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Abstract
If an agent prefers one kind of agents to the other agents, then the agent has first-order
preferences. If the agent prefers agentswith one kind of preferences to the other agents,
then the agent has second-order preferences. The article proposes a sound, complete,
and decidable logical system capable of expressing higher-order preferences.
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1 Introduction

Logics for reasoning about preferences have been the subject of studies in philosophy,
logic, and artificial intelligence for a long time. As with many other modal logics,
the focus of the initial works was on finding the right language and writing intu-
itively acceptable axioms for this language. In the case of preferences, this approach
was explored by Halldén (1957), Åqvist (1962), Chisholm and Sosa (1966), and
Von Wright (1963). After possible world semantics for modal logics became widely
accepted, it became common to start not with intuition, but with a formal semantics of
the proposed modality. Following this tradition, van Benthem, Girard, and Roy (2009)
consider the modality [>]ϕ meaning “statement ϕ holds in all worlds better than the
current one”. The samemodality is also investigated in (Liu, 2011) and (Christoff et al.,
2021). Even earlier, Lang, van der Torre, andWeydert (2002) considered a conditional
version of this modality.
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In addition to modality [>]ϕ, one can also consider modality [�>]ϕ, meaning “state-
ment ϕ holds in all worlds not better than the current one”.1 Then, formula [�>]¬ϕ

means that all worlds in which ϕ holds are better than the current world. One can
combine modalities [>] and [�>] to express the fact that statement ϕ holds in worlds
better than current and only them: [>]ϕ ∧ [�>]¬ϕ.

In this article, we study preferences between agents rather than between worlds.
Modalities [>] and [�>] can be adopted for this purpose by using an egocentric logical
system (Prior, 1968). In traditional logics, formulae capture properties of possible
worlds. In egocentric logics, they capture the properties of agents. As a result, the
semantics of an egocentric logic can be defined in terms of a satisfaction relation
a � ϕ between an agent a and a formula ϕ rather than a relation w � ϕ between a
world w and a formula ϕ. In such a setting, statement a � [>]ϕ means that property
ϕ holds for all agents better than agent a. Similarly, a � [�>]ϕ means that ϕ is true for
all agents who are not better than agent a.

Note that modalities [>] and [�>] capture global preferences on agents, not the
preferences of individual agents. The goal of the current work is to study individual
preferences of agents about groups of agents. More specifically, we study the relation
“agent a prefers any agent with property ϕ to any agent who does not have this
property”. If the relation holds, then we write a � Lϕ and say that agent a “likes”
ϕ. Thus, we use the word “preference” to refer to a relation on agents and the word
“likes” to refer to themodality that captures the properties of the preferences.Modality
L can be nested to express higher-order preferences. For example, the statement a �
LL“is a philosopher” means that agent a likes those who like philosophers. Statement
a � ¬L¬L“is a philosopher” means that agent a does not like those who do not like
philosophers.

In some situations, there is no need for the “likes” modality L because in those
situations this modality can be expressed through already studied modality F and its
variation NF. Modality “for all friends” F was proposed by Seligman, Liu, and Girard
(2011) and is also used in (Seligman et al., 2013), (Christoff and Hansen, 2015), and
(Christoff et al., 2016). It presupposes that each agent partitions the set of all agents
into “friends” and “non-friends”. The statement a � Fϕ is true if all friends of agent a
have property ϕ. One can similarly consider the “for all non-friends” modalityNF. The
statement a � NFϕ is true if all non-friends of agent a have property ϕ. Let us now go
back to preferences and consider an agent a with “good-or-bad” preferences in which
agent a divides all agents into “good” and “bad”. Agent a prefers each good agent to
each bad agent and has no other preferences. In such a situation, we can call “good”
agents to be a’s friends and “bad” agents to be a’s non-friends. Then, the formula Lϕ
is equivalent to the formula Fϕ ∧ NF¬ϕ.

To further illustrate “good-or-bad” preferences, let us consider an example inspired
by the quote

“Steve Jobs has a saying that A players hire A players; B players hire C players;
and C players hire D players.” (Kawasaki, 2004, p. 101)

1 We do not assume that the order is total.
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Fig. 1 The world according to
Steve Jobs

We capture this quote by the diagram depicted in Fig. 1. Here all agents are parti-
tioned into groups A, B, C , and D. The hiring preference relation of each group is
depicted in the figure using directed edges. We assume that D-players have no pref-
erences. Note that, in this example, each agent c ∈ C prefer any D-player to any
non-D-player. Thus, by our definition of the “likes” modality,

c � L“is a D player′′ ∀c ∈ C . (1)

Observe from Fig. 1 that the same is not true2 for agents who are not C-players:

x � L“is a D player′′ ∀x ∈ A ∪ B ∪ D. (2)

Note that any agent b ∈ B prefers any agent in groupC to any agent in group A∪B∪D,
see Fig. 1. Thus, taking into account statements (1) and (2), any agent b ∈ B prefers
any agent for whom L“is a D player” is true to any agent for whom L“is a D player”
is false. Thus, any agent b ∈ B likes those for whom L“is a D player” is true:

b � LL“is a D player′′ ∀b ∈ B.

