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ABSTRACT In recent years, unmanned aerial vehicles (UAVs) have been considered for many applications,
such as disaster prevention and control, logistics and transportation, and wireless communication.
Most UAVs need to be manually controlled using remote control, which can be challenging in many
environments. Therefore, autonomous UAVs have attracted significant research interest, where most of
the existing autonomous navigation algorithms suffer from long computation time and unsatisfactory
performance. Hence, we propose a Deep Reinforcement Learning (DRL) UAV path planning algorithm
based on cumulative reward and region segmentation. Our proposed region segmentation aims to reduce
the probability of DRL agents falling into local optimal trap, while our proposed cumulative reward model
takes into account the distance from the node to the destination and the density of obstacles near the node,
which solves the problem of sparse training data faced by the DRL algorithms in the path planning task.
The proposed region segmentation algorithm and cumulative reward model have been tested in different
DRL techniques, where we show that the cumulative reward model can improve the training efficiency
of deep neural networks by 30.8% and the region segmentation algorithm enables deep Q-network agent
to avoid 99% of local optimal traps and assists deep deterministic policy gradient agent to avoid 92% of
local optimal traps.

INDEX TERMS UAV path planning, Deep Reinforcement Learning, Autonomous Navigation, Experience
Replay, Cumulative Reward Model, Region Segmentation.

I. Introduction

IN recent years, unmanned aerial vehicles (UAVs) have
been widely used in many applications including weather

forecast, disaster prevention and control [1], logistics and
transportation, information collection, wireless communica-
tion as well as special environments operation [2]–[5]. UAVs
can be roughly divided into two categories, namely fixed
wing UAV [6], [7] and rotor UAV [8]. Fixed wing UAV has
the characteristics of fast flight speed and large load capacity
but poor flexibility. It is suitable for flying in an open envi-
ronment and is often used in information collection, disaster
early warning and geographic mapping [9]. The rotor UAV
has the characteristics of small volume and strong flexibility,
but its load capacity is generally small and its endurance
time is shorter than that of the fixed wing UAVs [10]. This
kind of UAV is suitable for performing tasks in small and
medium-sized environments [11], such as urban logistics

distribution, air base station (UAV assisted communication)
[12], warehouse management and farm management [13],
[14].

As mentioned above, UAVs have a very wide range of ap-
plication scenarios. Here, as an example, we consider the use
of UAVs to assist communication networks [15], [16], where
UAVs can serve as aerial base stations [17], [18]. Zeng et al.
presented in [19] the advantages, challenges, and potential
of UAV assisting in wireless communication. The authors
in [20] proposed a system for radio surveillance using the
Twin Delayed Deep Deterministic Policy Gradient (TD3)
model, and [21] combined the UAVs with the reconfigurable
intelligent surface (RIS) for UAV Jamming Rejection and
Path Planning, which shows the potential of combining the
UAV and deep reinforcement learning framework. In this
case, we consider using the UAVs to cruise at a fixed
flight altitude, while continuously moving between optimal
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deployment positions. After the best deployment location is
decided using techniques such as [22], [23], the dynamic
deployment problem of the UAVs becomes a collision free
path planning problem.

Many autonomous navigation schemes proposed for UAV
autonomous navigation require a range of sensor arrays
to collect a variety of information, and can require large
computation capability [24]–[26]. On the other hand, as a
resource limited platform, UAV has limited computational
capabilities and energy supply [27]. Hence, there are two
potential solutions for these challenges. The first is to op-
timize the algorithm of autonomous navigation and hence
to reduce the computational power demand of autonomous
navigation [28]. The second is to send the information to
the cloud that has sufficient computing capabilities using
wireless networks [29], [30]. In this paper, we focus on
the first scheme, that is to improve the UAV autonomous
navigation algorithm, while also reducing its computational
requirements.

The UAV flight path in a three-dimensional open space
may be obstructed by various objects. Therefore, obstacle
avoidance is key in autonomous UAV navigation systems.
There are many kinds of obstacles, such as buildings, trees,
power poles and street lamps, which do not move in a short
time. We consider this kind of obstacles as static obstacles.
In addition to static obstacles, some dynamic obstacles
may appear in the flight space of UAV, such as other non
cooperative UAVs, i.e. UAVs that cannot communicate with
each other, birds and some other flying objects such as bal-
loons [31]. These dynamic obstacles pose a great challenge
to the obstacle avoidance mechanism of UAVs [32], [33].
Furthermore, [34] proposes a resource allocation algorithm
that can be applied to edge computing network of vehicles
to effectively reduce the load of the communication server.
This technique has the potential to be extended to the UAV
systems. On the other hand, although DRL is considered
the most reliable autonomous navigation technology for
the UAVs at present, its training time consumption and
computational power requirements are very large [35]. This
makes the application of such algorithms in autonomous
navigation UAV quite challenging.

A. Related Works
The path planning methods of the UAV has several cate-
gories, including sampling-based, heuristic algorithms and
deep reinforcement learning based techniques. In the fol-
lowing sections, we present a review of these techniques.

1) Sampling-based Algorithms
The first category is the path planning algorithm based
on sampling, which includes A-star [36], rapidly-exploring
random tree (RRT) [37], cell decomposition [38], artificial
potential field (APF) [39], [40] and probabilistic road-map
(PRM) algorithms [41]. These sampling based methods re-

quire the knowledge of the working environment in advance
or the ability to fully sample the environmental information
and redefine the entire area as a node set [42]. Then the best
path is obtained by the optimal combination of nodes in the
node set. These algorithms have their own advantages and
disadvantages. Taking RRT as an example, the path planning
algorithm based on RRT can efficiently sample the space
and quickly and effectively search for the path that meets
the requirements in high-dimensional space [43], [44]. The
algorithm has great advantages in time complexity and space
complexity. However, the RRT has certain requirements
for the search space. If the search space is too complex
or narrow, such as a complicated maze, the efficiency of
RRT will be greatly reduced. Even if the path planning is
successfully completed, the search time will still be very
long.

