renormalisation of the dual CFT via local counterterms,
providing structural support for a possible duality. We also recast the regulated holographic
formulae in terms of the AdS amplitudes of shadow fields, but show that this relation breaks
down when renormalisation is required.
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1 Introduction and summary of results

Holography for cosmology, and in particular, for de Sitter, has been an active topic of research
since the early days of AdS/CFT. A correspondence between de Sitter and CFT was proposed
in [1, 2]; see also [3, 4] for earlier work. Despite the many results that have been obtained
over the years, the status of this correspondence has remained controversial. One reason
for this is that we do not have a concrete realisation of this correspondence in string theory
akin to that for the AdS/CFT correspondence [5], and there are no examples where both
sides of the duality are defined independently (apart from the example in [6], which involves
however an exotic theory of gravity in the bulk). Another reason is that, through the years,
different-looking formulations have been introduced and it has not always been clear what is
the relation between these and whether they are consistent with one another. Nevertheless,
as we will review below, there is significant supporting evidence for a correspondence —
including some evidence for the existence of a duality — as well as agreement between
different approaches. One of the purposes of this paper is to bring out the similarities and
differences between these different approaches.

The asymptotic symmetry of de Sitter is the same as the Euclidean conformal group
in one dimension less. It follows that observables defined at future infinity will satisfy the
same kinematical constraints as that of a CFT. However, this on its own, while it may be
useful, does not imply the existence of a duality between de Sitter and a local CFT. A similar
question was raised in the early days of the AdS/CFT correspondence: was the agreement
between bulk and boundary computations due to the high amount of (super)symmetry realised
by the original AdS/CFT examples, or is there support for the duality that does not rely on
a high amount of symmetry? A trademark of a local QFT is that its UV divergences are
local, and any dual formulation should have this property. This implies that IR divergences
in AdS (namely, divergences due to the infinite volume of spacetime) should be local, as
they are linked to the UV divergences of the CFT via the UV/IR correspondence. It turns
out that this is indeed the case for AdS gravity [7, 8]. This is a non-trivial property as it
does not hold automatically for any theory of gravity. For example, this is not the case
for gravity with zero cosmological constant near spatial infinity [9]. In this paper, we will
address this question in the context of de Sitter.

Through the years different approaches to dS/CFT have been pursued. In [10], Maldacena
proposed that the putative duality relates the partition function of the dual CFT, ZCFT, to
the wavefunction of the universe, ΨdS = ZCFT, upon a specific analytic continuation. The
analysis took place in the regime where gravity is perturbative, and the paper also discussed
the relation between AdS and dS computations due to analytic continuation. This approach
was further discussed and extended in, for example, [11–19].

In [20] we initiated an “agnostic” approach, where instead of postulating the existence
and/or the form of a possible duality, we aimed to investigate whether any relation between
standard observables in cosmology and QFT correlators in one dimension less is possible
for generic accelerating cosmologies. The starting point was a one-to-one correspondence
between FLRW cosmologies and domain-wall spacetimes [21], which may be viewed as
generalisation of the analytic continuation of dS to AdS, but now applied to general FLRW
metrics [22]. A special case of this correspondence is that between accelerating FLRW
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metrics, either asymptotically de Sitter or asymptotically power-law, and holographic RG
flows. For such cosmologies, we computed cosmological 2- and 3-point functions at tree-level
using the standard in-in formalism, both for scalar and tensor modes, and for arbitrary
potential [23–26]. These computations boil down to solving specific differential equations
satisfying certain initial conditions. As mentioned, these cosmologies are in correspondence
with spacetimes describing holographic RG flows, and for the latter, one can use standard
holographic methods to compute the 2- and 3-point functions of the holographic energy-
momentum tensor. These latter computations also boil down to solving specific differential
equations satisfying a regularity condition in the interior. As it turns out, the cosmological
in-in correlations can then be re-expressed in terms of holographic correlators in an essentially
unique way, for general potential, upon using a specific analytic continuation. The analytic
continuation was such that the differential equations and initial conditions that arose in the
cosmology computation exactly mapped to those needed for the holographic computations,
thus guaranteeing agreement for any model.

The resulting holographic formulae were similar to those appearing in the wavefunction of
the universe approach, except that the analytic continuation appeared to be different. In [10]
one analytically continued the AdS radius LAdS to the de Sitter radius LdS, LAdS = iLdS,
and the AdS radial coordinate z to the dS conformal time τ , z = −iτ . In [20], we worked in
momentum space along the boundary directions and analytically continued the magnitude of
momentum, qAdS = iqdS, together with the Planck scale, ℓ(AdS)

P = −iℓ(dS)
P . In large-N SU(N)

theories, this is equivalent to N2 → −N2. In this paper we show that these two analytic
continuations are equivalent, extending an argument given in [27].1

There are two natural scales that appear in the bulk theory: the Planck scale and the
scale associated with the cosmological constant, the (A)dS radius. One may choose to work in
Planck units, effectively setting ℓP = 1, both in AdS and dS. Then, relating AdS to dS yields
the continuation discussed in [10]. This is natural from the bulk perspective, namely, when
all computations are done in the bulk — for example, when relating in-in dS correlations
to AdS amplitudes computed via Witten diagrams. In these units, the dual CFT lives in a
space with metric ds2 = L2

AdSdx2, and one would need to include (and analytically continue)
these factors of LAdS in all CFT computations if one wishes to express the dS results in
terms of CFT correlators. Alternatively, one may work in (A)dS units, effectively setting
L(A)dS = 1, and this leads to the continuation used in [20]. Now the boundary geometry is
ds2 = dx2, and as such, this setup is more natural from the perspective of the dual CFT.
Moreover, this continuation refers only to CFT variables and parameters and is therefore
available when the bulk theory is not weakly coupled. We show explicitly that one can
go from the one analytic continuation to the other simply by performing a Weyl rescaling
that adds or removes the factor of L2

(A)dS from the boundary metric. Thus, taking this into
account, the approaches in [10] and [20] are in fact equivalent.

The analytic continuation in these works is done in an ad hoc fashion, and an important
question is whether it can be understood from a more fundamental perspective and whether it
makes sense non-perturbatively in 1/N2. A quantum cosmology perspective has been discussed

1More precisely, the signs that appear in the analytic continuation used in [20] are such that one finds
agreement with [10] based on the identification Ψ∗

dS = ZCFT, which leads to the same results for observables
as ΨdS = ZCFT. Here, and elsewhere in this paper, we have adjusted the signs in the continuation used in [20]
so that there is an agreement with ΨdS = ZCFT, see also footnote 5.
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in [28–31]. For other more recent perspectives, see [32, 33]. The analytic continuation has
also been embedded in supergravity [34, 35]. In these works, the AdS and dS supergravities
appear as different real slices of a single theory with complex action, and there is a connection
with II∗ string theories and M∗ theories [3], see also [36, 37]. Recall that in standard QFT,
analytic continuation in the momenta relates different correlators (time-ordered products,
retarded/advanced correlators, etc.), each having different physical meaning. The results
described above suggest that meaningful observables may also be obtained by analytically
continuing the parameters that appear in (a class of) QFTs.

The holographic formulae derived in [10] and [20] are valid at tree-level in the bulk,
or at leading order as N → ∞ from the perspective of the dual QFT. However, the dual
QFT need not be strongly coupled. A weakly coupled dual QFT would correspond to a
stringy non-geometric bulk, described by a strongly coupled worldsheet theory in string
theory. While we do not currently have any such models where both sides of the duality are
tractable, one can nevertheless work out the predictions of such models using holography
to see if their phenomenology is interesting. Models where the dual QFT is perturbative
were introduced in [20], and their predictions for spectra and bi-spectra were computed
in [23–26, 38, 39]. These models have been custom fitted to the WMAP [40, 41] and Planck
data [42, 43], showing they provide an excellent fit to cosmological data and thus an alternative
to conventional inflation. These models also provide a new perspective on the resolution of
the classic puzzles of hot Big Bang cosmology (the horizon, flatness and relic problems) that
historically motivated the introduction of cosmological inflation [44, 45]. As time evolution
is mapped to inverse RG flow, the resolution of the Big Bang singularity is mapped to the
question of the IR finiteness of the dual QFT; a question which is non-trivial but tractable
for the QFTs featured in the non-geometric models [46–48].

Yet a different approach to the relation between late-time de Sitter correlators and
conformal field theory is to use the fact that de Sitter isometries are the same as conformal
transformations in one dimension less, and thus the late-time de Sitter correlators should
satisfy the conformal Ward identities. Indeed, in [49, 50], we showed that the inflationary
predictions for slow-roll inflation, to second order in slow roll, are exactly reproduced by
conformal perturbation theory, and related work has appeared in [15, 16, 27, 51–56]. The
topic received a new impetus following [57] and [58] under the umbrella of cosmological
collider physics and the cosmological bootstrap. In the cosmological bootstrap, one aims to
obtain the late-time de Sitter correlators by solving the conformal Ward identities, using
as input expected physical properties, such as analyticity, that the correlators should have.
Recent works in this direction include [59–85].

In this paper, we aim to use light scalar fields in de Sitter (with mass 0 < m2L2
dS < d2/4)

to further develop the correspondence between cosmological in-in correlators and CFT
correlation functions, and to compare and contrast different approaches that have appeared
in the literature. We present holographic formulae for correlation functions of light scalars at
up to four points. These formula express the de Sitter correlators as analytic continuations
of the 2-, 3- and 4-point functions of the CFT dual to the corresponding AdS spacetime. We
supply two proofs of these holographic formulae. The first is based on analytically continuing
the AdS partition function to the wavefunction of the universe, and holds to all orders in
perturbation theory. The second is a tree-level analysis showing how the Schwinger-Keldysh
diagrams for dS correlators can be re-expressed in terms of AdS Witten diagrams.
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The relation between dS and CFT is easiest to describe using the wavefunction coeffi-
cients. Let φ(0)(x) be the field parametrising the late-time behavior of the bulk field φ(τ,x)
(see (2.29)), and ΨdS[φ(0)] the dS wavefunction. Expanding perturbatively in powers of φ(0),
we define the wavefunction coefficients ψn by

ΨdS[φ(0)] = exp
( ∞∑

n=2

(−1)n

n!

∫
[dqn]ψn(q1, . . . , qn)φ(0)(−q1) . . . φ(0)(−qn)

)
. (1.1)

A holographic formula then relates these coefficients to CFT correlation functions,

ψn(q1, . . . , qn) = (−i)d⟨⟨O(q1) . . .O(qn)⟩⟩
∣∣∣
N2→−N2, qi→iqi

(1.2)

where the correlator on the right-hand side is a Euclidean CFT correlator in flat space,
ds2 = dx2. The double-bracket notation means that we have extracted the momentum-
conserving delta function, see (2.10). We assume (as usual) that the CFT admits a ’t Hooft
large N limit with N2 → ∞ the leading contribution, as in SU(N) theories with matter
in the adjoint of SU(N). Essentially the substitution N2 → −N2 reverses the sign of the
coupling that suppresses non-planar loops. (For SO(N) theories, the analogous continuation is
N → −N .) In the bulk, this corresponds to reversing the sign of the Planck constant (working
in (A)dS units), or more precisely continuing ℓ

(AdS)
P = −iℓ(dS)

P . The substitution qi → iqi

analytically continues the magnitude of the momenta. The relation (1.2) holds to all orders
in bulk perturbation theory, and we establish this by showing that the respective Feynman
rules map to each other under the analytic continuation. (The correlator on the right-hand
side is computed via an AdS computation using the rules of the AdS/CFT correspondence.)
The results on the non-geometric models described above suggest that this relation may also
hold in the stringy regime, where the bulk is described by a strongly coupled sigma model
and the boundary theory is at weak coupling.

Starting from this relation, one may then compute the in-in correlators by functionally
integrating over φ(0)(x) with measure provided by the square of the wavefunction,

⟨φ(0)(x1) . . . φ(0)(xn)⟩ =
∫

Dφ(0) φ(0)(x1) . . . φ(0)(xn)|ΨdS[φ(0)]|2. (1.3)

Performing this integral at tree-level leads to the following holographic formulae:

⟨⟨φ(0)(q)φ(0)(−q)⟩⟩=−1
2

1
Re[(−i)d⟨⟨O(q)O(−q)⟩⟩] , (1.4)

⟨⟨φ(0)(q1)φ(0)(q2)φ(0)(q3)⟩⟩=
1
4
Re[(−i)d⟨⟨O(q1)O(q2)O(q3)⟩⟩]∏3

i=1Re[(−i)d⟨⟨O(qi)O(−qi)⟩⟩]
, (1.5)

⟨⟨φ(0)(q1)φ(0)(q2)φ(0)(q3)φ(0)(q4)⟩⟩=

1
8

[Re[(−i)d⟨⟨O(q1)O(q2)O(q3)O(q4)⟩⟩]∏4
i=1Re[(−i)d⟨⟨O(qi)O(−qi)⟩⟩]

−
(Re[(−i)d⟨⟨O(q1)O(q2)O(q12)⟩⟩]Re[(−i)d⟨⟨O(−q12)O(q3)O(q4)⟩⟩]

Re[(−i)d⟨⟨O(q12)O(−q12)⟩⟩]
∏4

i=1Re[(−i)d⟨⟨O(qi)O(−qi)⟩⟩]
+(2↔ 3)+(2↔ 4)

)]
(1.6)
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where the real parts of all correlators on the right-hand sides are taken after the continuation
described above. Note that while (1.2) holds to all orders in bulk perturbation theory, (1.4)–
(1.6) are only valid at tree-level. The reason is that they have been derived by performing the
functional integral over φ(0)(x) only at tree-level. It would be straightforward but tedious to
extend the formulae to higher order. Note also that the two terms on the right-hand side
of (1.6) do not represent bulk contact and exchange diagrams. For example, the 4-point
function ⟨⟨O(q1)O(q2)O(q3)O(q4)⟩⟩ at bulk tree-level is itself a sum of contact and exchange
diagrams. We argued above that the results for the non-geometric models suggest that (1.2)
may also hold in the regime where the dual QFT is perturbative (and the bulk is stringy).
The holographic formulae (1.4)–(1.6) would then hold at string tree-level order.

To make contact with recent literature, we also present a second derivation of the above
holographic formulae by using now the in-in formalism. We consider a bulk Lagrangian that
involves general cubic and quartic vertices. For such a theory, we computed the tree-level
in-in dS late-time amplitudes and compared the results with the corresponding tree-level AdS
amplitudes. At tree-level one can readily track the signs due to the analytic continuation
ℓ

(AdS)
P = −iℓ(dS)

P and include them explicitly in the holographic formula. The results up
to 4-point functions are given by

dsren
[∆∆](q)=−1

2
1

Im iren
[∆∆](iq;µ,b)

. (1.7)

dsren
[∆1∆2∆3](qi;µ,ai)=−1

4
Im iren

[∆1∆2∆3](iqi)∏3
j=1 Im iren

[∆j∆j ](iqj)
, (1.8)

dsren
[∆1∆2∆3∆4](qi;µ,ai)=−1

8
Im iren

[∆1∆2∆3∆4](iqi;µ,bk(ai))∏4
j=1 Im iren

[∆j∆j ](iqj)
, (1.9)

dsren
[∆1∆2;∆3∆4x∆x](qi,s;µ,ai)=

1
8

4∏
j=1

1
Im iren

[∆j∆j ](iqj)

[
Im iren

[∆1∆2;∆3∆4x∆x](iqi, is;µ,bk(ai))

−
Im iren

[∆1∆2∆x](iq1, iq2, is;µ,bk(ai))Im iren
[∆x∆3∆4](is, iq3, iq4;µ,bk(ai))

Im iren
[∆x∆x](is)

]
.

(1.10)

The left-hand side denotes dS tree-level in-in late-time amplitudes with ℓ
(dS)
P = LdS = 1. We

use conformal dimensions to denote the external states and exchange particles. For example,
dsren

[∆1∆2∆3](qi;µ, ai) denotes the renormalised scalar 3-point in-in correlator associated scalars
of mass m2

i = −∆i(∆i − d)L−2
dS . The dimensions ∆i are the canonical dimension specified

by AdS/CFT (and not the shadow dimensions ∆̄i = d −∆i). The correlator depends on
the magnitude qi of the momenta qi (conjugate to the insertion points xi). The superscript
“ren” indicates that these are renormalised correlators, where renormalisation refers to
renormalisation of IR divergences due to the infinite volume of spacetime, which we discuss
in greater detail below. (Here, µ is the associated renormalisation scale and ai the constants
parametrising the scheme dependence). For 4-point functions, we have contact diagrams
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dsren
[∆1∆2∆3∆4](qi;µ, ai), and exchange diagrams dsren

[∆1∆2;∆3∆4x∆x](qi, s;µ, ai), where ∆x is the
dimension associated with the exchange particle and s is the magnitude of the momentum
carried by it. On the right-hand side, we have the corresponding renormalised AdS amplitudes,
iren, with ℓ

(AdS)
P = LAdS = 1. Without loss of generality we can choose the renormalisation

scale in AdS and dS to be the same, but in general there is a non-trivial map that relates
the scheme-dependent constants bk that appear in the AdS computation to those of the
dS computation, ai. For concreteness, we focused on the case of two bulk scalars: one
massless and another with mass m2

dS = (d2 − 1)/(4L2
dS) describing a conformal scalar in de

Sitter. These correspond to a marginal operator with ∆ = d and an operator of dimension
∆ = (d + 1)/2. When final results are quoted we typically restrict to d = 3.

Converting the AdS amplitudes to CFT correlators in (1.7)–(1.10) yields again (1.4)–(1.6)
(more precisely, the generalisation of these formulae involving multiple bulk fields of the
appropriate dimensions on the left-hand side, and the corresponding CFT operators on
the right-hand side). Note that for general cubic and quartic couplings, the CFT 4-point
functions involves a sum of contact and exchange diagrams and these combine to yield (1.6).
As discussed in [86], each Witten diagram is a CFT correlator for some holographic CFT
specified by a bulk action, and in this case each of (1.7)–(1.10) becomes one of (1.4)–(1.6). It
is a peculiarity of the tree-level diagrams that each diagram on its own has a well-defined map
under the analytic continuation. In general, one would expect that the analytic continuation
only maps observables of the one theory to the other: in-in correlators to CFT correlators.
From this perspective, (1.4)–(1.6) are more fundamental than (1.7)–(1.10).

As mentioned, we did the dS computations in two ways: first by using (1.3), and second,
by using the in-in or Schwinger-Keldysh formalism. In the Schwinger-Keldysh formalism
one performs the path integral over a path in the complex time plane. For in-in correlators
this is a closed path that starts and ends at the same time. In dS this is a real path that
starts at future infinity (τ = 0 in the coordinates used in (2.27)), moves backward in time to
τ = −∞, and then reverses and moves forward in time till it reaches future infinity again.
Operators may be inserted at any point along the time contour and the correlators may be
computed using the Schwinger-Keldysh path integral,

Z[J+, J−] =
∫

φ+(0,x)=φ−(0,x)∼φ(0)(x)

Dφ+ Dφ− exp
(
iS+[φ+]− iS−[φ−] + i

∫
dd+1x

√
−g (J+φ+ − J−φ−)

)
,

(1.11)
where the subscript + indicates fields in the forward path and − in the backward path, and
J± are sources that generate insertions in the two paths. The fields on the forward and
backward contour have the same limit as we go to future infinity, and it is the correlators
of the late-time field φ(0) that we are interested in computing. One may directly link (1.3)
with (1.11) by identifying ΨdS with the forward path and Ψ∗

dS with the backward path.

The dS correlators generically exhibit singularities as τ → 0−, as was noticed, for example,
in [52, 62, 87–89]. In previous literature the singularities were regulated by putting a late-time
cut-off τ0, but they were not renormalised. Here, we show how to renormalise such infinities:
it suffices to introduce a counterterm at τ = 0 in the Schwinger-Keldysh path integral of
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the following schematic form,

SdS
ct [φl

(0); (J l
+ − J l

−);µ, aj ; ϵ] =
∫

τ=0
ddx

∑
k

(Jk
+ − Jk

−)fk
(
φl

(0);µ, aj ; ϵ
)
, (1.12)

where φl
(0) denotes collectively all (late-time) bulk fields (labelled by l), ϵ denotes the regulator

(which could be a late-time cutoff τ0, or the regulator parameter of dimensional regularisation,
which is the regulator we use in this paper), µ the renormalisation scale and aj is a set of
constants that parametrise the scheme dependence. For each bulk field we have sources J l

±,
and the corresponding f l are local functions of the late-time fields φl

(0) which essentially
describe how the late-time fields are renormalised. More precisely, at τ = 0 the source terms
in (1.11) become (J l

+ − J l
−)φl

(0) and combine with (1.12) to yield∫
τ=0

ddx
∑

k

(Jk
+ − Jk

−)φk
R(0) (1.13)

with
φk

R(0) = φk
(0) + fk

(
φl

(0);µ, aj ; ϵ
)
. (1.14)

The function fk is a polynomial of degree n − 1 in the φl
(0) and their derivatives, and the

possible terms are restricted by dimensional analysis: φk
(0) has dimension d−∆k, so non-trivial

contributions are possible only when there are operators whose dimensions are such that
one can construct non-linear terms, using φl

(0) and their derivatives, whose dimensions are
precisely d −∆k. It turns out that bulk correlators exhibit IR singularities exactly when
counterterms of the form (1.12) exist.

To illustrate the above for the cases studied in this paper, consider the case d = 3 with a
massless scalar φ[0] and conformal scalar φ[1]. The numbers in brackets are equal to d−∆i,
where ∆i is the conformal dimension of dual operator, which is related to the de Sitter
mass-squared as m2

i = −∆i(∆i − d)L−2
dS . This means that

f [0] = a
[0]
1 (φ[0]

(0))
2+a[0]

2 (φ[0]
(0))

3+· · · , f [1] = a
[1]
1 φ

[0]
(0)φ

[1]
(0)+a

[1]
2 (φ[0]

(0))
2φ

[1]
(0)+· · · , (1.15)

where the constants a[i]
j are adjusted so that all infinities are cancelled. Most of the 3-

and 4-points dS amplitudes involving these fields are actually divergent, see tables 1 and 2.
We have shown that all such infinities can be cancelled using the counterterms in (1.12)
with the f ’s in (1.15) for suitable choice of the constants a[i]

j . For example, for the case
of a single massless scalar field with the (regulated) action (4.24) the constants are given
by (4.61)–(4.65). After adding the counterterm (1.12), one may remove the regulator resulting
in finite renormalised correlators, which now depend on the renormalisation scale µ and
the constants ai parametrising the scheme dependence. To fix this scheme dependence one
would need to impose normalisation conditions.

We have just established that the tree-level dS IR divergences are local and can be
dealt with by renormalising the dS late-time fields, φ(0), as in (1.14), (1.15). The dS IR
infinities are the analogue of the IR infinities in AdS that are dealt with by holographic
renormalisation [7]. We would like to emphasise however that (1.12) is not the analytic
continuation of the conventional AdS counterterms derived in [7]. As shown in [90], and also
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discussed here for the cases of interest, the asymptotic solutions are mapped to each other by
the analytic continuation as is the on-shell value of the action. However, the contributions
of the conventional AdS counterterms drop out after analytic continuation to dS. There
are a number of ways to see this. From the perspective of the Schwinger-Keldysh path
integral (1.11), the conventional counterterms amount to S±(φ±) → S±(φ±) + Sct[φ(0)],
where we use the fact that φ+ = φ− ∼ φ(0) at τ = 0, and the counterterm action Sct[φ(0)]
drops out since (1.11) contains the difference S+ − S−. A second way to see the same is
to note that conventional counterterms contribute ultra-local terms in CFT correlators (i.e.
terms where all insertions are coincident). Such terms are analytic in all squared momenta
when written in momentum space, and such contributions are projected out when taking
the imaginary parts in (1.7)–(1.10). This means in particular that the conformal anomalies
are projected out, a point which was also recently made in [91, 92].

The infinities that we found in dS in-in amplitudes are also present in CFT correlators and
AdS amplitudes [93]. In CFT, the counterterm corresponding to (1.12), renormalises the cou-
pling between the sources, φk

(0), and the CFT operator, Ok, SCFT[φk
(0),Ok] =

∫
ddx

∑
k φ

k
(0)Ok

to
SCFT[φk

R(0),Ok] =
∫
ddx

∑
k

φk
R(0)Ok , (1.16)

with φk
R(0) as in (1.14). While β-functions vanish at the critical point, their derivatives (with

respect to other couplings) do not in general vanish, and these counterterms encode this CFT
data (while counterterms associated with anomalies encode the anomaly coefficients). In
AdS/CFT, the coupling between the source and operator is implicit, and as such one does not
directly add a new counterterm, but rather, one specifies how the source depends on the cut-off
(i.e., (1.14)) before removing the cut-off [93]. The analytic structure of these divergences
is different from the ones associated with anomalies: these are semi-local, meaning that
only a subset of operator insertions are coincident (while, as mentioned above, divergences
associated with anomalies are ultra-local). In momentum space, these divergences are analytic
in some but not all of the squared momenta. This implies that they survive when taking the
imaginary part. Indeed, we have shown that the holographic formulae (1.7)–(1.10) hold at the
renormalised level, with the left- and the right-hand sides computed independently. This is a
non-trivial agreement and it involves a non-trivial map between the scheme-dependent terms.

Comparing (1.13) and (1.16), the CFT operators Ok are essentially identified with
the (difference of the) Schwinger-Keldysh sources Jk

+ − Jk
−. The coupling (1.13) and the

integration over the φk
(0) then implements a Legendre transform. In CFT, and for operators of

generic conformal dimension, this has the effect of exchanging operators of dimension ∆ with
operators of shadow dimension, ∆̄ = d−∆. This relation always holds in a dimensionally
regulated theory, but it breaks down when renormalisation is needed [93] — we will discuss
what happens in such cases below. We thus expect that the regulated holographic formulae
can be expressed in terms of CFT correlation functions of operators of shadow dimensions.
Indeed, starting from (1.7)–(1.10), explicitly taking the imaginary parts and converting to
correlators of operators of shadow dimension we obtain,

dsreg
[∆∆] =

1
(2β̄)2C[∆̄∆̄]

ireg
[∆̄∆̄], (1.17)
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dsreg
[∆1∆2∆3] =

3∏
j=1

 1
2β̄jC[∆̄j∆̄j ]

 C[∆̄1∆̄2∆̄3]i
reg
[∆̄1∆̄2∆̄3], (1.18)

dsreg
[∆1∆2∆3∆4] =

4∏
j=1

 1
2β̄jC[∆̄j∆̄j ]

 C[∆̄1∆̄2∆̄3∆̄4]i
reg
[∆̄1∆̄2∆̄3∆̄4], (1.19)

dsreg
[∆1∆2;∆3∆4x∆x] =

4∏
j=1

 1
2β̄jC[∆̄j∆̄j ]

 [
C[∆̄1∆̄2∆̄x]C[∆̄3∆̄4∆̄x]

C[∆̄x∆̄x]
ireg
[∆̄1∆̄2;∆̄3∆̄4x∆̄x]

+
C[∆̄1∆̄2∆x]C[∆̄3∆̄4∆x]

C[∆x∆x]
ireg
[∆̄1∆̄2;∆̄3∆̄4x∆x]

]
, (1.20)

where
β̄j = ∆̄j −

d

2 = −βj , C[∆̄1,..., ∆̄n] = 2 sin
[π
2
(
d−

n∑
j=1

∆̄j

)]
. (1.21)

Note that all analytic continuations have been performed. This reproduces results in [66,
75, 76].

One may have anticipated this result based on the dS Ward identities and general
considerations. Indeed, as the group of de Sitter isometries is the same as the Euclidean
conformal group in one dimension less, the dS Ward identities become the conformal Ward
identities at late times, acting on fields of the shadow dimension, ∆̄i = d −∆i, exactly as
expected given the dimension of φi

(0) is d−∆i. The conformal Ward identities have a unique
solution through to 3-point functions, and the AdS amplitudes are a solution of the conformal
Ward identities, so for (1.17)–(1.18) the only issue is to explain the coefficients. For the
4-point function, we use in addition the fact that we are considering tree-level correlators,
and the corresponding analytic structure in momentum space. This then implies (1.19), up to
a constant. For the exchange diagram, noting that the sum over bulk dS Schwinger-Keldysh
propagators is invariant under βx → −βx, which amounts to ∆x → ∆̄x, the right-hand
side of (1.20) must be symmetric under ∆x ↔ ∆̄x and thus involve both the AdS exchange
diagram with ∆x, and its shadow, ∆̄x.

The constants may be fixed by requiring that the right-hand sides have the same
singularity structure as the left-hand sides. As we already discussed, there are no possible
anomalies in dS. Anomalies appear in AdS n-point functions, however, whenever [94–96],

(n− 2)d2 −
n∑

j=1
βj = −2k ⇔ d−

n∑
j=1

∆̄j = 2k, k = 0, 1, 2, . . . . (1.22)

This means that the AdS amplitudes of operators of shadow dimension will have zeros
and singularities when (1.22) hold, which the dS amplitudes do not have. To cancel those
the coefficients that relate the dS amplitudes to AdS amplitudes of operators of shadow
dimension must have compensating zeros and poles. This is indeed manifestly the structure
of the coefficients in (1.17)–(1.19).2 This is also the case in (1.20), even though this is not
manifestly so, see appendix C.4.

2The factors of 1/(2β̄j) are due to different normalisation of AdS amplitudes relative to dS amplitudes, see
section 5.2.
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Having established these relations, it is tempting to contemplate a direct link between
dS and a CFT with operators of shadow dimension. This has indeed been suggested in [75],
building on [66], where it was also proposed that this CFT may be holographically constructed
via an AdS action with appropriate couplings to account for the coefficients that relate the
dS and shadow AdS amplitudes in (1.17)–(1.20). Such a duality however is not possible
as the relations (1.17)–(1.20) cannot be renormalised. In contrast, as we have already
mentioned, (1.7)–(1.10) hold at the level of renormalised correlators. To see why there is
no renormalised version of the shadow formulae, it suffices to discuss a counterexample.
Consider the case of ds[322]. This dS amplitude has IR singularities and can be renormalised
as discussed earlier, yielding

dsren
[322] =

1
4q3

1q2q3

{
−q1 + (q2 + q3)

[
log

(
qt

µ

)
+ a

(1)
[322] − 1

]}
. (1.23)

The corresponding shadow AdS amplitude has (∆̄1, ∆̄2, ∆̄3) = (0, 1, 1) and reads

iren
[011] = c[011]

(q2 + q3)
q3

1q2q3
, (1.24)

where we have allowed for arbitrary 3-point constant c[011], and the coefficient of proportional-
ity on the right-hand side of (1.18) is equal to C[011]/(2β̄1C[00](2β̄2C[11])2) = 1/12. We conclude
that (1.18) cannot hold at the level of renormalised correlators. In fact, the right-hand side
of (1.18) can only account for the scheme-dependent part of the renormalised dS correlator.
This is typical: when renormalisation is needed, the shadow formulae compute only the
scheme-dependent part of the renormalised correlator. Note that the disagreement is not just
on the details: the left-hand side transforms anomalously under dS isometries while the right-
hand side transforms covariantly. While we focused here on one counterexample, the same
conclusion can be reached for any correlators that requires renormalisation. The underlying
reason is that the shadow CFT does not have suitable local counterterms built from sources
and operators of the shadow dimensions to remove the infinities one encounters on the dS side.
In contrast, the original CFT has precisely the counterterms needed to remove these infinities.

This is a long paper and to accommodate readers with different interests the different
sections have been written so as to allow them to be read independently of each other. In
section 2, we describe the relation between the AdS partition function and the dS wavefunction.
The section starts with two subsections outlining the AdS and dS computations, presented
in parallel. This serves both to make the paper self-contained and also to emphasise the
similarity of the computations. To facilitate the discussion of analytic continuation, we
explicitly include the Planck and (A)dS lengths in all formulae. Then, we show how the
seemingly different analytic continuations that have appeared in the literature are related to
each other, and we obtain the precise relation between the coefficients of the dS wavefunction
and CFT correlators, to all orders in the bulk perturbation theory. This section finishes with
the tree-level holographic formulae that relate dS in-in and CFT correlators.

Section 3 is devoted to the Schwinger-Keldysh formalism. We present the computation
of the tree-level dS in-in correlators using the Schwinger-Keldysh path integral, and derive
their relation with the corresponding AdS amplitudes confirming the holographic formulae
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derived in the previous section. This section is self-contained and does not assume prior
knowledge of the Schwinger-Keldysh approach.