In other words, B-players hire those who hire D-players.
Note that although, overall, the structure of the preferences in the Steve Jobs exam-

ple is not so simple, the preferences of each individual agent are still of “good-or-bad”
type. For example, for any agent b ∈ B, the “good” group is C and the “bad” group is
A ∪ B ∪ D. Thus, “likes” modality L still can be expressed through modalities F and
NF.

The situation is different for non “good-or-bad” preferences. For example, consider
an agent a who divides all agents into three disjoint groups: “very good”, “good”, and
“bad”. Suppose that agent a prefers each “very good” agent to each “good” and each

2 We assume that sets D and A ∪ B ∪ C are not empty.
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“bad” agent. Also, a prefers each “good” agent to each “bad” agent. Then, a likes all
agents in the first group:

a � L“is a ‘very good’ agent”

because a prefers each “very good” agent to any agent in the other two groups. At the
same time, agent a also likes all agents in the first two groups:

a � L“is not a ‘bad’ agent”

becuse agent a prefers each agent who is not “bad” to any agent who is “bad”. Next, we
will observe that in this settingmodality Lϕ is not equivalent to the formula Fϕ∧NF¬ϕ

no matter how we define who are the friends and the non-friends of agent a. Indeed,
no matter how we divide agents into friends and non-friends, there is no way to satisfy
both of the following formulae:

a � F“is a ‘very good’ agent” ∧ NF¬“is a ‘very good’ agent” (3)

and

a � F“is not a ‘bad’ agent” ∧ NF¬“is not a ‘bad’ agent”. (4)

For example, if only “very good” agents are identified as friends, then statement (3)
is true, but statement (4) is not. At the same time, if “very good” and “good” agents
are identified as friends, then it is the other way around.

In this article, we propose a formal semantics for modality L in the egocentric
setting and give a sound, complete, and decidable axiomatization of the properties of
this modality. The completeness theorem is using a new technique based on relation
�, see Sect. 6.3.

The rest of this article is organised as follows. In Sect. 2, we give a formal definition
of a preference model that we use later to give the semantics of modality L. In Sect. 3
we describe the syntax and semantics of our language. Section4 lists the axioms and
inference rules of our system. We prove its soundness and completeness in Sect. 5
and Sect. 6, respectively. In Sect. 7, we define “conditional likes” modality, list some
of the axioms for it and prove that it is not definable through modality L. Section8
concludes. A preliminary version of this work, containing a model checking algorithm
for a richer language, but without the proof of completeness and the discussion of the
conditional likes modality, appeared as (Jiang and Naumov, 2022).

2 Preferencemodel

In this section, we introduce the notion of a preference model that serves as a foun-
dation for the semantics of our logical system. In the article, we assume a fixed set of
propositional variables P .
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Definition 1 A tuple (A, {≺a}a∈A, π) is called a preference model if

1. A is a (possibly empty) finite set of “agents”,
2. ≺a is a strict partial order “preference” relation on A, for each agent a ∈ A,
3. π(p) is a subset of A for each variable p ∈ P .

Note that, in general, strict and non-strict order relations are definable through each
other: x 
 y ≡ (x ≺ y ∨ x = y) and x ≺ y ≡ (x 
 y ∧ x �= y). Thus, it does not
matter which of them is chosen as the primitive relation and which is defined through
the primitive. Hence, it is not significant that in the above definition we have chosen
the strict relation ≺a as our primitive.

Note that propositional variables, just like all formulae in our language, repre-
sent noun-free fragments of propositions such as “is a philosopher”. Prior calls them
subject-less predicates (1968). Grove and Halpern use the term relative propositions
because they are relative to agents (Grove and Halpern, 1991; Grove &Halpern, 1993;
Grove, 1995). To reflect this, item 3 of Definition 1 specifies the valuation π(p) of a
proposition variable p as a set of agents. Informally, these are the agents for which
the propositional variable p is true.

3 Syntax and semantics

The language � of our system is defined by the grammar:

ϕ := p | ¬ϕ | ϕ → ϕ | Lϕ,

where p ∈ P is a propositional variable. We read L as “likes those who”. We assume
that disjunction ∨, conjunction ∧, and biconditional ↔ are defined in our language in
the standard way. Next, we define the semantics of our logical system.

Definition 2 For any formula ϕ ∈ � and any agent a ∈ A of a preference model
(A, {≺a}a∈A, π), the satisfaction relation a � ϕ is defined recursively as follows.