Similar to the RRT algorithm, the PRM algorithm is also
based on sampling and search. The difference is that the
PRM is based on a comprehensive query and the RRT is
based on a single point query [45], [46]. Since the PRM
has less stringent requirements on the environment than
the RRT algorithm, the universality of the PRM algorithm
is wider than the RRT algorithm [41], [47]. However, the
computing resources required by these methods increase
dramatically with the increase in the environment space. The
above techniques all have the problem of falling into the local
optimal trap, where the APF technology is unable to find the
global optimal path when facing large obstacles [48].

2) Heuristic Algorithms
The second category of path planning is based on bio-
logically inspired heuristic algorithms [49], with the most
representative algorithms being the genetic algorithm [50]–
[52], ant colony optimization algorithm [53]–[55] and other
artificial intelligence algorithms [35]. The generation of such
algorithms is inspired by biological behaviour and they all
need to know the details of the environment. Due to strict
modeling, such algorithms can often obtain accurate path
planning solutions. However, the employment of this kind of
algorithm is challenging for large-scale and complex prob-
lems [56]. Among various biological heuristic algorithms,
artificial intelligence method can basically complete the path
planning task in an acceptable time when the environmen-
tal scale increases [56], [57]. Therefore, algorithms based
on appropriate artificial intelligence techniques have shown
good potential in path planning in medium-sized complex
environments [58], [59].

3) Deep Reinforcement Learning Algorithms
Deep Q-Network (DQN) algorithm framework, which is a
kind of deep reinforcement learning (DRL) algorithm has
been proposed in [60]. The framework uses the experience
replay method showing good performance in the process of
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learning how to play video games. Therefore, we consider
applying the DQN algorithm framework of ”experience
replay” [60] in the area of UAV path planning. Although
DQN has better performance and more robust in large-
scale and complex environments compared to other path
planning algorithms, the DQN algorithm experiences high
time complexity and divergence of neural networks. More-
over, similar to other path planning techniques, the DQN
algorithm encounters the problem of local optimal traps in
path planning tasks. In order to improve the efficiency and
robustness of the DQN path planning algorithm, we consider
modeling the distribution of obstacles in the environment as
a cumulative prior reward to pre-train UAVs.

Although DRL algorithm is currently considered the most
suitable technology for autonomous navigation of unmanned
aerial vehicles, DRL still faces two main challenges, one
is the low training efficiency of deep neural networks [61],
[62], and the other is the risk of falling into local optimal
traps [63]. In other fields of deep learning, there is also
the problem of falling into local optimal traps, which some
researchers refer to as the overfitting problem of deep neural
networks [64], [65]. The above problems are mainly caused
by the sparse training data or the probability distribution
of the training data. The main solution to this problem is
to reduce the sparsity of the training data [66], [67] and
break the unique statistical characteristics of the training
data [68]. However, for DRL algorithms, the training data
is obtained through exploration, and some studies have pro-
posed methods to solve special probability distributions, such
as ”experience replay” mentioned earlier. For autonomous
navigation of unmanned aerial vehicles, experience replay
will make the reward values sparse. This is because the
most crucial experience in the path planning problem is the
transition upon reaching the destination, which is often given
very high reward values. However, such experience only
appears once in each training episode. After using experience
replay, the key experience mentioned above may not even
exist in the experience pool. Even if it exists, the probability
of it being selected for learning is very low.

Against this backdrop we propose a method that can
solve the above problems, which can effectively improve
the training efficiency of neural networks for various DRL
algorithms for autonomous navigation of unmanned aerial
vehicles while minimizing the possibility of falling into local
optimal traps.

B. Contributions
Our contributions can be listed as follows:

• We propose a framework of DRL for UAV path plan-
ning that is applicable to most current autonomous
navigation algorithms for DRL UAV agents, such
as DQN, deep deterministic policy gradient (DDPG),
Actor-Critic(AC) and stochastic value gradient (SVG).
More explicitly, this framework can be applied in both
the Markov decision process (MDP) and the partially

observable Markov decision process (POMDP) environ-
ments.

• We propose a cumulative reward model based on
distance and obstacle density in order to reduce the
training overhead. More specifically, compared with
the traditional reward model, the DRL algorithm based
on the cumulative reward model has a higher training
efficiency.

• We propose a region segmentation algorithm that allows
the DRL UAV agents to avoid falling into local optimal
traps. The region segmentation algorithm can avoid
falling into local optimal traps 99% of the time using
DQN, while also avoiding falling into local optimal
traps 92% of the time using DDPG.

• The region segmentation algorithm we propose applies
soft decision reward value evaluation, which can mit-
igate issues related to slow convergence or network
divergence in the POMDP environment.

The contributions of our paper are compared to the liter-
ature shown in Table 1. The rest of the paper is organized
as follows. In Section II we introduce the system model.
In Section III, we introduce the cumulative reward model
based on distance, obstacle density and region segmentation
algorithm. In Section IV, we demonstrate the feasibility of
our proposed method through simulation results and compare
it with the traditional reward model. In Section V, we offer
our conclusions and propose potential future directions.

II. System Model and Problem Formulation
In our proposed system, when the deployment point of the
UAV is given, the UAV will plan a collision free path to move
from its current position to the deployment point. Taking the
environment shown in Fig. 1 as an example, if the yellow
dot represents the deployment location of the drone, the
drone will plan a collision free path to fly to the deployment
location. In this section, we formulate our problem and then
introduce the background knowledge related to the DRL
techniques used in our system.

A. Problem Formulation
We aim to solve the path planning problem of UAV, where
the path should be as short as possible without collision.
In this paper, we assume that the UAV cruises at a fixed
flight altitude, where we only need to consider obstacles at
the flying altitude of the UAV [35]. In order to facilitate
the modeling of the workspace, we take a cross-section of
the 3D workspace as shown in Fig. 1 at the flight height
of the UAV to get the 2D simulation environment shown in
Fig. 2. In Fig. 2 the red dot represents the starting position of
the UAV, the black blocks represent the obstacles, the white
blocks represents the non-obstacle node, and the blue block
represents the destination.