In section 4, we discuss the regularisation and renormalisation of tree-level dS divergences.
We start by reviewing how holographic renormalisation works in AdS and outline the
similarities and differences with the case of de Sitter. We use dimensional regularisation
to regulate the IR divergences. The discussion is illustrated throughout for the cases of
massless and conformal scalars. We tabulate and explain the degree of divergences of AdS
and dS diagrams: generally all such diagrams are IR divergent; typically AdS ones are more
divergent than dS ones, but there are counterexamples. We discuss in complete detail the
renormalisation of correlators of a single massless scalar in dS and its compatibility with
the renormalisation of corresponding AdS amplitudes, and we present the corresponding
results for all such correlators involving both massless and conformal scalars. We briefly
discuss weight-shift operators and bulk derivative couplings. Amplitudes constructed using
derivative couplings are less singular than the corresponding amplitudes without derivative
interactions, but not all of them are finite.

In section 5, we discuss a recent approach that aims to connect de Sitter amplitudes to
AdS amplitudes involving operators of the shadow dimension [66, 75, 76]. We start by showing
that the dS Ward identities acting on the late-time correlators take the form of conformal
Ward identities in one dimension less, acting on operators of the shadow dimension. We then
show by explicit computation that one may rewrite the regularised tree-level holographic
formulae in terms of AdS amplitudes involving shadow fields, and explain that the resulting
structure is essentially dictated by conformal symmetry and the singularity structure of the
correlators. We show however that the connection between dS correlators and shadow AdS
amplitudes breaks down when renormalisation is needed.

The paper also contains four appendices. In appendix A we summarise our notation,
and in appendix B we summarise the holographic derivation of the 1-point functions in
the presence of sources. The AdS discussion is well known, and here we also present the
analogous discussion for dS. Appendix C contains a derivation of the singularities of AdS
and dS contact and exchange diagrams for general values of the operator and spacetime
dimensions. Finally, appendix D lists the shadow relations up to 4-point functions and briefly
discusses their derivation via a Legendre transform.

2 Relating the AdS partition function to the dS wavefunction

In this section we review the AdS partition function and the dS wavefunction, showing how
their perturbative expansions are naturally related by analytic continuation.

2.1 Perturbative expansion of the Euclidean AdS partition function

We consider the Euclidean bulk scalar field action

SAdS =(ℓ(AdS)
P )1−d

∫
dd+1x

√
g

(1
2(∂φ)

2+1
2m

2
AdSφ

2+(ℓ(AdS)
P )−2Vint(φ)

)
, (2.1)

where factors of the Planck length ℓ
(AdS)
P have been introduced so that φ and the interac-

tion potential Vint(φ) (containing terms of cubic order and higher) are both dimensionless.
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This convention is convenient in supergravity where φ parametrises a dimensionless metric
component in a Kaluza-Klein reduction, and will turn out to simplify our later analytic
continuation to dS. In order to understand the form of this continuation when working
in either Planck units (ℓ(AdS)

P = ℓ
(dS)
P = 1) or (A)dS units (LAdS = LdS = 1) we will keep

both these quantities explicit throughout. As we will see, the different analytic continuation
prescriptions proposed in the holographic cosmology literature simply reflect this choice of
units. As one of these continuations involves the Planck length, we have chosen to explicitly
differentiate this constant in the AdS set-up (ℓ(AdS)

P ) from its counterpart in dS (ℓ(dS)
P ). Finally,

while for simplicity we focus initially on a single scalar field, our results will later generalise
to multiple interacting scalars.

On a (d + 1)-dimensional Euclidean AdS (EAdS) background

ds2
AdS = L2

AdS
z2 (dz2 + dx2), (2.2)

where the radial coordinate 0 < z < ∞, the action reduces to

SAdS = 1
2

(
LAdS

ℓ
(AdS)
P

)d−1 ∫ ∞

0

dz
zd+1

∫
ddx

(
z2(∂zφ)2 + z2(∂iφ)2

+m2
AdSL

2
AdSφ

2 +
(
LAdS

ℓ
(AdS)
P

)2

2Vint(φ)
)
. (2.3)

With mass

m2
AdS = ∆(∆− d)L−2

AdS, (2.4)

the asymptotic behaviour of the scalar field is

φ(z,x) = zd−∆φ(0)(x) + . . .+ z∆φ(∆)(x) + . . . , z → 0+ (2.5)

where the dimensions [φ(0)] = d−∆ and [φ(∆)] = ∆ correspond respectively to those of the
source and vev of a dual scalar operator O of dimension ∆.

The EAdS partition function is given by the path integral

ZAdS[φ(0)] =
∫

Dφe−SAdS , (2.6)

subject to the boundary conditions

lim
z→∞

φ(z,x) regular, lim
z→0

z∆−dφ(z,x) = φ(0)(x), (2.7)

and may be expanded into boundary CFT correlators as

ZAdS[φ(0)] = exp
( ∞∑

n=2

(−1)n

n!

∫
[dqn]⟨⟨O(q1) . . .O(qn)⟩⟩φ(0)(−q1) . . .φ(0)(−qn)

)
. (2.8)

Here, φ(0) acts as the source for a dual scalar operator O of dimension ∆ in a d-dimensional
Euclidean CFT and we have Fourier transformed along the boundary directions so that qi

is the momentum conjugate to the insertion xi. The measure [dqn] is

[dqn] =
( n∏

i=1

ddqi

(2π)d

)
(2π)dδ

( n∑
j=1

qj
)
, (2.9)
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and the double brackets represent the stripped correlators

⟨O(q1) . . .O(qn)⟩ = ⟨⟨O(q1) . . .O(qn)⟩⟩ (2π)dδ
( n∑

j=1
qj
)
. (2.10)

In the saddle point approximation, the 1-point function in the presence of sources is [7]

⟨O⟩s = −(2∆− d)
(
LAdS

ℓ
(AdS)
P

)d−1

φ(∆). (2.11)

The derivation of this formula is reviewed in appendix B. Correlation functions in the CFT
then follow by repeated functional differentiation with respect to the source,

⟨O(q1) . . .O(qn)⟩ =
n∏

i=2

(
− δ

δφ(0)(−qi)

)
⟨O(q1)⟩s

∣∣∣
φ(0)→0

. (2.12)

To determine φ(∆) as a function of φ(0) we must solve the bulk equation of motion

(−□+m2
AdS)φ = L−2

AdS

(
− z2∂2

z + (d− 1)z∂z + z2q2 +∆(∆− d)
)
φ (2.13)

= −(ℓ(AdS)
P )−2∂φVint.

This can be accomplished perturbatively through an expansion in Witten diagrams. For
concreteness, let us consider the interaction

Vint(φ) =
1
k!λkφ

k. (2.14)

Expanding the bulk scalar in powers of the coupling

φ(q, z) =
∞∑

j=0
(λk)jφ{j}(q, z), (2.15)

the solution of the bulk equations of motion is then given by

φ(q1, z) = φ{0}(q1, z) + λkφ{1}(q1, z) + · · · ,

φ{0}(q1, z) = KAdS
∆ (q1, z)φ(0)(−q1) , (2.16)

φ{1}(q1, z) =
−1

(k − 1)!

(
LAdS

ℓ
(AdS)
P

)d+1 ∫ ∞

0

dz′
z′d+1G

AdS
∆ (q1; z, z′)

×
( k∏

i=2

∫ ddqi

(2π)d
φ{0}(−qi, z

′)
)
(2π)dδ(

k∑
j=1

qj).

Here, the bulk-to-boundary propagator KAdS
∆ (q, z) satisfies

(−□+m2
AdS)KAdS

∆ (q, z) = 0, (2.17)

with boundary conditions

KAdS
∆ (q, z) →

zd−∆ as z → 0
0 as z → ∞

(2.18)
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so that

KAdS
∆ (q, z) = zd/2qβ

2β−1Γ(β)Kβ(qz), β = ∆− d/2, (2.19)

where q = +
√

q2 and Kβ , Iβ denote modified Bessel functions. The bulk-to-bulk propagator
GAdS

∆ (q; z, z′) satisfies

(−□+m2
AdS)GAdS

∆ (q; z, z′) = (ℓ(AdS)
P )d−1 1

√
g
δ(z − z′), (2.20)

with boundary conditions

GAdS
∆ (q; z, z′) →


z∆

2β

(
LAdS

ℓ
(AdS)
P

)1−d

KAdS
∆ (q, z′) as z → 0

0 as z → ∞
(2.21)

such that

GAdS
∆ (q; z, z′) =

(
LAdS

ℓ
(AdS)
P

)1−d

(zz′)d/2
[
Kβ(pz)Iβ(pz′)Θ(z − z′) + (z ↔ z′)

]
. (2.22)

Witten diagrams are then constructed from bulk-to-bulk propagators and bulk-to-
boundary propagators with their sources φ(0)(q) stripped off. Vertices correspond to radial
integrations with the factor

VAdS
k = − λk

(k − 1)!

(
LAdS

ℓ
(AdS)
P

)d+1 ∫ ∞

0

dz′
z′d+1 (2.23)

and momentum conservation enforced. Summing up all n-point diagrams to a given order in
λk, the correlator is then found by multiplying by (−1)n to account for the signs in (2.12).
Notice also that the factor of (2β)−1(LAdS/ℓ

(AdS)
P )1−d in GAdS

∆ (q; z, z′) as z → 0 cancels
with that in (2.11).

The various factors of LAdS and ℓ(AdS)
P entering the propagators can be accounted for as

follows. The AdS radius enters the bulk-to-bulk propagator (2.22) through (2.20), which reads
(
−z2∂2

z +(d−1)z∂z+z2q2+∆(∆−d)
)
GAdS

∆ (q;z,z′)=
(
LAdS

ℓ
(AdS)
P

)1−d

zd+1δ(z−z′). (2.24)

The factor of (ℓ(AdS)
P )d−1 follows from the normalisation of the bulk action (the bulk-to-bulk

propagator being the inverse of the operator in the quadratic part of the action). Note however
that this factor has no effect on the correlators since the vertices carry cancelling factors
arising from the integral equation (2.16). By contrast, the bulk-to-boundary propagator (2.19)
obeys the homogeneous equation (2.17) from which all factors of LAdS cancel. The boundary
condition KAdS

∆ (q, z) → zd−∆ as z → 0 then ensures the asymptotic behaviour matches that
for a source in (2.5) and prohibits any factors of LAdS or ℓ(AdS)

P . A final point that will be
relevant later when we consider analytically continuing to de Sitter spacetime is that the
boundary metric on which the dual CFT lives is

ds2 = L2
AdS dx2, (2.25)

as follows from (2.2).
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2.2 Perturbative expansion of the dS wavefunction

We now review the corresponding perturbative expansion for the de Sitter wavefunction,
which is closely modelled on that for AdS above. The relation between the dS wavefunction
and the actual observables of interest — the correlation functions on late-time slices — will
be examined subsequently in section 2.4.

We start with the Lorentzian bulk action

SdS = −(ℓ(dS)
P )1−d

∫
dd+1x

√
−g

(1
2(∂φ)

2 + 1
2m

2
dSφ

2 + (ℓ(dS)
P )−2Vint(φ)

)
, (2.26)

evaluated on the fixed (d + 1)-dimensional de Sitter background

ds2
dS = L2

dS
τ2 (−dτ2 + dx2), (2.27)

where the conformal time τ takes values in the range −∞ < τ < 0. The overall minus
sign in (2.26) relative to (2.1), along with the additional sign in the metric, ensure that
the action is the kinetic energy minus the energy in field gradients and the potential as
required in Lorentzian signature:

SdS = 1
2

(
LdS

ℓ
(dS)
P

)d−1 ∫ 0

−∞

dτ
(−τ)d+1

∫
ddx

(
τ2(∂τφ)2 − τ2(∂iφ)2

−m2
dSL

2
dSφ

2 −
(
LdS

ℓ
(dS)
P

)2

2Vint(φ)
)
. (2.28)

Notice the measure factor √
−g = (−τ/LdS)−(d+1) also contains a sign ensuring it remains

positive in even boundary dimension d. The asymptotic behaviour of the scalar field at
late times is

φ(τ,x) = (−τ)d−∆φ(0)(x) + . . .+ (−τ)∆φ(∆)(x) + . . . , τ → 0−. (2.29)

The equations of motion ensure there is an additional minus sign in the relation between
mass and ∆ relative to that in AdS (2.4),

m2
dS = −∆(∆− d)L−2

dS . (2.30)

The de Sitter wavefunction is given by the path integral

ΨdS[φ(0)] = ⟨φ(0)(x)|0⟩ =
∫

DφeiSdS (2.31)

subject to the boundary conditions

lim
τ→−∞

φ(τ,x) regular, lim
τ→0−

(−τ)∆−dφ(τ,x) = φ(0)(x) (2.32)

with the standard iϵ prescription

τ → τ(1− iϵ), 0 < ϵ≪ 1. (2.33)
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This corresponds to an infinitesimal rotation of the time integration contour for the classical
action, where the direction is chosen so that i times the Lorentzian action continues to
minus the corresponding Euclidean action, iSdS = −SE

dS. In perturbation theory, the role of
this iϵ prescription is to select the solution where φ ∼ eiqτ as τ → −∞ so that we obtain
the exponential suppression eiqτ(1−iϵ) → 0. Notice that in the in-in formalism, this mode
where φ ∼ eiqτ as τ → −∞ corresponds to that multiplying the creation operator in the
Bunch-Davies vacuum. Instead of rotating the time contour, we can equivalently replace

q → q − iϵ, (2.34)

in all momentum magnitudes q = +
√

q2. This produces the same exponential suppression of
propagators at early times since eiτ(q−iϵ) as τ → −∞ is equivalent to eiqτ(1−iϵ).

The full dS wavefunction ΨdS can be expanded perturbatively in powers of φ(0) to define
the wavefunction coefficients ψn. The most convenient definition for our purposes is

ΨdS[φ(0)] = exp
( ∞∑

n=2

(−1)n

n!

∫
[dqn]ψn(q1, . . . , qn)φ(0)(−q1) . . . φ(0)(−qn)

)
(2.35)

where the measure is given in (2.9) and we include an explicit factor of (−1)n multiplying
the wavefunction coefficients for later convenience. In the saddle point approximation, the
latter may be computed through a diagrammatic expansion analogous to Witten diagrams.
First, we construct an analogue of the 1-point function in the presence of sources

ψs(q) = − δ lnΨdS
δφ(0)(−q) = +i(2∆− d)

(
LdS

ℓ
(dS)
P

)d−1

φ(∆)(q) (2.36)

such that the wavefunction coefficients are obtained by further functional differentiation,

ψn(q1, . . . , qn) =
n∏

i=2

(
− δ

δφ(0)(−qi)

)
ψs(q1)

∣∣∣
φ(0)→0

. (2.37)

Comparing (2.36) to the corresponding AdS formula (2.11), the relative factor of −i derives
from the fact that ΨdS = ⟨eiSdS⟩ while ZAdS = ⟨e−SAdS⟩. The full derivation is given in
appendix B.

To construct the bulk solution perturbatively, we again expand the bulk field in powers
of the coupling as in (2.15). The solution of the bulk equation of motion

(−□+m2
dS)φ = L−2

dS

(
τ2∂2

τ − (d− 1)τ∂τ + τ2q2 −∆(∆− d)
)
φ = −(ℓ(dS)

P )−2∂φVint, (2.38)

is then given by

φ(q1, τ) = φ{0}(q1, z) + λkφ{1}(q1, z) + · · · ,

φ{0}(q1, z) = KdS
∆ (q1, τ)φ0(−q1), (2.39)

φ{1}(q1, z) =
−i

(k − 1)!

(
LdS

ℓ
(dS)
P

)d+1 ∫ 0

−∞

dτ ′
(−τ ′)d+1G

dS
∆ (q1; τ, τ ′)

×
( k∏

i=2

∫ ddqi

(2π)d
φ{0}(−qi, τ

′)
)
(2π)dδ(

k∑
j=1

qj).
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Here, the bulk-to-boundary propagator KdS
∆ (q, τ) satisfies

(−□+m2
dS)KdS

∆ (q, τ) = 0, (2.40)

with boundary conditions

KdS
∆ (q, τ) →

(−τ)d−∆ as τ → 0
0 as τ → −∞(1− iϵ)

(2.41)

such that

KdS
∆ (q, τ) = −iπ (−τ)

d/2qβ

2βΓ(β) H
(2)
β (−qτ), β = ∆− d/2. (2.42)

Note that at early times the Hankel function H
(2)
β (−qτ) ∼ (−qτ)−1/2eiqτ . As in AdS, the

bulk-to-boundary propagators KdS
∆ (q, τ) are taken to be independent of ℓ(dS)

P .
The bulk-to-bulk propagator GdS

∆ (q; τ, τ ′) satisfies

(−□+m2
dS)GdS

∆ (q; τ, τ ′) = −i(ℓ(dS)
P )d−1 1√

−g
δ(τ − τ ′) (2.43)

where the normalisation is such that GdS
∆ (q; τ, τ ′) carries a factor of (ℓ(dS)

P )d−1 matching the
normalisation of the bulk action. The boundary conditions are

GdS
∆ (q; τ, τ ′) →


+i
2β (−τ)∆

(
LdS

ℓ
(dS)
P

)1−d

KdS
∆ (q, τ ′) as τ → 0

0 as τ → −∞(1− iϵ)
(2.44)

leading to the unique solution

GdS
∆ (q; τ, τ ′) = +π4

(
LdS

ℓ
(dS)
P

)1−d

(−τ)d/2(−τ ′)d/2

×
[
H

(2)
β (−qτ)

(
H

(1)
β (−qτ ′) +H

(2)
β (−qτ ′)

)
Θ(τ ′ − τ) + (τ ↔ τ ′)

]
. (2.45)

Here, the relative normalisation of the terms proportional to H(1)
β (−qτ) and H

(2)
β (−qτ) for

τ > τ ′ is fixed by the required asymptotic behaviour GdS
∆ (q; τ, τ ′) ∼ (−τ)∆ as τ → 0. The

dependence on LdS enters via the inhomogeneous source term in (2.43), namely

(
τ2∂2

τ −(d−1)τ∂τ +τ2q2−∆(∆−d)
)
GdS

∆ (q;τ,τ ′)=−i
(
LdS

ℓ
(dS)
P

)1−d

(−τ)d+1δ(τ−τ ′). (2.46)

The overall sign in (2.45) is fixed by the junction condition following from (2.46), namely

lim
ϵ→0+

[
∂τGdS

∆ (q; τ, τ ′)
]τ=τ ′+ϵ

τ=τ ′−ϵ
= −i

(
LdS

ℓ
(dS)
P

)1−d

(−τ ′)d−1. (2.47)
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To solve the integral equation (2.39) perturbatively, diagrams are then constructed
from the bulk-to-bulk and bulk-to-boundary propagators, with vertices corresponding to
conformal time integrals

VdS
k = −i λk

(k − 1)!

(
LdS

ℓ
(dS)
P

)d+1 ∫ 0

−∞

dτ ′
(−τ ′)d+1 . (2.48)

As usual, momentum conservation is enforced at every vertex.
Examining (2.44), the factor of i(2β)−1(LdS/ℓ

(dS)
P )1−d in GdS

∆ (q; τ, τ ′) as τ → 0 cancels
up to a sign with a corresponding factor appearing in (2.36). The sum of n-point diagrams
constructed using bulk-to-boundary propagators (with sources stripped off) for external legs
therefore corresponds to (−1)nψn. To construct the (log of) the full wavefunction ΨdS, we
instead retain and integrate over the sources, multiplying the sum of n-point diagrams by 1/n!.

2.3 Analytic continuation

The individual diagrams arising in the perturbative expansions of the AdS partition function
and the dS wavefunction can be identified with one another through a suitable analytic
continuation of the propagators. This ensures that to all orders in perturbation theory

ZAdS
∣∣∣
analyt. cont.

= ΨdS (2.49)

allowing AdS/CFT correlators to be related to wavefunction coefficients, and ultimately dS
correlators as we will review. The precise form of the analytic continuation depends however
on whether we choose to work in Planck units (fixing ℓ

(AdS)
P = ℓ

(dS)
P = 1) or (A)dS units

(fixing LAdS = LdS = 1), although the physical content is the same in either case.

2.3.1 Planck units

In Planck units where ℓ(AdS)
P = ℓ

(dS)
P = 1, the AdS and dS solutions are related by

z = −iτ, LAdS = iLdS, φAdS
(0) = (−i)d−∆φdS

(0), (2.50)

with all other quantities the same for both. Here, the sign of the first continuation is fixed by
matching the large-z behaviour e−qz of the AdS propagators to the early-time eiqτ behaviour of
the dS propagators for the wavefunction. The continuation of the sources φ(A)dS

(0) then follows
by matching the respective asymptotic expansions (2.5) and (2.29). The continuation of the
(A)dS radius is fixed by requiring √

gAdS = √
−gdS and hence (LAdS/z)d+1 = (LdS/(−τ))d+1,

ensuring that −SAdS = iSdS in all dimensions d.3
Applying (2.50) to the AdS propagators (2.19) and (2.22), and comparing to the dS

propagators (2.42) and (2.45), we find

KAdS
∆ (q, z) = (−i)∆−dKdS

∆ (q, τ), (2.51)

GAdS
∆ (q; z, z′) = +GdS

∆ (q; τ, τ ′). (2.52)
3Following [10], many authors use instead the measure

√
−gdS = (LdS/τ)d+1 leading to the continuation

LAdS = −iLdS. This is fine for odd boundary dimensions (including the physically relevant case of d = 3)
but cannot be applied for even d since the dS action becomes imaginary for τ < 0. In contrast, the
continuation (2.50) is valid in any dimension.
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Here we used the following analytic continuations, valid for −π
2 ≤ arg x ≤ π,

Kβ(x) = − iπ2 e
−iπβ/2H

(2)
β (xe−iπ/2), (2.53)

Iβ(x) =
1
2e

iπβ/2
(
H

(1)
β (xe−iπ/2) +H

(2)
β (xe−iπ/2)

)
, (2.54)

with the replacement θ(z − z′) → θ(|z| − |z′|) = θ(|τ | − |τ ′|) → θ(τ ′ − τ) and vice versa.
From the result (2.51), we see that the phase acquired by the bulk-boundary propagator
cancels with that acquired by the source giving

KAdS
∆ (q, z)φAdS

(0) (−q) = KdS
∆ (q, z)φdS

(0)(−q). (2.55)

Next, we must consider the interactions. Under (2.50), the AdS classical equation of mo-
tion (2.13) continues directly to its dS counterpart (2.38). Similarly, the AdS vertex fac-
tor (2.23) continues to its dS counterpart (2.48) as4

VAdS
k = VdS

k . (2.56)

Overall, on continuing a diagram from AdS to dS via (2.50), we thus find that: (i) bulk-
boundary propagators acquire a factor of (−i)∆−d when stripped of boundary sources, but
have no factors when dressed according to (2.55); (ii) from (2.52) and (2.56), both bulk-bulk
propagators and vertices continue exactly.

Each AdS diagram, with sources removed, therefore continues to (−i)n(∆−d) times the
corresponding dS diagram. Alternatively, the dS diagram is the continued AdS diagram
times the inverse of this factor, in(∆−d). Since the sum of n-point AdS diagrams is (−1)n

times the corresponding CFT correlator, and the sum of dS diagrams is (−1)n times the
wavefunction coefficient, we find

ψn(q1, . . . , qn) = (−i)n(d−∆)⟨⟨O(q1) . . .O(qn)⟩⟩
∣∣∣
LAdS→iLdS

. (2.57)

This formula holds provided there are no divergences: we will return to discuss such cases
later in section 4. If we construct the AdS partition function (2.8) and analytically continue
via (2.50), the factors from the continuation of the sources cancel with those in (2.57) and
we obtain

ΨdS = ZAdS
∣∣∣
LAdS→iLdS, φAdS

(0) →(−i)d−∆φdS
(0)

(2.58)

to all loop orders.

2.3.2 From Planck to AdS units via a Weyl transformation

As we noted earlier, when working in Planck units with ℓ
(AdS)
P = ℓ

(dS)
P = 1, the metric on

which the CFT lives is ds2 = L2
AdS dx2. When working in AdS units with L(A)dS = 1, however,

4Here, after performing the analytic continuation z′ = −iτ ′, we reverse the limits of the time integration
and rotate the contour sending

∫ i∞
0 dτ ′ = −

∫ 0
i∞ dτ ′ = −

∫ 0
−∞(1−iϵ) dτ ′. The rotation is permitted since the

integral along the arc at infinity where φ ∼ eiqτ ′
vanishes in the upper half-plane.

– 20 –



J
H
E
P
0
5
(
2
0
2
4
)
0
5
3

we have just ds2 = dx2. From the perspective of the CFT, passing from Planck to AdS units
is thus equivalent to performing a Weyl transformation [27]

γij → L−2
AdSγij (2.59)

under which

q → LAdSq, φAdS
(0) → Ld−∆

AdS φ
AdS
(0) (2.60)

and the correlators transform as

⟨⟨O(q1) . . .O(qn)⟩⟩ → L
n(∆−d)+d
AdS ⟨⟨O(q1) . . .O(qn)⟩⟩ (2.61)

according to their overall dimension ∆t − (n − 1)d = n(∆ − d) + d.
From the perspective of the Weyl-transformed theory in AdS units, the continuation (2.50)

is then equivalent to continuing

qAdS = iqdS, φAdS
(0) = φdS

(0), ℓ
(AdS)
P = −iℓ(dS)

P . (2.62)

The first two formulae here follow from (2.60), where in addition all correlators are multiplied
by a factor in(∆−d)+d from (2.61). The continuation of ℓ(AdS)

P in the final formula derives
from the presence of an overall power of LAdS/ℓ

(AdS)
P in the bulk action, which translates to

a power of the rank of the gauge group in the dual CFT. As in our conventions LAdS and
ℓ

(AdS)
P only appear in the ratio LAdS/ℓ

(AdS)
P , the effect of the continuation LAdS = iLdS in

Planck units is thus reproduced by the continuation ℓ
(AdS)
P = −iℓ(dS)

P in AdS units.
The relation (2.57) between the wavefunction and CFT correlators when working in Planck

units can now be translated into an equivalent statement in AdS units. In AdS units, we find

ψn(q1, . . . , qn) = (−i)n(d−∆)(−i)n(∆−d)+d⟨⟨O(q1) . . .O(qn)⟩⟩
∣∣∣
ℓ

(AdS)
P →−iℓ

(dS)
P , qAdS→iqdS

= (−i)d⟨⟨O(q1) . . .O(qn)⟩⟩
∣∣∣
ℓ

(AdS)
P →−iℓ

(dS)
P , qAdS→iqdS

(2.63)

where all correlators are those in the Weyl transformed theory on metric ds2 = dx2. In
the first line, the factor (−i)n(∆−d)+d multiplying the transformed correlator is equivalent
to the untransformed correlator appearing in (2.57). Again, this result holds in the absence
of divergences; we will return to discuss these in section 4.

2.3.3 Pure (A)dS units perspective

Instead of applying a Weyl transformation to the holographic formula in derived in Planck
units, as we did in section 2.3.2, we can also recover the relation (2.63) between CFT
correlators and dS wavefunction coefficients by working purely in (A)dS units.

From this perspective, setting L(A)dS = 1, the continuation (2.62) can be understood
as follows. First, we must have q2

AdS = −q2
dS and (ℓ(AdS)

P )2 = −(ℓ(dS)
P )2 in order to map the

AdS equation of motion (2.13) to its dS counterpart (2.38). The specific signs appearing
in (2.62) are then fixed by enforcing −SAdS = iSdS. In addition, this matches the e−qAdSz

behaviour of the AdS propagators at large z with the eiqdSτ behaviour of the propagator
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for the dS wavefunction at early times.5 The sign here is also consistent with the direction
of rotation implied by the dS iϵ prescription qdS → qdS − iϵ in (2.34), since (2.62) implies
qdS = −iqAdS which also has a negative imaginary part. Finally, since the AdS and dS
asymptotic expansions (2.5) and (2.29) match directly under (2.62), no continuation of
the sources is required and φAdS

(0) = φdS
(0). Thus, all the continuations implied by the Weyl

transformation argument in section 2.3.2 can equivalently be recovered from consideration
of the theory in (A)dS units alone.

Applying (2.62) to the AdS propagators (2.19) and (2.22), and comparing to the dS
propagators (2.42) and (2.45), we find

KAdS
∆ (qAdS, z) = KdS

∆ (qdS, τ), (2.64)

GAdS
∆ (qAdS; z, z′) = (−i)dGdS

∆ (qdS; τ, τ ′). (2.65)

The vertex factors (2.23) and (2.48) are proportional to (ℓ((A)dS)
P )−(d+1), so overall we find

VAdS
k = (−i)−dVdS

k . (2.66)

In addition, we also need to take into account the continuation of the momentum integrals.
For the diagrams themselves, the only surviving momentum integrals come from loops,
contributing an overall factor of idL. Since

I − V = L− 1 (2.67)

for a connected diagram with V vertices, I internal propagators and L loops, the continuation
of an individual AdS diagram generates its dS counterpart multiplied by an overall factor of

(−i)d(I−V −L) = (−i)−d.

Equivalently, to obtain the dS diagram we apply the continuation to the AdS diagram and
multiply by the inverse of this factor. As previously, the sum of n-point AdS diagrams
corresponds to (−1)n times the CFT correlator while the sum of dS diagrams gives (−1)n

times the wavefunction coefficient. Putting this together, we obtain the relation

ψn(q1, . . . , qn) = (−i)d⟨⟨O(q1) . . .O(qn)⟩⟩
∣∣∣
ℓ

(AdS)
P →−iℓ

(dS)
P , qAdS→iqdS

(2.68)

This agrees with our earlier formula (2.63).

2.3.4 2-point function

The 2-point function provides a quick check of the continuations above. Using the bulk-
boundary propagators along with (2.11) and (2.36), we find

⟨⟨O(q)O(−q)⟩⟩ = 2βΓ(−β)
4βΓ(β)

(
LAdS

ℓ
(AdS)
P

)d−1

q2β
AdS (2.69)

5In [20], we instead continued the AdS solution to the dS mode function, namely, the coefficient of the
annihilation operator in the in-in dS mode expansion. In contrast, the wavefunction propagator corresponds to
the coefficient of the creation operator in the dS mode expansion. The signs in the continuation (2.62) therefore
differ from those in [20], but the holographic formulae we derive are such that all results for observables remain
the same. In the present context, the continuation of [20] amounts to mapping ZAdS = Ψ∗

dS which leads to the
same results for observables since dS correlators are constructed from |ΨdS|2.
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and

ψ2(qdS) = −ieiπβ 2βΓ(−β)
4βΓ(β)

(
LdS

ℓ
(dS)
P

)d−1

q2β
dS, (2.70)

allowing us to verify the continuations (2.57) and (2.63) above. For the particular case of
d = ∆ = 3, note that

⟨⟨O(q)O(−q)⟩⟩ =
(
LAdS

ℓ
(AdS)
P

)2

q3
AdS, ψ2(q) = −

(
LdS

ℓ
(dS)
P

)2

q3
dS. (2.71)

The negative sign of ψ2(qdS) is consistent with the non-negativity of the dS 2-point func-
tion.6 Using

lnZAdS = 1
2

∫ ddq

(2π)d
⟨⟨O(q)O(−q)⟩⟩φAdS

(0) (q)φAdS
(0) (−q) (2.72)

and

lnΨdS = 1
2

∫ ddq

(2π)d
ψ2(qdS)φdS

(0)(q)φdS
(0)(−q), (2.73)

we can further check the relation (2.58).