1. a � p, if a ∈ π(p),
2. a � ¬ϕ, if a � ϕ,
3. a � ϕ → ψ , if a � ϕ or a � ψ ,
4. a � Lϕ, when for all agents b, c ∈ A, if b � ϕ and c � ϕ, then b ≺a c.

As we have discussed in Sect. 2, the choice to use strict preference relation ≺a in
Definition 1 is not important. Irrespective of the choice of the primitive relation in
Definition 1, one can consider either strict or non-strict preference relation in item 4
of Definition 2. We have chosen to use the strict preference relation there. The non-
strict version of the same item will look like:

a � Lϕ, when for all agents b, c ∈ A, if b � ϕ and c � ϕ, then b 
a c. (5)

However, note that the assumptions b � ϕ and c � ϕ in the above statement imply
that b �= c. Thus, statement (5) is equivalent to item 4 of Definition 2 and it does not
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matter which of them is used in Definition 2. To summarise, although we have chosen
to use strict order in Definition 1 and Definition 2, nothing in our results will change
if either of those places (or even in both of them) non-strict order is used instead of
the strict one.

Some of the existing works on logics of preferences are based on ceteris paribus
principle (Von Wright, 1963). If this principle is applied to modality “likes”, then one
would say that an agent a likes ϕ if she prefers agents for whom ϕ is true to those for
who ϕ is not true, everything else being equal. Capturing the “everything else being
equal” assumption semantically is a non-trivial task. One of the possible ways to do it
is proposed in (Van Benthem et al., 2009). In this article, we do not use ceteris paribus
principle3. Item 4 of the above definition states that an agent a likes ϕ if she prefers
each agent for whom ϕ is true to each agent for whom ϕ is not true. This definition is
similar to how strong belief is defined in the literature: an agent strongly believes in ϕ if
she finds all epistemically possible worlds in which ϕ is true to be more plausible than
those where ϕ is false (Baltag and Smets, 2009; Lorini, 2021). Lorini also proposes
to define strong desires in a similar way.

We use Aϕ as an abbreviation for the formula ϕ ∧ Lϕ ∧ L¬ϕ. Because of the next
lemma, we read A as “for all agents”.

Lemma 1 a � Aϕ iff b � ϕ for all agents b ∈ A.

Proof (⇒) : Suppose that there is an agent b ∈ A such that b � ϕ. Note that the
assumption a � Aϕ of the lemma implies that a � ϕ and a � Lϕ. Then, by item 4 of
Definition 2, the assumption b � ϕ implies that b ≺a a.

At the same time, the assumption b � ϕ implies b � ¬ϕ by item 2 of Definition 2.
Note that the assumption a � Aϕ of the lemma also implies that a � ϕ and a � L¬ϕ.
Then, a ≺a b again by item 4 of Definition 2.

Finally, note that statements b ≺a a and a ≺a b are inconsistent because relation
≺a is a strict partial order by item 2 of Definition 1.
(⇐) : Suppose that a � ϕ ∧ Lϕ ∧ L¬ϕ. Thus, one of the following cases takes place.
Case I: a � ϕ. Then, there is an agent b such that b � ϕ.
Case II: a � Lϕ. Hence, by item 4 of Definition 2, there are agents b, c ∈ A such that
b � ϕ, c � ϕ, and b ⊀a c. So, there is an agent b such that b � ϕ.
Case III: a � L¬ϕ. Thus, again by item 4 of Definition 2, there are agents b, c ∈ A
such that b � ¬ϕ, c � ¬ϕ, and b ⊀a c. Therefore, c � ϕ by item 2 of Definition 2. ��

The lemma below follows from item 4 of Definition 2.

Lemma 2 For any preference model, if a � ϕ ↔ ψ for each agent a ∈ A, then
a � Lϕ ↔ Lψ for each agent a ∈ A.

4 Axioms

In this section, we list the axioms and the inference rules of our logical system. In
addition to tautologies in language �, the system contains the following axioms.

3 In Sect. 7, we discuss conditional like modality which, partially, captures the idea behind ceteris paribus
principle.
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1. Reflexivity: Aϕ → ϕ,
2. Distributivity: A(ϕ → ψ) → (Aϕ → Aψ),
3. Euclidianity: ¬Aϕ → A¬Aϕ,
4. Substitution: A(ϕ ↔ ψ) → (Lϕ → Lψ),
5. Coherence of Preferences: Lϕ ∧ Lψ → A(ϕ → ψ) ∨ A(ψ → ϕ).

The meaning of the first four axioms above is straightforward. The Coherence of
Preferences axiom states that if an agent likes those for whom ϕ is true and also those
for whomψ is true, then either each ϕ-agent is aψ-agent or eachψ-agent is a ϕ-agent.
This is themost non-trivial axiom of our system.We prove its soundness in Lemma 10.