In this grid simulation environment, the path planning
result of UAV can be expressed as an ordered path vector
P = [P1, P2, . . . , Plast], where Pi represents the i-th node
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TABLE 1: Novelty comparison with the state-of-the-art literature.

our paper [43] [57] [45] [46] [49] [50] [51] [52] [55] [35] [58] [69]

Reinforcement Learning ✓ ✓ ✓ ✓ ✓

Deep neural network ✓ ✓ ✓ ✓ ✓ ✓ ✓

Path planning efficiency analysis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Local optimal trap avoidance ✓ ✓ ✓ ✓ ✓ ✓

FIGURE 1: 3D view of UAV working environment in
Simulink VRSink.

FIGURE 2: UAV working environment 2D model

in the path, Plast represents the last node in the path. The
ordered vector P satisfies the condition P1 = Sstart, Plast =
Send,∀p̂ ⊆ P satisfies p̂ ∈ S, p̂ /∈ Obs, where S is the set
of all possible states, Sstart is the start node, Send is the
destination node, and Obs is the set of all obstacle nodes.

B. System Models
Our proposed UAV DRL autonomous navigation system con-
siders two typical scenarios: discrete MDP environment and
continuous POMDP environment, where the system model
in both cases is different. In a discrete MDP environment,
our UAV autonomous navigation system uses a positioning
system to grasp the position of the UAV and the obstacle
distribution of the environment, then produce a discrete
workspace based on the environment information. Then, a
UAV agent can be trained to complete real-time path plan-
ning by generating transaction experience through exploring
the environment and training the neural network with the
collected transaction experiences. During this process, the
flight control and positioning system is always considered
accurate and reliable.

We consider the path planning problem of UAV as a MDP,
which includes several main parts: state set S, action set
A = at = {Forward, backward, left, right, left front, right
front, left back, right back} , transfer function T (s

′ |s, a),
and reward function R(s

′ |s, a). The main advantage of Q-
learning is that it uses the time differential (TD) method (a
combination of Monte Carlo and dynamic programming) for
off-line learning, and Bellman equation can be used to solve
the optimal strategy of the Markov process [70], [71].

The solution of the Bellman equation is based on the op-
timal cumulative expectation V ∗(s), which can be expressed
as follows [72]:

V ∗(s) = max
π

E

[
t=n∑
t=0

γtR(St+1, At, St|π, s)

]
, (1)

where γ is the discount factor, t is current time index, and π
is the action policy. The Q value Q(s, a) is a function of the
action state value, expressed as the expected accumulation
of the action reward value as follows:

Q(s, a) = E[rt+1 + γrt+2 + γ2rt+3 + . . . |a, s)], (2)

where rt+n is the reward value of next n steps of current time
index t. The update of Q value is based on the Bellman’s
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equation:

Q(st+1, at+1) = (1− α)Q(st, at)+

α[R(st, at) + γmax
a

(Q(st+1, a))],
(3)

where α is the learning rate of the agent. If the agent executes
action at in state st at time t, it will get immediate reward
R(st, at) and delayed reward max

a
(Q(st+1, a)). It is not

difficult to see that Q-learning considers not only the current
reward expectation, but also the maximum reward that may
be obtained in the future when making decisions according
to the Q value [73].

However, there is an obvious limitation of using tables
to store Q values. That is, when the working area expands
or the motion freedom of the agent increases, the table size
will grow exponentially. In order to overcome this problem,
DQN has been proposed, which uses deep neural network
to map the relationship between input information and Q
value [74]. This method has many advantages, such as
making Q-learning work in a high-dimensional and complex
environment without worrying about the size of the Q table.
On the other hand, it can adapt to various input signals,
which improves the flexibility of the system [75].

Furthermore, we need a loss function to guide the adjust-
ment of neural network weight. In DQN, the loss function
can be expressed as the expectation of the square of the
difference between the observed value (real value) and the
network predicted value:

Li(θi) = ((Rt+1 + γmax
a′

Q(St+1, a
′|θ−)−Q(St, At|θ))2,

(4)
where θ is the parameter set of the agent’s network and it
represents the agent’s policy of action. DQN uses a target
network, which has parameters from several steps earlier.
A target network is used to estimate Q-values at the step
t + 1. Furthermore, (Rt+1 + γmax

a′
Q(St+1, a

′|θ−)) is the
observed Q value and Q(St, At|θ) is the predicted Q value
of the network [76].

With the loss function, we only need to use the gradient
descent method to continuously update the network weight
to achieve the purpose of training. The process of network
update can be expressed as:

θi+1 = θi −∇θiLi (θi) . (5)

When the working environment of the UAVs is considered
as a POMDP environment, the UAV agent cannot directly
obtain the state st but can obtain environmental information
by observing the feedback O(ot|st+1, at). In this situation,
the state transition cannot satisfy the Markov property.
Hence, the UAV agent needs to traverse all observation
history O(ot, ot−1, . . . , o1, o0) to estimate state st. However,
the DDPG and other DRL algorithms based on the AC
framework can address this. In POMDP, both the state space
and action space are continuous spaces, so the relationship
between the action space a(vt, ϑt) and the state space

St+1(xt+1, yt+1) of the UAV is given by:{
xt+1 = xt + vt+1 × cos (ϑt+1)×∆t
yt+1 = yt + vt+1 × sin (ϑt+1)×∆t

, (6)

where vt is the flight velocity of the UAV in the horizontal
direction at time t, ϑt is the horizontal direction angle of the
UAV at time t.