2.4 Holographic formulae for dS correlators

The observables of interest in inflationary cosmology are the late-time correlation functions.
These may be computed from the wavefunction coefficients via a path integral:

⟨φ(0)(x1) . . . φ(0)(xn)⟩ = lim
τ→0−

(−τ)n(∆−d)⟨φ(x1) . . . φ(xn)⟩

=
∫

Dφ(0) φ(0)(x1) . . . φ(0)(xn)|Ψ[φ(0)]|2. (2.74)

Via standard path integral calculations we then obtain7

⟨⟨φ(0)(q)φ(0)(−q)⟩⟩=−1
2

1
Reψ2(q)

, (2.75)

⟨⟨φ(0)(q1)φ(0)(q2)φ(0)(q3)⟩⟩=
1
4
Reψ3(q1,q2,q3)∏3

i=1Reψ2(qi)
, (2.76)

⟨⟨φ(0)(q1)φ(0)(q2)φ(0)(q3)φ(0)(q4)⟩⟩=

1
8

[Reψ4(q1,q2,q3,q4)∏4
i=1Reψ2(qi)

−
(Reψ3(q1,q2,q12)Reψ3(−q12,q3,q4)

Reψ2(q12)
∏4

i=1Reψ2(qi)
+(2↔ 3)+(2↔ 4)

)]
(2.77)

where qij = qi + qj .
6See (2.75), and also (5.8) in [10]; the sign is misprinted in (A.3) of [27].
7Notice the signs in these formulae are dependent on those in the definition of the wavefunction coeffi-

cients (2.35), for which different conventions exist in the literature.
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Working in (A)dS units, the analytic continuation between CFT correlators and wave-
function coefficients is given by (2.63). Combining this with the relations (2.77) between
wavefunction coefficients and dS correlators, we obtain the holographic formulae

⟨⟨φ(0)(q)φ(0)(−q)⟩⟩=−1
2

1
Re[(−i)d⟨⟨O(q)O(−q)⟩⟩] , (2.78)

⟨⟨φ(0)(q1)φ(0)(q2)φ(0)(q3)⟩⟩=
1
4
Re[(−i)d⟨⟨O(q1)O(q2)O(q3)⟩⟩]∏3

i=1Re[(−i)d⟨⟨O(qi)O(−qi)⟩⟩]
, (2.79)

⟨⟨φ(0)(q1)φ(0)(q2)φ(0)(q3)φ(0)(q4)⟩⟩=

1
8

[Re[(−i)d⟨⟨O(q1)O(q2)O(q3)O(q4)⟩⟩]∏4
i=1Re[(−i)d⟨⟨O(qi)O(−qi)⟩⟩]

−
(Re[(−i)d⟨⟨O(q1)O(q2)O(q12)⟩⟩]Re[(−i)d⟨⟨O(−q12)O(q3)O(q4)⟩⟩]

Re[(−i)d⟨⟨O(q12)O(−q12)⟩⟩]
∏4

i=1Re[(−i)d⟨⟨O(qi)O(−qi)⟩⟩]
+(2↔ 3)+(2↔ 4)

)]
(2.80)

where the real parts of all correlators on the right-hand sides are taken after continuing

ℓ
(AdS)
P = −iℓ(dS)

P , qAdS = iqdS. (2.81)

While our discussion has focused on a scalar field of a single type, the generalisation to
multiple interacting scalar fields is straightforward: the continuations of propagators and
vertices is the same and one arrives at the formulae above where the correlators on both sides
are generalised so that each momentum is associated with a specific operator.

Finally, let us discuss the domain of validity of the various results above. While the rela-
tion (2.63) between CFT correlators and wavefunction coefficients holds for any diagram, and
hence to all orders in perturbation theory, the relations (2.75)–(2.77) between wavefunction
coefficients and dS correlators holds only to leading order in ℓ

(dS)
P /LdS. (Recall the dS ac-

tion (2.26) carries an overall factor of (LdS/ℓ
(dS)
P )d−1.) The holographic formula (2.78)–(2.80)

are then valid to leading order in the large-N expansion of the dual CFT.
While here we have been discussing a fixed gravitational background for simplicity,

formulae analogous to (2.78)–(2.80) have been derived for fully dynamical backgrounds at
up to 3-points [20, 24, 25]. In this more general setting, when the dual CFT is strongly
interacting, the bulk gravity theory is weakly coupled (i.e., Einstein gravity holds and higher-
curvature corrections are suppressed). Leading order in ℓ

((A)dS)
P /L(A)dS is then equivalent to

tree level in the bulk loop expansion. However, the holographic duality is also expected to
hold in the opposite regime where the CFT is weakly interacting (though still at large N)
and the bulk (super)gravity approximation breaks down. Holographic formulae analogous
to (2.78)–(2.80) should still be applicable in this limit, though on the bulk side leading order
in ℓ

((A)dS)
P /L(A)dS now corresponds to an expansion in string loops.

3 Schwinger-Keldysh approach

The Schwinger-Keldysh or in-in formalism provides an alternative approach for computing
cosmological correlators. To arrive at this formalism, we first rewrite the wavefunction of
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the universe and its complex conjugate as

Ψ[φ(0)] =
∫

Dφ+e
iS+[φ+], Ψ∗[φ(0)] =

∫
Dφ−e

−iS−[φ−], (3.1)

where φ+(τ,x) and φ−(τ,x) are regarded as independent fields whose classical actions S±[φ±]
are evaluated subject to contour rotations τ → τ(1∓ iϵ) respectively. Both path integrals
run over bulk field configurations subject to a common late-time boundary condition

lim
τ→0−

[
(−τ)∆−dφ±(τ,x)

]
= φ(0)(x). (3.2)

Performing a second path integral over the boundary field φ(0)(x) then yields the de Sitter
correlators as previously,

⟨φ(0)(x1) . . . φ(0)(xn)⟩ = lim
τ→0−

[
(−τ)n(∆−d)⟨φ(τ,x1) . . . φ(τ,xn)⟩

]
=
∫

Dφ(0)
( n∏

i=1
φ(0)(xi)

)∣∣Ψ[φ(0)]
∣∣2. (3.3)

In the Schwinger-Keldysh formalism these separate path integrals over bulk and boundary
fields are merged into a single closed-time path integral

⟨φ(τ,x1) . . . φ(τ,xn)⟩ =
∫

Dφ+Dφ−
( n∏

i=1
φ+(τ,xi)

)
exp

(
iS+[φ+]− iS−[φ−]

)
, (3.4)

where we path integrate over all field configurations subject only to the constraint that
both fields coincide at late times

lim
τ→0−

φ+(τ,x) = lim
τ→0−

φ−(τ,x). (3.5)

In this closed-time path formalism φ+ then corresponds to a field localised on the forward
part of the contour while φ− is localised on the reverse part. As previously, the asymptotic
time-dependence of the correlator can be removed by multiplying by a factor of (−τ)n(∆−d)

and (in the absence of divergences) taking the limit τ → 0−.
From the Schwinger-Keldysh perspective, we now obtain four different propagators

according to the identity φ± of the two end-points, and vertices come in two different types
(see [97] for a review). The pay-off for this increase in complexity is that the resulting
diagrammatic expansion now computes correlators in de Sitter directly, in contrast to the
wavefunction formalism where an additional path integral over boundary fields is required
to go from the wavefunction to the correlators.

In this section we show how the holographic formulae derived above using the wavefunction
formalism can also be obtained by directly continuing diagrams in the Schwinger-Keldysh
formalism. In particular, this requires continuing φ± in different directions [66, 76]. However,
the derivation of the holographic formulae is arguably less straightforward in this approach
since, as noted by many authors [66, 75, 76], the AdS bulk-bulk propagator does not continue
directly to the Schwinger-Keldysh bulk-bulk propagators. In contrast, the AdS bulk-bulk
propagator does continue directly to the bulk-bulk propagator used for computing the
wavefunction coefficients as we saw above. For this reason, we will restrict the Schwinger-
Keldysh analysis in this section to tree-level correlators, unlike the wavefunction derivation
which applied to all orders in perturbation theory.
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O1(k1)

O3(k3)

O2(k2)

K[∆1]

K[∆3]

K[∆2]

(a) Witten diagram for the 3-
point amplitude i[∆1∆2∆3].

O1(k1)

O2(k2) O3(k3)

O4(k4)
K[∆1]

K[∆2] K[∆3]

K[∆4]

(b) Witten diagram for the
contact 4-point amplitude
i[∆1∆2∆3∆4].

O1(k1)

O2(k2) O3(k3)

O4(k4)
K[∆1]

K[∆2]K[∆3]

K[∆4]
G[∆x]

(c) Witten diagram for the
exchange 4-point amplitude
i[∆1∆2;∆3∆4x∆x].

Figure 1. AdS Witten diagrams defining the corresponding AdS amplitudes. We use Oi to denote
the dual operators, while K[∆] and G[∆] denote the bulk-to-boundary and bulk-to-bulk propagators
respectively. For precise expressions defining these amplitudes, see section 3 of [86].

3.1 Amplitudes

Restricting our analysis to tree level enables some further simplification of the holographic
formulae (2.78)–(2.80). At tree level each correlator in the dual theory can be expressed as a
sum of AdS Witten digrams multiplied by a number of constants, such as coupling constants,
the AdS radius and the Planck length. By AdS amplitudes we refer to the momentum-
dependent part of each Witten diagram, with all couplings dropped (or set to one). In [86]
we defined and listed expressions for a number of interesting AdS amplitudes. Figure 1 shows
the notation used for each amplitude and its defining Witten diagram.

In our conventions, every AdS diagram carries an overall factor8

(
LAdS

ℓ
(AdS)
P

)(d+1)V +(1−d)I

=
(
LAdS

ℓ
(AdS)
P

)(d−1)(1−L)+2V

, (3.6)

where L is the number of loops, V the number of vertices and I the number of internal lines.
The power (d− 1)(1− L) derives from the overall factor of (LAdS/ℓ

(AdS)
P )d−1 multiplying the

bulk action (2.3), just as an ordinary Feynman diagram in QFT is of order ℏL−1 = (ℏ−1)1−L

since the action carries a factor of ℏ−1 in the path integral. The remaining power of 2V
arises since the interaction potential in (2.3) carries a factor of (LAdS/ℓ

(AdS)
P )2 and we get

one such factor per diagrammatic vertex. Thus, we can decompose each correlator in terms
of AdS amplitudes. Schematically, we can write

⟨⟨O(q1) . . .O(qn)⟩⟩ =
∑
V

(
LAdS

ℓ
(AdS)
P

)(d−1)+2V

λV
AdS iV (q1, . . . , qn). (3.7)

Here iV represents a single Witten diagrams with n external legs and V vertices in the bulk.
There is usually many such diagrams and they must be summed over. Similarly, each vertex
comes with a coupling, and there may be many types of vertices/couplings. For simplicity
we use only a single coupling here, denoted by λAdS.

8Note (3.6) differs from the usual expectation that diagrams scale as (LAdS/ℓ
(AdS)
P )(d−1)(1−L). However,

the latter holds when the interaction potential is L−2
AdSVint(φ) rather than (ℓ(AdS)

P )−2Vint(φ) as here.
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Analogously, we can define the dS amplitudes, but carrying out the corresponding,
tree-level calculations in de Sitter space. Thus, we can decompose the dS correlators as

⟨⟨φ(0)(q1) . . . φ(0)(qn)⟩⟩ =
∑
V

(
LdS

ℓ
(dS)
P

)(d−1)+2V

λV
dS dsV (q1, . . . , qn). (3.8)

We can now use the formulae (2.78)–(2.80) to relate the dS and AdS amplitudes on the
tree level.

In (A)dS units L(A)dS = 1, we see now that the continuation ℓ
(AdS)
P → −iℓ(dS)

P generates
a factor of (−i)(1−d)(1−L)−2V for a given diagram. At tree level (L = 0), this reduces to
−i(−i)−d(−1)V and the factor of (−i)−d cancels that in (2.63). Thus in effect we can
continue just the momentum alone:

Reψtree
n (q1, . . . , qn) = (−1)V Im⟨⟨O(q1) . . .O(qn)⟩⟩

∣∣∣
qAdS→iqdS

(3.9)

The factor of (−1)V can then be introduced into the holographic formulae explicitly, since at
tree level V = 1 for contact diagrams and V = 2 for 4-point exchanges. All in all, at tree
level, we can continue only the amplitudes, keeping all remaining constants identified,9

LAdS = LdS, ℓ
(AdS)
P = ℓ

(dS)
P , λAdS

k = λdS
k . (3.10)

The relation between the amplitudes becomes then

ds[∆∆](q) = − 1
2 Im i[∆∆](iq)

, (3.11)

ds[∆1∆2∆3](q1, q2, q3) = −1
4
Im i[∆1∆2∆3](iq1, iq2, iq3)∏3

j=1 Im i[∆j∆j ](iqj)
, (3.12)

ds[∆1∆2∆3∆4](qi) = −1
8
Im i[∆1∆2∆3∆4](iqi)∏4

j=1 Im i[∆j∆j ](iqj)
, (3.13)

ds[∆1∆2;∆3∆4x∆x](qi, s) =
1
8

4∏
j=1

1
Im i[∆j∆j ](iqj)

[
Im i[∆1∆2;∆3∆4x∆x](iqi, is)

−
Im i[∆1∆2∆x](iq1, iq2, is) Im i[∆x∆3∆4](is, iq3, iq4)

Im i[∆x∆x](is)

]
, (3.14)

where i[∆∆](q) is the regulated AdS 2-point function; i[∆1∆2∆3](q1, q2, q3) the AdS 3-point
function; i[∆1∆2∆3∆4](q1, q2, q3, q4) the AdS 4-point contact and i[∆1∆2;∆3∆4x∆x](qj , s) the
AdS 4-point s-channel exchange diagram for a field of dimension ∆x. As L(A)dS and ℓ

(A)dS
P

are no longer being continued, we can effectively set L(A)dS = 1 and ℓ(A)dS
P = 1, with the only

analytic continuations being those of the momenta indicated directly in the formulae.

3.2 Free field

Let us begin with the analysis of the free scalar field φ governed by the action,

S0 = −1
2

∫
dd+1x

√
−g

[
gµν∂µφ∂νφ+m2

dSφ
2
]
, (3.15)

9Alternatively, this factor of (−1)V could be generated by continuing the couplings λAdS
k → −λdS

k .
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on the fixed (d + 1)-dimensional de Sitter background with the metric

ds2 = 1
(−τ)2 (−dτ2 + dx2), (3.16)

where τ goes from −∞ to 0. We parameterise the mass as

m2
dS = d2

4 − β2 = −∆(∆− d) (3.17)

and consider only the case of 0 < β ≤ d
2 .

This is the free part of the system described by the de Sitter action (2.26) with LdS =
ℓ

(dS)
P = 1. One can recover the LdS and ℓ(dS)

P dependence by decorating each Witten diagram
(amplitude) with the factor (3.6), where V denotes the number of vertices in the diagram
(and we consider only tree diagrams with L = 0). In particular by stripping the 2-point
function ⟨⟨φ(0)φ(0)⟩⟩ from its LdS and ℓ

(dS)
P we obtain the dS amplitude ds[∆∆] as its purely

momentum-dependent part,

⟨⟨φ(0)(q)φ(0)(−q)⟩⟩ =
(
LdS

ℓ
(dS)
P

)d−1

ds[∆∆](q) +O(λj). (3.18)

If we added some bulk interactions, denoted here collectively by the coupling constants λj ,
the 2-point function would acquire additional contributions from bulk loops. Nevertheless,
by ds[∆∆] we always denote the zeroth order, tree-level amplitude; in this case the free
theory amplitude.

3.2.1 Mode decomposition

We write the mode decomposition

φ(τ,x) =
∫ ddq

(2π)d

[
aqφq(τ,x) + a∗qφ

∗
q(τ,x)

]
, (3.19)

where each modes satisfies the Klein-Gordon equation (−□ +m2
dS)φq = 0. The negative

frequency solution φq reads

φq(τ,x) = eiq·xφq(τ), (3.20)

φq(τ) =
√
π

2 e
iπ
2 (β+ 1

2)(−τ)
d
2H

(1)
β (−qτ), (3.21)

where H(1)
β denotes the Hankel function and we chose the phase such that in the far past

lim
τ→−∞

φq(τ) ∼ (−τ)
d−1

2
e−iqτ

√
2q . (3.22)

The normalisation is such that with respect to the Klein-Gordon scalar product

(φ,ψ) = −i(−τ)1−d
∫

ddx [φ∂τψ
∗ − ∂τφ ψ

∗] (3.23)

these modes are normalised as

(φq, φq′) = (2π)dδ(q − q′). (3.24)

The integral is taken over any constant-τ surface and is independent of the choice of τ .
This tells us that the coefficients in (3.19) are canonically normalised creation-annihilation
operators after quantisation. The vacuum state, |0⟩, annihilated by all aq, is the vacuum
state in far past where the modes behave as in (3.22).
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3.2.2 Propagators

The Wightman functions G−+ and G+− are defined as

G−+(x1, x2) = ⟨0|φ(x1)φ(x2)|0⟩0, G+−(x1, x2) = ⟨0|φ(x2)φ(x1)|0⟩0, (3.25)

where the subscript ⟨−⟩0 reminds us that the expectation value is evaluated in the free theory.
In momentum space the overall delta function drops out,

G∓±(τ1, q1; τ2, q2) = (2π)dδ(q1 + q2)G∓±(q1, τ1, τ2), (3.26)

and we obtain

G+−(q, τ1, τ2) = φ∗
q(τ1)φ−q(τ2) =

π

4 (−τ1)d/2(−τ2)d/2H
(2)
β (−qτ1)H(1)

β (−qτ2) (3.27)

G−+(q, τ1, τ2) = φq(τ1)φ∗
−q(τ2) = G∗

+−(q, τ1, τ2). (3.28)

The time-ordered propagator G++ and the anti-time-ordered propagator G−− are

G++(q, τ1, τ2) = ⟨⟨0|T [φ(τ1, q)φ(τ2,−q)] |0⟩⟩0

= Θ(τ1 − τ2)G−+(q, τ1, τ2) + Θ(τ2 − τ1)G+−(q, τ1, τ2), (3.29)

G−−(q, τ1, τ2) = ⟨⟨0|T̄ [φ(τ1, q)φ(τ2,−q)] |0⟩⟩0

= Θ(τ1 − τ2)G+−(q, τ1, τ2) + Θ(τ2 − τ1)G−+(q, τ1, τ2)
= G∗

++(q, τ1, τ2). (3.30)

This agrees with both the conventions of [98] and [97]. Note that these propagators are
invariant under β → −β, as follows from H

(1)
−β = eβπiH

(1)
β and H

(2)
−β = e−βπiH

(2)
β .

The asymptotic behaviour of the free field near the boundary at τ = 0 is given by (2.29).
Thus, the bulk-to-boundary propagators are defined as leading terms in the expansion of
G++ near the boundary,

G+(q, τ) = lim
τ0→0−

G++(q, τ, τ0) = lim
τ0→0−

G+−(q, τ, τ0)

= −i(−τ0)
d
2−β2β−2Γ(β)q−β(−τ)

d
2H

(2)
β (−qτ), (3.31)

G−(q, τ) = [G+(q, τ)]∗

= i(−τ0)
d
2−β2β−2Γ(β)q−β(−τ)

d
2H

(1)
β (−qτ). (3.32)

It is important here that this expression is valid for all β > 0. In particular there are
no logarithmic terms when β is integral. This follows from the definition of the Hankel
functions as H(±)

β = Jβ ± iYβ with + for H(1) and − for H(2) and the power expansions
of the Bessel functions involved.

– 29 –



J
H
E
P
0
5
(
2
0
2
4
)
0
5
3

3.2.3 2-point function

We can calculate the free late time 2-point function in the canonical formalism. The 2-point
amplitude, i.e., its momentum-dependent part, free of the constants LdS and ℓ

(dS)
P reads

ds[∆∆](q) = ⟨⟨0|φ(0)(q)φ(0)(−q)|0⟩⟩0

= lim
τ0→0−

[
(−τ0)2(d−∆)⟨⟨0|φ(τ0, q)φ(τ0,−q)|0⟩⟩0

]
= lim

τ0→0−

[
(−τ0)2(d−∆)φq(τ0)φ∗

−q(τ0)
]

= aβq
−2β , (3.33)

where we defined the constant

aβ = 4β−1Γ2(β)
π

. (3.34)

This constant will appear repeatedly throughout the calculations. In order to stay consistent
with the notation for the AdS amplitudes in [86] we use the conformal weights ∆ to distinguish
various de Sitter amplitudes. The relations between β, ∆ and de Sitter mass-squared m2

dS
are given by

β = ∆− d

2 , m2
dSL

2
dS = −∆(∆− d) = d2

4 − β2. (3.35)

We are mostly interested in cases ∆ = 2 and 3 in d = 3 boundary spacetime dimensions,
which correspond to β = 1/2 and 3/2. From the point of view of the 4-dimensional de Sitter
bulk, these correspond to the conformally coupled (m2

dSL
2
dS = 2) and massless (m2

dSL
2
dS = 0)

dual scalar fields respectively.
Clearly, the 2-point function matches the late-time limits of the propagators,

ds[∆∆](q) = lim
τ0→0−

(−τ0)2(d−∆)G++(q, τ0, τ0)

= lim
τ0→0−

(−τ0)2(d−∆)G−+(q, τ0, τ0)

= lim
τ0→0−

(−τ0)2(d−∆)G+(q, τ0). (3.36)

As discussed in section 3.2.2, these results are valid for any real, positive β. In particular the
dS 2-point function is always of the form q−2β and there are no logarithmic terms present
when β is an integer.

The 2-point amplitude can be rewritten as

ds[∆∆](q) = − 1
2 sin(πβ)i[∆∆](q)

, (3.37)

where

i[∆∆](q) = − Γ(1− β)
22β−1Γ(β)q

2β = − q2β

2 sin(πβ)aβ
, (3.38)

is the properly normalised AdS 2-point function. For integral β’s the expression (3.37) must
be understood as a limit. The singularity in the AdS 2-point function i[∆∆] is then cancelled
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by the sine in (3.37) and a finite dS 2-point function of the form q−2β is obtained for all
β > 0. One can hide the sine even further by writing

ds[∆∆](q) = − 1
2 Im i[∆∆](iq)

. (3.39)

Now, however, the meaning of this expression for integral β’s is obscured. For integral betas
this is still understood as the limit. Consequently, the dS 2-point function is immune to any
logarithmic terms or renormalisation effects in the AdS 2-point function.

3.3 Interactions, Schwinger-Keldysh and the generating functions

Let us now consider the system in the presence of interactions, S = S0 + Sint, where S0
is the free action (3.15). We are interested in the boundary correlation functions with all
operator insertions at the boundary at τ0 = 0. We define φ(0) as the leading term in the
expansion (2.29),

φ(0)(x) = lim
τ0→0

[
(−τ0)∆−dφ(τ,x)

]
. (3.40)

In the presence of interactions φ(0) remains well-defined except in the case of a massless
particle, m2

dS = 0, which corresponds to β = d/2. In such a case additional logarithmic
terms, logj(−τ), appear in (3.40), with j denoting the order of the perturbative expansion
as in (2.15). In this paper, however, as in its AdS counterpart, [86], we work within the
framework of dimensional regularisation and renormalisation. We treat dimensions d and
∆ as parameters and treat amplitudes (Witten diagrams) and correlation functions as their
functions. We assume a generic near-boundary expansion (2.29) and derive the amplitudes.
As the obtained amplitudes are valid in some open, non-empty set of the dimensions d and
∆, one can use analytic continuation to define them for almost all other values of dimensions.
On the other hand, features such as the presence of secular, logarithmic terms in the near-
boundary expansions is signaled by divergences (poles) for special values of the dimensions,
such as ∆ = d or, equivalently, β = d/2. For this reason, for now, we will consider the generic
case of the expansion (2.29) and then carry out the renormalisation procedure in section 4.

With φ(0) defined in (3.40), we define the cosmological correlators as

⟨⟨φ(0)(q1) . . . φ(0)(qn)⟩⟩ = lim
τ0→0−

(−τ0)∆t−nd⟨⟨φ(τ0, q1) . . . φ(τ0, qn)⟩⟩, (3.41)

where ∆t is the sum of dimensions associated with φ. Here, for simplicity, we take all fields
to be identical (so ∆t = n∆) in the interacting theory, evaluated perturbatively in the
couplings λ3 and λ4. According to [97] this can be done utilising the Schwinger-Keldysh
formalism. The correlator is expressed as

⟨φ(0,q1) . . .φ(0,qn)⟩=
∫

Dφ+Dφ−φ+(0,q1) . . .φ+(0,qn)exp(iS+[φ+]−iS−[φ−]) , (3.42)

where the path integrals are taken over fields φ− and φ+ whose values match at τ0 = 0. The
actions S+ and S− are identical with the full action S, except that now specific integration
contours are specified,

Sint
± [φ] = −

∫ 0

−∞(1∓iϵ)
dτ
∫

ddx
√
−g L[φ]. (3.43)
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+

φ1(0) φ2(0) φ3(0)

G
[∆1]
+

G
[∆2]
+ G

[∆3]
+ +

−

φ1(0) φ2(0) φ3(0)

G
[∆1]
−

G
[∆2]
− G

[∆3]
−

Figure 2. Witten diagrams contributing to the de Sitter amplitude ds[∆1∆2∆3]. The blue line denotes
the boundary surface of τ0 = 0.

The path integral on the right-hand side of (3.42) can be thought of as evaluated in the
auxiliary Schwinger-Keldysh theory represented by the partition function,

Z[J+,J−] =
∫

Dφ+Dφ− exp
[
iS+[φ+]−iS−[φ−]+i

∫
dd+1x

√
−g (J+φ+−J−φ−)

]
. (3.44)

This allows us to apply to (3.42) standard perturbation theory, Wick contractions etc., with
the exception that we have now four propagators,

⟨φσ1(x1)φσ2(x2)⟩SK = −iσ1√
−g(x1)

δ

δJσ1(x1)
−iσ2√
−g(x2)

δ

δJσ2(x2)
Z[J+, J−]

= Gσ1σ2(x1, x2) (3.45)

according to the choice of signs σ1, σ2 = ±.

3.4 3-point function

Consider three scalar fields φj for j = 1, 2, 3 governed by the action

S3 = S0 + Sint, (3.46)

S0 = −1
2

∫
ddx

√
−g

∑
j=1,2,3

[
∂µφj∂

µφj +m2
jφ

2
j

]
, (3.47)

Sint = −λ123

∫
ddx

√
−g φ1φ2φ3, (3.48)

where λ123 is a coupling constant. The boundary 3-point function can be presented in the
form (3.8), which in this case becomes

⟨⟨φ1(0)(q1)φ2(0)(q2)φ3(0)(q3)⟩⟩ =
(
LdS

ℓ
(dS)
P

)d+1

λ123ds[∆1∆2∆3](q1, q2, q3) +O(λ2
123). (3.49)

By ds[∆1∆2∆3] we denote a momentum-dependent amplitude represented by the sum of the
tree-level Witten diagrams presented in figure 2. In general, the 3-point functions receives
bulk loop corrections, all of higher order in the coupling λ123.

In order to evaluate it, notice that the formula (3.42) produces two terms, one from the
expansion of S+ and one from S−. The two terms are complex conjugates of each other and
we can think about them as obtained from the two vertices

V±[f1, f2, f3] = ∓iλ123

∫ 0

−∞(1∓iϵ)

dτ
(−τ)d+1 f1(τ)f2(τ)f3(τ). (3.50)
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z

Figure 3. Deformations of the two contours running from τ = −∞ to τ = 0 to two the contours
running over the imaginary axis. On the left the original dotted contour runs with slightly positive
imaginary part, while the contour on the right has a slightly negative imaginary part. The arcs in the
middle correspond to the split of the integration limits according to whether τ1 < τ2 or the opposite
hold. Note that if the cut-off regularisation is imposed close to zero, one should also consider a small
additional arc there.

The Schwinger-Keldysh formalism (3.42) tells us that we are allowed to plug only + edges
into V+ and − edges into G−. With τ0 = 0 this means that

ds[∆1∆2∆3](q1, q2, q3)= 2Re
[
−i
∫ 0

−∞(1−iϵ)

dτ
(−τ)d+1G

[∆1]
+ (q1, τ)G[∆2]

+ (q2, τ)G[∆3]
+ (q3, τ)

]
,

(3.51)

with G
[∆]
+ denoting the propagator (3.31) for the field whose mass is parameterised by ∆.

There is an important assumption here, that the integral converges at the upper limit
of τ = 0. In other words that we can take the τ0 → 0− limit before evaluating the integral.
In such a case the most leading term in τ0 simply follows from the explicit factors in (3.31)
and (3.32) and for the 3-point function is (−τ0)

3d
2 −βt = (−τ0)3d−∆t , where βt = β1 + β2 + β3

and ∆t = ∆1 +∆2 +∆3. If the integral diverges at τ = 0, however, there are more leading
terms, which can be extracted from the near boundary behaviour of the integrand. For
now we assume that all integrals converge.

Just as in Minkowski field theory the integrals present in Feynman diagrams are carried
out over slightly imaginary contours. In our case these contours are specified in (3.43).
Whether the contour goes over a slightly positive or negative imaginary times determines
the direction of the contour rotation as presented in figure 3. For S+, the contour runs over
slightly imaginary, positive times τ , and thus it can be deformed to the contour running
from +i∞ to 0. Similarly, for S− the contour gets deformed to the contour running from
−i∞ to 0. Thus, we substitute

for + τ = iz,
∫ 0

−∞(1−iϵ)

dτ
(−τ)d+1 = e

iπd
2

∫ ∞

0

dz
zd+1 , (3.52)

for − τ = −iz,
∫ 0

−∞(1+iϵ)

dτ
(−τ)d+1 = e−

iπd
2

∫ ∞

0

dz
zd+1 . (3.53)
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This correspond to how Hankel functions are continued; both H
(1)
β and H

(2)
β continue to

the Bessel-K functions

H
(1)
β (ix) = −2i

π
e−

iπβ
2 Kβ(x), H

(2)
β (−ix) = 2i

π
e

iπβ
2 Kβ(x), (3.54)

valid for real x > 0 and real β. In this way we find

G±(q,±iz) = e±
iπ
2 (β− d

2 )(−τ0)
d
2−βaβq

−2βKβ(q, z) (3.55)

where aβ is defined in (3.34) and

Kβ(q, z) =
qβz

d
2Kβ(qz)

2β−1Γ(β) . (3.56)

Here we can think of Kβ as the AdS bulk-to-boundary propagator. Just as for the 2-point
function, these expressions are valid for all β > 0. Note that all factors except the explicit
exponent are real.

Going back to the integral (3.51) we apply the analytic continuation to find

ds[∆1∆2∆3](q1, q2, q3)

= 2 lim
τ0→0−

(−τ0)∆t−3d Im
[
e

iπd
2

∫ ∞

0

dz
zd+1G+(q1, iz)G+(q2, iz)G+(q3, iz)

]

= 2
3∏

j=1

[
q
−2βj

j aβj

]
Im exp

[ iπ
2

(
βt −

d

2

)]
×

×
∫ ∞

0

dz
zd+1Kβ1(q1, z)Kβ2(q2, z)Kβ3(q3, z)

= 2 sin
[
π

2

(
βt −

d

2

)] 3∏
j=1

[
q
−2βj

j aβj

]
i[∆1∆2∆3](q1, q2, q3), (3.57)

where i[∆1∆2∆3] denotes the AdS amplitude. The combination under the sine reads

βt −
d

2 = ∆t − 2d, (3.58)

the total dimension of the AdS amplitude. Thus for finite or regulated amplitudes one
can substitute

sin
[
π

2

(
βt −

d

2

)]
ireg
[∆1∆2∆3](q1, q2, q3) = Im ireg

[∆1∆2∆3](iq1, iq2, iq3). (3.59)

The 3-point function (3.57) is valid for any finite β’s including integral ones. We can express
aβq

−2β in terms of the AdS 2-point function by inverting (3.39)

aβq
−2β = − 1

2 Im ireg
[∆∆](iq)

. (3.60)

The problem with this representation is that for integral β the formula suggests that some
logarithmic terms appear due to the divergence of the 2-point function. As discussed in
the previous section, this is not the case as Im ireg

[∆∆](iq) is understood as the limit and
is perfectly finite. Thus, we can consistently write the expression relating regulated AdS
and dS amplitudes,

dsreg
[∆1∆2∆3](q1, q2, q3) = −1

4
Im ireg

[∆1∆2∆3](iq1, iq2, iq3)∏3
j=1 Im ireg

[∆j∆j ](iqj)
. (3.61)
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φ1(0) φ2(0) φ3(0) φ4(0)
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[∆2]
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[∆4]
+

−
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[∆2]
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[∆3]
−

G
[∆4]
−

Figure 4. Witten diagrams contributing to the de Sitter amplitude ds[∆1∆2∆3∆4]. The blue line
denotes the late-time boundary τ0 = 0.

3.5 4-point function

Consider now five scalar bulk fields φj for j = 1, 2, 3, 4, x governed by the action,

S4 = S0 + Sint, (3.62)

S0 = −1
2

∫
ddx

√
−g

∑
j=1,2,3,4,x

[
∂µφj∂

µφj +m2
jφ

2
j

]
, (3.63)

Sint = −
∫

ddx
√
−g [λ12xφ1φ2φx + λ34xφxφ3φ4 − λ1234φ1φ2φ3φ4] (3.64)

on the fixed (d+ 1)-dimensional de Sitter background (3.16). The idea behind is that such a
theory contains as few symmetries as possible. In particular the leading terms in the 3-point
functions ⟨⟨φ1φ2φx⟩⟩ and ⟨⟨φxφ3φ4⟩⟩ and the 4-point function ⟨⟨φ1φ2φ3φ4⟩⟩ are given by single
Witten diagrams (amplitudes). According to (3.8) we have two amplitudes to consider: the
contact 4-point amplitude with V = 1, which we denote by ds[∆1∆2∆3∆4], and the exchange
4-point amplitude with V = 2, which we denote by ds[∆1∆2;∆3∆4x∆x]. We have

⟨⟨φ1(0)(q1)φ2(0)(q2)φ3(0)(q3)φ4(0)(q4)⟩⟩=(
LdS

ℓ
(dS)
P

)d+1

λ1234ds[∆1∆2∆3∆4](q1, q2, q3, q4) (3.65)

+
(
LdS

ℓ
(dS)
P

)d+3

λ12xλ34xds[∆1∆2;∆3∆4x∆x](q1, q2, q3, q4,s)+. . .

where the dropped terms are the bulk loop corrections, all higher order in the couplings.
The sign choices in the action (3.64) follow the equation of (4.7) in [86], so that the dS and
AdS interaction actions differ by the overall sign.