We write � ϕ and say that formula ϕ ∈ � is a theorem of our logical system if it
can be derived from the above axioms using the Modus Ponens and the Necessitation
inference rules:

ϕ, ϕ → ψ

ψ

ϕ

Aϕ
.

In addition to unary relation � ϕ we also use binary relation X � ϕ. We write
X � ϕ if formula ϕ is derivable from the theorems of our logical system and the set of
additional formulae X using only the Modus Ponens inference rule. It is easy to see
that statements ∅ � ϕ and � ϕ are equivalent. We say that set X is consistent if there
is no formula ϕ ∈ � such that X � ϕ and X � ¬ϕ.

Lemma 3 (Lindenbaum) For any set of formulae X, any consistent subset of X can
be extended to a maximal consistent subset of X.

Proof The standard proof of Lindenbaum’s lemma ((Mendelson, 2009), Proposition
2.14) applies here. ��

The proofs of the next three standard lemmas can be found in the appendix.

Lemma 4 (deduction) If X , ϕ � ψ , then X � ϕ → ψ .

Lemma 5 (Transitivity) � Aϕ → AAϕ.

Lemma 6 If ϕ1, . . . , ϕn � ψ , then Aϕ1, . . . ,Aϕn � Aψ .

5 Soundness

In this section, we prove the soundness of our logical system.

Theorem 1 (soundness) If � ϕ, then a � ϕ for each agent a of each preference model.

The soundness of the Reflexivity axiom as well as of the Modus Ponens and the
Necessitation inference rules is straightforward. To improve readability, we prove the
soundness of each remaining axiom as a separate lemma.

Lemma 7 (Distributivity) If a � A(ϕ → ψ) and a � Aϕ, then a � Aψ .
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Proof Consider any agent b ∈ A. By Lemma 1, it suffices to show that b � ψ .
Indeed, by the same Lemma 1, the assumptions a � A(ϕ → ψ) and a � Aϕ imply
b � ϕ → ψ and b � ϕ, respectively. Therefore, b � ψ by item 3 of Definition 2. ��
Lemma 8 (Euclidianity) If a � Aϕ, then a � A¬Aϕ.

Proof Consider any b ∈ A. By Lemma 1, it suffices to show that b � ¬Aϕ.
Again by Lemma 1, the assumption a � Aϕ implies that there is an agent c ∈ A

such that c � ϕ. Thus, b � Aϕ also by Lemma 1. Therefore, b � ¬Aϕ by item 2 of
Definition 2. ��
Lemma 9 (Substitution) If a � A(ϕ ↔ ψ) and a � Lϕ, then a � Lψ .

Proof Consider any agents b, c ∈ A such that b � ψ and c � ψ . By item 4 of
Definition 2, it suffices to show that b ≺a c.

By Lemma 1, the assumption a � A(ϕ ↔ ψ) implies that b � ϕ ↔ ψ and
c � ϕ ↔ ψ . Hence, b � ϕ and c � ϕ by the assumptions b � ψ and c � ψ ,
respectively. Therefore, b ≺a c by item 4 of Definition 2 and the assumption a � Lϕ
of the lemma. ��
Lemma 10 (Coherence of preferences) If a � Lϕ and a � Lψ , then either a � A(ϕ →
ψ) or a � A(ψ → ϕ).

Proof Suppose that a � A(ϕ → ψ) and a � A(ψ → ϕ). Thus, by Lemma 1, there
are agents b, c ∈ A such that b � ϕ → ψ and c � ψ → ϕ. Hence, by item 3 of
Definition 2,

b � ϕ, b � ψ, c � ψ, c � ϕ. (6)

By item 4 of Definition 2, the assumption a � Lϕ of the lemma and parts c � ϕ and
b � ϕ of statement (6) imply

c ≺a b. (7)

At the same time, by item 4 of Definition 2, the assumption a � Lψ of the lemma and
parts c � ψ and b � ψ of statement (6) imply b ≺a c. Hence, c ⊀a b because ≺a is a
strict partial order relation by Definition 1. This is a contradiction with statement (7).��

6 Completeness and decidability

In this section, we prove the completeness of our logical system and also show that our
system is decidable. As usual, the proof of completeness relies on a construction of a
canonical model. In modal logic, the worlds of a canonical model are usually defined
as maximal consistent sets of formulae. Since the formal semantics of our language,
given in Definition 2, defines the satisfaction � as a relation between an agent and a
formula, in our system, the agents play a role somewhat similar to the role of worlds
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in traditional modal logics. In particular, we define agents as maximal consistent sets
of formulae.

There are two major challenges that we faced while constructing the canonical
model. First, Definition 1 requires the set of agents A to be finite. To guarantee the
finiteness of the canonical model, we employ the filtration technique. Usually, this
technique requires to restrict the language to subformulae of the formulae ϕ for which
the canonical model is constructed. This approach fails in our case because the proof of
completeness requires us to deal with formulae which are not subformulae of formula
ϕ. To solve the problem, instead of subformulae of ϕ we consider a larger “saturated”
set of formulae. We define the notion of a saturated set and prove its property in
Sect. 6.1.