In the DDPG algorithm, the action strategy of the UAV
agent is represented by a neural network θµ, and the value
estimation network is represented by θQ. Then, to update the
action strategy network θµ, back propagation through time
(BPTT) can be used as follows [69]:

∂J(θ)

∂θ
= Eτ

∑
t

γt−1 ∂θ
Q (ht, a)

∂a

∣∣∣∣∣
a=θµ(ht)

∂θµ (ht)

∂θ

 ,

(7)
where θQ(ht, a) is the observation history of the value
network at time t, and θµ(ht) is the observation history of the
action strategy network at time t. However, there are further
challenges as reported in [77]. For example, the correlation
between the training data or the fast update speed of the
network may lead to the divergence of the neural network
[78]. In this regard, Volodymyr Mnih and his colleagues
optimized the DQN in [60].

The correlation between training data can lead to the
divergence of the network, especially when using data with
time series characteristics for training. Mobile path is a
kind of data with continuous time characteristics. Therefore,
in order to break the correlation between training data,
experience replay is introduced [60]. This method divides
the transition experience sequence of UAVs into some small
fragments and puts them in the experience pool. In each
training, a certain amount of experience fragments are ran-
domly selected from the experience pool for training. This
can effectively avoid the network divergence caused by the
use of correlated data. The algorithm framework of Double
Deep Q-network (DDQN) with experience replay is shown in
Fig. 3. Under this framework, the agent selects actions based
on random strategies or the current target Q-network and
executes selected actions in the simulator, which is simulated
and generates transitions. The transitions generated by the
simulator will be stored as experience in the experience
pool. When the network needs to be updated, the system
will randomly extract experience from the experience pool
to update the main Q-network, and after a certain delay, copy
the weight of the main network to the target Q-network.

Unfortunately, experience replay brings inefficient learn-
ing to DDQN and DDPG UAV agents in path planning
tasks, which can be attributed to the inappropriate design
of the reward model. In the traditional reward model used
in [79], the reward value of the UAV, when encountering
obstacles, is a negative reward value Rcrash, while the
reward value when reaching the destination is a positive
reward value Rreach. Then, any other legal reward value is
set to 0. There is no problem with this reward model itself,
but it adds challenges in the experience replay [80]. The
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FIGURE 3: The algorithm framework of DDQN with expe-
rience replay.

experience (st, at, r(s, a), st+1) obtained by the UAV when
exploring in the simulator or real environment is stored in the
experience pool. At each training, a batch of experience will
be randomly selected from the experience pool for learning
[60].

It can be observed that only when the ”key experience” is
learned can DRL agents be greatly improved, where a ”key
experience” is obtained when a UAV would reach the desti-
nation in the next state st+1. However, after the introduction
of experience replay as defined in [60], these key experiences
only account for a small proportion in the experience pool.
Moreover, these experiences may not be learned by agents,
because of the limited size of the experience pool. More
specifically, when new experiences are saved, the oldest
experience will be deleted if the experience pool is full.
Therefore, key experiences may be deleted without being
learned by the UAV. More specifically, since the experience
transitions in the experience pool is randomly selected, an
experience transition may be discarded before it is learned
by the UAV. In order to mitigate this issue and to improve the
training efficiency, we propose a cumulative reward model
in the next section. This reward model trains UAVs using
prior information such as obstacle density information in
the environment and the distance from the current position to
the endpoint, for improving the neural networks convergence
speed.

III. Proposed method
To address the problem of sparse key experiences in the
experience pool caused by traditional reward models, we
propose a cumulative reward model, which can make positive
rewards more evenly distributed in the experience pool to
solve the problem of neural network divergence and of the
slow training caused by sparse rewards. In this section,
a detailed introduction of our proposed cumulative reward
model and the region segmentation is presented. Then, the
framework of our proposed DQN and DDPG algorithms
based on the cumulative reward model and the region seg-
mentation will be discussed in detail.

A. Cumulative reward model based on distance and
obstacle density
We propose to reduce the sparsity of reward model and
computational resources required for training without chang-
ing the DRL algorithm framework with experience replay,
while providing training efficiency to achieve better real-
time performance. The training efficiency here refers to
the number of episodes required for DRL UAV agents to
converge during cold start. Cold start is the process in
which UAVs freely explore in an unfamiliar environment
in real environments or simulators until they can complete
path planning in that environment. Correspondingly, hot start
refers to the scenario when the UAVs already have a neural
network adapted to the environment, which can directly
perform real-time path planning based on the output of the
neural network.

Our proposed method is based on the idea that the reward
model can make all exploration experience beneficial to the
network convergence, where even exploration experiences
that do not reach the destination can still guide the agent
to the destination. Inspired by the artificial potential field
method [39], we propose a cumulative reward model, which
provides cumulative reward values for the agent’s exploration
experience based on the distance between the agent and the
target point as well as the obstacle density in the adjacent
space of the current node.

Specifically, for all non-obstacle areas, the reward value
is calculated according to the Euclidean geometric distance
between the current position and the end point as well as the
obstacle density. In this way, the training is effective even
when the UAV does not reach the end point or when the
experience of reaching the end point has not been learned.
This reward value is a cumulative value, which represents the
cumulative value of all rewards for the UAV from the starting
point to the current position. The corresponding cumulative
reward function in a 2D environment can be computed as:

Reward(x, y, l) =
C√

(x− xd)2 + (y − yd)2 ×D(x, y, l)
,

(8)
where (x, y) is the destination coordinates, l is the size
of the safety range, C is a reward constant, and D is the
spatial obstacle density in the adjacent space of the current
node. More explicitly, the value of C is half or less of the
reward value for arriving at the destination, while D can be
expressed as:

D(x, y, l) =
1 +Obs(x, y, l)

S(x, y, l)
, (9)

where S(x, y, l) is the number of points in the adjacent points
in size l square of the current point (x, y) for MDP. When for
POMDP, S(x, y, l) is the area with size l of current coordi-
nate (x, y). The value of Obs(x, y, l) for MDP is the number
of obstacle nodes in the adjacent nodes in size l square of
the current point (x, y), and that for POMDP is the area of
obstacles in the area with size l of the current coordinate
(x, y). The application of the cumulative reward model has
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TABLE 2: The time frequency of the cumulative reward
model in environments of different sizes.