3.5.1 Contact diagram

The situation here is analogous to the case of the 3-point function. The contact 4-point
diagram is depicted in figure 4.

With the vertex

V±[f1, f2, f3, f4] = ±iλ1234

∫ 0

−∞(1∓iϵ)

dτ
(−τ)d+1 f1(τ)f2(τ)f3(τ)f4(τ) (3.66)
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Figure 5. Witten diagrams contributing to the 4-point exchange de Sitter amplitude ds[∆1∆2;∆3∆4x∆x].
The blue line denotes the late-time boundary τ0 = 0.

and βT = β1 + β2 + β3 + β4 we get

dsfin
[∆1∆2∆3∆4](q1, q2, q3, q4) =

= 2 lim
τ0→0−

(−τ0)∆T −4d Re
[
i
∫ 0

−∞(1−iϵ)

dτ
(−τ)d+1G+(q1, τ)G+(q2, τ)G+(q3, τ)G+(q4, τ)

]

= −2 sin
[
π

2 (βT − d)
] 4∏

j=1

[
q
−2βj

j aβj

]
ifin
[∆1∆2∆3∆4](q1, q2, q3, q4)

= −1
8
Im ifin

[∆1∆2∆3∆4](iqj)∏4
j=1 Im ireg

[∆j∆j ](iqj)
. (3.67)

3.5.2 4-point exchange

The 4-point exchange amplitude is depicted in figure 5. This amplitude possesses four terms
arising from the four choices for the pairs V± of the left and right vertex,

ds[∆1∆2;∆3∆4x∆x] = lim
τ0→0−

(−τ0)∆T −4d (I++ + I+− + I−+ + I−−) , (3.68)

where

I++ =V+[G+(q1),G+(q2),V+[G++(s),G+(q3),G+(q4)]]

=−i
∫ 0

−∞(1−iϵ)

dτ1
(−τ1)d+1G+(q1, τ1)G+(q2, τ1)×

×(−i)
∫ 0

−∞(1−iϵ)

dτ2
(−τ2)d+1G++(s,τ1, τ2)G+(q3, τ2)G+(q4, τ2), (3.69)

I+−=V+[G+(q1),G+(q2),V−[G+−(s),G−(q3),G−(q4)]]

=−i
∫ 0

−∞(1−iϵ)

dτ1
(−τ1)d+1G+(q1, τ1)G+(q2, τ1)×

×i
∫ 0

−∞(1+iϵ)

dτ2
(−τ2)d+1G+−(s,τ1, τ2)G−(q3, τ2)G−(q4, τ2), (3.70)

while I−− = I∗++ and I−+ = I∗+−.
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In order to calculate the integrals in (3.69) and (3.70) we have to carry out the appropriate
analytic continuations. The dS bulk-to-bulk propagators are

G+−(q, τ1, τ2) =
π

4 (−τ1)d/2(−τ2)d/2H
(2)
β (−qτ1)H(1)

β (−qτ2), (3.71)

G++(q, τ1, τ2) = G∗
−−(q, τ1, τ2)

= G−+(q, τ1, τ2)Θ(τ1 − τ2) +G+−(q, τ1, τ2)Θ(τ2 − τ1). (3.72)

The analytic continuation of G+− is straightforward, since τ1 and τ2 are continued according
to their labels, τ1 = iz1 and τ2 = −iz2. Using (3.54), we have

G+−(q, iz1,−iz2) = G−+(q,−iz1, iz2) = aβq
−2βKβ(q, z1)Kβ(q, z2). (3.73)

Note that these propagators are real. Furthermore, the factor of q−2β has this form for all
β > 0 and no logarithms are present.

For the analytic continuation of G++ and G−− we need more relations. This happens
because for G++ we continue both times in the same direction, τ1 = iz1 and τ2 = iz2. This
means that we have H(2)

β (−iqz1), which continues according to (3.54), but also H(1)
β (−iqz2),

which now has the incorrect sign. Instead, for x > 0 we use the identities

H
(1)
β (−ix) = −2i

π
e−

iπβ
2 Kβ(e−iπx), H

(2)
β (ix) = 2i

π
e

iπβ
2 Kβ(eiπx), (3.74)

which then can be composed with

Kβ(e−iπx) = eiπβKβ(x) + iπIβ(x), Kβ(eiπx) = e−iπβKβ(x)− iπIβ(x) (3.75)

to obtain

H
(1)
β (−ix)= 2e−

iπβ
2 Iβ(x)−

2i
π
e

iπβ
2 Kβ(x), H

(2)
β (ix)= 2e

iπβ
2 Iβ(x)+

2i
π
e−

iπβ
2 Kβ(x). (3.76)

This is how we will now get Bessel-I’s into the game.
We also have to deal with the Heaviside thetas. We deform the contour as presented

in figure 3. Since the integrand is continuous, the contributions from both arcs cancel and
we have to substitute

Θ(τ1 − τ2) 7−→ Θ(z2 − z1). (3.77)

To write the analytic continuations of the propagators we define

Iβ(q, z) = 2β−1Γ(β)q−βz
d
2 Iβ(qz). (3.78)

We find

G+−(q, iz1, iz2) = eiπ(β− d
2 )q−2βaβKβ(q, z1)Kβ(q, z2)

+ie−
iπd

2 Kβ(q, z1)Iβ(q, z2) (3.79)

and

G+−(q, iz1, iz2)= [G−+(q,−iz1,−iz2)]∗=G−+(q, iz2, iz1)= [G+−(q,−iz2,−iz1)]∗ . (3.80)
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This leads to

G±±(q,±iz1,±iz2) = e±iπ(β− d
2 )q−2βaβKβ(q, z1)Kβ(q, z2)

± ie∓
iπd

2 Gβ(q, z1, z2), (3.81)

where Gβ denotes the AdS bulk-to-bulk propagator,

Gβ(q, z1, z2) = Kβ(q, z1)Iβ(q, z2)Θ(z1 − z2) +Kβ(q, z2)Iβ(q, z1)Θ(z2 − z1). (3.82)

With all these analytic continuations we can finally evaluate (3.69) and (3.70). We
obtain the following amplitudes

I++ = −eiπd
∫ ∞

0

dz1

zd+1
1

G+(q1, iz1)G+(q2, iz1)×

×
∫ ∞

0

dz2

zd+1
2

G++(s, iz1, iz2)G+(q3, iz2)G+(q4, iz2)

= −(−τ0)2d−βT e
iπ
2 (βT −d)

4∏
j=1

aβj
q
−2βj

j ×
[
i× ifin

[∆1∆2;∆3∆4x∆x]+

+eiπβxaβxs
−2βxifin

[∆1∆2∆x](q1, q2, s)ifin
[∆x∆3∆4](s, q3, q4)

]
,

(3.83)

I+− = (−τ0)2d−βT e
iπ
2 (β1+β2−β3−β3)

4∏
j=1

aβj
q
−2βj

j ×

× aβxs
−2βxifin

[∆1∆2∆x](q1, q2, s)ifin
[∆x∆3∆4](s, q3, q4),

(3.84)

where i[∆1∆2;∆3∆4x∆x] denotes the AdS 4-point exchange amplitude as defined in [86]. All
in all the 4-point function amplitude reads

ds[∆1∆2;∆3∆4x∆x] =2 lim
τ0→0−

(−τ0)∆T −4dRe[I+++I+−]

= 2
4∏

j=1
aβj

q
−2βj

j

[
ifin
[∆1∆2;∆3∆4x∆x]×sin

(
π

2 (βT −d)
)

+2aβxs
−2βxifin

[∆1∆2∆x](q1, q2,s)ifin
[∆x∆3∆4](s,q3, q4)×

×sin
(
π

2

(
β1+β2+βx−

d

2

))
sin
(
π

2

(
βx+β3+β4−

d

2

))]
.

(3.85)

The factors under the sines work out correctly in such a way that, for finite or regulated
amplitudes one can substitute

sin
[
π

2 (βT − d)
]
ireg
[∆1∆2;∆3∆4x∆x](q1, q2, q3, q4, s) = Im ireg

[∆1∆2;∆3∆4x∆x](iq1, iq2, iq3, iq4, is),

(3.86)

sin
(
π

2

(
β1 + β2 + βx − d

2

))
ireg
[∆1∆2∆x](q1, q2, s) = Im ireg

[∆1∆2∆x](iq1, iq2, is). (3.87)
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dS BF bound

Figure 6. The squared mass as a function of the operator dimension ∆j in AdS (blue) and dS (red).
The shaded region indicates the unitarity bound d/2− 1 ≤ ∆j ≤ d.

Finally, we can rewrite the factors of q−2βj

j and s−2βj using (3.60). In this way one finds

dsreg
[∆1∆2;∆3∆4x∆x] =

1
8

4∏
j=1

1
Im ireg

[∆j∆j ](iqj)

[
Im ireg

[∆1∆2;∆3∆4x∆x](iqj , is)

−
Im ireg

[∆1∆2∆x](iq1, iq2, is) Im ireg
[∆x∆3∆4](is, iq3, iq4)

Im ireg
[∆x∆x](is)

]
. (3.88)

4 Regularisation and renormalisation

4.1 Outline of renormalisation

In the previous section we expressed 2-, 3-, and 4-point regulated de Sitter amplitudes in
terms of regulated AdS amplitudes. In general some of the presented expressions are divergent.
In the cosmology literature the spacetime dimension d and the masses m2

j (equivalently the
dimensions ∆j) are usually considered as fixed parameters and the de Sitter correlation
functions are calculated with a cut-off τ0 on the time coordinate τ ≤ τ0 < 0, see for
example [52, 87–89]. Recall that we are considering here light scalars, 0 ≤ m2

j ≤ d2/4L2
dS.

The upper limit in the this inequality is the de Sitter analogue [22] of the Breitenlohner-
Freedman (BF) bound [99, 100]. With masses in this range, the dual operators are relevant
or marginal with dimension above the unitarity bound, d/2 − 1 ≤ ∆j ≤ d.10 Irrelevant
operators ∆j > d are mapped to negative masses in dS, while massive fields with positive
mass outside the above range correspond to tachyonic fields with mass below the BF bound
in AdS. Such fields correspond to operators with complex dimensions and the systematic

10The range of dimensions d/2 − 1 ≤ ∆j < d/2 (realised in the mass range d2/4 − 1 ≤ m2L2
dS < d2/4) is

special, as discussed in the AdS context in [101]. In this paper we restrict ourselves to ∆j > d/2.
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discussion of such cases from the perspective of holography is still an open question, see [102]
for work in this direction.

When d/2 < ∆j < d the asymptotic expansion of the de Sitter bulk field φ has the
form (2.29), with φ(0) being the most leading coefficient. When ∆j = d/2, the solution of the
free equation of motion φ{0} (see (2.15)-(2.16)) already contains logarithms, see [103, 104],
and similarly when ∆j = d the perturbative solution to the Klein-Gordon equation (2.38)
contains more leading, logarithmic terms, and the perturbative solution, φ{k}, of order k may
contain logk(−τ) terms, see [93]. In order to define the limit τ0 → 0 and, consequently, the
boundary correlation functions, one must renormalise the theory. This can be done similarly
to holographic renormalisation in AdS/CFT, with suitable counterterms added at a cut-off
surface at τ0 < 0. Then, the limit τ0 → 0 can be taken.

Let us recall that holographic renormalisation in AdS involves both the addition of
local counterterms and renormalisation of the sources. While the addition of counterterms
was considered since the early days of AdS/CFT [105, 106], the need to renormalise the
sources was realised much later [93]11 and is less known. Let us briefly summarise how this
works. Let φi

(0)(x) be the fields parametrising the boundary conditions of the bulk fields
φi(z,x), as in (2.5), where i is an index enumerating bulks field (in general of different mass
and interactions). Then to derive renormalised correlators we need a counterterm action
Sct[φi

(0); ε], which is local in φi
(0), where ε is (any) regulator, and in addition we need to

renormalise the sources, schematically as

φi
(0) = φi

(0)[ϕ
j
(0), ε] = ϕi

(0) +
1
ε
□k1ϕj1

(0)□
k2ϕj2

(0) + · · · (4.1)

where k1, k2 are integers and the derivatives are along the boundary directions (in general all
possible contractions of the derivatives must considered). In this schematic expression the pole
is a placeholder for singularity — the singularity may also logarithmic. Such renormalisation
is possible only when the spectrum of the theory contains operators of suitable dimension
such that the second term on the right-hand side of (4.1) has the same scaling dimension
as the first one. This is precisely one of the conditions for the appearance of short-distance
singularities in 3-point functions [93, 95]. The dots indicate additional contributions that
may be needed to renormalise short-distance singularities in higher-point functions. Then
renormalised correlators are obtained by functionally differentiating with respect to ϕi

(0)
the renormalised on-shell action,

Sren[ϕi
(0)] = lim

ε→0

(
Son−shell[φi

(0)[ϕ
j
(0), ε]; ε] + Sct[φi

(0)[ϕ
j
(0), ε]; ε]

)
. (4.2)

Now recall that in the AdS/CFT correspondence the field parametrising the boundary
conditions, φi

(0), is considered as the source that couples to the corresponding gauge invariant
operator O, namely in the CFT we have the coupling

SCFT[φi
(0),Oi] =

∫
ddxφi

(0)Oi . (4.3)

11One reason for this is that such renormalisation is needed only for 3-point functions and higher.
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Then the renormalisation of the sources amounts to additional counterterms on the CFT
side that renormalise these couplings of the schematic form,

Sct
CFT[ϕi

(0),Oi; ε] =
1
ε

∫
ddx□k1ϕj1

(0)□
k2ϕj2

(0)Oi (4.4)

As we will see below, the usual AdS counterterms Sct[φi
(0); ε] are projected out when we go

from AdS to dS but the analogues of (4.4) survive.
In this paper we will not use a time cut-off. Rather, just as in its AdS counterparts [86],

we will work within dimensional regularisation and renormalisation. This means that we
set τ0 = 0 from the beginning and keep d and ∆j as free parameters. As the amplitudes are
analytic in d and ∆j , one may generically define the amplitudes by starting from values of
d,∆j where the amplitudes are finite and then analytically continue to the desired d,∆j . Only
for specific values of the dimensions amplitudes cannot be defined in this way and require
explicit subtractions. This happens on a hyperplane (or, in more special cases, intersections
of hyperplanes) in the space spanned by d and ∆j . In such a case boundary counterterms
should be added to the effective action to yield the renormalised amplitude finite.

We regulate the theory by shifting the dimensions d and ∆j away from the singular
point. As in case of AdS calculations, the regulator will be denoted by ϵ and we use the
beta-scheme where the regulated dimensions d̂ and ∆̂j are

d 7−→ d̂ = d+ 2ϵ, ∆j 7−→ ∆̂j = ∆j + ϵ. (4.5)

The idea behind the beta-scheme is that the combinations appearing as the orders of the
Bessel functions in expressions such as (2.19) and (2.42) remain unregulated,

βj = ∆j −
d

2 7−→ β̂j = βj . (4.6)

The beta-scheme regulates all correlation functions except for 2-point functions. However, for
the case of d = 3 analyzed in this paper, the 2-point functions under consideration are all finite.

In order to renormalise12 the de Sitter amplitudes computed using (3.44) we want to
add a counterterm action at τ = 0. The counterterm action Sct = Sct[φ(0), J+, J−;µ, aj ; ϵ]
is a functional of the boundary value φ(0) of the bulk field and the sources J+, J−. It
also depends on the renormalisation constant µ and a set of renormalisation constants aj

parameterising scheme dependence. It is entirely contained within the boundary at τ = 0 and
it only contributes a boundary term to correlation functions. Two complex conjugate copies
of the boundary counterterm must be then included in the Schwinger-Keldysh generating
functional (3.44) by replacing

S+[φ+] 7−→ S+[φ+] + Sct[φ(0), J+], S−[φ−] 7−→ S−[φ−] + Sct[φ(0), J−] (4.7)

When the contribution from the counterterms is added to the regulated correlation functions,
the limit ϵ → 0 limit should exist.

The counterterm action Sct must be real, Sct = S∗
ct, just as the original de Sitter action.

Any counterterm that only depends on φ(0) will cancel between the forward and backward
12Note that this renormalisation is about IR divergences at tree-level. We are not addressing UV issues and

IR issues at loop level in this paper.
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path of the Schwinger-Keldysh path integral. Such terms correspond to the traditional AdS
counterterms. Another way to see that the contribution of the traditional counterterms
vanishes is to note that they are analytic in momenta and analytically continuing from AdS
to dS and taking the imaginary part projects these terms out. Counterterms that only
depend on φ(0) are responsible for conformal anomalies in AdS [105]. The fact that these
terms cancel means that there are no conformal anomalies in de Sitter. This point was
also made recently in [91, 92].

Now, note that the coupling J+ and J− to φ(0) at τ = 0 in (3.44) is the same as the
coupling of φ(0) to O in (4.3).13 Then the AdS results suggest that we need a counterterm
of the form (4.4). Thus we expect that we should be able to renormalise the de Sitter
amplitudes using a counterterm of the form,

SdS
ct [φ(0), (J+ − J−);µ, aj ; ϵ] =

∫
ddx(J+ − J−)f

(
φ(0);µ, aj ; ϵ

)
(4.8)

for a suitable local function f of φ(0) (that also depends on the regulator ϵ, a renormalisation
scale µ and constants aj parametrising the scheme dependence). We will indeed see that
such counterterm is sufficient to renormalise all cases. In a sense holographic renormalisation
in dS is much simpler than in AdS.

Usually to carry out the renormalisation procedure the action of the regulated theory, S,
must be specified. Then, it is the correlation functions in this theory that get renormalised.
Here, however, we will follow [86] and renormalise tree-level amplitudes instead. As discussed
in [86], each such amplitude is a conformal correlator in some holographic CFT described by
a suitable bulk action. As far as 3- and 4-point functions are concerned, we will consider the
“asymmetric” theories given by the actions (3.46) and (3.62) and apply the renormalisation
procedure. When this is achieved, we effectively renormalise the amplitudes ds[∆1∆2∆3] as
well as ds[∆1∆2∆3∆4] and ds[∆1∆2;∆3∆4x∆x] in (3.49) and (3.65). As these are obtained in the
least symmetric theory, any other 3- and 4-point functions in more symmetric theories can
be obtained as linear combinations of these amplitudes. Thus, any renormalised correlation
function can then be expressed in terms of the renormalised amplitudes.

4.1.1 Results

The procedure outlined above leads to renormalised de Sitter amplitudes. These ob-
jects, denoted by dsren, depend on the renormaalisation scale µdS as well as some scheme-
dependent renormalisation constants adS

i , in addition to their momentum dependence,
dsren = dsren(qi;µdS, a

dS
i ). The main question we want to address in this section is whether

the renormalised de Sitter amplitudes, dsren, can be obtained from renormalised anti-de
Sitter amplitudes, iren, by applying the same analytic continuations as in (3.39), (3.61), (3.67)
and (3.88). In other words, we want to write

dsren
[∆∆](q) = −1

2
1

Im iren
[∆∆](iq)

, (4.9)

dsren
[∆1∆2∆3](qi) = −1

4
Im iren

[∆1∆2∆3](iqi)∏3
j=1 Im iren

[∆j∆j ](iqj)
, (4.10)

13Recall that limτ→0− φ+(τ, x) = limτ→0− φ−(τ, x) = φ(0)(x).
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3-point amplitude dS amplitude dsreg
[∆1∆2∆3] AdS amplitude ireg

[∆1∆2∆3]

[222] 0 1

[322] 1 1

[332] 0 1

[333] 1 1

Table 1. Degrees of divergence of 3-point dS and AdS amplitudes.

dsren
[∆1∆2∆3∆4](qi) = −1

8
Im iren

[∆1∆2∆3∆4](iqi)∏4
j=1 Im iren

[∆j∆j ](iqj)
, (4.11)

dsren
[∆1∆2;∆3∆4x∆x](qi, s) =

1
8

4∏
j=1

1
Im iren

[∆j∆j ](iqj)
[
Im iren

[∆1∆2;∆3∆4x∆x](iqi, is)

−
Im iren

[∆1∆2∆x](iq1, iq2, is) Im iren
[∆x∆3∆4](is, iq3, iq4)

Im iren
[∆x∆x](is)

]
. (4.12)

The two sides depend on different sets of renormalisation data. On the left-hand side, the
amplitudes depend on the renormalisation scale µdS and a set of scheme-dependent constants
adS

i . On the right-hand side, the renormalised AdS amplitudes, iren, depend on the AdS
renormalisation scale µAdS and another set of scheme-dependent constants bAdS

i . Can we
equate the variables on both sides so that (4.9)–(4.12) hold?

We can always equate the renormalisation scales

µ = µdS = µAdS (4.13)

and from now on we use µ only. While the scheme-dependent constants adS
i and bAdS

i generally
do not match, there always exists a choice of the scheme-dependent constants bAdS

i on the
AdS side such that the formulae (4.9)–(4.12) hold. More precisely, there exists polynomial
functions which map AdS scheme-dependent constants to dS constants, adS

i = adS
i (bAdS

j ),
such that the holographic formulae (4.9)–(4.12) hold. These functions do not depend on
the momenta, nor the renormalisation scale, nor any other constants (such as the coupling
constants) present in the system. For the precise formulation, see subsection 4.3.

4.2 Divergences

All de Sitter 2-point amplitudes dsreg
[∆∆] are finite. As discussed earlier, this differs from the

AdS case, where the amplitudes ireg
[∆∆] are divergent whenever β = ∆− d

2 is a non-negative
integer. Most of the de Sitter amplitudes are less singular than their AdS counterparts, but
not all. The orders of the poles at ϵ = 0 are listed in the tables below.

The dS 3-point amplitudes under consideration are either finite or exhibit a linear
divergence as ϵ→ 0. Their degrees of divergence are listed in the second column of table 1,
while the third column contains the degrees of divergence of the corresponding AdS amplitudes.
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de Sitter amplitudes Anti-de Sitter amplitudes

External operators Contact ∆x = 2 ∆x = 3 Contact ∆x = 2 ∆x = 3

[22; 22] 0 0 2 0 0 0

[32; 22] 0 1 1 1 2 1

[33; 22] 1 1 2 1 1 2

[32; 32] 1 2 1 1 2 1

[33; 32] 0 1 1 1 2 2

[33; 33] 1 1 2 1 1 2

Table 2. Degrees of divergence of the contact and exchange 4-point (A)dS amplitudes.

The exchange 4-point amplitudes may exhibit up to a double pole in ϵ as presented
in table 2. Notice that while usually de Sitter amplitudes are less singular than their AdS
counterparts, this is not always the case. For example, dsreg

[22;22x3] exhibits a double pole,
while ireg

[22;22x3] is finite. For a more general discussion of where singularities arise in (A)dS
contact and exchange diagrams, see appendix C.

4.3 Renormalisation

To prove that the formulae (4.9)–(4.12) hold, we must renormalise both sides separately and
compare the results. First, are the de Sitter amplitudes renormalisable at all? The de Sitter
action (2.26) is the analytic continuation of the AdS action (2.1), which suggests that we can
analytically continue the AdS counterterm action to obtain a corresponding dS counterterm
action. As we discussed, this suggests that the de Sitter counterterms are of the form (4.8),
and we indeed find that such action is sufficient to renormalise the dS amplitudes.

The renormalised dS amplitudes are then defined as

dsren(qi;µ, adS
i ) = lim

ϵ→0

[
dsreg(qi; ϵ) + dsct(qi;µ, ai; ϵ)

]
, (4.14)

where (as usual) the counterterm contribution, dsct(qi;µ, ai), depends on the renormalisation
scale µ and a set of scheme-dependent constants, ai. Equations (4.9)–(4.12) contain imaginary
parts of analytically continued renormalised AdS amplitudes on the right-hand side. These
are by definition

Im iren(iqi;µ, bi) = Im lim
ϵ→0

[
ireg(iqi; ϵ) + ict(iqi;µ, bi; ϵ)

]
, (4.15)

where ireg is the AdS regulated amplitude and ict the AdS counterterm contribution (as
mentioned earlier, we take without loss of generality µdS = µAdS = µ). The AdS counterterms
are devised in such a way that the counterterm contribution ict cancels the divergences of
the regulated amplitude, ireg. The question is then whether the scheme-dependence matches
or not. As already discussed, there are more counterterms in AdS than in dS, so in general
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there are more scheme-dependent constants in AdS than in dS. In the following we show
that the scheme-dependence of the correlators also matches provided the scheme-dependent
constant are mapped to each other via polynomial map, bk = bk(ai).

In order to establish the exact form of the map we must consider how the renormalisation
procedures in dS and AdS are related. Essentially, the problem boils down to the question
whether the ϵ → 0 limit and taking the imaginary part commute,

Im lim
ϵ→0

[
ireg(iqi; ϵ) + ict(iqi;µ, bi; ϵ)

] ?= lim
ϵ→0

[
Im ireg(iqi; ϵ) + Im ict(iqi;µ, bi; ϵ)

]
. (4.16)

In other words, is the dS counterterm contribution dsct(qj ;µ, ai) equal to the imaginary
part of the analytically continued AdS contribution? In general, the answer is no for the
scheme-dependent part, but we find that this part can also be made to agree provided the
scheme-dependent constants are connected via a non-trivial map.

In summary, the relation between renormalised amplitudes is

dsren
[∆∆](q)=−1

2
1

Im iren
[∆∆](iq;µ,b)

, (4.17)

dsren
[∆1∆2∆3](qi;µ,ai)=−1

4
Im iren

[∆1∆2∆3](iqi)∏3
j=1 Im iren

[∆j∆j ](iqj ;µ,bk(ai))
, (4.18)

dsren
[∆1∆2∆3∆4](qi;µ,ai)=−1

8
Im iren

[∆1∆2∆3∆4](iqi;µ,bk(ai))∏4
j=1 Im iren

[∆j∆j ](iqj)
, (4.19)

dsren
[∆1∆2;∆3∆4x∆x](qi,s;µ,ai)=

1
8

4∏
j=1

1
Im iren

[∆j∆j ](iqj)

[
Im iren

[∆1∆2;∆3∆4x∆x](iqi, is;µ,bk(ai))

−
Im iren

[∆1∆2∆x](iq1, iq2, is;µ,bk(ai))Im iren
[∆x∆3∆4](is, iq3, iq4;µ,bk(ai))

Im iren
[∆x∆x](is)

]
,

(4.20)

where bk(ai) is a map between the scheme-dependent constants that we discuss below. In
the following, we present a derivation of these formulae.

4.3.1 2-point amplitudes

At two points, de Sitter amplitudes are finite for any β > 0 and are given by (3.33). Thus,
there is no scheme-dependence for dS 2-point functions. The AdS amplitudes, on the other
hand, become singular at integral, non-negative β’s. Since their renormalisation requires
a counterterm containing two CFT sources and no operator, we are in the case where the
dS amplitude must remain finite. It would be convenient, however, to be able to relate the
(trivially renormalised) de Sitter amplitude to the renormalised AdS amplitude, so that we
can use renormalised expressions on both sides of (4.9).

Let β = n be a non-negative integer. The renormalised AdS amplitude reads

iren
[n+ d

2 ,n+ d
2 ](q;µ, b) =

(−1)n41−n

(n− 1)!2 q2n
(
− log q

µ
+ b

)
, (4.21)
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where µ is the renormalisation scale and b is a scheme-dependent constant adjustable by a
change in µ. By plugging this expression into (4.9) we find that

− 1
2 Im iren

[n+ d
2 ,n+ d

2 ]
(iq;µ) = 4n−1(n− 1)!2

π
q−2n = dsren

[n+ d
2 ,n+ d

2 ](q). (4.22)

The renormalisation scale and the scheme-dependent constant drops out and thus for all
β > 0, including integral ones, we can write

dsren
[∆∆](q) = − 1

2 Im iren
[∆∆](iq;µ, b)

. (4.23)

The left-hand side is scheme independent.

4.3.2 Higher-point functions

In this subsection we discuss the higher-point functions. To keep technicalities to a minimum
while still discussing all non-trivial issues, we will carry out the renormalisation procedure for
a single scalar field of dimension ∆ = 3. We carry out the procedure directly in de Sitter
spacetime and compare it to the AdS result obtained via formulae (4.9)–(4.12). We consider
a single massless scalar field, φ, and the regulated de Sitter action

SdS = −
∫

d4+2ϵx
√
−g

[1
2∂µφ∂

µφ+ 1
2ϵ(3 + ϵ)φ2 + 1

6λ[333]φ
3 − 1

24λ[3333]φ
4
]
. (4.24)

The 3- and 4-point functions are expressed in terms of amplitudes as

⟨⟨φ(0)(q1)φ(0)(q2)φ(0)(q3)⟩⟩=λ[333]ds[333](qj)+O(λ2
[333]), (4.25)

⟨⟨φ(0)(q1)φ(0)(q2)φ(0)(q3)φ(0)(q4)⟩⟩=λ[3333]ds[3333](qj)
λ2

[333]
[
ds[33;33x3](qj ,s)+(t−channel)+(u−channel)

]
+. . .
(4.26)

Looking at tables 1 and 2, we see that the amplitudes dsreg
[333] and dsreg

[3333] are linearly divergent,
while dsreg

[33;33x3] exhibits double pole. This is the same situation as in AdS case and thus we
consider the dS counterterm action inspired by the AdS case,

SdS
ct [φ(0),J ] =

∫
dd̂x

[1
2λ[333]r[333]φ

2
(0)J+

(1
2λ

2
[333]r[33;33x3]+

1
6λ[3333]r[3333]

)
φ3

(0)J

]
, (4.27)

where r[333], r[3333] and r[33;33x3] are counterterm constants that we will fix shortly.

Comparison to AdS. The regulated AdS action corresponding to (4.27) reads

SAdS =
∫

d4+2ϵx
√
g

[1
2∂µφ∂

µφ− 1
2ϵ(3 + ϵ)φ2 + 1

6λ[333]φ
3 − 1

24λ[3333]φ
4
]
. (4.28)

With this convention, the 3- and 4-point functions of the operator O dual to the AdS
field φ read

⟨⟨O(q1)O(q2)O(q3)⟩⟩=λ[333]i[333](qj)+O(λ2
[333]), (4.29)

⟨⟨O(q1)O(q2)O(q3)O(q4)⟩⟩=λ[3333]i[3333](qj)

+λ2
[333]

[
i[33;33x3](qj ,s)+(t−channel)+(u−channel)

]
+. . .

(4.30)
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where i[333] and i[33;33x3] can represent both regulated and renormalised AdS amplitudes.
The renormalisation of the theory requires the addition of the boundary counterterm

actions. The AdS counterterm action is given by the Z[0] part of equation (4.143) (with
Z[0] given in (4.145)) of [86] and reads

SAdS
ct [ϕ,O] =

∫
d3+2ϵx

[1
2λ[333]s[333]ϕ

2O+
(1
2λ

2
[333]s[33;33x3]+

1
6λ[3333]s[3333]

)
ϕ3O

]
, (4.31)

where ϕ is the source for O. The values of the counterterm constants are given by equa-
tions (4.30) and (4.77) of [86] and read

s[333] =
1
3Γ(ϵ)µ

−ϵ
[
1 + ϵ b

(1)
[333] + ϵ2b

(2)
[333] +O(ϵ3)

]
, (4.32)

s[3333] = −1
3Γ(2ϵ)µ

−2ϵ
[
1 + ϵ b

(1)
[3333] +O(ϵ2)

]
, (4.33)

s[33;33x3] =
1
18Γ

2(ϵ)µ−2ϵ
[
1 + ϵ

(
2b(1)

[333] −
1
3

)
+ ϵ2b

(2)
[33;33x3] +O(ϵ3)

]
. (4.34)

The constants b
(1)
[333], b

(2)
[333], b

(1)
[3333] and b

(2)
[33;33x3] parametrise the scheme-dependence. The

omitted higher order terms do not contribute to 3- and 4-point functions. It is crucial,
however, that the first subleading terms in both terms is related, i.e., b(1)

[33;33x3] = 2b(1)
[333] −

1
3 .