The other challenge in the proof of completeness is to give a definition of the
preference relation ≺a that guarantees that the relation is transitive. We give such a
definition and a non-trivial proof of transitivity in Sect. 6.2 as a part of the canonical
model description.

At the core of our proof of completeness is the truth lemma proven by induction on
the size of a formula. In our case, this lemma states that, in the canonical model, a � ψ

if and only if formulaψ belongs to the maximal consistent set a of formulae. To make
the proof of this lemma more readable, we separated the major case in the induction
step of the proof into a separate lemma stated and proven in Sect. 6.3. We use this
lemma in Sect. 6.4 to prove the truth lemma and to finish the proof of completeness.

6.1 Saturated set

As a part of the proof, we use the technique known as filtration to guarantee that the set
of agents in the canonical model is finite. To do filtration, we restrict some formulae
to those in a finite “saturated” set �0. Notions similar to our “saturated” set have been
used before (Goranko & van Drimmele, 2006, p. 102).

Definition 3 Set of formulae �0 ⊆ � is saturated if it is closed with respect to sub-
formulae and

1. if ϕ ∈ �0 and formula ϕ is not a negation, then ¬ϕ ∈ �0,
2. if Aϕ ∈ �0, then ¬ϕ ∈ �0,
3. if Lϕ ∈ �0, then ¬ϕ ∈ �0.

Lemma 11 Any finite set of formulae can be extended to a finite saturated set of
formulae.

Proof Let X ⊆ � be any finite set of formulae. Consider the set

�0 = {ψ,¬ψ | ψ is a subformula of some formula in set X}.

Note that set �0 is a finite extension of set X . To finish the proof of the lemma, it
suffices to verify conditions 1–3 from Definition 3.

To verify condition 1, consider any formula ϕ ∈ �0 which is not a negation. Thus,
by the choice of set �0, formula ϕ itself must be a subformula of some formula in set
X . Therefore, ¬ϕ ∈ �0 by the choice of set �0.
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To verify condition 3, consider any formula Lϕ ∈ �0. Again by the choice of set
�0, formula Lϕ must be a subformula of some formula in set X . Then, formula ϕ is
also a subformula of some formula in set X . Therefore, ¬ϕ ∈ �0 by the choice of set
�0.

To verify condition 2, consider any formula Aϕ ∈ �0. Thus, by the definition of
modality A, it follows that ϕ ∧ Lϕ ∧ L¬ϕ ∈ �0. Then, again by the choice of set �0,
formula ϕ must be a subformula of some formula in set X . Hence, ¬ϕ ∈ �0 by the
choice of set �0. ��

6.2 Canonical preferencemodel

In this subsection, we construct a canonical preference model for our logical system.
First, for any saturated set of formulae �0, by set �∗

0 we denote the set of formulae

�∗
0 = �0 ∪ {Aϕ | ϕ ∈ �0} ∪ {A¬ϕ | ϕ ∈ �0}

∪ {A(ϕ → ψ) | ϕ,ψ ∈ �0} ∪ {¬A(ϕ → ψ) | ϕ,ψ ∈ �0}. (8)

Next, for any saturated set of formulae�0 and anymaximal consistent set a0 ⊆ �∗
0,

we define canonical preference model

N (�0, a0) = (A, {≺a}a∈A, π).

Definition 4 A is the set of all maximal consistent sets a ⊆ �∗
0 such that

{Aϕ | Aϕ ∈ a0} ∪ {¬Aϕ | ¬Aϕ ∈ a0} ⊆ a.

Lemma 12 a0 ∈ A.

Our definition of relation ≺a in the canonical preference model is chosen to match
item 4 of Definition 2.

Definition 5 For any agents a, b, c ∈ A, let b ≺a c if there is a formula Lϕ ∈ �0 such
that Lϕ ∈ a, ϕ /∈ b, and ϕ ∈ c.

Note that the transitivity of the relation≺a is non-obvious and, perhaps, surprising.
We prove it as a part of the lemma below using the axioms of our logical system.

Lemma 13 For each agent a ∈ A, relation b ≺a c is a strict partial order on set A.

Proof We show the irreflexivity and the transitivity of relation ≺a separately:
Irreflexivity Suppose that there is an agent b ∈ A such that b ≺a b. Thus, by

Definition 5, there is a formula Lϕ ∈ a such that ϕ /∈ b and ϕ ∈ b, which is a
contradiction.