Environment size MDP Environment POMDP Environment

T(n=10,m=10) 7.93× 102 7.93× 104

T(n=20,m=50) 7.993× 103 7.993× 106

T(n=50,m=100) 3.999× 104 1.999× 108

T(n=100,m=100) 7.999× 104 7.999× 108

low computational complexity in a 2D MDP environment
with rectangular edges of length m and n, since its algorithm
time frequency T (n,m) = 8 × m × n − 7, where T (·)
represents the number of repetitions of key code in the algo-
rithm. Hence, O(n,m) = m×n in a 2D MDP environment
with rectangular edges of m and n, where O(·) is the time
complexity of the algorithm. In the POMDP environment,
due to the need for the UAV to update environmental infor-
mation through exploration, if the distribution of obstacles in
the environment remains unchanged, it often only requires
a few updates to get all the information. Considering the
worst-case scenario, in a rectangular POMDP environment
with side lengths of m and n, the algorithm has a time
complexity of O(n,m) = n2 × m2. The time complexity
of the cumulative reward model is shown in Table 2 for
different sizes of the MDP and the POMDP environments.
In both the MDP and POMDP environments, the aggressive
reward strategy not only accelerates the convergence speed
of the neural networks, but it also increases the likelihood
of neural networks falling into local optimal traps. Hence,
to reduce the risk of DRL UAV agents falling into local
optimal traps, we propose a region segmentation algorithm
to re-estimate the reward value generated by the cumulative
reward model, as discussed in the following section.

B. Region segmentation
In the scenario where there are large obstacles in the envi-
ronment as shown in Fig. 2, we found that the agent may
be blocked by the longest obstacle and repeat heading to
the same area. In other words, the agent is led to some
local optimal trap. Furthermore, the agent will also be
blocked by large-size obstacles such as large buildings. In
order to overcome these challenges, we propose the region
segmentation algorithm to help the agent ignore the action
with higher reward value but actually blocked.

Firstly, the whole environment is divided into several small
areas of N ×N according to the set size, where the border
information is shared between the adjacent areas. Then, each
small area border is divided into λ parts, where eight ordered
borders can be obtained as shown in Fig. 4. A clustering
algorithm is used to detect the connectivity between the
ordered borders, where we store the connectivity result (1
or 0) in the connectivity table C(i, j, k). This connectivity
detection algorithm is shown in Algorithm 1.

FIGURE 4: Two different configurations of small region
border setting.

Algorithm 1 Connectivity detection algorithm based on
clustering

1: Initialize divided small regions.
2: Initialize the value of α and β (α ̸= β).
3: for each j ∈ [1, 4× λ] do
4: Copy small region i.
5: Set the value of all non-obstacle nodes on border j to

α;
6: Store all non-obstacle nodes on border j into waiting

list L;
7: while L ̸= ∅ do
8: Set the non-obstacle node value in the adjacent

nodes of the first node in the waiting list L to β;
9: Store the node whose value has changed into the

waiting list.
10: end while
11: for each k ∈ [1, 4× λ] do
12: if there are nodes on the ordered border k, the value

is β then
13: C(i, j, k) = 1;
14: C(i, k, j) = 1;
15: end if
16: end for
17: end for

Based on Algorithm 1, we have connectivity information
between cell block borders. When calculating the reward
value, we take the connectivity of the corresponding two
borders as the Boolean value (0 or 1) multiplied by the
reward value calculated by the cumulative reward function:

R(i,j,k)(x, y) = R(x, y)× C(i, j, k), (10)

where R(x, y) is the reward value obtained by the cumulative
reward function and C(i, j, k) is the logical value in the
connectivity table that is related to region i, from border j
to border k. Furthermore, (10) is called the hard decision
of the reward value evaluation. Note that this reward value
evaluation method can cause fluctuations in the neural net-
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TABLE 3: The time frequency of the region segmentation.

Parameters MDP Environment
POMDP

Environment

T (i = 16, n = 5, λ = 2,

N = 20,M = 20)
2.56× 104 1.024× 107

T (i = 100, n = 5, λ = 2,

N = 50,M = 50)
1.6× 105 4× 108

T (i = 50, n = 10, λ = 2,

N = 50,M = 100)
3.2× 105 1.6× 109

T (i = 25, n = 20, λ = 2,

N = 100,M = 100)
6.4× 105 6.4× 109

work in the POMDP environment, because the reward value
of actions reaching the blocked areas are set to 0. In training,
learning those transitions experience may cause a significant
increase or decrease of the learning curve. Therefore, we
propose a soft decision reward value represented as:

R(i,j,k)(x, y) =

{
R(x, y) , C(i, j, k) = 1
ω ×R(x, y)× ρR(x,y) , C(i, j, k) = 0

(11)
where ω and ρ are constants that satisfy ω, ρ ∈ (0, 1).

In this way, the UAV can avoid moving into a local
optimal trap. The region segmentation method can solve not
only the local optimal trap problem faced by the cumulative
reward model, but also the problem of agents falling into
the local optimal trap in the artificial potential field method.
The time frequency and the time complexity of the region
segmentation in MDP environment are given by T (i, n, λ) =
16 × i × n2 × λ2 and O(i, n, λ) = i × n2 × λ2, where i is
the number of segmented small regions, n is the length of
the sides of these square small areas, and λ is the number
of partitions of the small regions’ boundaries. Normally,
the values of i and n do not exceed 100, and the value
of λ is within 10. In the scenario presented in this paper,
λ = 2. In the worst-case scenario of POMDP environment,
the time complexity of this algorithm is O(i, n, λ,N,M) =
i × n2 × λ2 ×N ×M , where N and M is the side length
of the whole working environment. The time complexity
of the region segmentation algorithm in MDP and POMDP
environments for different is shown in Table 3.