With the presented counterterm action the renormalised AdS amplitudes become

iren
[333](qi;µ, b(1)

[333]) = lim
ϵ→0

ireg
[333](qi)− s[333]

3∑
j=1

ireg
[33](qj)

 , (4.35)

iren
[3333](qi;µ, b(1)

[3333]) = lim
ϵ→0

ireg
[3333](qi) + s[3333]

4∑
j=1

ireg
[33](qj)

 , (4.36)

and

iren
[33;33x3](qi,s;µ,b(1)

[333],b
(2)
[333],b

(2)
[33;33x3])=

lim
ϵ→0

[
ireg
[33;33x3](qi,s)−s[333]

(
ireg
[333](q1, q2,s)+ireg

[333](s,q3, q4)
)
+s2

[333]i
reg
[33](s)+s[33;33x3]

4∑
j=1

ireg
[33](qj)

]
.

(4.37)

We can substitute these to the (naive) holographic formula (4.9)–(4.12) and compare with
the actual renormalised dS amplitude. Let us denote such amplitudes by ds

ren:

ds
ren
[333](qi;µ, bi) = −1

4
Im iren

[333](iqi;µ, bi)∏3
j=1 Im iren

[33](iqj)
, (4.38)

ds
ren
[33;33x3](qi, s;µ, bi) =

1
8

4∏
j=1

1
Im iren

[33](iqj)
[
Im iren

[33;33x3](iqi, is;µ, bi)

−
Im iren

[333](iq1, iq2, is;µ, bi) Im iren
[333](is, iq3, iq4;µ, bi)

Im iren
[33](is)

]
. (4.39)

Are these equal to the genuine renormalised de Sitter amplitudes?
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3-point function. We include the counterterm action (4.27) in the generating func-
tional (3.44). By taking functional derivatives with respect to J we obtain additional
insertions of higher powers of φ(0), which lead to the renormalised dS correlations functions.
As far as the 3-point amplitude goes, we have

⟨φ(0)(x1)φ(0)(x2)φ(0)(x3)⟩ren =

= lim
ϵ→0

⟨
[
φ(0) +

1
2λ[333]r[333]φ

2
(0)

]
(x1)

[
φ(0) +

1
2λ[333]r[333]φ

2
(0)

]
(x2)×

×
[
φ(0) +

1
2λ[333]r[333]φ

2
(0)

]
(x3)⟩reg +O(λ2

[333])

= lim
ϵ→0

[
⟨φ(0)(x1)φ(0)(x2)φ(0)(x3)⟩reg

+ λ[333]r[333]
(
⟨φ(0)(x1)φ(0)(x2)⟩reg⟨φ(0)(x1)φ(0)(x3)⟩reg

+ (x1 ↔ x2) + (x1 ↔ x3)
)]

+O(λ2
[333]). (4.40)

After Fourier transforming we obtain,

dsren
[333](qi) = lim

ϵ→0

[
dsreg

[333](qi) + r[333]
(
dsreg

[33](q1)dsreg
[33](q2) + cyclic in q1 → q2 → q3

)]
= −1

4 lim
ϵ→0

 Im ireg
[333](iqi)− r[333]

∑3
j=1 Im ireg

[33](iqj)∏3
j=1 Im ireg

[33](iqj)

 . (4.41)

The limit of the 2-point functions is finite and thus we can replace them with the renormalised
expression Im iren

[33](iqj). Using that the scaling dimensions D̂[333] and D̂[33] of the regulated
AdS amplitudes ireg

[333] and ireg
[33], respectively, are D̂[333] = 3− ϵ, D̂[33] = 3, we obtain

lim
ϵ→0

Im ireg
[333](iqi)− r[333]

3∑
j=1

Im ireg
[33](iqj)

 =

= lim
ϵ→0

sin(π2 D̂[333]

)
ireg
[333](qi)− r[333] sin

(
π

2 D̂[33]

) 3∑
j=1

ireg
[33](iqj)


= − lim

ϵ→0

(1− π2ϵ2

8 +O(ϵ4)
)
ireg
[333](qi)− r[333]

3∑
j=1

ireg
[33](qj)

 . (4.42)

Since the regulated amplitude is linearly divergent, the term of order ϵ2 is irrelevant when
the limit ϵ→ 0 is taken. Thus, if we take r[333] = s[333] the expression reduces to (4.35). On
the other hand the renormalised AdS amplitude iren

[333] takes form

iren
[333](qi;µ) = f0(qi) + f1(qi) log

(
qi

µ

)
, (4.43)

where f0 and f1 are homogeneous functions of degree 3. Thus,

Im iren
[333](iqi;µ) = −iren

[333](qi;µ)

= lim
ϵ→0

Im ireg
[333](iqi)− s[333]

3∑
j=1

Im ireg
[33](iqj)

 (4.44)
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and we arrive at the expected equality,

dsren
[333]

(
qi;µ, a(1)

[333] = b
(1)
[333]

)
= ds

ren
[333](qi;µ, b(1)

[333]), (4.45)

where we explicitly included how the scheme-dependent constant matches.

Exchange 4-point function. The situation is more complicated for the 4-point function.
By including both terms in the counterterm action (4.27), we obtain

⟨φ(0)(x1)φ(0)(x2)φ(0)(x3)φ(0)(x4)⟩ren

= lim
ϵ→0

{
⟨φ(0)(x1)φ(0)(x2)φ(0)(x3)φ(0)(x4)⟩reg

+λ[333]r[333]⟨φ(0)(x1)φ(0)(x2)⟩reg⟨φ(0)(x1)φ(0)(x3)φ(0)(x4)⟩reg+11 perms.
+λ2

[333]r
2
[333]⟨φ(0)(x1)φ(0)(x2)⟩reg⟨φ(0)(x2)φ(0)(x3)⟩reg⟨φ(0)(x3)φ(0)(x4)⟩reg+11 perms.

+3λ2
[333]r[33;33x3]⟨φ(0)(x1)φ(0)(x2)⟩reg⟨φ(0)(x1)φ(0)(x3)⟩reg⟨φ(0)(x1)φ(0)(x4)⟩reg+3 perms.

}
+O(λ3

[333]). (4.46)

We keep terms of order λ2
[333], split all the terms into those corresponding to s-, t- and

u-channels, and Fourier transform to momentum space. This yields the renormalised
dS amplitude

dsren
[33;33x3](qi,s;µ,ai)= lim

ϵarrow0

{
dsreg

[33;33x3] (qi,s)

+r[333]
[
dsreg

[333] (q3, q4,s)
(
dsreg

[33] (q1)+dsreg
[33] (q2)

)
+dsreg

[333] (q1, q2,s)
(
dsreg

[33] (q3)+dsreg
[33] (q4)

)]
+r2

[333]ds
reg
[33] (s)

[
dsreg

[33] (q1)dsreg
[33] (q3)+dsreg

[33] (q1)dsreg
[33] (q4)

+dsreg
[33] (q2)dsreg

[33] (q3)+dsreg
[33] (q2)dsreg

[33] (q4)
]

+r[33;33x3]
[
dsreg

[33](q1)dsreg
[33](q2)dsreg

[33](q3)+3 perms.
]}

=−1
8

4∏
j=1

1
Im iren

[33](iqj)
lim
ϵ→0

{
Im ireg

[33;33x3](iqi, is)+r[33;33x3]

4∑
j=1

Im ireg
[33](iqj)

− 1
Im ireg

[33](is)
[
Im ireg

[333](iq1, iq2, is)−r[333]
(
Im ireg

[33](iq1)+Im ireg
[33](iq2)

)]
×

×
[
Im ireg

[333](is, iq3, iq4)−r[333]
(
Im ireg

[33](iq3)+Im ireg
[33](iq4)

)]}
. (4.47)

The terms in the square brackets lack one term to be re-composed into (4.35). With the
value of r[333] already fixed by the renormalisation of the 3-point function and equal to s[333]
in (4.32), we can rewrite this expression as

dsren
[33;33x3](qi, s;µ, ai) =

− 1
8

4∏
j=1

1
Im iren

[33](iqj)
{
A(qi, s;µ, a(1)

[333])

+ lim
ϵ→0

[
ImBϵ(iqi, is;µ, bk(ai)) +

(
s2

[333] − s[33;33x3] + r[33;33x3]
) 4∑

j=1
Im ireg

[33](iqj)
]}
, (4.48)
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where

A(qi, s;µ, a(1)
[333]) = −

Im iren
[333](iq1, iq2, is;µ, a(1)

[333]) Im iren
[333](is, iq3, iq4;µ, a(1)

[333])
Im ireg

[33](is)
(4.49)

and Bϵ denotes the combination in (4.37) entering the renormalisation of the AdS 4-point
amplitude,

Bϵ(qi, s;µ, bk(ai)) = ireg
[33;33x3](qi, s)− s[333]

(
ireg
[333](q1, q2, s) + ireg

[333](s, q3, q4)
)

+ s2
[333]i

reg
[33](s) + s[33;33x3]

4∑
j=1

ireg
[33](qj) (4.50)

so that iren
[33;33x3](qi, s;µ, bk) = limϵ→0Bϵ(qi, s;µ, bk). At this point, the dependence between

the dS counterterm constants ai and the AdS constants bi is not yet fixed, with the exception
of a

(1)
[333] = b

(1)
[333]. The imaginary parts lead to factors of sin(πD̂/2), where the regulated

dimensions of the amplitudes under consideration are

D̂[33;33x3] = 3− 2ϵ, D̂[333] = 3− ϵ, D̂[33] = 3. (4.51)

Thus, the subleading terms in the expansion of the sines do contribute. Indeed, we find

lim
ϵ→0

ImBϵ(iqi, is;µ, bk) = −
[(

1− π2ϵ2

2

)
ireg
[33;33x3](qi, s)

−
(
1− π2ϵ2

8

)
s[333]

(
ireg
[333](q1, q2, s) + ireg

[333](s, q3, q4)
)

+ s2
[333]i

reg
[33](s) + s[33;33x3]

4∑
j=1

ireg
[33](qj) +O(ϵ)

]

= −iren
[33;33x3](qi, s;µ, bk) +

π2

72
(
q3

1 + q3
2 + q3

3 + q3
4 + 2s2

)
. (4.52)

On the other hand the renormalised AdS amplitude, iren
[33;33x3], contains square of the logarithm

of the renormalisation scale, log2 µ. This means that under the analytic continuation we find

Im iren
[33;33x3](iqi, is;µ, bk) = −iren

[33;33x3](qi, s;µ, bk) +
π2

72
(
q3

1 + q3
2 + q3

3 + q3
4 + 2s2) . (4.53)

Thus, when put together,

lim
ϵ→0

ImBϵ(iqi, is;µ, bk) = lim
ϵ→0

Im
[
ireg
[33;33x3](qi, s) + ict

[33;33x3](qi, s;µ, bk)
]

= Im iren
[33;33x3](iqi, is;µ, bk). (4.54)

Substituting back to (4.48), we end up with

dsren
[33;33x3](qi, s;µ, ai) = −1

8

4∏
j=1

1
Im iren

[33](iqj)

[
Im iren

[33;33x3](iqi, is;µ, bk(ai))

−
Im iren

[333](iq1, iq2, is;µ, a(1)
[333]) Im iren

[333](is, iq3, iq4;µ, a(1)
[333])

Im ireg
[33](is)

−
(
s2

[333] − s[33;33x3] + r[33;33x3]
) 4∑

j=1
q3

j

]
. (4.55)
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In order to match our desired formula (4.20), we must cancel the last term, i.e., the dS
renormalisation constant r[33;33x3] is not equal to s[33;33x3], but rather

r[33;33x3] = s[33;33x3] − s2
[333] +O(ϵ). (4.56)

Thus the scheme-dependent constants between the dS and AdS expressions are non-trivially
related.

In total we find is that the scheme-dependence matches between dS and AdS for contact
diagrams, since

r[333](a
(1)
[333]) = s[333](b

(1)
[333]), with b

(1)
[333] = a

(1)
[333], (4.57)

r[3333](a
(1)
[3333]) = s[3333](b

(1)
[3333]), with b

(1)
[3333] = a

(1)
[3333], (4.58)

where the AdS constants s[333] and s[3333] are given by (4.32) and (4.33). For the exchange
diagram we have r[33;33x3] = s[33;33x3], provided that the relation between dS and AdS
scheme-dependent constants reads

b
(2)
[333] = a

(2)
[333], a

(1)
[33;33x3] = 2a(1)

[333] +
1
3 = 2b(1)

[333] +
1
3 , (4.59)

b
(2)
[33;33x3] = −a

(2)
[33;33x3] + 2(a(1)

[333])
2 + 4a(2)

[333]. (4.60)

4.3.3 Concluding remarks

The analysis carried out here concerns only the 3- and 4-point renormalised amplitudes
dsren

[333], dsren
[3333] and dsren

[33;33x3]. We have further analysed all the remaining 3- and 4-point
functions under consideration to show that the formulae (4.17)–(4.20) hold in all cases. We
evaluated explicitly the constants a[0]

1 and a
[0]
2 from equation (1.15) in the theory described

by the action (4.24). In the beta scheme, we found

a
[0]
1 = 1

2λ[333]r[333], (4.61)

a
[0]
2 = 1

2λ
2
[333]r[33;33x3] +

1
6λ[3333]r[3333], (4.62)

where

r[333] =
1
3Γ(ϵ)µ

−ϵ
[
1 + ϵ a

(1)
[333] + ϵ2a

(2)
[333] +O(ϵ3)

]
, (4.63)

r[3333] = −1
3Γ(2ϵ)µ

−2ϵ
[
1 + ϵ a

(1)
[3333] +O(ϵ2)

]
, (4.64)

r[33;33x3] =
1
18Γ

2(ϵ)µ−2ϵ
[
1 + ϵ

(
2a(1)

[333] +
1
3

)
+ ϵ2a

(2)
[33;33x3] +O(ϵ3)

]
. (4.65)

4.4 Results

Here we list all renormalised de Sitter amplitudes. In all cases, (4.17)–(4.20) are satisfied.

4.4.1 Preliminaries

Consider a real homogeneous function f = f(q) of some momenta q. Let D be the homogeneity
degree of f (e.g., f = qD has the degree equal to D.) Then

Im f(iq) = f(q) sin
(
π

2D
)
. (4.66)
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With D being an integer, this expression vanishes for even D’s and equals ±f(q) for odd
D’s. For integral D’s we have

sin
(
π

2D
)
=


0 if D is even,

+1 if D ≡ 1 mod 4,

−1 if D ≡ 3 mod 4,

cos
(
π

2D
)
=


0 if D is odd,

+1 if D ≡ 0 mod 4,

−1 if D ≡ 2 mod 4.

(4.67)

The homogeneity degree D of the n-point AdS amplitude of operators of dimensions
∆1, . . . ,∆n reads

D = ∆t − (n− 1)d, ∆t =
n∑

j=1
∆j . (4.68)

Only if the amplitude is divergence free, and thus no renormalisation is required, is it
represented by a truly homogeneous function of degree D. Otherwise, renormalisation
introduces scale-violating logarithms of the form log(q/µ), where µ is the renormalisation
scale. In such cases, the scale-violating logarithms and their powers multiply homogeneous
functions of degree D.

By placing the branch cuts of logarithms on the negative real axis we have

log
( iq
µ

)
= log

(
q

µ

)
+ iπ

2 . (4.69)

Thus, depending on the homogeneity degree D such logarithms may or may not survive the
analytic continuation. Indeed, for AdS amplitudes with single logarithms, the dS amplitude
will be scale-free if the naive degree is even. The precise form of the dS amplitude depends
on the degree of divergence of the regulated AdS amplitude. Since the AdS amplitudes in
this paper exhibit at most a double pole in the regulator, we consider three cases as follows.

No divergence. The AdS amplitude is scale-independent, f = f(q) and we have

Im f(iq) = f(q) sin
(
π

2D
)
, (4.70)

where D is given by (4.68) and the sine simplifies according to (4.67).

Linear divergence. If the regulated AdS amplitude is linearly divergent, then it can
be written in the form

f(qj ;µ) = f0(qj) + f1(qj) log
(
qt

µ

)
, (4.71)

where f0 and f1 are homogeneous functions of degree D. It follows that

Im f(iq;µ) = f(q;µ) sin
(
π

2D
)
+ π

2 cos
(
π

2D
)
f1(q). (4.72)

The sines and cosines can be simplified according to (4.67).
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Double pole. Similarly, if the regulated amplitude exhibits a double pole, the renormalised
amplitude takes form

f(qj ;µ) = f0(qj) + f1(qj) log
(
qt

µ

)
+ f2(qj) log2

(
qt

µ

)
, (4.73)

where f0, f1, f2 are homogeneous functions of degree D. In such a case

Im f(iq;µ) = sin
(
π

2D
)[

f(q;µ)− π2

4 f2(q)
]

+ π

2 cos
(
π

2D
)[

f1(q) + 2f2(q) log
(
qt

µ

)]
. (4.74)

4.4.2 2-point amplitudes

The 2-point dS amplitudes read

dsren
[22] =

1
2q , dsren

[33] =
1
2q3 . (4.75)

4.4.3 3-point amplitudes

All regulated AdS 3-point amplitudes are linearly divergent and thus each renormalised
AdS amplitude contains a scale-violating logarithm containing the renormalisation scale µ.
Whether the dS amplitude contains a scale-violating logarithm depends on the dimensions ∆j .
According to (4.72) and (4.67) the logarithm drops from dsren

[222] and dsren
[332], while remains

present in dsren
[322] and dsren

[333]. To be precise,

dsren
[222] = − π

8q1q2q3
, (4.76)

dsren
[322] =

iren
[322]

4q3
1q2q3

= 1
4q3

1q2q3

{
−q1 + (q2 + q3)

[
log

(
qt

µ

)
+ a

(1)
[322] − 1

]}
, (4.77)

dsren
[332] = − π

16
q2

1 + q2
2 − q2

3
q3

1q
3
2q3

, (4.78)

dsren
[333] = −

iren
[333]

4q3
1q

3
2q

3
3

= − 1
12q3

1q
3
2q

3
3

{
q2

1q2 + q2
2q1 + q2

1q3 + q2
3q1 + q2

2q3 + q2
3q2 − q1q2q3

−(q3
1 + q3

2 + q3
3)
[
log

(
qt

µ

)
+ a

(1)
[333] −

4
3

]}
. (4.79)

4.4.4 4-point contact amplitudes

Here the situation is analogous to the 3-point functions. Only in three amplitudes the
AdS 4-point contact diagram contributes non-trivially to the non-local part after analytic
continuation:

dsren
[2222] =

i[2222]
8q1q2q3q4

= 1
8q1q2q3q4qT

, (4.80)

dsren
[3322] = −

iren
[3322]

8q3
1q

3
2q3q4

= − 1
8q3

1q
3
2q3q4

{
(q3 + q4)

[
log

(
qT

µ

)
+ 1

2a
(1)
[3322]

]
+ q1q2

qT
− qT

}
, (4.81)
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Amplitude sin(πD
2 )

22, 22 and 33, 33 −1

33, 22 and 32, 32 +1

32, 22 and 32, 33 0

Table 3. Values of the sine present in (4.67) for various amplitudes.

dsren
[3333] =

iren
[3333]

8q3
1q

3
2q

3
3q

3
4

= − 1
8q3

1q
3
2q

3
3q

3
4

{1
3(q

3
1 + q3

2 + q3
3 + q3

4)
[
log

(
qT

µ

)
+ 1

2a
(1)
[3333]

]
−
σ(4)1234
qT

+ qTσ(2)1234 −
4
9q

3
T

}
, (4.82)

where σ(k)1234 is the k-th symmetric polynomial on q1, q2, q3, q4, see appendix A. In the
remaining two amplitudes the imaginary part of the AdS 4-point contact amplitude is local
and we get,

dsren
[3222] =

π

16q3
1q2q3q4

, (4.83)

dsren
[3332] =

π

32
q2

1 + q2
2 + q2

3 − q2
4

q3
1q

3
2q

3
3q4

. (4.84)

All analytic continuations have been performed in these formulae. For example i[2222] in (4.80)
is the standard AdS amplitude i[2222] = i[2222](qi) = 1/qT .

4.4.5 4-point exchange amplitudes

From (4.68) and (4.67) we see that if the total dimension of the external operators, ∆T =
∆1 +∆2 +∆3 +∆4, is odd, the finite part containing the dilogarithm vanishes from the de
Sitter amplitude. In such cases only logarithms and scheme-dependent terms survive. For
the remaining cases the sine equals ±1, see table 3. The dimension of the exchange operator
is irrelevant. There is no more analytic continuation in the formulae below, i.e., the AdS
amplitudes on the right-hand sides do not involve analytically continued momenta. The
definitions of the symbols used in the expressions below are presented in appendix A.

Exchange dimension ∆x = 2. With the exchange scalar of dimension ∆x = 2 we have
the following amplitudes,

dsren
[22,22x2] =

1
8q1q2q3q4

[
−iren

[22,22x2] +
π2

4s

]

= − 1
8q1q2q3q4

iren
[22,22x2]

∣∣∣
D(+) 7→D(+)+ π2

2

= 1
16q1q2q3q4s

[
D(+) + π2

2

]
. (4.85)
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dsren
[33,22x2] =

1
8q3

1q
3
2q3q4

[
iren
[33,22x2] +

π2

8s (q
2
1 + q2

2 − s2)
]

= 1
8q3

1q
3
2q3q4

iren
[33,22x2]

∣∣∣
D(+) 7→D(+)+ π2

2

= 1
16q3

1q
3
2q3q4

{
q2

1 + q2
2 − s2

2s

(
D(+) + π2

2

)
+ (q1 + q2)

[
log

(
l34+
qT

)
+ 1

]
−(q3 + q4)

[
log

(
qT

µ

)
+ 1

2a
(1)
[33,22x2] −

7
4

]}
. (4.86)

dsren
[33,33x2] =

1
8q3

1q
3
2q

3
3q

3
4

[
−iren

[33,33x2] +
π2

16s(q
2
1 + q2

2 − s2)(q2
3 + q2

4 − s2)
]

= − 1
8q3

1q
3
2q

3
3q

3
4
iren
[33,33x2]

∣∣∣
D(+) 7→D(+)+ π2

2
. (4.87)

Since these amplitudes are related to each other by the raising/lowering operators, they share
the same structure. As we can see these three dS amplitudes can be obtained from their
AdS counterparts by the substitution D(+) 7→ D(+) + π2

2 . Not all amplitudes with even ∆T

share this feature, though. In particular, we have the following amplitude,

dsren
[32,32x2] =

iren
[32,32x2]

8q3
1q2q3

3q4
+ 1

8q3
1q2q3

3q4s

{[
(s+ q2)

(
log

(
l12+
µ

)
− 1 + a

(1)
[322]

)
− q1

]
×

×
[
(s+ q4)

(
log

(
l34+
µ

)
− 1 + a

(1)
[322]

)
− q3

]
+π

2

8 s(2s+ q2 + q4)
}
. (4.88)

Finally, in two amplitudes with odd ∆T the analytic continuation of the AdS exchange
diagrams is local and the non-trivial part of the amplitudes originates from the product
of 3-point functions in (4.20),

dsren
[32,22x2] =− π

16q3
1q2q3q4s

{
q2

[
log
(
l12+
µ

)
−1+a

(1)
[322]

]
+s log

(
l12+
l34+

)
−q1

}
, (4.89)

dsren
[32,33x2] =− π

32q3
1q2q3

3q
3
4s

{
(q2

3+q2
4−s2)

[
q2

(
log
(
l12+
µ

)
+a

(1)
[322]

)
+s log

(
l12+
l34+

)]
+s2(q1+q2−q3−q4)+

s

2
[
−q2

1+q2
2+(q3+q4)2

]
−(q1+q2)(q2

3+q2
4)
}
, (4.90)

Exchange dimension ∆x = 3. For the exchange ∆x = 3 scalar expressions are more
complicated. The only dS amplitude, which can be obtained from the corresponding AdS
amplitude by the substitution D(+) 7→ D(+) + π2

2 is

dsren
[32,32x3] =

1
8q3

1q2q3
3q4

[
iren
[32,32x3] +

π2

16s3 (s
2 + q2

1 − q2
2)(s2 + q2

3 − q2
4)
]

= 1
8q3

1q2q3
3q4

iren
[32,32x3]

∣∣∣
D(+) 7→D(+)+ π2

2
. (4.91)
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The remaining amplitudes of even total degree ∆T do not exhibit this feature and become
more complicated,

dsren
[22,22x3] = −

iren
[22,22x3]

8q1q2q3q4
+ 1

8q1q2q3q4s3

{
(q1 + q2)

[
log

(
l12+
µ

)
− 1 + a

(1)
[322]

]
− s

}
×

×
{
(q3 + q4)

[
log

(
l34+
µ

)
− 1 + a

(1)
[322]

]
− s

}
= − 1

8q1q2q3q4

{(q1 + q2)(q3 + q4)
2s3

[
D(+)+

−2
(
log

(
l12+
µ

)
− 1 + a

(1)
[322]

)(
log

(
l34+
µ

)
− 1 + a

(1)
[322]

)]
+qT

s2

(
log

(
qT

µ

)
− 1 + a

(1)
[322]

)}
. (4.92)

dsren
[33,22x3] =

iren
[33,22x3]

8q3
1q

3
2q3q4

+ 1
24q3

1q
3
2q3q4s3

{[
(s3 + q3

1 + q3
2)
(
log

(
l12+
µ

)
− 4

3 + a
(1)
[333]

)
− σ(1)12sσ(2)12s + 4σ(3)12s

]
×

×
[
(q3 + q4)

(
log

(
l34+
µ

)
− 1 + a

(1)
[322]

)
− s

]
+ π2

8 s
3(q3 + q4)

}
. (4.93)

dsren
[33,33x3] = −

iren
[33,33x3]

8q3
1q

3
2q

3
3q

3
4
+ 1

72q3
1q

3
2q

3
3q

3
4s

3×{
1
s3

[
(s3 + q3

1 + q3
2)
(
log

(
l12+
µ

)
− 4

3 + a
(1)
[333]

)
− σ(1)12sσ(2)12s + 4σ(3)12s

]
×

×
[
(s3 + q3

3 + q3
4)
(
log

(
l34+
µ

)
− 4

3 + a
(1)
[333]

)
− σ(1)s34σ(2)s34 + 4σ(3)s34

]
+π

2

8
(
q3

1 + q3
2 + q3

3 + q3
4 + 2s3

)}
. (4.94)

The remaining amplitudes of odd total dimension ∆T receive non-trivial contribution only
from the product of the 3-point function in (4.20),

dsren
[32,22x3] = − π

32q3
1q2q3q4s3

{
(s2 + q2

1 − q2
2)
[
(q3 + q4)

(
log

(
l34+
µ

)
− 1 + a

(1)
[322]

)
− s

]
+ s3

}
,

(4.95)

dsren
[32,33x3] = − π

96q3
1q2q3

3q
3
4

{
1
s3 (s

2 + q2
1 − q2

2)(s3 + q3
3 + q3

4)
[
log

(
l34+
µ

)
− 4

3 + a
(1)
[333]

]
− (s2 + q2

1 − q2
2)
[
log

(
l12+
µ

)
− 4

3 + a
(1)
[333]

]
+ s(q1 − q2 − q3 − q4)−

1
2qT (q1 + q2 − q3 − q4)

− (q2
1 − q2

2 + q3q4)(q3 + q4)
s

− (q2
1 − q2

2)(q2
3 − q3q4 + q2

4)
s2

−(q2
1 − q2

2)q3q4(q3 + q4)
s3

}
. (4.96)
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4.5 Comparison to the literature

Relatively few exact expressions for de Sitter amplitudes are available in the existing literature.
As far as exchange 4-point functions are concerned, only the finite amplitude ds[22,22x2] is
abundantly present: see, for example, equations (5.75) of [57]; (4.54) of [58]; (4.52) of [61];
(4.84) of [62]; (3.41) of [72]. All these expressions match (4.85).

To our knowledge, the only other de Sitter exchange 4-point amplitude with non-derivative
vertices to have been calculated previously is dsren

[22;22x3]. This amplitude was first calculated
in equation (4.90) of [62], however the result obtained disagrees with ours here. This is not
unexpected given the regulated amplitude dsreg

[22;22x3] is divergent and requires renormalisation.
Indeed, our result (4.92) contains the renormalisation scale µ and a scheme-dependent constant,
a

(1)
[322], while equation (4.90) of [62] does not. Our result is therefore anomalous under scale

transformations while that of [62] transforms homogeneously. To see the mismatch more
clearly, let ds[22;22x3]|∗ denote (4.90) of [62]. It is easy to check that, in our conventions, it reads

ds[22;22x3]

∣∣∣
∗
= − 1

8q1q2q3q4
iren
[22;22x3]

∣∣∣
D(+) 7→D(+)+ π2

2

= − 1
8q1q2q3q4

[
iren
[22;22x3] +

π2

4
(q1 + q2)(q3 + q4)

s3

]
(4.97)

where we fixed the overall normalisation constant to match our conventions. The resulting
expression is scale independent and misses the terms proportional to the product of the
3-point functions in (4.12). By comparing with (4.92), we see that the difference is

dsren
[22;22x3] − ds[22;22x3]

∣∣∣
∗
= 1

8q1q2q3q4s3

[
iren
[223](q1, q2, s;µ)iren

[322](s, q3, q4;µ)

+ π2

4 (q1 + q2)(q3 + q4)
]
. (4.98)

More recently, this same amplitude dsren
[22;22x3] was recomputed through bootstrap consid-

erations in section 3.3 of [80], see equations (3.35), (3.41), (3.42) and (3.45). After accounting
for differences in notation and the overall normalisation, our result (4.92) agrees with that
of [80] upon setting the scheme-dependent constant

a
(1)
[322] = γE + log(−τ0µ) (4.99)

where τ0 (denoted η0 in [80]) is the late-time cut-off in conformal time.

4.5.1 Shift operators and derivative vertices

In [58], a family of shift operators W±±
ij were introduced. When acting on a given AdS Witten

diagram, these shift operators increase or decrease the value of the external dimensions ∆i

and ∆j by one. The resulting expressions, however, represent Witten diagrams where the
interactions contain additional derivatives acting on the fields of the form φ(∂φ)2 [86].14

In the presence of such interactions, the propagators (bulk-to-boundary and bulk-to-bulk)
14For AdS shift operators that map contact diagrams to contact diagrams, and exchange diagrams to

exchange diagrams without introducing derivative vertices, see [107].
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may contain derivatives acting on them. In this subsection we make a few comments about
such amplitudes — for a detailed analysis, see [108].

Let us consider tree-level exchange diagrams based on an action with the only derivative
interaction being φi(∂φ[3])2, where φ[3] is the bulk field dual to a dimension 3 operator and
φi is either φ[3] or φ[2], the bulk field dual to a dimension 2 operator, plus the standard
non-derivative cubic interactions involving fields dual to operators of dimension 2 and 3. One
may distinguish the new exchange diagrams constructed using the derivative interactions
from a standard exchange diagrams based on non-derivative interactions by indicating which
propagator has a derivative acting on it. We will do this by putting a hat to indicate which
propagator contains a derivative. For example, i[3̂3̂,33x3] is constructed using one derivative
vertex φ[3](∂φ[3])2 and one non-derivative vertex, φ3

[3] and the derivatives act on two bulk-
to-boundary propagator; i[3̂2,3̂2x3̂] indicates the exchange diagram constructed using two
derivative vertices φ[2](∂φ[3])2, and each of the bulk-to-boundary propagators of φ[3] has a
derivative acting on it, and two derivatives act on the bulk-to-bulk propagator.

Consider the AdS exchange diagram i[3̂3̂,3̂3̂x3] for a massless scalar. As discussed in
section 6.3.2 of [86], this diagram is connected with i[22,22x3] via the action of weigh-shifting
operator:

i[3̂3̂,3̂3̂x3] = W++
12 W++

34 i[22,22x3]. (4.100)

The integral i[22,22x3] is finite and hence the right-hand side of (4.100) is also finite. More
non-trivially, we find that the dilogarithms present in i[22,22x3] all cancel out after repeated
application of the standard dilogarithm identities leaving i[3̂3̂,3̂3̂x3] a rational function. The
result is

ireg
[3̂3̂,3̂3̂x3] =

s3

4 + s2

4

[
2σ4
q3

T

+ σ3
q2

T

+ σ2
qT

− qT

]
+ τσ4

2q3
T

+ τσ3
4q2

T

+ −τ2 + 2τσ2 + 2σ4
4qT

− σ3
2 ,

(4.101)

where σk = σ(k)1234 is the k-th symmetric polynomial on q1, q2, q3, q4 and

τ = (q1 + q2)(q3 + q4). (4.102)

The five polynomials, σk for k = 1, 2, 3, 4 and τ form the basis of minimal dimension of the
polynomials invariant under q1 ↔ q2, q3 ↔ q4 as well as simultaneous (q1, q2) ↔ (q3, q4).