Transitivity Suppose that b ≺a c and c ≺a d for some agents b, c, d ∈ A. Thus,
by Definition 5, there are formulae Lϕ ∈ �0 and Lψ ∈ �0 such that

Lϕ ∈ a, ϕ /∈ b, ϕ ∈ c. (9)
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and

Lψ ∈ a, ψ /∈ c, ψ ∈ d. (10)

By Definition 3, the assumptions Lϕ ∈ �0 and Lψ ∈ �0 imply that ϕ,ψ ∈ �0. Thus,
by Eq. (8),

A(ϕ → ψ) ∈ �∗
0, A(ψ → ϕ) ∈ �∗

0, (11)

¬A(ϕ → ψ) ∈ �∗
0, ¬A(ψ → ϕ) ∈ �∗

0. (12)

Note that by the Coherence of Preference axiom and propositional reasoning, the part
Lϕ ∈ a of statement (9) and the part Lψ ∈ a of statement (10) imply

a � A(ϕ → ψ) ∨ A(ψ → ϕ).

Hence, either A(ϕ → ψ) ∈ a or A(ψ → ϕ) ∈ a by the maximality of set a ⊆ �∗
0

and the statement (11). We consider these two cases separately:
Case I A(ϕ → ψ) ∈ a. Then, ¬A(ϕ → ψ) /∈ a because set a is consistent. Thus,
¬A(ϕ → ψ) /∈ a0 by Definition 4 and the assumption a ∈ A of the lemma. Hence,
A(ϕ → ψ) ∈ a0 by statements (11) and (12) and because a0 is a maximal consistent
subset of �∗

0. Then, A(ϕ → ψ) ∈ c by Definition 4 and the assumption c ∈ A. Then,
c � ϕ → ψ by the Reflexivity axiom and the Modus Ponens inference rule. Thus,
c � ψ by part ϕ ∈ c of statement (9). Note that the assumption Lψ ∈ �0 implies
that ψ ∈ �0 because by Definition 3 set �0 is closed with respect to subformulae.
Therefore,ψ ∈ c because set c is amaximal consistent subset of�0, which contradicts
part ψ /∈ c of statement (10).
Case II A(ψ → ϕ) ∈ a. Then, ¬A(ψ → ϕ) /∈ a because set a is consistent. Thus,
¬A(ψ → ϕ) /∈ a0 by Definition 4 and the assumption a ∈ A of the lemma. Hence,
A(ψ → ϕ) ∈ a0 by statements (11) and (12) and because a0 is a maximal consistent
subset of �∗

0. Then, A(ψ → ϕ) ∈ d by Definition 4 and the assumption d ∈ A. Then,
d � ψ → ϕ by the Reflexivity axiom and the Modus Ponens inference rule. Thus,
d � ϕ by part ψ ∈ d of statement (10). Note that the assumption Lϕ ∈ �0 implies
that ϕ ∈ �0 because by Definition 3 set �0 is closed with respect to subformulae.
Hence, ϕ ∈ d because set d is a maximal consistent subset of �0. Therefore, b ≺a d
by Definition 5 using parts Lϕ ∈ a and ϕ /∈ b of statement (9). ��
Definition 6 π(p) = {a ∈ A | p ∈ a} for each propositional variable p ∈ P .

The canonical preference model N (�0, a0) = (A, {≺a}a∈A, π) is now completely
defined.

6.3 Auxiliary lemma

At the core of our proof of completeness is “truth” (or “induction”) Lemma 15. In this
subsection, we prove an auxiliary lemma used during the induction step of the proof
of Lemma 15.
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Lemma 14 For any agent a ∈ A and any formula Lϕ ∈ �0, if Lϕ /∈ a, then there are
agents b, c ∈ A such that ϕ /∈ b, ϕ ∈ c, and b ⊀a c.

Proof Outline. To prove the existence of agents b and c, we construct two consistent
sets, Xk′ and Y and define agents c and b as maximal consistent extensions of sets Xk′
and Y , respectively.

Defining sets Xk′ and Y is not a trivial task. First, we introduce a total order � on a
certain class of formulae Δ. Then, we use this total order to define a finite sequence of
sets of formulae X0, X1, . . . , Xn . Finally, we choose set Xk′ to be the last consistent
set in this sequence. We use index k′ of set Xk′ in the sequence X0, X1, . . . , Xn to
define set Y .

Once sets Xk′ and Y are chosen and extended to maximal consistent sets c and b,
we verify that the two later sets satisfy the conditions of the lemma.

Proof Consider the set of formulae

Δ = {δ ∈ �0 | Lδ ∈ a}. (13)

Next, we define a binary relation � on set Δ. For any formulae δ, δ′ ∈ Δ, let

δ � δ′ iff A(δ → δ′) ∈ a. (14)

Claim Relation � is a total preorder on set Δ.
Proof of Claim We need to show that the relation is reflexive, transitive, and total.