In the process of using the region segmentation method,
we must ensure the uniqueness of the connectivity table. In
other words, regardless of the size of the segmented region,
the border must be small enough. As shown in Fig. 4 the
clockwise Configuration A or anticlockwise Configuration B
rule is used to determine which border the node at the corner
of a small area belongs to. Specifically, if Configuration A
is used, the nodes in the corners of the small region need to
be divided into their clockwise boundaries. For example, we
can observe from Fig. 4 in Configuration A, the node in the
upper right corner is assigned into the clockwise boundary
(boundary 3), while in Configuration B the node in the upper
right corner is assigned to the counter clockwise boundary

FIGURE 5: The overlapping scheme of adjacent small re-
gions (blue region use configuration A, yellow region use
configuration B, green shows the overlapping borders).

(boundary 2). It is worth noting that two adjacent small
regions need to use different corner node attribution rules,
as shown in Fig. 5, where we can see that adjacent small
regions with different configurations can overlap perfectly.

C. Deep reinforcement learning model combining
cumulative reward model and region segmentation
algorithm
Our proposed reward model and region segmentation algo-
rithm can be applied to various deep learning algorithms
and are suitable for MDP and POMDP environments. The
following will take DQN algorithm for path planning in
MDP environment and DDPG for path planning in POMDP
environment as examples.

The pseudo code of the proposed DQN path planning
algorithm based on the above cumulative reward model and
region segmentation for UAVs is shown in Algorithm 2.

The difference between our proposed DQN algorithm 2,
which combines the cumulative reward model and region
segmentation, and the traditional DQN algorithm is elabo-
rated in the following. Initially, it is necessary to initialize the
experience pool and neural network weights. Then, region
segmentation is preformed and the connectivity detection
algorithm 1 is used to obtain a connectivity table. A collision
free path will appear as all 1 in the connectivity table. After-
wards, the reward value is evaluated based on the cumulative
reward model formula. Then, using random exploration and
storing the exploration experience in the experience pool, and
a batch of experience from the experience pool is sampled for
learning. When using these experiences for training, if it is
found that the action in the current experience corresponds
to a value of 0 in the connectivity table, it indicates the
potential collisions or traps. In this case, the reward value in

8 VOLUME ,



Algorithm 2 DQN path planning algorithm for UAVs based
on the cumulative reward model and region segmentation in
MDP environment

Initialize experience replay memory M to capacity η.
2: Initialize the network weight randomly to θ.

Run algorithm 1 to obtain connectivity information of
small regions.

4: for episode = 1 to M, do
Initialize sequence s1 = x1 and preprocessed se-
quence ϕ1 = ϕ(s1)

6: for t = 1 to T, do
According to the value of ϵ, choose the random
exploration strategy or the current network output
A(θ) to determine the current action.

8: Execute the action and calculate the reward value
Rt = Reward(x, y) of the action according to the
cumulative reward model based on (8), (9) and
(10).
Save the transition set (st, at, Rt, st1) into M.

10: Sample random mini-batch I from M and do
gradient descent to update network weight θ.

end for
12: end for

the current experience is treated as 0 to prevent the network
from converging to local optimal traps due to this experience.
As can be seen from Algorithm 2, the current reward value
Rt is positive and will increase when the agent moves closer
to the destination. Hence, the reward of each exploration
experience of the algorithm will give a positive feedback to
the agent. Even if the experience of the agent arriving at
the destination is not learned, the reward value will guide
the agent to explore in the direction closer to the destination
and with lower obstacles density.

The pseudo code of the proposed DDPG path planning
algorithm based on the above cumulative reward model and
region segmentation for UAVs is shown in Algorithm 3.
In our proposed algorithm, the initialization is the same
as the traditional DDPG algorithm. Firstly, the experience
pool is initialized and the actor network, critic network, and
their corresponding target network weights are initialized.
Then, by adding random noise to the actor network output,
the environment is randomly explored, and the exploration
experience is stored in the experience pool. Due to the
inability to directly obtain current state information in the
POMDP environment, agents can only obtain observation
information. Therefore, Monte Carlo methods can be used to
assist neural networks in traversing the observation history.
Then, based on the current traversal of observation history,
the action reward value for state transitions obtained through
inference will be calculated using the cumulative reward
model. At this point, if the environmental information is
updated, a connectivity detection algorithm needs to be run
to update the connectivity table. Otherwise, the reward value

is estimated based on the current connectivity table and the
state transition experience is learned to adjust the weights
of the critic network. The adjustment of the actor network
weights needs to be updated through back propagation
through time (BPTT). By repeating the above process, the
UAV agent’s neural network will gradually converge and
avoid most potential local optima.

Algorithm 3 DDPG path planning algorithm for UAVs based
on the cumulative reward model and region segmentation in
POMDP environment

Initialize experience replay memory M to capacity η.
Randomly initialize the actor network µ(s|θµ) with
weight θµ.

3: Randomly initialize the critic network Q(s, a|θQ) with
weight θQ.
Copy networks µ and Q to get target networks µ

′
and

Q
′

.
for episode = 1 to M, do

6: Initialize a random process N for action exploration.
Receive an initial observation o0 = h0.
for t = 1 to T, do

9: Select action at = µ(st|θµ)+Nt and execute at to
get observe ot.
Run algorithm 1 to obtain connectivity information
of small regions if the environment information has
been updated.
Calculate reward Rt according to (8), (9) and
(11).