Similar expressions can be obtained for other AdS amplitudes involving interactions with
derivatives [108]. They are less singular than the corresponding amplitudes without derivative
interactions, but not all of them are finite. In table 4, we summarise the degrees of divergence
and transcendentality of the exchange 4-point functions involving derivative vertices.

5 Shadow CFT description and its breakdown

An interesting possibility is that de Sitter correlators are directly dual to CFT correlators
of the shadow dimensions

∆̄i = d−∆i (5.1)
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Amplitude Degree of divergence Degree of transcendence

ireg
[3̂3̂,22x2] 0 Li2

ireg
[3̂3̂,32x2] 2 Li2

ireg
[3̂3̂,33x2] 0 Li2

ireg
[3̂3̂,22x3] 0 log

ireg
[3̂3̂,32x3] 1 log

ireg
[3̂3̂,33x3] 1 log

ireg
[3̂3̂,3̂3̂x2] 0 Li2

ireg
[3̂3̂,3̂3̂x3] 0 rational

ireg
[3̂2,3̂2x3̂] 0 Li2

ireg
[33̂,33̂x3̂] 0 rational

Table 4. Degrees of divergence and transcendence of AdS amplitudes with derivative interaction
vertices. The indices 2 and 3 indicate the fields dual to operators of dimension 2 and 3 respectively
and without derivatives on their interaction vertices. By 3̂ we indicate the operator of dimension
3 with the derivative interaction acting on the corresponding propagator. Degree of transcendence
indicates whether the function is rational in momenta, contains logarithms, or dilogarithms. Notice
the degrees of divergence and transcendence do not match precisely, as, for example, the amplitude
ireg
[3̂3̂,3̂3̂x2] is finite (and by extension scale-invariant) and yet it does contain dilogarithms.

with respect to the canonical AdS/CFT dimensions ∆i. A priori, this seems justified by
the fact that, at late times, the (d+ 1)-dimensional de Sitter Ward identities reduce to the
d-dimensional conformal Ward identities featuring precisely these shadow dimensions. One
way to understand why the Ward identities take this form is to consider the Schwinger-
Keldysh formulation and its relation to AdS/CFT. Recall that the de Sitter correlators
may be computed from the partition function in (3.44), where S± are related by analytic
continuation to the AdS action. In addition, the source couplings J±φ± tend to J±φ(0) as
τ → 0. Effectively, the sources J± behave as the dual operator Oi and the late-time coupling
J±φ(0) implements a Legendre transform. It is well known that a Legendre transform in
a CFT exchanges fields with shadow fields (see for example [101]), and thus the de Sitter
Ward identities for generic dimensions should have the same form as the conformal Ward
identities with the shadow dimensions. It is also known, however, that the connection
between fields and shadow fields via the Legendre transform breaks down when the correlators
require renormalisation [93]. One might therefore anticipate that a possible description of
dS amplitudes via a shadow CFT will also break down.

In this section, we show that these expectations are indeed born out by explicit tree-level
computations. After reviewing the de Sitter Ward identities, we re-express all tree-level de
Sitter correlators as AdS/CFT correlators of the shadow dimensions rescaled by specific
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dimension-dependent factors. These factors are directly linked to the analytic continuations
discussed in earlier sections. Examination of the cases requiring renormalisation shows
however that this shadow description breaks down in an apparently irretrievable fashion.
This suggests that a direct description of de Sitter correlators in terms of a shadow CFT
is not in fact the correct holographic paradigm.

5.1 de Sitter Ward identities

Correlators in de Sitter obey Ward identities stemming from the bulk isometries. Under a
diffeomorphism xµ → xµ − ξµ by a Killing vector ξµ, the variation

δξ⟨φ(x1) . . . φ(xn)⟩ = ⟨δξφ(x1) . . . φ(xn)⟩+ . . .+ ⟨φ(x1) . . . δξφ(xn)⟩ (5.2)

vanishes giving the (d + 1)-dimensional de Sitter Ward identity

0 =
n∑

i=1
ξµ(xi)

∂

∂xµ
i

⟨φ(x1) . . . φ(xn)⟩. (5.3)

Since the isometry group SO(4, 1) of four-dimensional de Sitter coincides with that of the
three-dimensional Euclidean conformal group, these Killing vectors include the de Sitter
counterparts ξµ

D and ξµ
SCT of dilatations and special conformal transformations. Writing

xµ = (τ,x), these are

ξµ
D∂µ = τ∂τ +x·∂, ξµ

SCT∂µ =−2(b·x)τ∂τ +[(−τ2+x2)b−2(b·x)x]·∂. (5.4)

If we evaluate the late-time limit of (5.3) for correlators where all insertions are localised
on a fixed-time slice,

0 = lim
τ→0−

[
(−τ)n(∆−d)

n∑
i=1

ξµ(xi)
∂

∂xµ
i

⟨φ(τ,x1) . . . φ(τ,xn)⟩
]
, (5.5)

assuming the asymptotic behaviour (2.29) leads to the Ward identities

0 =
n∑

i=1

(
∆̄i + xi · ∂i

)
⟨φ(0)(x1) . . . φ(0)(xn)⟩, (5.6)

0 =
n∑

i=1

(
− 2∆̄ib · xi +

(
x2

i b − 2(b · xi)xi
)
· ∂i

)
⟨φ(0)(x1) . . . φ(0)(xn)⟩ (5.7)

where ∆̄i is the shadow dimension as defined in (5.1). Formally, (5.6) and (5.7) are precisely
the dilatation and special conformal Ward identities for CFT correlators of the shadow
field O∆̄. (For their corresponding form in momentum space, see [63, 95].) It should be
emphasised however that these Ward identities generally hold only in cases where the de
Sitter correlators are finite: renormalisation leads to anomalous conformal Ward identities
containing additional terms, see [93].

– 60 –



J
H
E
P
0
5
(
2
0
2
4
)
0
5
3

5.2 de Sitter correlators as shadow CFT correlators

Given the Ward identities (5.6) and (5.7), one expects that de Sitter correlators can be
expressed as shadow CFT correlators, at least in the dimensionally regulated theory where
the asymptotic behaviour (2.29) and hence these Ward identities hold. In fact, as shown
in [66, 76] (see also [75]), a still stronger statement holds: de Sitter amplitudes can be
expressed as AdS amplitudes of the shadow dimensions, up to multiplication by specific
dimension-dependent factors. For exchange diagrams in de Sitter, the corresponding AdS
exchanges consist of a linear combination of the exchanged field and its shadow.15

Working in dimensional regularisation so that — at least for now — all divergences are
absent, and setting both ℓP and L(A)dS to unity, these relations read:

ds[∆∆] =
1

(2β̄)2C[∆̄∆̄]
ifin
[∆̄∆̄], (5.8)

ds[∆1∆2∆3] =
3∏

j=1

 1
2β̄jC[∆̄j∆̄j ]

 C[∆̄1∆̄2∆̄3]i
fin
[∆̄1∆̄2∆̄3], (5.9)

ds[∆1∆2∆3∆4] =
4∏

j=1

 1
2β̄jC[∆̄j∆̄j ]

 C[∆̄1∆̄2∆̄3∆̄4]i
fin
[∆̄1∆̄2∆̄3∆̄4], (5.10)

ds[∆1∆2;∆3∆4x∆x] =
4∏

j=1

 1
2β̄jC[∆̄j∆̄j ]

 [
C[∆̄1∆̄2∆̄x]C[∆̄3∆̄4∆̄x]

C[∆̄x∆̄x]
ifin
[∆̄1∆̄2;∆̄3∆̄4x∆̄x]

+
C[∆̄1∆̄2∆x]C[∆̄3∆̄4∆x]

C[∆x∆x]
ifin
[∆̄1∆̄2;∆̄3∆̄4x∆x]

]
, (5.11)

where
β̄j = ∆̄j −

d

2 = −βj , C[∆̄1,..., ∆̄n] = 2 sin
[π
2
(
d−

n∑
j=1

∆̄j

)]
. (5.12)

At 2-points, we can equivalently write this as C[∆̄j∆̄j ] = −2 sin(πβ̄j). Note that no analytic
continuation is involved in these formulae.

By inspection, the 2-point amplitude and all contact amplitudes take a common form,
with only the exchange amplitude receiving contributions from both ∆̄x and ∆x. Notice
too that, in all relations, the external operators are effectively rescaled by factors of 2β̄j .
These factors are related to the different way we normalise the dS amplitudes relative to
those in AdS. From a bulk perspective external legs carry a factor of the bulk-to-bulk
propagator, but in AdS/CFT the AdS amplitudes are normalised such that the external legs
have bulk-to-boundary propagators. The near-boundary limit of the bulk-to-bulk propagator
differs from the bulk-to-boundary one precisely by the factors of 2β̄, see (2.21) or (2.44).

Since all finite AdS shadow amplitudes on the right-hand sides satisfy the shadow CFT
Ward identities, the de Sitter Ward identities (5.6) and (5.7) are now manifestly satisfied.

15While the unitarity bound ∆ ≥ d/2 − 1 might seem to preclude having operators of dimension ∆ and ∆̄,
note that it is not a priori clear that one should require that the CFT dual to de Sitter is unitary (or, in the
Euclidean case, reflection positive).
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Actually, one can understand the structure of these equations from general principles. Since
2- and 3-point functions are uniquely fixed by conformal invariance and the AdS amplitudes
are solutions of the conformal Ward identities the dS 2- and 3-point amplitudes have to be
proportional to the corresponding AdS-amplitudes. Similarly in the case of 4-point functions
one may use in addition the analytic structure of the tree-level diagrams to argue that the right-
hand sides should take the form in (5.10), (5.11). So we only need to explain the coefficients
that multiply the AdS amplitudes. In this subsection we fix them by direct computation.

The relations (5.8)–(5.11) are easily derived by noting that, from the standard properties
of Bessel functions, the shadow AdS propagators are

Kβ̄(q, z) = −4β sin(πβ)aβq
−2βKβ(q, z), (5.13)

Gβ̄(q, z1, z2) = Gβ(q, z1, z2) + 2 sin(πβ)aβq
−2βKβ(q, z1)Kβ(q, z2), (5.14)

where the coefficient aβ (originally defined in (3.34)) is that appearing in the de Sitter
2-point function, namely

ds[∆∆](q) = aβq
−2β , aβ = 4β−1Γ2(β)

π
. (5.15)

For the contact amplitudes, we then use our earlier relations (3.57) and (3.67) while for the
AdS 2-point function we use the normalisation (3.38). For the exchange amplitude, we write
the analytic continuations (3.73) and (3.81) of the Schwinger-Keldysh propagators as

G+−(q, iz1,−iz2)=G−+(q,−iz1, iz2)=
1

2sinπβ
(
G−β(q,z1,z2)−Gβ(q,z1,z2)

)
, (5.16)

G±±(q,±iz1,±iz2)=
e∓iπd/2

2sinπβ
(
e±iπβG−β(q,z1,z2)−e∓iπβGβ(q,z1,z2)

)
. (5.17)

Re-evaluating (3.83) and (3.84), the ++ and +− contributions are then

I++ = (−τ0)2d−βT e
iπ
2 (βT −d)

( 4∏
j=1

aβj
q
−2βj

j

)
×

× 1
2 sin(πβx)

[
e−iπβxi[∆1∆2;∆3∆4x∆x] − eiπβxi[∆1∆2;∆3∆4x(d−∆x)]

]
, (5.18)

I+− = (−τ0)2d−βT e
iπ
2 (β1+β2−β3−β4)

( 4∏
j=1

aβj
q
−2βj

j

)
×

× 1
2 sin(πβx)

[
−i[∆1∆2;∆3∆4x∆x] + i[∆1∆2;∆3∆4x(d−∆x)]

]
, (5.19)

so that overall

ds[∆1∆2;∆3∆4x∆x] = 2 lim
τ0→0−

(−τ0)βT −2d Re [I++ + I+−]

=
( 4∏

j=1
aβj

q
−2βj

j

) [
A(βx)ifin

[∆1∆2;∆3∆4x∆x] +A(−βx)ifin
[∆1∆2;∆3∆4x (d−∆x)]

]
(5.20)
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where the coefficients are given by the function

A(βx) =
1

sin(πβx)
Re
[
e

iπ
2 (βT −d−2βx) − e

iπ
2 (β1+β2−β3−β4)

]
= − 2

sin(πβx)
sin
(
π

2

(
β1 + β2 − βx − d

2

))
sin
(
π

2

(
β3 + β4 − βx − d

2

))
. (5.21)

Using (5.13), we can then rewrite the dS exchange diagram in terms of AdS exchanges with
shadow operators for the external legs,

ds[∆1∆2;∆3∆4x∆x] = B(βx)ifin
[∆̄1∆̄2;∆̄3∆̄4x∆x] + B(β̄x)ifin

[∆̄1∆̄2;∆̄3∆̄4x∆̄x], (5.22)

where

B(β̄x) = −
2 sin

(
π
2

(
β̄1 + β̄2 + β̄x + d

2

))
sin
(

π
2

(
β̄3 + β̄4 + β̄x + d

2

))
sin(πβ̄x)

∏4
j=1 4β̄j sin(πβ̄j)

. (5.23)

This result is equivalent to (5.11).

5.3 Breakdown of the shadow paradigm

The shadow formulae (5.8)–(5.11) for de Sitter correlators are valid in dimensional regularisa-
tion, and for generic dimensions where divergences are absent. However, as we shall see, they
fail to hold whenever the de Sitter correlators require renormalisation. This is because the
corresponding divergences in the shadow CFT cannot be removed due to a lack of suitable
local counterterms built from sources and operators of the shadow dimensions. In contrast,
for a dual CFT description involving operators of the canonical AdS/CFT dimensions, the
dimensions of sources and operators are switched and local counterterms (of the beta function
type) can indeed be constructed. A related set of problematic cases arises when the shadow
CFT correlators diverge but the corresponding de Sitter correlators do not. For these, however,
the shadow formulae can be considered to hold, albeit only in a limiting sense. For a dual
CFT of the canonical dimensions, these latter cases correspond to those involving conformal
anomalies where the anomaly is projected out by the canonical holographic formulae.

As shown in [93], the divergences of the n-point correlator in the shadow CFT correspond
to solutions of the singularity condition16

(n− 2)d2 +
n∑

j=1
σj β̄j = −2k, k = 0, 1, 2, . . . (5.24)

for any independent choice of the signs {σj ∈ ±1} or constant k ∈ Z+. Cases where all the
{σj} are minus correspond to conformal anomalies of the shadow theory: such divergences
have an ultralocal momentum dependence and can be removed by the addition of a dimension-
d counterterm containing k boxes acting on n sources. Cases where a single σj is plus and
the rest are minus correspond to the sources of the shadow operator O∆̄j

acquiring a beta
function. Divergences of this type have a semilocal momentum dependence and are removed

16Noting that sources have dimension d − ∆̄j = d/2 − β̄j while operators have dimension ∆̄j = d/2 + β̄j ,
this condition is equivalent to the existence of a dimension-d counterterm containing k boxes.

– 63 –



J
H
E
P
0
5
(
2
0
2
4
)
0
5
3

dS amplitude Shadow correlator Shadow singularity type

ds[222] i[111] +++
ds[322] i[011] ++−
ds[332] i[001] +++
ds[333] i[000] ++−

Table 5. Singularity type of shadow CFT correlators for de Sitter 3-point functions.

by a counterterm containing k boxes acting on O∆̄j
and n − 1 sources. (We exclude the

case n = 2 however as here the counterterm is simply the standard source for O∆̄j
.) When

n = 3 and two or more of the {σj} are plus, the leading divergence has a nonlocal momentum
dependence. Such nonlocal divergences cannot be removed by local counterterms in any
QFT. Moreover, no local counterterms for such cases exist.17 Instead, wherever divergences
of this type arise, the dimensionally-regulated correlator must be associated with an overall
coefficient that vanishes as the regulator is removed such that the limit is finite.

If we restrict to fields of dimension d
2 < ∆j ≤ d such that

0 ≤ ∆̄j <
d

2 , −d2 ≤ β̄j < 0, (5.25)

the only potential divergences of the shadow 2-point function are of the type {++} with
β̄ = −k. With the holographic normalisation (3.38), such cases are however vanishing since

i[∆̄∆̄] = − Γ(1− β̄)
22β̄−1Γ(β̄)

q2β̄ . (5.26)

The shadow formula (5.8) is nevertheless consistent since the factor of C[∆̄∆̄] = −2 sin(πβ̄) in
the denominator cancels the zero in i[∆̄∆̄] such that the de Sitter correlator is a finite power
q−2k as expected. The corresponding de Sitter Ward identities (5.6) and (5.7) are then obeyed.

At three points, for fields satisfying (5.25), we encounter only singularities of the types

{+++} : ∆̄t − d = β̄t +
d

2 = −2k

{++−} : ∆̄1 + ∆̄2 − ∆̄3 = β̄1 + β̄2 − β̄3 +
d

2 = −2k (5.27)

along with permutations. For ∆ = 2, 3 in d = 3 (i.e., ∆̄ = 1, 0 respectively), these cases
are shown in table 5. As no counterterms are available, in all of these cases a finite shadow
3-point function can only be obtained through multiplication by a vanishing coefficient. The
renormalised 3-point function then corresponds to the leading divergence of the associated
triple-K integral [93], namely

iren
[111] =

c[111]
q1q2q3

, iren
[001] = c[001]

q2
1 + q2

2 − q2
3

q3
1q

3
2q3

,

iren
[011] =

c[011]
q3

1

( 1
q2

+ 1
q3

)
, iren

[000] = c[000]

3∑
i<j

1
q3

i q
3
j

, (5.28)

17Counterterms involving a product of two or more local operators are excluded since these introduce
additional divergences whose renormalisation then modifies the operator dimensions. As a result, such
multi-operator counterterms are generically no longer of dimension d, see [93].
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where the c[∆̄1∆̄2∆̄3] are finite constants. All these 3-point functions are fully nonlocal and
satisfy the corresponding homogeneous conformal Ward identities.

Turning to the shadow formula (5.9), however, we see that the factor C[∆̄1∆̄2∆̄3] in
the numerator vanishes for all {+ + +} cases by virtue of (5.12), while all C[∆̄j∆̄j ] factors
are nonzero. For the de Sitter 3-point functions to be nonzero then requires that the
shadow 3-point functions (i.e., the constants c[111] and c[001] in (5.28)) are divergent. It
could nevertheless be argued that (5.9) is consistent when viewed as a limiting case within
dimensional regularisation. In the regularisation scheme (4.5), selecting c[111] = −ϵ−1,
and using C[111] = −πϵ, C[11] = 2, we find that (5.9) correctly reproduces the de Sitter
3-point function ds[222] in (4.76). Likewise, using C[001] = πϵ and C[00] = −2, and selecting
c[001] = (9/2)ϵ−1 we find that (5.9) reproduces ds[332] in (4.78). The homogeneous de Sitter
Ward identities (5.6) and (5.7) are moreover obeyed.

However, such a reconciliation cannot be achieved for the remaining {++−} cases. As
all coefficients C[∆̄1∆̄2∆̄3] and C[∆̄j∆̄j ] in (5.9) are nonzero, to obtain a finite de Sitter 3-point
function requires the corresponding shadow 3-point function (and hence the constants c[011]
and c[000] above) to be finite. However, the resulting de Sitter 3-point functions obtained
via (5.9) are then manifestly incorrect: for both ds[333] and ds[322], the actual de Sitter
3-point functions (4.79) and (4.77) depend on µ and contain logarithms absent in (5.28).
From the shadow CFT perspective, however, there is no way to introduce such µ-dependent
logarithms as there are no local dimension-d countertems. Likewise, the actual de Sitter
3-point functions (4.79) and (4.77) (as opposed to the output of (5.9)) do not satisfy the
homogeneous de Sitter Ward identities (5.6) and (5.7). From a bulk perspective, this is due
to the appearance of logarithms violating the pure power-law asymptotic behaviour (2.29)
assumed in their derivation.

Thus, already at the 3-point level, the notion of a dual description based on the shadow
CFT is problematic. For correlators satisfying the {+++} condition, consistency with the de
Sitter results can be achieved only at the price of allowing divergent CFT correlators, while for
correlators satisfying the {++−} condition, we cannot recover the corresponding renormalised
de Sitter 3-point functions. This latter case arises in particular for inflationary correlators
of three non-derivatively coupled massless scalars. In contrast, no such problems arise for a
dual CFT with fields of the canonical AdS/CFT dimensions. Here, the signs appearing in the
singularity condition (5.24) are reversed since βj = −β̄j meaning the {+++} and {++−}
cases for the shadow CFT correspond respectively to the {− − −} and {− − +} cases in
the canonical CFT. Both of these latter singularity types can be eliminated via counterms
giving rise to anomalies and beta functions respectively. Anomalies are then projected out
by the canonical holographic formulae due to their ultralocal momentum dependence. The
resulting de Sitter correlators are then independent of µ consistent with the finiteness of the
corresponding de Sitter correlators. Beta function contributions are semi-local, however, and
survive the holographic formulae reproducing the renormalised de Sitter correlators with
logarithms and a nontrivial dependence on the RG scale.

The same pattern extends to 4-point contact diagrams. For shadow singularities of type
{++++}, including those shown in table 6 (evaluated in (4.83)–(4.82)), the shadow formu-
lae (5.10) once again holds when viewed as a limiting case within dimensional regularisation
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dS amplitude Shadow correlator Shadow singularity type

ds[3222] i[0111] ++++
ds[3322] i[0011] +++−
ds[3332] i[0001] ++++
ds[3333] i[0000] +++−

Table 6. Singularity type of shadow CFT correlators for dS 4-point contact diagrams.

due to the vanishing of C[∆̄1∆̄2∆̄3∆̄4]. However, for shadow singularities of type {+++−},
the shadow formula (5.10) fails to correctly reproduce the renormalised de Sitter correlators
which depend on the RG scale and contain logs.

For exchange diagrams, with the exception of ds[22,22x2], all the de Sitter amplitudes we
constructed required renormalisation as per table 2. The shadow formula (5.11) then fails to
reproduce these de Sitter amplitudes since the latter contain logarithms and depend on the
RG scale whereas the shadow CFT correlators do not since no local counterterms are available.
As we saw in previous sections, however, all these cases can be correctly handled using a dual
CFT of the canonical AdS/CFT dimensions and the holographic formulae (4.9)–(4.12).

6 Discussion

We had two objectives in writing this paper. The first was to set up a renormalisation
procedure for IR divergences in de Sitter, and the second was to use this information to refine
our understanding of the possible duality between dS and CFT.

We have succeeded in setting up a renormalisation procedure. This result is independent
of holography and the connection to AdS, and should be useful more generally beyond the
context of this paper. We have shown that one can renormalise the IR divergences by adding
local counterterms at future infinity in dS. The renormalised correlators have an associated
(finite) scheme-dependence, and it would be interesting to understand what physics (i.e.,
normalisation conditions) fixes this dependence.

Here, we discussed how to renormalise IR divergences at tree-level. IR divergences in
dS at loop level have a long history [109–135], with recent works closer in spirit to ours
including [136–139]; see also the reviews [140, 141]. It would be interesting to revisit the
issue of loops using the methodology developed in this paper. In this respect, we expect an
interesting interplay between bulk UV and IR issues similar to that observed for AdS in [142].

The renormalisation of bulk IR divergences is consistent with the holographic duality
computing the wavefunction of the universe in terms of the partition function of the dual
CFT, upon a specific analytic continuation. The IR renormalisation then corresponds to
the UV renormalisation of the CFT. This provides structural support for the duality that
goes beyond symmetry considerations. To further emphasise this point, note that while
symmetry considerations imply the regulated dS amplitudes can be expressed in terms of CFT
correlators of shadow operators without any analytic continuation, the dual CFT cannot be a
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local CFT involving shadow operators: the UV structure of such a theory does not match the
IR structure of the bulk, and one cannot promote the regulated relations to renormalised ones.

The bulk IR singularities imply that the dS Ward identities are modified. Note that
the dS in-in amplitudes do not suffer from conventional conformal anomalies. Instead, the
renormalisation is associated with renormalising the late-time bulk fields. On the CFT side,
this maps to renormalisation of the sources that couple to the dual operators. One may
work out by standard methods the effect of this renormalisation on the conformal Ward
identities [93], and then use the holographic map to work out the modified dS Ward identity.
It would interesting to work this out in full generality; see [80] for a recent work in this
direction. It would also be interesting to derive the modified dS Ward identity directly in the
bulk. It is these modified Ward identities that should be the starting point for cosmological
bootstrap considerations.

In this paper we studied scalar fields on a fixed dS background. It would be interesting
to extend our analysis to spinning correlators on dS, and more generally, to gauge-invariant
cosmological perturbations about accelerating FRLW spacetimes, extending our earlier
analysis [25] beyond the level of 3-point functions.
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A Definitions for momenta

• External momenta are denoted qj , with lengths or magnitudes qj = |qj |, where j =
1, 2, . . .. The Mandelstam variables are

s = |q1 + q2|, t = |q1 + q3|, u = |q2 + q3| (A.1)

without squares. For convenience, we also adopt the convention qs = s.

• The 3- and 4-point total magnitudes are denoted

qt = q1 + q2 + q3, qT = q1 + q2 + q3 + q4. (A.2)

• A contact diagram with n identical particles has symmetry group Sn corresponding to
permutations of the external momenta: qj 7→ qσ(j) for any σ ∈ S4.

• We use σ(m)J to denote the corresponding m-th symmetric polynomial on the set of
indices J . To be precise, let J be an ordered set of indices and let m be an integer such
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that 1 ≤ m ≤ |J |. Then,

σ(m)J =
∑
L⊆J
|L|=m

qL1 . . . qLm , (A.3)

where the sum is taken over all ordered subsets L ⊆ J of cardinality m. In particular

σ(1)12 = q1 + q2, σ(1)123 = q1 + q2 + q3, (A.4)
σ(2)12 = q1q2, σ(2)123 = q1q2 + q1q3 + q2q3, (A.5)

σ(3)123 = q1q2q3, (A.6)
σ(1)1234 = q1 + q2 + q3 + q4, (A.7)
σ(2)1234 = q1q2 + q1q3 + q1q4 + q2q3 + q2q4 + q3q4, (A.8)
σ(3)1234 = q1q2q3 + q1q2q4 + q1q3q4 + q2q3q4, (A.9)
σ(4)1234 = q1q2q3q4. (A.10)

We also allow for the indices to take the value s, so that, for example, σ(1)12s = q1+q2+s
and so on.

• For 4-point exchange diagrams we define the following variables,

lij− = qi + qj − |qi + qj |, lij+ = qi + qj + |qi + qj |. (A.11)

In particular all 4-point exchange diagrams will contain the following combinations,

l12− = q1 + q2 − s, l12+ = q1 + q2 + s, (A.12)
l34− = q3 + q4 − s, l34+ = q3 + q4 + s, (A.13)

which we will use in addition to the standard momentum variables.
Note that all lij− and lij+ are non-negative. Furthermore, lij+ = 0 corresponds to
qi = qj = 0, while lij− = 0 indicates the collinear limit, qi ∥ qj , when the two momenta
are parallel.

• The highest possible symmetry group of an exchange diagram 12 7→ 34, arising when
all external particles are identical, is the dihedral group D4. This contains the eight
permutations generated by swapping the numbers within each pair, 12; 34 7→ 21; 34 and
12; 34 7→ 12; 43, as well as exchanging the pairs, 12; 34 7→ 34; 12.
The following dilogarithmic quantities then arise in exchange diagrams:

D(+) = Li2
(
l34−
qT

)
+ Li2

(
l12−
qT

)
+ log

(
l12+
qT

)
log

(
l34+
qT

)
− π2

6 , (A.14)

D(−) = Li2
(
l34−
qT

)
− Li2

(
l12−
qT

)
+ 1

2 log2
(
l12+
qT

)
− 1

2 log2
(
l34+
qT

)
. (A.15)

D(+) is invariant under the group D4,

D(+)(q1, q2; q3, q4) = D(+)(q2, q1; q3, q4) = D(+)(q3, q4; q1, q2), (A.16)

while D(−) acquires a sign when any two pairs of indices are exchanged,

D(−)(q1, q2; q3, q4) = D(−)(q2, q1; q3, q4) = −D(−)(q3, q4; q1, q2). (A.17)
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B Holographic 1-point functions in the presence of sources

In this appendix, we outline the derivation of the standard holographic formula (2.11) for
1-point functions in the presence of sources. A similar calculation applies for computing
wavefunction coefficients leading to (2.36).

B.1 In AdS

We follow the conventions of [90] and define W , the generating functional of the connected
diagrams as ZQFT[φ(0)] = eW [φ(0)], where ZQFT[φ(0)] is the partition function of the dual
QFT. Accoring to the AdS/CFT correspondence, ZQFT = ZAdS, which in the saddle point
approximation becomes W [φ(0)] = −SAdS[φ(0)]. On the right-hand side here, the AdS
action (2.1) is evaluated on the unique classical bulk solution φ which near the boundary
approaches φ(0), according to (2.5). In general this on-shell action SAdS[φ0] is divergent due
to the infinite volume of AdS. Indeed, by substituting the near-boundary expansion (2.5)
into the free field part of (2.1) one finds that the action diverges near z = 0 for any values
of the dimensions d and ∆ [7].

It is more convenient to analyse this issue from the point of view of the 1-point function,
⟨O(x)⟩s, where the subscript s indicates that this is an expectation value in the presence
of sources. To do this, using the chain rule we write,

⟨O(x)⟩s = −δ lnZQFT
δφ(0)(x)

=
∫

dz
∫

ddx′ δSAdS
δφ(z,x′)

δφ(z,x′)
δφ(0)(x)

. (B.1)

The second functional derivative follows from the near-boundary expansion (2.5). From now
on, let us assume that the conformal dimension ∆ satisfies d

2 < ∆ < d and the interaction
potential Vint in (2.1) is a polynomial in φ or at least has a regular Taylor expansion around
φ = 0. This guarantees that the source term of order zd−∆ is the most leading term in the
near-boundary expansion of the bulk field. In particular,

δφ(z,x′)
δφ(0)(x)

= zd−∆δ(x − x′) + o(zd−∆). (B.2)

The first functional derivative in (B.1) produces equations of motion for the bulk field
plus a boundary term. As we work on-shell, we can drop the bulk term proportional to the
equations of motion. The boundary term occurs due to the integration by parts of the kinetic
term in (2.1) and is supported on the boundary of the spacetime. It is equal to the radial
canonical momentum Πz flowing through the boundary [8, 143],

δSAdS
δφ(z,x) =

√
γzΠz(z,x)δ(z). (B.3)

For the action (2.1), the radial canonical momentum reads

Πz = −(ℓ(AdS)
P )1−d

LAdS
z∂zφ(z,x), (B.4)

where γz
ij denotes the induced metric on constant z-slices such that √

γz = (z/LAdS)−d.
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When put together, the 1-point function reads

⟨O(x)⟩s = Ld
AdS lim

z→0
z−∆Πz(z,x). (B.5)

This is the general formula relating the 1-point function of the dual operator to the canonical
momentum flowing through the boundary. However, for the canonical momentum in (B.4)
the limit diverges,

⟨O(x)⟩s = −
(
LAdS

ℓ
(AdS)
P

)d−1

lim
z→0

z−∆ × z∂zφ

= −
(
LAdS

ℓ
(AdS)
P

)d−1

lim
z→0

[
(d−∆)zd−2∆φ(0) + . . .+∆φ(∆) + . . .

]
. (B.6)

The underlying philosophy of holography is that the 1-point function should be proportional
to the vev coefficient φ∆. Unfortunately, the source term zd−2∆φ(0) in the above expansion
is always more leading than the vev term. On the other hand, under the assumptions on
dimensions and the form of the potential stated above, there exists only a finite number
of terms more leading than the vev term. Furthermore, all such terms are local in the
source φ(0). Thus, they can be removed by the addition of finite and local counterterm
action localised at the boundary.

Consider the counterterm action [7]

Sct =
(ℓ(AdS)

P )1−d

2LAdS
(d−∆)

∫
ddx

√
γz φ2. (B.7)

This action is located on the boundary and does not alter the bulk equations of motion.
On the other hand it does contribute to the canonical momentum defined in (B.3). With
S = SAdS + Sct, the radial canonical momentum reads

Πz = (ℓ(AdS)
P )1−d

LAdS
[−z∂zφ(z,x) + (d−∆)φ] . (B.8)

With this modification the 1-point function becomes

⟨O(x)⟩s = −
(
LAdS

ℓ
(AdS)
P

)d−1

lim
z→0

[
0× zd−2∆φ(0) + . . .+ (2∆− d)φ(∆) + . . .

]
. (B.9)

The holographic formula (2.11) follows if the limit exists, i.e., if the omitted terms more
leading than the vev term vanish.