Reflexivity Consider any formula δ ∈ Δ. It suffices to show that δ � δ. Indeed,
the formula δ → δ is a propositional tautology. Thus, by the Necessitation inference
rule,

� A(δ → δ). (15)

At the same time, the assumption δ ∈ Δ implies that δ ∈ �0 by Eq. (13). Hence,
A(δ → δ) ∈ �∗

0 by Eq. (8). Then, A(δ → δ) ∈ a by statement (15) and because a is
a maximal consistent subset of �∗

0. Therefore, δ � δ by statement (14).
Transitivity Consider any formulae δ1, δ2, δ3 ∈ Δ such that δ1 � δ2 and δ2 � δ3.

It suffices to show that δ1 � δ3. Indeed, by statement (14), the assumptions δ1 � δ2
and δ2 � δ3 imply that

A(δ1 → δ2) ∈ a and A(δ2 → δ3) ∈ a. (16)

Note that the formula

(δ1 → δ2) → ((δ2 → δ3) → (δ1 → δ3))

is a propositional tautology. Thus, by the Necessitation inference rule,

� A((δ1 → δ2) → ((δ2 → δ3) → (δ1 → δ3))).
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Hence, by the Distributivity axiom and the Modus Ponens inference rule,

� A(δ1 → δ2) → A((δ2 → δ3) → (δ1 → δ3)).

Then, by the Modus Ponens inference rule and the part A(δ1 → δ2) ∈ a of state-
ment (16),

a � A((δ2 → δ3) → (δ1 → δ3)).

Thus, by the Distributivity axiom and the Modus Ponens inference rule,

a � A(δ2 → δ3) → A(δ1 → δ3).

Hence, by theModusPonens inference rule andpartA(δ2 → δ3) ∈ a of statement (16),

a � A(δ1 → δ3). (17)

The assumption δ1, δ3 ∈ Δ implies that δ1, δ3 ∈ �0 by Eq. (13). Hence, we have
A(δ1 → δ3) ∈ �∗

0 by Eq. (8). Then, A(δ1 → δ3) ∈ a by statement (17) and because
a is a maximal consistent subset of �∗

0. Therefore, δ1 � δ3 by statement (14).
Totality Consider any formulae δ1, δ2 ∈ Δ. It suffices to show that either δ1 � δ2

or δ2 � δ1. Indeed, by Eq. (13), the assumption δ1, δ2 ∈ Δ implies that Lδ1 ∈ a and
Lδ2 ∈ a. Thus, by the Coherence of Preferences axiom and propositional reasoning,

a � A(δ1 → δ2) ∨ A(δ2 → δ1). (18)

At the same time, the assumption δ1, δ2 ∈ Δ implies δ1, δ2 ∈ �0 by Eq. (13).
Hence, A(δ1 → δ2) ∈ �∗

0 and A(δ2 → δ1) ∈ �∗
0 by Eq. (8). Then, statement (18)

implies that either A(δ1 → δ2) ∈ a or A(δ2 → δ1) ∈ a, because set a is a maximal
consistent subset of �∗

0. Therefore, either δ1 � δ2 or δ2 � δ1 by statement (14).
Note that set Δ is finite by Eq. (13) and because set �0 is finite. Let

δ1 � δ2 � · · · � δn (19)

be any ordering of setΔwith respect to relation�. Note that theremight exist formulae
δ, δ′ ∈ Δ such that δ � δ′ and δ′ � δ. Thus, ordering (19) might be not unique. We
fix any such ordering.

For any integer k, such that 0 ≤ k ≤ n, define a set of formulae

Xk = {ϕ} ∪ {¬δ1, . . . ,¬δk} ∪ {Aψ | Aψ ∈ a0} ∪ {¬Aχ | ¬Aχ ∈ a0}. (20)

Claim Set X0 is consistent.
Proof of Claim Suppose the opposite. Thus, there are formulae

Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχt ∈ a0 (21)
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such that

Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχt � ¬ϕ.

Hence, by Lemma 6,

AAψ1, . . . ,AAψm,A¬Aχ1, . . . ,A¬Aχt � A¬ϕ.

Then, by Lemma 5 and the Modus Ponens inference rule applied m times,

Aψ1, . . . ,Aψm,A¬Aχ1, . . . ,A¬Aχt � A¬ϕ.

Thus, by the Euclidianity axiom and theModus Ponens inference rule applied t times,

Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχt � A¬ϕ.