12: Save the transition set (ot, ht, at, Rt) into M.
Sample random mini-batch I from M
Set yti = Rt

i + γQ
′
(h

(t+1)
i , µ′((ht+1

i |θµ′
)|θQ′

).
15: Update critic network by minimizing the loss: L =

1
NT

∑
i

∑
t

(
yti−Q (ht

i, a
t
i)

∂Q(ht
i,a

t
i)

∂θ

)
Update actor network using BPTT: ∇θuJ =

1
NT

∑
i

∑
t

∂Q
(
ht
i,θ

µ
(
ht
i|θ

Q′))
∂θ

∂θµ
(
ht
i|θ

µ′)
∂θ

Update target networks:
θQ

′ ← τθQ + (1− τ)θQ
′

θµ
′ ← τθµ + (1− τ)θµ

′

18: end for
end for

IV. Simulation results
In this section, computer simulations are used to validate,
analyze and discuss the algorithms proposed in this paper.
The simulation experiments are divided into two parts. The
first part is to use DDQN, DDPG and fast recurrent stochastic
value gradient (FRSVG) [69] algorithms combined with cu-
mulative reward models and region segmentation algorithms
for training UAV agents to conduct path planning task in high
building density urban areas. Then, the training efficiency
of DRL UAV agents using traditional reward models and
cumulative reward models will be compared. The second
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FIGURE 6: Satellite image of the real experimental environ-
ment.

part of the experiments involves conducting path planning for
various UAV agents trained by DDQN, DDPG and FRSVG
in four environments that are prone to falling into the local
optimal trap, with and without the use of region segmentation
algorithms. The probability of each DRL UAV agents falling
into the local optimal trap is evaluated and compared.

A. Training efficiency of DRL agents using the
cumulative reward model
We consider the scenario of UAV deployment in a real urban
environment as shown in the satellite image of Fig. 6. In this
scenario, the UAV performs the path planning task at a fixed
flight altitude in the central area of the city with buildings
of different heights. We chose a block near the Museum of
London and used a shadow index algorithm [81] to estimate
the height of buildings in the environment through satellite
images. In this environment, the fixed flight altitude of the
UAV is set at 20 meters above the ground, which is about
6 floors high. In this environment, the UAV will start from
the area with dense buildings in the top left corner and plan
a collision free path to the target point in the bottom right
corner of the map.

After being processed and modeled by the shadow index
algorithm of [81], the working environment in the simulator
is shown in Fig. 7. The MDP environment for DQN is a
grid world generated based on the binary map, while the
POMDP environment for DDPG and FRSVG is a continuous
numerical space based on the binary map. After the UAV is
trained by DQN, DDPG and FRSVG algorithm based on the
cumulative reward model, it can quickly plan a collision free
flight path. The path planning results in the simulator are also
shown in Fig. 7, where black nodes are obstacles and white
nodes are free area, while the blue nodes constituted the path
that the UAV chose. The flight trajectory of the UAV in the
real world environment is shown in Fig. 8.

FIGURE 7: Path planning results of UAV in simulator
environment.

FIGURE 8: The flight trajectory of the UAV in the real world
environment.
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TABLE 4: Hyper-parameters of Deep Q-network.

Parameter Value Definition

Mini-batch 2×N

The sampling size of
each training, N is the

size of N ×N environment.

γ 0.95 Discount factor

η N × 100000

Capacity of experience
pool, N is the

size of N ×N environment.

ϵ 0.9:0.01:0.1

Possibility to select
random actions,

The initial value is 0.9,
and the minimum value is 0.1.

The decline step of
each episode is 0.01.

FIGURE 9: Actor neural network structure of DDPG in
POMDP environment.

The hyper-parameters of DQN in the experiment are
shown in Table 4. We change the frequency of ϵ value
reduction to one reduction per episode rather than one
reduction after a certain number of agent exploration steps.
Such changes are conducive to the exploration of agents in
large scale environments.

In this experiment, the network for DQN has four inputs
and one output, two fully connected hidden layers, while
each layer contains 128 neurons. The activation function
uses rectified linear unit (ReLu). On the other hand, the
neural network for DDPG and FRSVG has 40 inputs which
are virtual sensor data, including ranging sensor data from
36 horizontal directions, as well as flight speed and 3D
coordinates, and it has two outputs corresponding to velocity
and horizontal direction angle, with two fully connected
hidden layers, where each layer contains 256 neurons, where
the LSTM network with 256 neurons is utilized. The actor
neural network structure of DDPG and FRSVG is shown in
Fig. 9. The hyper-parameters of the neural network training
for DDPG and FRSVG are shown in Table 5.

Fig. 10 shows the average learning curve of 100 DQN
agents, where we can see that the DQN agent using the

TABLE 5: Hyper-parameters of the DDPG model.

Parameter Value Definition

Mini-batch 2×N

The sampling size of
each training, N is the

size of N ×N environment.

γ 0.95 Discount factor

η N × 100000

Capacity of experience
pool, N is the

size of N ×N environment.

τ 0.001
Learning rate of actor

and critic networks

σInit 1.0 Initial exploration variance

σMin 0.05 Final exploration variance

M 10000
Maximum number of

training episodes

K 10
Steps delay of target

networks update

FIGURE 10: Learning curve of DQN agent in path planning
training.

cumulative reward model converges faster than the DQN
agent using the traditional reward model, and the final
stable reward value is slightly higher than the traditional
reward model, this means that the cumulative reward model
outperforms traditional reward models in terms of training
efficiency and path planning quality. The shaded area repre-
sents the standard deviation of the learning curve, while the
wider the shaded area, the greater the difference between
different agents in the current episode. Fig. 11 shows the
average learning curve of 60 DDPG agents, where it is shown
that the DDPG agent using the cumulative reward model
converges faster than the DDPG agent using the traditional
reward model.

Fig. 12 shows the average learning curve of 60 FRSVG
agents, where in this simulation, we compared our proposed
cumulative reward model and the special reward model
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FIGURE 11: Learning curve of DDPG agent in path planning
training.

FIGURE 12: Learning curve of FRSVG agent in path
planning training.

proposed with FRSVG in [69]. As can be seen in Fig. 12
the training efficiency of the cumulative reward model is
higher than that of both the traditional reward model and
the proposed reward model in [69].