In order to argue that the troublesome terms in (B.9) vanish or are irrelevant, two paths
can be taken. In the standard holographic renormalisation [7, 90, 104], a finite number of
counterterms are added in order to remove all such divergences. To do so, the theory is
regulated by a near-boundary cut-off at z = ϵ, all counterterms are placed on the cut-off
surface and ultimately the ϵ → 0 limit is taken. It is worth noting that in some special
cases, i.e., for special values of the dimensions d and ∆, the near-boundary expansion (2.5)
may acquire secular terms involving logarithms of the radial variable z. Such terms may
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lead to logarithmic divergences in the canonical momentum. These cases are related to
conformal anomalies [7, 105], and their removal of logarithmic divergences has associated
scheme-dependence parametrised by finite local counterterms. Such counterterms, in turn,
may also modify the relation (2.11) by an ultralocal functional of the source φ(0). An
alternative (and equivalent) procedure is to expand the canonical momentum in terms of
eigenfunctions of the dilatation operator δD [8, 143],

Πz = Π(d−∆) + · · ·+Π(∆) + · · · , (B.10)

where δDΠ(n) = −nΠ(n). Such expansion can be obtained via a covariant form of the
near-boundary analysis, and the renormalised 1-point function is the eigenfunction with
eigenvalue equal to ∆,

⟨O(x)⟩s = Π∆. (B.11)

Comparing with (B.9) we find

Π∆ = −
(
LAdS

ℓ
(AdS)
P

)d−1

(2β)φ(∆). (B.12)

This procedure avoids the need to explicitly construct the counterterms.
In the spirit of this paper, however, we may apply dimensional renormalisation in-

stead [144, 145]. This method is particularly convenient in our context as the conformal
dimensions ∆ are treated as parameters and are not a priori fixed to any special values.
The method is applicable since there exists a non-empty open set of the parameters for
which the limit in (B.9) is well-defined. If the potential Vint in (2.1) is a polynomial or at
least exhibits a regular Taylor expansion at φ = 0, the vev term in the expansion in (B.9)
becomes the leading term if

d

2 < ∆ < min
(
d

2 + 1, 2d3

)
. (B.13)

For such values of d and ∆ the limit exists and (B.9) becomes (2.11). Furthermore, using
the explicit form of the propagators, one can show that all correlation functions are analytic
functions of the dimensions in this range. Using analytic continuation one obtains unique
expressions for the correlation functions except at a number of poles, corresponding to the
special cases. Only when such special cases are encountered are counterterms needed. The
counterterms turn out to be in a one-to-one correspondence with the counterterms of the
dimensionally regulated dual theory.

B.2 In dS

In de Sitter, the calculation runs along similar lines. We define

ψs(x) = − δ lnΨdS
δφ(0)(x)

= −i
∫

dτ
∫

ddx′ δSdS
δφ(τ,x′)

δφ(τ,x′)
δφ(0)(x)

, (B.14)
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where

δφ(τ,x′)
δφ(0)(x)

= (−τ)d−∆δ(x − x′) + o
(
(−τ)d−∆). (B.15)

The variation of the action is
δSdS

δφ(τ,x) =
√
γτ Πτ (τ,x)δ(τ), (B.16)

where Πτ (τ,x) is the (standard) canonical momentum, and from the action (2.28),

Πτ = −(ℓ(dS)
P )1−d

LdS
τ∂τφ(z,x), (B.17)

where γτ
ij denotes the induced metric on constant τ -slices such that √

γτ = (−τ/ℓdS)−d.
The 1-point function then reads

ψs(x) = −i Ld
dS lim

τ→0
(−τ)−∆Πτ (τ,x). (B.18)

Including the boundary counterterm

Sct =
(ℓ(dS)

P )1−d

2LdS
(d−∆)

∫
ddx

√
γτ φ2, (B.19)

the canonical momentum becomes

Πτ = (ℓ(dS)
P )1−d

LdS
[−τ∂τφ(τ,x) + (d−∆)φ] . (B.20)

With this modification the 1-point function becomes

ψs(x) = −i
(
LdS

ℓ
(dS)
P

)d−1

lim
τ→0

[
0× (−τ)d−2∆φ0 + . . .+ (d− 2∆)φ∆ + . . .

]
, (B.21)

leading to the holographic formula (2.36), where the subleading divergences have either been
removed by additional counterterms or dimensional regularisation and analytic continuation
is used, as in the discussion above of the AdS case.

C Singularity conditions for individual amplitudes

In this appendix we summarise the singularities of both AdS and dS contact and exchange
amplitudes for general values of the operator and spacetime dimensions, working in the
dimensionally regulated theory throughout.

C.1 Contact diagrams

Contact diagrams have singularities whenever the singularity condition

(n− 2)d2 +
n∑

i=1
σiβi = −2k, k ∈ Z+ (C.1)
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is satisfied, where n is the number of points, k ∈ Z+ is a non-negative integer (k = 0, 1, 2 . . .),
and the signs σi ∈ ±1 are chosen independently [93, 96]. In AdS, any choice of signs is
permitted, but in dS the case where all signs are negative is excluded. This all-minus case is
non-singular in dS because the corresponding all-minus divergence in AdS has an ultralocal
momentum dependence (i.e., is analytic in all the squared momenta), and hence is projected
out when passing to dS via the holographic formulae, see (3.61) and (3.67). This projection
can equivalently be seen from the zero of the sine factor in, e.g., (3.59). This singularity
condition is sufficient to account for all the contact diagram singularities in tables 1 and 2.

C.2 AdS exchanges

To identify the analogous singularity conditions for AdS exchange diagrams, we use the identity

Kβ(z) =
π

2 sin πβ (I−β(z)− Iβ(z)) (C.2)

to re-write the bulk-bulk propagator (3.82) as

Gβ(q, z1, z2) =
π(z1z2)d/2

2 sin πβ
[
− Iβ(qz1)Iβ(qz2) +

(
I−β(qz1)Iβ(qz2)Θ(z1 − z2) + (z1 ↔ z2)

)]
.

(C.3)

The s-channel exchange diagram then decomposes into a sum of factorised and nested integrals,

ireg
[∆1∆2;∆3∆4x∆x](qi,s)

= π

2sinπβx

[
−
∫ ∞

0

dz1

z
d/2+1
1

Kβ1(q1,z1)Kβ2(q2,z1)Iβx(sz1)

×
∫ ∞

0

dz2

z
d/2+1
2

Kβ3(q3,z2)Kβ4(q4,z2)Iβx(sz2)

+
(∫ ∞

0

dz1

z
d/2+1
1

Kβ1(q1,z1)Kβ2(q2,z1)I−βx(sz1)
∫ z1

0

dz2

z
d/2+1
2

Kβ3(q3,z2)Kβ4(q4,z2)Iβx(sz2)

+(z1 ↔ z2)
)]
. (C.4)

The singularities of the factorised integrals are found by expanding their integrands about
the lower limits and looking for the appearance of z−1 terms [93]. As Iβ(z) = zβ(1 +O(z2))
while Kβ(z) = z−β(1 +O(z2)) + zβ(1 +O(z2)), this gives the two singularity conditions

d

2 ± β1 ± β2 + βx = −2kL,
d

2 ± β3 ± β4 + βx = −2kR, kL, kR ∈ Z+ (C.5)

where the βx term appears only with a plus sign (in contrast to the analogous singularity
condition for a 3-point contact diagram). For the remaining nested integrals, the singularities
can again be found by expanding around the lower limit of the outer integral. For the
first nested integral in (C.4), keeping track only of powers of z1 and z2, we obtain a sum
of terms of the form∫ ∞

0
dz1 z

d/2−1+σ1β1+σ2β2−βx+2k1
1

∫ z1

0
dz2 z

d/2−1+σ3β3+σ4β4+βx+2k2
2

∼
∫ ∞

0
dz1 z

d−1+2kT +
∑4

i=1 σiβi

1 (C.6)
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where the z2k1
1 and z2k2

2 contributions arise from subleading terms in the series expansions of
the Bessel functions and hence k1, k2 ∈ Z+. To obtain the right-hand side, we evaluated the
inner integral assuming singularity conditions (C.5) (which we have already identified18) are
not satisfied. A singularity then arises whenever we obtain a z−1

1 term, namely when

d+
4∑

i=1
σiβi = −2kT , kT ∈ Z+. (C.7)

Note in particular that the βx contributions in (C.6) have cancelled since the Bessel I
functions from which they originated have opposite indices. As both nested integrals in (C.4)
are related by exchanging (β1, β2,−βx) ↔ (β3, β4, βx), the singularity condition we obtain
from the second nested integral is again (C.7), and no cancellation can occur as both terms
contribute with the same sign.

The singularities of AdS exchange diagrams are thus predicted by the combination of
the ‘vertex’ and ‘total’ singularity conditions (C.5) and (C.7). These conditions are sufficient
to account for the degrees of divergence (obtained by direct integration) in table 2. In
particular, the quadratic divergences arise when multiple singularity conditions are satisfied
simultaneously (see also [93]).

C.3 dS exchanges

The singularity conditions for dS exchanges can be obtained using the holographic for-
mula (3.88). Once again, taking the imaginary parts in this formula acts to project out all
singularities of AdS correlators that have a purely ultralocal momentum dependence, namely
those arising from any all-minus condition. This projection can equivalently be seen from the
zeros of the sine factors in (3.85). The holographic formula relates the dS exchange diagram
to both the AdS exchange diagram, whose singularities are given by (C.5) and (C.7), and a
product of AdS 3-point functions, whose singularities are given by (C.1) with n = 3. From
the AdS exchange contribution, the dS exchange inherits the ‘total’ singularity condition

d+
4∑

i=1
σiβi = −2kT , kT ∈ Z+ (C.8)

where any independent choice of signs σi ∈ ±1 is permitted except for the all-minus case.
The ‘vertex’ singularity conditions arise from both the AdS exchange contribution and the
product of AdS 3-point functions, and read

d

2 + σ1β1 + σ2β2 + σL
x βx = −2kL,

d

2 + σ3β3 + σ4β4 + σR
x βx = −2kR, kL, kR ∈ Z+.

(C.9)

Note that both signs σL
x , σ

R
x ∈ ±1 can appear here, since while only the plus sign appears in the

vertex condition for AdS exchanges (C.5), both signs appear in the 3-point conditions (C.1).
18Note there can be no cancellation of singularities between the nested and factorised integrals when either

(or both) of the conditions (C.5) are satisfied: the singularity of the factorised integral is always non-analytic
in s2 (of the form ∼ s2βx+2k for some k ∈ Z+) whereas that of the nested integral is analytic (∼ s2k) due to
the opposite indices on the two Bessel I.
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(This explains why the dS amplitude ds[22,22x3] is divergent while the corresponding AdS
amplitude i[22,22x3] is finite, see table 2.) However, the all-minus cases (σ1, σ2, σ

L
x ) = (−,−,−)

and (σ3, σ4, σ
R
x ) = (−,−,−) are excluded since the corresponding AdS singularities are

ultralocal and hence projected out when we pass to dS. Moreover, an analysis using the
shadow holographic formulae in the following section shows that the (σ1, σ2, σx) = (−,−,+)
and (σ3, σ4, σx) = (−,−,+) cases of (C.9) also excluded, i.e, do not give rise to singularities
of the dS exchange diagram. This is due to a cancellation between the singularities of the AdS
exchange and 3-point contributions in the holographic formula (3.88) as we will see shortly.

The conditions above, (C.8) and (C.9) (where all cases for which (σ1, σ2, σ3, σ4) =
(−,−,−,−) are excluded), are sufficient to account for the degrees of divergence for dS
exchange diagrams in table 2. As above, quadratic divergences arise when more than one
condition is satisfied.

C.4 Compatibility with the shadow formula

The singularity conditions for dS exchanges can also be analysed via the shadow formula (5.11),
or equivalently (5.20) and (5.21). These formulae relate the dS exchange to a linear combi-
nation of the AdS exchange and shadow exchange diagrams, where the latter is obtained
by replacing βx → −βx. Starting from the exchange singularity conditions in AdS, (C.5)
and (C.7), we then recover the dS singularity conditions (C.9) and (C.8) after resolving
the following two subtleties.

Firstly, we need to establish that the all-minus case of the ‘total’ singularity condition (C.8)
is absent. This occurs due to a cancellation of singularities between the AdS exchange and
shadow exchange diagrams. The ‘total’ singularity for both these diagrams is the same, as can
be seen from the analysis in section C.2, with the cancellation then following from the identity

sin
[
π

2

(
d

2 − β1 − β2 + βx

)]
sin
[
π

2

(
d

2 − β3 − β4 + βx

)]
− sin

[
π

2

(
d

2 − β1 − β2 − βx

)]
sin
[
π

2

(
d

2 − β3 − β4 − βx

)]

= sin(πβx) sin
[
π

2 (d− βT )
]
. (C.10)

The relative sign between the two terms on the left-hand side arises since the sign of βx

is flipped between the exchange and the shadow exchange, and the denominator in (5.21)
contains a factor of sin(πβx).

The second point to be understood is the absence of ‘vertex’-type dS singularities
corresponding to (C.9) for the cases (σ1, σ2, σx) = (−,−,+) and (σ3, σ4, σx) = (−,−,+). For
these cases, the sine factors appearing in the shadow formula (5.21) have zeros cancelling the
corresponding singularities, however an equivalent cancellation is not immediately apparent
in our earlier approach based on the holographic formula (3.88).

Closer inspection shows, however, that a cancellation of singularities between the AdS
exchange and 3-point contributions to the holographic formula (3.88) indeed occurs. When
either d/2− β1 − β2 + βx = −2kL and/or d/2− β3 − β4 + βx = −2kR, the first term in the
trigonometric identity (C.10) vanishes. The numerator of the holographic formula (3.85)
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then becomes

sin
(
π

2 (βT − d)
)
ireg
[∆1∆2;∆3∆4x∆x] (C.11)

+ 2aβxs
−2βxireg

[∆1∆2∆x](q1, q2, s)ireg
[∆x∆3∆4](s, q3, q4)

× sin
(
π

2

(
d

2 − β1 − β2 − βx

))
sin
(
π

2

(
d

2 − β3 − β4 − βx

))

= sin
(
π

2 (βT − d)
) [
ireg
[∆1∆2;∆3∆4x∆x]

+ 2 sin(πβx)aβxs
−2βxireg

[∆1∆2∆x](q1, q2, s)ireg
[∆x∆3∆4](s, q3, q4)

]
.

The singularities of the integrals on the right-hand side now cancel. This can most readily
be seen by using the relation (5.14) between the AdS bulk-bulk and shadow bulk-bulk
propagator, which yields

ireg
[∆1∆2;∆3∆4x∆x] + 2 sin(πβx)aβxs

−2βxireg
[∆1∆2∆x](q1, q2, s)ireg

[∆x∆3∆4](s, q3, q4)

= ireg
[∆1∆2;∆3∆4x d−∆x]. (C.12)

This shadow AdS exchange diagram is manifestly finite as the conditions d/2 − β1 − β2 +
βx = −2kL and d/2 − β3 − β4 + βx = −2kR correspond to d/2 − β1 − β2 − β̄x = −2kL

and d/2 − β3 − β4 − β̄x = −2kR where β̄x = ∆̄x − d/2 = −βx. From the analysis of the
AdS exchange diagram in section C.2, however, there are no all-minus ‘vertex’ singularities
of this type, see (C.5).

In summary, dS ‘vertex’-type singularities corresponding to (C.9) for (σ1, σ2, σx) =
(−,−,+) and/or (σ3, σ4, σx) = (−,−,+) are indeed absent. This is manifest in the shadow
holographic formula due to the vanishing of the sine factors, but arises through a non-trivial
cancellation in the conventional holographic formula. Conversely, the absence of the all-minus
‘total’ singularity in dS is readily visible in the conventional holographic formula, but arises
from a non-trivial cancellation in the shadow holographic formula.

D Shadow relations in AdS

In the absence of divergences, amplitudes in AdS satisfy the shadow relations

ifin
[∆̄∆̄](q) = − 4β2

ifin
[∆∆](q)

, (D.1)

ifin
[∆̄1,∆̄2,∆̄3](qi) =

 3∏
j=1

2βj

ifin
[∆j∆j ](qj)

 ifin
[∆1,∆2,∆3](qi), (D.2)

ifin
[∆̄1,∆̄2,∆̄3,∆̄4](qi) =

 4∏
j=1

2βj

ifin
[∆j∆j ](qj)

 ifin
[∆1∆2,∆3∆4](qi), (D.3)

ifin
[∆̄1,∆̄2,∆̄3,∆̄4x∆̄x](qi, s) =

 4∏
j=1

2βj

ifin
[∆j∆j ](qj)

[ifin
[∆1∆2,∆3∆4x∆x](qi, s)

−
ifin
[∆1∆2∆x](q1, q2, s)ifin

[∆x∆3∆4](s, q3, q4)
ifin
[∆x∆x](s)

]
(D.4)

where ∆̄j = d − ∆j are the shadow dimensions.
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In deriving these formulae, we used the standard holographic normalisations (see (3.38)
for the 2-point function, with higher-point functions as defined in [86]), and applied the same
normalisations to shadow fields replacing βj → β̄j = ∆̄j − d/2 = −βj . In addition, we used
the identities (5.13) and (5.14) connecting the AdS propagators to their shadows.

Alternatively, these formulae can be understood as arising from the Legendre transform:
for each field, we add to the partition function, ZAdS[φ(0)] in (2.8), the product of the source
φ(0) with its conjugate variable Π(∆) (see appendix B.1), namely

∫
ddx

√
γΠ(∆)φ(0), and

integrate over φ(0). Completing squares, one may then integrate out φ(0) giving

φ(0) =
2β
ifin
[∆∆]

φ(∆). (D.5)

Now φ(∆) acts as a source for the shadow operator of dimension ∆̄ = d−∆, and functionally
differentiating with respect to it, one may obtain (D.1)–(D.4).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

[2] A. Strominger, Inflation and the dS/CFT correspondence, JHEP 11 (2001) 049
[hep-th/0110087] [INSPIRE].

[3] C.M. Hull, Timelike T duality, de Sitter space, large N gauge theories and topological field
theory, JHEP 07 (1998) 021 [hep-th/9806146] [INSPIRE].

[4] E. Witten, Quantum gravity in de Sitter space, in the proceedings of the Strings 2001:
International Conference, Mumbai, India, January 05–10 (2001) [hep-th/0106109] [INSPIRE].

[5] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv.
Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

[6] D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT
Correspondence, Class. Quant. Grav. 34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].

[7] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and
renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595
[hep-th/0002230] [INSPIRE].

[8] I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lect. Math.
Theor. Phys. 8 (2005) 73 [hep-th/0404176] [INSPIRE].

[9] S. de Haro, K. Skenderis and S.N. Solodukhin, Gravity in warped compactifications and the
holographic stress tensor, Class. Quant. Grav. 18 (2001) 3171 [hep-th/0011230] [INSPIRE].

[10] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary
models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

[11] F. Larsen, J.P. van der Schaar and R.G. Leigh, De Sitter holography and the cosmic microwave
background, JHEP 04 (2002) 047 [hep-th/0202127] [INSPIRE].

– 77 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/2001/10/034
https://arxiv.org/abs/hep-th/0106113
https://inspirehep.net/literature/558426
https://doi.org/10.1088/1126-6708/2001/11/049
https://arxiv.org/abs/hep-th/0110087
https://inspirehep.net/literature/564005
https://doi.org/10.1088/1126-6708/1998/07/021
https://arxiv.org/abs/hep-th/9806146
https://inspirehep.net/literature/471969
https://arxiv.org/abs/hep-th/0106109
https://inspirehep.net/literature/558356
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/literature/451647
https://doi.org/10.1088/1361-6382/34/1/015009
https://arxiv.org/abs/1108.5735
https://inspirehep.net/literature/925749
https://doi.org/10.1007/s002200100381
https://arxiv.org/abs/hep-th/0002230
https://inspirehep.net/literature/524415
https://doi.org/10.4171/013-1/4
https://doi.org/10.4171/013-1/4
https://arxiv.org/abs/hep-th/0404176
https://inspirehep.net/literature/648961
https://doi.org/10.1088/0264-9381/18/16/307
https://arxiv.org/abs/hep-th/0011230
https://inspirehep.net/literature/537466
https://doi.org/10.1088/1126-6708/2003/05/013
https://arxiv.org/abs/astro-ph/0210603
https://inspirehep.net/literature/600699
https://doi.org/10.1088/1126-6708/2002/04/047
https://arxiv.org/abs/hep-th/0202127
https://inspirehep.net/literature/583184


J
H
E
P
0
5
(
2
0
2
4
)
0
5
3

[12] F. Larsen and R. McNees, Inflation and de Sitter holography, JHEP 07 (2003) 051
[hep-th/0307026] [INSPIRE].

[13] D. Seery and J.E. Lidsey, Non-Gaussian Inflationary Perturbations from the dS/CFT
Correspondence, JCAP 06 (2006) 001 [astro-ph/0604209] [INSPIRE].

[14] D. Harlow and D. Stanford, Operator Dictionaries and Wave Functions in AdS/CFT and
dS/CFT, arXiv:1104.2621 [INSPIRE].

[15] J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP 09
(2011) 045 [arXiv:1104.2846] [INSPIRE].

[16] I. Mata, S. Raju and S. Trivedi, CMB from CFT, JHEP 07 (2013) 015 [arXiv:1211.5482]
[INSPIRE].

[17] A. Ghosh, N. Kundu, S. Raju and S.P. Trivedi, Conformal Invariance and the Four Point
Scalar Correlator in Slow-Roll Inflation, JHEP 07 (2014) 011 [arXiv:1401.1426] [INSPIRE].

[18] D. Anninos, T. Anous, D.Z. Freedman and G. Konstantinidis, Late-time Structure of the
Bunch-Davies De Sitter Wavefunction, JCAP 11 (2015) 048 [arXiv:1406.5490] [INSPIRE].

[19] N. Kundu, A. Shukla and S.P. Trivedi, Constraints from Conformal Symmetry on the Three
Point Scalar Correlator in Inflation, JHEP 04 (2015) 061 [arXiv:1410.2606] [INSPIRE].

[20] P. McFadden and K. Skenderis, Holography for Cosmology, Phys. Rev. D 81 (2010) 021301
[arXiv:0907.5542] [INSPIRE].

[21] K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies,
Phys. Rev. Lett. 96 (2006) 191301 [hep-th/0602260] [INSPIRE].

[22] K. Skenderis and P.K. Townsend, Pseudo-Supersymmetry and the Domain-Wall/Cosmology
Correspondence, J. Phys. A 40 (2007) 6733 [hep-th/0610253] [INSPIRE].

[23] P. McFadden and K. Skenderis, The Holographic Universe, J. Phys. Conf. Ser. 222 (2010)
012007 [arXiv:1001.2007] [INSPIRE].

[24] P. McFadden and K. Skenderis, Holographic Non-Gaussianity, JCAP 05 (2011) 013
[arXiv:1011.0452] [INSPIRE].

[25] P. McFadden and K. Skenderis, Cosmological 3-point correlators from holography, JCAP 06
(2011) 030 [arXiv:1104.3894] [INSPIRE].

[26] A. Bzowski, P. McFadden and K. Skenderis, Holographic predictions for cosmological 3-point
functions, JHEP 03 (2012) 091 [arXiv:1112.1967] [INSPIRE].

[27] J. Garriga, K. Skenderis and Y. Urakawa, Multi-field inflation from holography, JCAP 01
(2015) 028 [arXiv:1410.3290] [INSPIRE].

[28] T. Hertog and J. Hartle, Holographic No-Boundary Measure, JHEP 05 (2012) 095
[arXiv:1111.6090] [INSPIRE].

[29] J.B. Hartle, S.W. Hawking and T. Hertog, Accelerated Expansion from Negative Λ,
arXiv:1205.3807 [INSPIRE].

[30] G. Conti, T. Hertog and E. van der Woerd, Holographic Tunneling Wave Function, JHEP 12
(2015) 025 [arXiv:1506.07374] [INSPIRE].

[31] T. Hertog and E. van der Woerd, Primordial fluctuations from complex AdS saddle points,
JCAP 02 (2016) 010 [arXiv:1509.03291] [INSPIRE].

[32] G. Araujo-Regado, R. Khan and A.C. Wall, Cauchy slice holography: a new AdS/CFT
dictionary, JHEP 03 (2023) 026 [arXiv:2204.00591] [INSPIRE].

– 78 –

https://doi.org/10.1088/1126-6708/2003/07/051
https://arxiv.org/abs/hep-th/0307026
https://inspirehep.net/literature/622536
https://doi.org/10.1088/1475-7516/2006/06/001
https://arxiv.org/abs/astro-ph/0604209
https://inspirehep.net/literature/714126
https://arxiv.org/abs/1104.2621
https://inspirehep.net/literature/896154
https://doi.org/10.1007/JHEP09(2011)045
https://doi.org/10.1007/JHEP09(2011)045
https://arxiv.org/abs/1104.2846
https://inspirehep.net/literature/896097
https://doi.org/10.1007/JHEP07(2013)015
https://arxiv.org/abs/1211.5482
https://inspirehep.net/literature/1203653
https://doi.org/10.1007/JHEP07(2014)011
https://arxiv.org/abs/1401.1426
https://inspirehep.net/literature/1276324
https://doi.org/10.1088/1475-7516/2015/11/048
https://arxiv.org/abs/1406.5490
https://inspirehep.net/literature/1301883
https://doi.org/10.1007/JHEP04(2015)061
https://arxiv.org/abs/1410.2606
https://inspirehep.net/literature/1321508
https://doi.org/10.1103/PhysRevD.81.021301
https://arxiv.org/abs/0907.5542
https://inspirehep.net/literature/827587
https://doi.org/10.1103/PhysRevLett.96.191301
https://arxiv.org/abs/hep-th/0602260
https://inspirehep.net/literature/711217
https://doi.org/10.1088/1751-8113/40/25/S18
https://arxiv.org/abs/hep-th/0610253
https://inspirehep.net/literature/729744
https://doi.org/10.1088/1742-6596/222/1/012007
https://doi.org/10.1088/1742-6596/222/1/012007
https://arxiv.org/abs/1001.2007
https://inspirehep.net/literature/842676
https://doi.org/10.1088/1475-7516/2011/05/013
https://arxiv.org/abs/1011.0452
https://inspirehep.net/literature/875280
https://doi.org/10.1088/1475-7516/2011/06/030
https://doi.org/10.1088/1475-7516/2011/06/030
https://arxiv.org/abs/1104.3894
https://inspirehep.net/literature/896863
https://doi.org/10.1007/JHEP03(2012)091
https://arxiv.org/abs/1112.1967
https://inspirehep.net/literature/1080721
https://doi.org/10.1088/1475-7516/2015/01/028
https://doi.org/10.1088/1475-7516/2015/01/028
https://arxiv.org/abs/1410.3290
https://inspirehep.net/literature/1321663
https://doi.org/10.1007/JHEP05(2012)095
https://arxiv.org/abs/1111.6090
https://inspirehep.net/literature/955158
https://arxiv.org/abs/1205.3807
https://inspirehep.net/literature/1115170
https://doi.org/10.1007/JHEP12(2015)025
https://doi.org/10.1007/JHEP12(2015)025
https://arxiv.org/abs/1506.07374
https://inspirehep.net/literature/1377746
https://doi.org/10.1088/1475-7516/2016/02/010
https://arxiv.org/abs/1509.03291
https://inspirehep.net/literature/1392781
https://doi.org/10.1007/JHEP03(2023)026
https://arxiv.org/abs/2204.00591
https://inspirehep.net/literature/2061606


J
H
E
P
0
5
(
2
0
2
4
)
0
5
3

[33] S. Antonini, P. Simidzija, B. Swingle and M. Van Raamsdonk, Accelerating Cosmology from a
Holographic Wormhole, Phys. Rev. Lett. 130 (2023) 221601 [arXiv:2206.14821] [INSPIRE].

[34] E.A. Bergshoeff et al., Pseudo-supersymmetry and a tale of alternate realities, JHEP 07 (2007)
067 [arXiv:0704.3559] [INSPIRE].

[35] K. Skenderis, P.K. Townsend and A. Van Proeyen, Domain-wall/cosmology correspondence in
adS/dS supergravity, JHEP 08 (2007) 036 [arXiv:0704.3918] [INSPIRE].

[36] R. Dijkgraaf, B. Heidenreich, P. Jefferson and C. Vafa, Negative Branes, Supergroups and the
Signature of Spacetime, JHEP 02 (2018) 050 [arXiv:1603.05665] [INSPIRE].

[37] R. Blumenhagen et al., dS Spaces and Brane Worlds in Exotic String Theories, JHEP 06 (2020)
077 [arXiv:2002.11746] [INSPIRE].

[38] C. Coriano, L. Delle Rose and M. Serino, Three and Four Point Functions of Stress Energy
Tensors in D = 3 for the Analysis of Cosmological Non-Gaussianities, JHEP 12 (2012) 090
[arXiv:1210.0136] [INSPIRE].

[39] S. Kawai and Y. Nakayama, Improvement of energy-momentum tensor and non-Gaussianities
in holographic cosmology, JHEP 06 (2014) 052 [arXiv:1403.6220] [INSPIRE].

[40] M. Dias, Cosmology at the boundary of de Sitter using the dS/QFT correspondence, Phys. Rev.
D 84 (2011) 023512 [arXiv:1104.0625] [INSPIRE].

[41] R. Easther, R. Flauger, P. McFadden and K. Skenderis, Constraining holographic inflation with
WMAP, JCAP 09 (2011) 030 [arXiv:1104.2040] [INSPIRE].

[42] N. Afshordi et al., From Planck data to Planck era: Observational tests of Holographic
Cosmology, Phys. Rev. Lett. 118 (2017) 041301 [arXiv:1607.04878] [INSPIRE].

[43] N. Afshordi, E. Gould and K. Skenderis, Constraining holographic cosmology using Planck data,
Phys. Rev. D 95 (2017) 123505 [arXiv:1703.05385] [INSPIRE].

[44] H. Nastase and K. Skenderis, Holography for the very early Universe and the classic puzzles of
Hot Big Bang cosmology, Phys. Rev. D 101 (2020) 021901 [arXiv:1904.05821] [INSPIRE].

[45] H. Nastase, Holographic cosmology solutions of problems with pre-inflationary cosmology, JHEP
12 (2020) 026 [arXiv:2008.05630] [INSPIRE].

[46] R. Jackiw and S. Templeton, How Superrenormalizable Interactions Cure their Infrared
Divergences, Phys. Rev. D 23 (1981) 2291 [INSPIRE].

[47] T. Appelquist and R.D. Pisarski, High-Temperature Yang-Mills Theories and
Three-Dimensional Quantum Chromodynamics, Phys. Rev. D 23 (1981) 2305 [INSPIRE].

[48] G. Cossu et al., Nonperturbative Infrared Finiteness in a Superrenormalizable Scalar Quantum
Field Theory, Phys. Rev. Lett. 126 (2021) 221601 [arXiv:2009.14768] [INSPIRE].

[49] A. Bzowski, P. McFadden and K. Skenderis, Holography for inflation using conformal
perturbation theory, JHEP 04 (2013) 047 [arXiv:1211.4550] [INSPIRE].

[50] P. McFadden, On the power spectrum of inflationary cosmologies dual to a deformed CFT,
JHEP 10 (2013) 071 [arXiv:1308.0331] [INSPIRE].

[51] I. Antoniadis, P.O. Mazur and E. Mottola, Conformal Invariance, Dark Energy, and CMB
Non-Gaussianity, JCAP 09 (2012) 024 [arXiv:1103.4164] [INSPIRE].

[52] P. Creminelli, Conformal invariance of scalar perturbations in inflation, Phys. Rev. D 85 (2012)
041302 [arXiv:1108.0874] [INSPIRE].