B. Path planning results with region segmentation
We found that the DRL UAV agent based on the cumulative
reward model could fall into a local optimal trap when
encountering large closed obstacles. In order to verify that
our proposed region segmentation method can solve the
above problems, we placed three large enclosed obstacles
with the size of 3 × 15 in a 20 × 20 environment as seen
in Fig. 13. The area size used for the region segmentation
is 6 × 6, and the entire 20 × 20 environment is divided
into 16 small areas. Each border is divided into two parts,
that is, each small region is divided into eight borders. In

FIGURE 13: Path planning results of cumulative reward
DQN with and without region segmentation method in a
same 20×20 environment which has large closed obstacles.

this environment, the DQN is trained using the cumulative
reward model without the region segmentation method and
the cumulative reward model with the region segmentation
method. The path planning results obtained after the same
number of training episodes are shown in Fig. 13.

In Fig. 13, the ”SP” is the start node, ”EP” is the
destination node, black nodes are obstacles, white nodes are
free area, blue path represents the path using the region
segmentation method, and the yellow path represents the
path trained without the region segmentation method, while
the green nodes represent the overlapping path. The results
clearly show that the DQN agent trained without the region
segmentation method falls into the local optimal trap when
facing large closed obstacles. As seen in Fig. 13, the pro-
posed region segmentation method is capable to mitigating
the local optimal trap.

In order to quantify the performance of region seg-
mentation methods in solving local optimal traps in UAV
autonomous navigation problems, we considered four envi-
ronments where UAV agents are prone to falling into local
optimal traps. Among them, Environment 1 and Environment
2 only have large-sized obstacles, while Environment 3 and
4 add randomly distributed small-sized obstacles. Environ-
ments 1, 2, 3 and 4 are shown in Fig. 14a, Fig. 14b, Fig. 14c
and Fig. 14d, respectively.

The red dots in the figure represents the starting points
of the UAV, the light blue nodes represent the endpoint
positions, and the black nodes represent the obstacle nodes.
We trained 100 agents using DQN with and without Region
Segmentation (RS), DDPG with and without RS, FRSVG
with and without RS in each environment. The number of
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(a) Environment 1 (b) Environment 2

(c) Environment 3 (d) Environment 4

FIGURE 14: Four environments with large obstacles that the
UAV agents are prone to falling into local optimal traps.

TABLE 6: Performance comparison of DQN, DDPG and
FRSVG with or without Region Segmentation method
(trapped rate with 100 agents)

Agent type Env1 Env2 Env3 Env4

DQN 16% 21% 24% 26%

DQN-RS 0% 0% 0% 0%

DDPG 39% 37% 42% 38%

DDPG-RS 6% 8% 6% 8%

DDPG-RS-SD 4% 3% 4% 4%

FRSVG 11% 16% 14% 15%

FRSVG-RS 2% 2% 4% 3%

FRSVG-RS-SD 0% 0% 1% 0%

times the agents converged to the local optimal trap were
recorded in percentage and presented in Table 6.

In the experimental results shown in Table 4, the RS
represents the use of region segmentation algorithm, while
SD represents the use of soft decision. From the exper-
imental results, we can see that the region segmentation
algorithm can avoid almost 99% of the local optimal traps
in DQN, and does not require the use of soft decisions
to correct the reward value. DDPG UAV agents are the
easiest to fall into the local optimal trap, with the highest
trapped rate reaching 42% when no region segmentation
algorithm is used. However, after using the soft decision
region segmentation algorithm, the trapped rate is only 6%.
It is worth mentioning that the recently proposed FRSVG

algorithm [69] can also benefit from the region segmentation
algorithm. After combining with the soft decision aided
region segmentation algorithm, the trapped rate is reduced
from 16% to 0%, which means that the region segmentation
algorithm can avoid 99% of local optimal traps. Given that
the statistical sample is 100 agents per algorithm and per
environment, 0% does not mean complete avoidance of the
local optimal trap. When the number of agents reaches a very
large value, there may be situations where they fall into the
local optimal trap. Although the application of cumulative
reward model and region segmentation method has improved
the training efficiency and reliability of DRL based UAV
autonomous navigation systems, it is still challenging to
implement this system on the embedded UAV platforms to
have the independent autonomous navigation UAV. Due to
the fact that the UAV are resource limited platform, the en-
ergy it can carry is limited, and high-performance computing
units consume a huge amount of energy. The energy that the
UAV platform can carry is not enough to support long-term
neural network training to update the neural network while
moving. Therefore, our proposed algorithm can be applied
to small and medium-sized 3D environments with known or
unknown environmental information, while considering fixed
flight altitude. The UAV using our proposed algorithm can
perform autonomous navigation for logistics delivery, envi-
ronmental information collection, and can support wireless
communication systems.

V. Conclusions
In this paper, we proposed efficient path planning solution for
the UAV using DRL, which is combined with the cumulative
reward model and the region segmentation to improve the
training efficiency and robustness of the DQN, DDPG and
FRSVG frameworks. The reward model provides rewards for
agents based on the distance between the current location
and the destination, as well as depending on the density
of obstacles in the adjacent area of the current location.
This model can effectively solve the network divergence
problem caused by the traditional reward model in the
DRL algorithms with experience replay. We also introduced
a region segmentation method to improve the robustness
of DRL UAV agents training, when facing large enclosed
obstacles. It can also reduce the probability of DRL agents
converging to local optimal traps. Our simulations prove
that the training efficiency of DRL UAV agents using our
proposed cumulative reward model are 30.8% higher than
that of the DRL UAV agents with traditional reward model
in average. Moreover, the region segmentation method can
help DQN and FRSVG agents to avoid 99% local optimal
traps and help DDPG agents to avoid 92% local optimal
traps. For future research, we will focus on extending the
cumulative reward model and region segmentation algorithm
to complex 3D environments.
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