– 79 –

https://doi.org/10.1103/PhysRevLett.130.221601
https://arxiv.org/abs/2206.14821
https://inspirehep.net/literature/2665533
https://doi.org/10.1088/1126-6708/2007/07/067
https://doi.org/10.1088/1126-6708/2007/07/067
https://arxiv.org/abs/0704.3559
https://inspirehep.net/literature/749370
https://doi.org/10.1088/1126-6708/2007/08/036
https://arxiv.org/abs/0704.3918
https://inspirehep.net/literature/749587
https://doi.org/10.1007/JHEP02(2018)050
https://arxiv.org/abs/1603.05665
https://inspirehep.net/literature/1430074
https://doi.org/10.1007/JHEP06(2020)077
https://doi.org/10.1007/JHEP06(2020)077
https://arxiv.org/abs/2002.11746
https://inspirehep.net/literature/1782642
https://doi.org/10.1007/JHEP12(2012)090
https://arxiv.org/abs/1210.0136
https://inspirehep.net/literature/1188861
https://doi.org/10.1007/JHEP06(2014)052
https://arxiv.org/abs/1403.6220
https://inspirehep.net/literature/1287047
https://doi.org/10.1103/PhysRevD.84.023512
https://doi.org/10.1103/PhysRevD.84.023512
https://arxiv.org/abs/1104.0625
https://inspirehep.net/literature/894777
https://doi.org/10.1088/1475-7516/2011/09/030
https://arxiv.org/abs/1104.2040
https://inspirehep.net/literature/895876
https://doi.org/10.1103/PhysRevLett.118.041301
https://arxiv.org/abs/1607.04878
https://inspirehep.net/literature/1476594
https://doi.org/10.1103/PhysRevD.95.123505
https://arxiv.org/abs/1703.05385
https://inspirehep.net/literature/1517743
https://doi.org/10.1103/PhysRevD.101.021901
https://arxiv.org/abs/1904.05821
https://inspirehep.net/literature/1729271
https://doi.org/10.1007/JHEP12(2020)026
https://doi.org/10.1007/JHEP12(2020)026
https://arxiv.org/abs/2008.05630
https://inspirehep.net/literature/1811604
https://doi.org/10.1103/PhysRevD.23.2291
https://inspirehep.net/literature/155769
https://doi.org/10.1103/PhysRevD.23.2305
https://inspirehep.net/literature/10184
https://doi.org/10.1103/PhysRevLett.126.221601
https://arxiv.org/abs/2009.14768
https://inspirehep.net/literature/1820298
https://doi.org/10.1007/JHEP04(2013)047
https://arxiv.org/abs/1211.4550
https://inspirehep.net/literature/1203113
https://doi.org/10.1007/JHEP10(2013)071
https://arxiv.org/abs/1308.0331
https://inspirehep.net/literature/1246093
https://doi.org/10.1088/1475-7516/2012/09/024
https://arxiv.org/abs/1103.4164
https://inspirehep.net/literature/893556
https://doi.org/10.1103/PhysRevD.85.041302
https://doi.org/10.1103/PhysRevD.85.041302
https://arxiv.org/abs/1108.0874
https://inspirehep.net/literature/921971


J
H
E
P
0
5
(
2
0
2
4
)
0
5
3

[53] A. Kehagias and A. Riotto, Operator Product Expansion of Inflationary Correlators and
Conformal Symmetry of de Sitter, Nucl. Phys. B 864 (2012) 492 [arXiv:1205.1523] [INSPIRE].

[54] A. Kehagias and A. Riotto, The Four-point Correlator in Multifield Inflation, the Operator
Product Expansion and the Symmetries of de Sitter, Nucl. Phys. B 868 (2013) 577
[arXiv:1210.1918] [INSPIRE].

[55] K. Schalm, G. Shiu and T. van der Aalst, Consistency condition for inflation from (broken)
conformal symmetry, JCAP 03 (2013) 005 [arXiv:1211.2157] [INSPIRE].

[56] J. Garriga and Y. Urakawa, Inflation and deformation of conformal field theory, JCAP 07
(2013) 033 [arXiv:1303.5997] [INSPIRE].

[57] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043
[INSPIRE].

[58] N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The Cosmological Bootstrap:
Inflationary Correlators from Symmetries and Singularities, JHEP 04 (2020) 105
[arXiv:1811.00024] [INSPIRE].

[59] N. Arkani-Hamed, P. Benincasa and A. Postnikov, Cosmological Polytopes and the
Wavefunction of the Universe, arXiv:1709.02813 [INSPIRE].

[60] P. Benincasa, From the flat-space S-matrix to the Wavefunction of the Universe,
arXiv:1811.02515 [INSPIRE].

[61] C. Sleight, A Mellin Space Approach to Cosmological Correlators, JHEP 01 (2020) 090
[arXiv:1906.12302] [INSPIRE].

[62] C. Sleight and M. Taronna, Bootstrapping Inflationary Correlators in Mellin Space, JHEP 02
(2020) 098 [arXiv:1907.01143] [INSPIRE].

[63] D. Baumann et al., The cosmological bootstrap: weight-shifting operators and scalar seeds,
JHEP 12 (2020) 204 [arXiv:1910.14051] [INSPIRE].

[64] D. Baumann et al., The Cosmological Bootstrap: Spinning Correlators from Symmetries and
Factorization, SciPost Phys. 11 (2021) 071 [arXiv:2005.04234] [INSPIRE].

[65] E. Pajer, D. Stefanyszyn and J. Supeł, The Boostless Bootstrap: Amplitudes without Lorentz
boosts, JHEP 12 (2020) 198 [Erratum ibid. 04 (2022) 023] [arXiv:2007.00027] [INSPIRE].

[66] C. Sleight and M. Taronna, From AdS to dS exchanges: Spectral representation, Mellin
amplitudes, and crossing, Phys. Rev. D 104 (2021) L081902 [arXiv:2007.09993] [INSPIRE].

[67] H. Goodhew, S. Jazayeri and E. Pajer, The Cosmological Optical Theorem, JCAP 04 (2021)
021 [arXiv:2009.02898] [INSPIRE].

[68] S. Céspedes, A.-C. Davis and S. Melville, On the time evolution of cosmological correlators,
JHEP 02 (2021) 012 [arXiv:2009.07874] [INSPIRE].

[69] E. Pajer, Building a Boostless Bootstrap for the Bispectrum, JCAP 01 (2021) 023
[arXiv:2010.12818] [INSPIRE].

[70] S. Jazayeri, E. Pajer and D. Stefanyszyn, From locality and unitarity to cosmological correlators,
JHEP 10 (2021) 065 [arXiv:2103.08649] [INSPIRE].

[71] S. Melville and E. Pajer, Cosmological Cutting Rules, JHEP 05 (2021) 249
[arXiv:2103.09832] [INSPIRE].

[72] D. Baumann et al., Linking the singularities of cosmological correlators, JHEP 09 (2022) 010
[arXiv:2106.05294] [INSPIRE].

– 80 –

https://doi.org/10.1016/j.nuclphysb.2012.07.004
https://arxiv.org/abs/1205.1523
https://inspirehep.net/literature/1113853
https://doi.org/10.1016/j.nuclphysb.2012.11.025
https://arxiv.org/abs/1210.1918
https://inspirehep.net/literature/1189739
https://doi.org/10.1088/1475-7516/2013/03/005
https://arxiv.org/abs/1211.2157
https://inspirehep.net/literature/1201918
https://doi.org/10.1088/1475-7516/2013/07/033
https://doi.org/10.1088/1475-7516/2013/07/033
https://arxiv.org/abs/1303.5997
https://inspirehep.net/literature/1225319
https://arxiv.org/abs/1503.08043
https://inspirehep.net/literature/1356707
https://doi.org/10.1007/JHEP04(2020)105
https://arxiv.org/abs/1811.00024
https://inspirehep.net/literature/1701436
https://arxiv.org/abs/1709.02813
https://inspirehep.net/literature/1622770
https://arxiv.org/abs/1811.02515
https://inspirehep.net/literature/1702320
https://doi.org/10.1007/JHEP01(2020)090
https://arxiv.org/abs/1906.12302
https://inspirehep.net/literature/1741989
https://doi.org/10.1007/JHEP02(2020)098
https://doi.org/10.1007/JHEP02(2020)098
https://arxiv.org/abs/1907.01143
https://inspirehep.net/literature/1742341
https://doi.org/10.1007/JHEP12(2020)204
https://arxiv.org/abs/1910.14051
https://inspirehep.net/literature/1762383
https://doi.org/10.21468/SciPostPhys.11.3.071
https://arxiv.org/abs/2005.04234
https://inspirehep.net/literature/1795146
https://doi.org/10.1007/JHEP12(2020)198
https://arxiv.org/abs/2007.00027
https://inspirehep.net/literature/1804553
https://doi.org/10.1103/PhysRevD.104.L081902
https://arxiv.org/abs/2007.09993
https://inspirehep.net/literature/1807966
https://doi.org/10.1088/1475-7516/2021/04/021
https://doi.org/10.1088/1475-7516/2021/04/021
https://arxiv.org/abs/2009.02898
https://inspirehep.net/literature/1815488
https://doi.org/10.1007/JHEP02(2021)012
https://arxiv.org/abs/2009.07874
https://inspirehep.net/literature/1817661
https://doi.org/10.1088/1475-7516/2021/01/023
https://arxiv.org/abs/2010.12818
https://inspirehep.net/literature/1826221
https://doi.org/10.1007/JHEP10(2021)065
https://arxiv.org/abs/2103.08649
https://inspirehep.net/literature/1851932
https://doi.org/10.1007/JHEP05(2021)249
https://arxiv.org/abs/2103.09832
https://inspirehep.net/literature/1852319
https://doi.org/10.1007/JHEP09(2022)010
https://arxiv.org/abs/2106.05294
https://inspirehep.net/literature/1867991


J
H
E
P
0
5
(
2
0
2
4
)
0
5
3

[73] D. Meltzer, The inflationary wavefunction from analyticity and factorization, JCAP 12 (2021)
018 [arXiv:2107.10266] [INSPIRE].

[74] M. Hogervorst, J. Penedones and K.S. Vaziri, Towards the non-perturbative cosmological
bootstrap, JHEP 02 (2023) 162 [arXiv:2107.13871] [INSPIRE].

[75] L. Di Pietro, V. Gorbenko and S. Komatsu, Analyticity and unitarity for cosmological
correlators, JHEP 03 (2022) 023 [arXiv:2108.01695] [INSPIRE].

[76] C. Sleight and M. Taronna, From dS to AdS and back, JHEP 12 (2021) 074
[arXiv:2109.02725] [INSPIRE].

[77] G.L. Pimentel and D.-G. Wang, Boostless cosmological collider bootstrap, JHEP 10 (2022) 177
[arXiv:2205.00013] [INSPIRE].

[78] J. Bonifacio et al., The graviton four-point function in de Sitter space, JHEP 06 (2023) 212
[arXiv:2212.07370] [INSPIRE].

[79] S.A. Salcedo, M.H.G. Lee, S. Melville and E. Pajer, The Analytic Wavefunction, JHEP 06
(2023) 020 [arXiv:2212.08009] [INSPIRE].

[80] D.-G. Wang, G.L. Pimentel and A. Achúcarro, Bootstrapping multi-field inflation:
non-Gaussianities from light scalars revisited, JCAP 05 (2023) 043 [arXiv:2212.14035]
[INSPIRE].

[81] S. Albayrak and S. Kharel, All plus four point (A)dS graviton function using generalized
on-shell recursion relation, JHEP 05 (2023) 151 [arXiv:2302.09089] [INSPIRE].

[82] C. Armstrong, H. Goodhew, A. Lipstein and J. Mei, Graviton trispectrum from gluons, JHEP
08 (2023) 206 [arXiv:2304.07206] [INSPIRE].

[83] S. Albayrak, P. Benincasa and C. Duaso Pueyo, Perturbative Unitarity and the Wavefunction of
the Universe, arXiv:2305.19686 [INSPIRE].

[84] N. Arkani-Hamed et al., Kinematic Flow and the Emergence of Time, arXiv:2312.05300
[INSPIRE].

[85] N. Arkani-Hamed et al., Differential Equations for Cosmological Correlators,
arXiv:2312.05303 [INSPIRE].

[86] A. Bzowski, P. McFadden and K. Skenderis, A handbook of holographic 4-point functions, JHEP
12 (2022) 039 [arXiv:2207.02872] [INSPIRE].

[87] T. Falk, R. Rangarajan and M. Srednicki, The angular dependence of the three point correlation
function of the cosmic microwave background radiation as predicted by inflationary cosmologies,
Astrophys. J. Lett. 403 (1993) L1 [astro-ph/9208001] [INSPIRE].

[88] M. Zaldarriaga, Non-Gaussianities in models with a varying inflaton decay rate, Phys. Rev. D
69 (2004) 043508 [astro-ph/0306006] [INSPIRE].

[89] D. Seery, K.A. Malik and D.H. Lyth, Non-gaussianity of inflationary field perturbations from
the field equation, JCAP 03 (2008) 014 [arXiv:0802.0588] [INSPIRE].

[90] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849
[hep-th/0209067] [INSPIRE].

[91] T. Chakraborty et al., Holography of information in de Sitter space, JHEP 12 (2023) 120
[arXiv:2303.16316] [INSPIRE].

[92] T. Chakraborty et al., The Hilbert space of de Sitter quantum gravity, JHEP 01 (2024) 132
[arXiv:2303.16315] [INSPIRE].

– 81 –

https://doi.org/10.1088/1475-7516/2021/12/018
https://doi.org/10.1088/1475-7516/2021/12/018
https://arxiv.org/abs/2107.10266
https://inspirehep.net/literature/1890378
https://doi.org/10.1007/JHEP02(2023)162
https://arxiv.org/abs/2107.13871
https://inspirehep.net/literature/1895235
https://doi.org/10.1007/JHEP03(2022)023
https://arxiv.org/abs/2108.01695
https://inspirehep.net/literature/1898984
https://doi.org/10.1007/JHEP12(2021)074
https://arxiv.org/abs/2109.02725
https://inspirehep.net/literature/1918131
https://doi.org/10.1007/JHEP10(2022)177
https://arxiv.org/abs/2205.00013
https://inspirehep.net/literature/2075462
https://doi.org/10.1007/JHEP06(2023)212
https://arxiv.org/abs/2212.07370
https://inspirehep.net/literature/2614267
https://doi.org/10.1007/JHEP06(2023)020
https://doi.org/10.1007/JHEP06(2023)020
https://arxiv.org/abs/2212.08009
https://inspirehep.net/literature/2614954
https://doi.org/10.1088/1475-7516/2023/05/043
https://arxiv.org/abs/2212.14035
https://inspirehep.net/literature/2618840
https://doi.org/10.1007/JHEP05(2023)151
https://arxiv.org/abs/2302.09089
https://inspirehep.net/literature/2634747
https://doi.org/10.1007/JHEP08(2023)206
https://doi.org/10.1007/JHEP08(2023)206
https://arxiv.org/abs/2304.07206
https://inspirehep.net/literature/2651484
https://arxiv.org/abs/2305.19686
https://inspirehep.net/literature/2664191
https://arxiv.org/abs/2312.05300
https://inspirehep.net/literature/2734723
https://arxiv.org/abs/2312.05303
https://inspirehep.net/literature/2734780
https://doi.org/10.1007/JHEP12(2022)039
https://doi.org/10.1007/JHEP12(2022)039
https://arxiv.org/abs/2207.02872
https://inspirehep.net/literature/2107183
https://doi.org/10.1086/186707
https://arxiv.org/abs/astro-ph/9208001
https://inspirehep.net/literature/337489
https://doi.org/10.1103/PhysRevD.69.043508
https://doi.org/10.1103/PhysRevD.69.043508
https://arxiv.org/abs/astro-ph/0306006
https://inspirehep.net/literature/620021
https://doi.org/10.1088/1475-7516/2008/03/014
https://arxiv.org/abs/0802.0588
https://inspirehep.net/literature/778822
https://doi.org/10.1088/0264-9381/19/22/306
https://arxiv.org/abs/hep-th/0209067
https://inspirehep.net/literature/594622
https://doi.org/10.1007/JHEP12(2023)120
https://arxiv.org/abs/2303.16316
https://inspirehep.net/literature/2646943
https://doi.org/10.1007/JHEP01(2024)132
https://arxiv.org/abs/2303.16315
https://inspirehep.net/literature/2646984


J
H
E
P
0
5
(
2
0
2
4
)
0
5
3

[93] A. Bzowski, P. McFadden and K. Skenderis, Scalar 3-point functions in CFT: renormalisation,
beta functions and anomalies, JHEP 03 (2016) 066 [arXiv:1510.08442] [INSPIRE].

[94] A. Petkou and K. Skenderis, A nonrenormalization theorem for conformal anomalies, Nucl.
Phys. B 561 (1999) 100 [hep-th/9906030] [INSPIRE].

[95] A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in momentum
space, JHEP 03 (2014) 111 [arXiv:1304.7760] [INSPIRE].

[96] A. Bzowski, P. McFadden and K. Skenderis, Conformal n-point functions in momentum space,
Phys. Rev. Lett. 124 (2020) 131602 [arXiv:1910.10162] [INSPIRE].

[97] X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh Diagrammatics for Primordial
Perturbations, JCAP 12 (2017) 006 [arXiv:1703.10166] [INSPIRE].

[98] N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Univ. Press,
Cambridge, U.K. (1984) [DOI:10.1017/CBO9780511622632] [INSPIRE].

[99] P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-De Sitter Backgrounds and
Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].

[100] P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys.
144 (1982) 249 [INSPIRE].

[101] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B
556 (1999) 89 [hep-th/9905104] [INSPIRE].

[102] H. Isono, H.M. Liu and T. Noumi, Wavefunctions in dS/CFT revisited: principal series and
double-trace deformations, JHEP 04 (2021) 166 [arXiv:2011.09479] [INSPIRE].

[103] M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041
[hep-th/0105276] [INSPIRE].

[104] M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631
(2002) 159 [hep-th/0112119] [INSPIRE].

[105] M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023
[hep-th/9806087] [INSPIRE].

[106] M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000)
125 [hep-th/9812032] [INSPIRE].

[107] F. Caloro and P. McFadden, A-hypergeometric functions and creation operators for Feynman
and Witten diagrams, arXiv:2309.15895 [INSPIRE].

[108] A. Bzowski, Handbook of derivative AdS amplitudes, arXiv:2312.11625 [INSPIRE].

[109] A.A. Starobinsky, Fundamental Interactions, MGPI Press, Moscow (1984).

[110] L.H. Ford, Quantum Instability of De Sitter Space-time, Phys. Rev. D 31 (1985) 710 [INSPIRE].

[111] I. Antoniadis, J. Iliopoulos and T.N. Tomaras, Quantum Instability of De Sitter Space, Phys.
Rev. Lett. 56 (1986) 1319 [INSPIRE].

[112] A.A. Starobinsky, Stochastic de Sitter (inflationary) stage in the early universe, Lect. Notes
Phys. 246 (1986) 107 [INSPIRE].

[113] D.S. Salopek and J.R. Bond, Nonlinear evolution of long wavelength metric fluctuations in
inflationary models, Phys. Rev. D 42 (1990) 3936 [INSPIRE].

[114] A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the De
Sitter background, Phys. Rev. D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].

– 82 –

https://doi.org/10.1007/JHEP03(2016)066
https://arxiv.org/abs/1510.08442
https://inspirehep.net/literature/1401389
https://doi.org/10.1016/S0550-3213(99)00514-3
https://doi.org/10.1016/S0550-3213(99)00514-3
https://arxiv.org/abs/hep-th/9906030
https://inspirehep.net/literature/501248
https://doi.org/10.1007/JHEP03(2014)111
https://arxiv.org/abs/1304.7760
https://inspirehep.net/literature/1230988
https://doi.org/10.1103/PhysRevLett.124.131602
https://arxiv.org/abs/1910.10162
https://inspirehep.net/literature/1760410
https://doi.org/10.1088/1475-7516/2017/12/006
https://arxiv.org/abs/1703.10166
https://inspirehep.net/literature/1520681
https://doi.org/10.1017/CBO9780511622632
https://inspirehep.net/literature/181166
https://doi.org/10.1016/0370-2693(82)90643-8
https://inspirehep.net/literature/12129
https://doi.org/10.1016/0003-4916(82)90116-6
https://doi.org/10.1016/0003-4916(82)90116-6
https://inspirehep.net/literature/12266
https://doi.org/10.1016/S0550-3213(99)00387-9
https://doi.org/10.1016/S0550-3213(99)00387-9
https://arxiv.org/abs/hep-th/9905104
https://inspirehep.net/literature/499962
https://doi.org/10.1007/JHEP04(2021)166
https://arxiv.org/abs/2011.09479
https://inspirehep.net/literature/1831372
https://doi.org/10.1088/1126-6708/2001/08/041
https://arxiv.org/abs/hep-th/0105276
https://inspirehep.net/literature/557370
https://doi.org/10.1016/S0550-3213(02)00179-7
https://doi.org/10.1016/S0550-3213(02)00179-7
https://arxiv.org/abs/hep-th/0112119
https://inspirehep.net/literature/568280
https://doi.org/10.1088/1126-6708/1998/07/023
https://arxiv.org/abs/hep-th/9806087
https://inspirehep.net/literature/471699
https://doi.org/10.1002/(SICI)1521-3978(20001)48:1/3<125::AID-PROP125>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1521-3978(20001)48:1/3<125::AID-PROP125>3.0.CO;2-B
https://arxiv.org/abs/hep-th/9812032
https://inspirehep.net/literature/480414
https://arxiv.org/abs/2309.15895
https://inspirehep.net/literature/2703886
https://arxiv.org/abs/2312.11625
https://inspirehep.net/literature/2738637
https://doi.org/10.1103/PhysRevD.31.710
https://inspirehep.net/literature/203753
https://doi.org/10.1103/PhysRevLett.56.1319
https://doi.org/10.1103/PhysRevLett.56.1319
https://inspirehep.net/literature/218204
https://doi.org/10.1007/3-540-16452-9_6
https://doi.org/10.1007/3-540-16452-9_6
https://inspirehep.net/literature/238463
https://doi.org/10.1103/PhysRevD.42.3936
https://inspirehep.net/literature/298022
https://doi.org/10.1103/PhysRevD.50.6357
https://arxiv.org/abs/astro-ph/9407016
https://inspirehep.net/literature/374606


J
H
E
P
0
5
(
2
0
2
4
)
0
5
3

[115] N.C. Tsamis and R.P. Woodard, Stochastic quantum gravitational inflation, Nucl. Phys. B 724
(2005) 295 [gr-qc/0505115] [INSPIRE].

[116] S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005)
043514 [hep-th/0506236] [INSPIRE].

[117] A. Riotto and M.S. Sloth, On Resumming Inflationary Perturbations beyond One-loop, JCAP
04 (2008) 030 [arXiv:0801.1845] [INSPIRE].

[118] C.P. Burgess, L. Leblond, R. Holman and S. Shandera, Super-Hubble de Sitter Fluctuations and
the Dynamical RG, JCAP 03 (2010) 033 [arXiv:0912.1608] [INSPIRE].

[119] L. Senatore and M. Zaldarriaga, On Loops in Inflation, JHEP 12 (2010) 008
[arXiv:0912.2734] [INSPIRE].

[120] S.B. Giddings and M.S. Sloth, Semiclassical relations and IR effects in de Sitter and slow-roll
space-times, JCAP 01 (2011) 023 [arXiv:1005.1056] [INSPIRE].

[121] C.P. Burgess, R. Holman, L. Leblond and S. Shandera, Breakdown of Semiclassical Methods in
de Sitter Space, JCAP 10 (2010) 017 [arXiv:1005.3551] [INSPIRE].

[122] D. Marolf and I.A. Morrison, The IR stability of de Sitter: Loop corrections to scalar
propagators, Phys. Rev. D 82 (2010) 105032 [arXiv:1006.0035] [INSPIRE].

[123] A. Rajaraman, On the proper treatment of massless fields in Euclidean de Sitter space, Phys.
Rev. D 82 (2010) 123522 [arXiv:1008.1271] [INSPIRE].

[124] L. Senatore and M. Zaldarriaga, On Loops in Inflation II: IR Effects in Single Clock Inflation,
JHEP 01 (2013) 109 [arXiv:1203.6354] [INSPIRE].

[125] G.L. Pimentel, L. Senatore and M. Zaldarriaga, On Loops in Inflation III: Time Independence
of zeta in Single Clock Inflation, JHEP 07 (2012) 166 [arXiv:1203.6651] [INSPIRE].

[126] A.M. Polyakov, Infrared instability of the de Sitter space, arXiv:1209.4135 [INSPIRE].

[127] L. Senatore and M. Zaldarriaga, The constancy of ζ in single-clock Inflation at all loops, JHEP
09 (2013) 148 [arXiv:1210.6048] [INSPIRE].

[128] J. Serreau and R. Parentani, Nonperturbative resummation of de Sitter infrared logarithms in
the large-N limit, Phys. Rev. D 87 (2013) 085012 [arXiv:1302.3262] [INSPIRE].

[129] E.T. Akhmedov, U. Moschella, K.E. Pavlenko and F.K. Popov, Infrared dynamics of massive
scalars from the complementary series in de Sitter space, Phys. Rev. D 96 (2017) 025002
[arXiv:1701.07226] [INSPIRE].

[130] V. Gorbenko and L. Senatore, λϕ4 in dS, arXiv:1911.00022 [INSPIRE].

[131] M. Mirbabayi, Infrared dynamics of a light scalar field in de Sitter, JCAP 12 (2020) 006
[arXiv:1911.00564] [INSPIRE].

[132] M. Baumgart and R. Sundrum, De Sitter Diagrammar and the Resummation of Time, JHEP
07 (2020) 119 [arXiv:1912.09502] [INSPIRE].

[133] D. Green and A. Premkumar, Dynamical RG and Critical Phenomena in de Sitter Space, JHEP
04 (2020) 064 [arXiv:2001.05974] [INSPIRE].

[134] T. Cohen and D. Green, Soft de Sitter Effective Theory, JHEP 12 (2020) 041
[arXiv:2007.03693] [INSPIRE].

[135] M. Baumgart and R. Sundrum, Manifestly Causal In-In Perturbation Theory about the
Interacting Vacuum, JHEP 03 (2021) 080 [arXiv:2010.10785] [INSPIRE].

– 83 –

https://doi.org/10.1016/j.nuclphysb.2005.06.031
https://doi.org/10.1016/j.nuclphysb.2005.06.031
https://arxiv.org/abs/gr-qc/0505115
https://inspirehep.net/literature/683162
https://doi.org/10.1103/PhysRevD.72.043514
https://doi.org/10.1103/PhysRevD.72.043514
https://arxiv.org/abs/hep-th/0506236
https://inspirehep.net/literature/690111
https://doi.org/10.1088/1475-7516/2008/04/030
https://doi.org/10.1088/1475-7516/2008/04/030
https://arxiv.org/abs/0801.1845
https://inspirehep.net/literature/777289
https://doi.org/10.1088/1475-7516/2010/03/033
https://arxiv.org/abs/0912.1608
https://inspirehep.net/literature/839352
https://doi.org/10.1007/JHEP12(2010)008
https://arxiv.org/abs/0912.2734
https://inspirehep.net/literature/840089
https://doi.org/10.1088/1475-7516/2011/01/023
https://arxiv.org/abs/1005.1056
https://inspirehep.net/literature/854204
https://doi.org/10.1088/1475-7516/2010/10/017
https://arxiv.org/abs/1005.3551
https://inspirehep.net/literature/855151
https://doi.org/10.1103/PhysRevD.82.105032
https://arxiv.org/abs/1006.0035
https://inspirehep.net/literature/856837
https://doi.org/10.1103/PhysRevD.82.123522
https://doi.org/10.1103/PhysRevD.82.123522
https://arxiv.org/abs/1008.1271
https://inspirehep.net/literature/864856
https://doi.org/10.1007/JHEP01(2013)109
https://arxiv.org/abs/1203.6354
https://inspirehep.net/literature/1095385
https://doi.org/10.1007/JHEP07(2012)166
https://arxiv.org/abs/1203.6651
https://inspirehep.net/literature/1095547
https://arxiv.org/abs/1209.4135
https://inspirehep.net/literature/1186575
https://doi.org/10.1007/JHEP09(2013)148
https://doi.org/10.1007/JHEP09(2013)148
https://arxiv.org/abs/1210.6048
https://inspirehep.net/literature/1192908
https://doi.org/10.1103/PhysRevD.87.085012
https://arxiv.org/abs/1302.3262
https://inspirehep.net/literature/1219311
https://doi.org/10.1103/PhysRevD.96.025002
https://arxiv.org/abs/1701.07226
https://inspirehep.net/literature/1510591
https://arxiv.org/abs/1911.00022
https://inspirehep.net/literature/1762612
https://doi.org/10.1088/1475-7516/2020/12/006
https://arxiv.org/abs/1911.00564
https://inspirehep.net/literature/1762859
https://doi.org/10.1007/JHEP07(2020)119
https://doi.org/10.1007/JHEP07(2020)119
https://arxiv.org/abs/1912.09502
https://inspirehep.net/literature/1772081
https://doi.org/10.1007/JHEP04(2020)064
https://doi.org/10.1007/JHEP04(2020)064
https://arxiv.org/abs/2001.05974
https://inspirehep.net/literature/1776048
https://doi.org/10.1007/JHEP12(2020)041
https://arxiv.org/abs/2007.03693
https://inspirehep.net/literature/1805791
https://doi.org/10.1007/JHEP03(2021)080
https://arxiv.org/abs/2010.10785
https://inspirehep.net/literature/1824303


J
H
E
P
0
5
(
2
0
2
4
)
0
5
3

[136] T. Heckelbacher and I. Sachs, Loops in dS/CFT, JHEP 02 (2021) 151 [arXiv:2009.06511]
[INSPIRE].

[137] S. Céspedes, A.-C. Davis and D.-G. Wang, On the IR Divergences in de Sitter Space: loops,
resummation and the semi-classical wavefunction, arXiv:2311.17990 [INSPIRE].

[138] M. Beneke, P. Hager and A.F. Sanfilippo, Cosmological Correlators in massless ϕ4-theory and
the Method of Regions, arXiv:2312.06766 [INSPIRE].

[139] C. Chowdhury et al., The Subtle Simplicity of Cosmological Correlators, arXiv:2312.13803
[INSPIRE].

[140] D. Seery, Infrared effects in inflationary correlation functions, Class. Quant. Grav. 27 (2010)
124005 [arXiv:1005.1649] [INSPIRE].

[141] B.-L. Hu, Infrared Behavior of Quantum Fields in Inflationary Cosmology — Issues and
Approaches: an overview, arXiv:1812.11851 [INSPIRE].

[142] M. Bañados, E. Bianchi, I. Muñoz and K. Skenderis, Bulk renormalization and the AdS/CFT
correspondence, Phys. Rev. D 107 (2023) L021901 [arXiv:2208.11539] [INSPIRE].

[143] I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10
(2004) 075 [hep-th/0407071] [INSPIRE].

[144] A. Bzowski, Dimensional renormalization in AdS/CFT, arXiv:1612.03915 [INSPIRE].

[145] A. Bzowski and M. Schillo, Dimensional regularization for holographic RG flows, JHEP 10
(2019) 025 [arXiv:1906.02234] [INSPIRE].

– 84 –

https://doi.org/10.1007/JHEP02(2021)151
https://arxiv.org/abs/2009.06511
https://inspirehep.net/literature/1817097
https://arxiv.org/abs/2311.17990
https://inspirehep.net/literature/2728710
https://arxiv.org/abs/2312.06766
https://inspirehep.net/literature/2735871
https://arxiv.org/abs/2312.13803
https://inspirehep.net/literature/2739870
https://doi.org/10.1088/0264-9381/27/12/124005
https://doi.org/10.1088/0264-9381/27/12/124005
https://arxiv.org/abs/1005.1649
https://inspirehep.net/literature/854832
https://arxiv.org/abs/1812.11851
https://inspirehep.net/literature/1711829
https://doi.org/10.1103/PhysRevD.107.L021901
https://arxiv.org/abs/2208.11539
https://inspirehep.net/literature/2141310
https://doi.org/10.1088/1126-6708/2004/10/075
https://doi.org/10.1088/1126-6708/2004/10/075
https://arxiv.org/abs/hep-th/0407071
https://inspirehep.net/literature/654113
https://arxiv.org/abs/1612.03915
https://inspirehep.net/literature/1503196
https://doi.org/10.1007/JHEP10(2019)025
https://doi.org/10.1007/JHEP10(2019)025
https://arxiv.org/abs/1906.02234
https://inspirehep.net/literature/1738692

	Introduction and summary of results
	Relating the AdS partition function to the dS wavefunction
	Perturbative expansion of the Euclidean AdS partition function
	Perturbative expansion of the dS wavefunction
	Analytic continuation
	Holographic formulae for dS correlators

	Schwinger-Keldysh approach
	Amplitudes
	Free field
	Interactions, Schwinger-Keldysh and the generating functions
	3-point function
	4-point function

	Regularisation and renormalisation
	Outline of renormalisation
	Divergences
	Renormalisation
	Results
	Comparison to the literature

	Shadow CFT description and its breakdown 
	de Sitter Ward identities
	de Sitter correlators as shadow CFT correlators
	Breakdown of the shadow paradigm

	Discussion
	Definitions for momenta
	Holographic 1-point functions in the presence of sources
	In AdS
	In dS

	Singularity conditions for individual amplitudes
	Contact diagrams
	AdS exchanges
	dS exchanges
	Compatibility with the shadow formula

	Shadow relations in AdS 