Hence, by assumption (21),

a0 � A¬ϕ. (22)

The assumption Lϕ ∈ �0 of the lemma implies that ϕ ∈ �0 by Definition 3. Hence,
A¬ϕ ∈ �∗

0 by Eq. (8). Then, A¬ϕ ∈ a0 by statement (22) and because set a0 is a
maximal consistent subset of �∗

0. Thus, A¬ϕ ∈ a by Definition 4. Hence, by the
definition of modality A,

¬ϕ ∧ L¬ϕ ∧ L¬¬ϕ ∈ a. (23)

Note that ¬¬ϕ ↔ ϕ is a propositional tautology. Thus, � A(¬¬ϕ ↔ ϕ) by the
Necessitation inference rule. Hence, � L¬¬ϕ → Lϕ by the Substitution axiom and
the Modus Ponens inference rule. Hence, a � Lϕ by Eq. (23) and propositional
reasoning. Therefore, Lϕ ∈ a by the assumption Lϕ ∈ �0 ⊆ �∗

0 of the lemma and
because a is a maximal consistent subset of �∗

0, which contradicts the assumption
Lϕ /∈ a of the lemma.

Set X0 is consistent by the claim above. Let k′ to be the maximal k ≤ n such that
Xk is consistent. Consider the set of formulae

Y = {¬ϕ} ∪ {δk′+1, . . . , δn} ∪ {Aψ | Aψ ∈ a0} ∪ {¬Aχ | ¬Aχ ∈ a0}. (24)

Claim Set Y is consistent.
Proof of Claim We consider the following two cases separately:
Case I k′ < n. Then, set Xk′+1 is inconsistent by the choice of integer k′. Suppose
that Y is also inconsistent. Thus, there are formulae

Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχs ∈ a0 (25)

Aψ ′
1, . . . ,Aψ ′

	,¬Aχ ′
1, . . . ,¬Aχ ′

t ∈ a0 (26)

123



Synthese          (2024) 203:210 Page 15 of 26   210 

such that

Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχs,¬δk′+1,¬δk′ ,¬δk′−1, . . . ,¬δ1 � ¬ϕ,

Aψ ′
1, . . . ,Aψ ′

	,¬Aχ ′
1, . . . ,¬Aχ ′

t , δk′+1, δk′+2, δk′+3, . . . , δn � ϕ.

Hence, by the Modus Ponens inference rule applied k′ times to the first statement and
(n − k − 1) times to the second one,

Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχs,

¬δk′+1,¬δk′+1 → ¬δk′ ,¬δk′ → ¬δk′−1, . . . ,¬δ2 → ¬δ1 � ¬ϕ,

Aψ ′
1, . . . ,Aψ ′

	,¬Aχ ′
1, . . . ,¬Aχ ′

t ,

δk′+1, δk′+1 → δk′+2, δk′+2 → δk′+3, . . . , δn−1 → δn � ϕ.

Then, by Lemma 4 applied to both statements,

Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχs,

¬δk′+1 → ¬δk′ ,¬δk′ → ¬δk′−1, . . . ,¬δ2 → ¬δ1 � ¬δk′+1 → ¬ϕ,

Aψ ′
1, . . . ,Aψ ′

	,¬Aχ ′
1, . . . ,¬Aχ ′

t ,

δk′+1 → δk′+2, δk′+2 → δk′+3, . . . , δn−1 → δn � δk′+1 → ϕ.

Thus, by the law of contraposition applied (k′ + 1) times to the first statement,

Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχs,

δk′ → δk′+1, δk′−1 → δk′ , . . . , δ1 → δ2 � ϕ → δk′+1,

Aψ ′
1, . . . ,Aψ ′

	,¬Aχ ′
1, . . . ,¬Aχ ′

t ,

δk′+1 → δk′+2, δk′+2 → δk′+3, . . . , δn−1 → δn � δk′+1 → ϕ.

Hence, by Lemma 6 applied to both statements,

AAψ1, . . . ,AAψm,A¬Aχ1, . . . ,A¬Aχs,

A(δk′ → δk′+1),A(δk′−1 → δk′), . . . ,A(δ1 → δ2) � A(ϕ → δk′+1),

AAψ ′
1, . . . ,AAψ ′

	,A¬Aχ ′
1, . . . ,A¬Aχ ′

t ,

A(δk′+1 → δk′+2),A(δk′+2 → δk′+3), . . . ,A(δn−1 → δn) � A(δk′+1 → ϕ).

Then, by Lemma 5 and the Modus Ponens inference rule applied m times to the first
statement and 	 times to the second statement,

Aψ1, . . . ,Aψm,A¬Aχ1, . . . ,A¬Aχs,
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A(δk′ → δk′+1),A(δk′−1 → δk′), . . . ,A(δ1 → δ2) � A(ϕ → δk′+1),

Aψ ′
1, . . . ,Aψ ′

	,A¬Aχ ′
1, . . . ,A¬Aχ ′

t ,

A(δk′+1 → δk′+2),A(δk′+2 → δk′+3), . . . ,A(δn−1 → δn) � A(δk′+1 → ϕ).

Thus, by the Euclidianity axiom and the Modus Ponens inference rule applied s times
to the first statement and t times to the second statement,

Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχs,

A(δk′ → δk′+1),A(δk′−1 → δk′), . . . ,A(δ1 → δ2) � A(ϕ → δk′+1),

Aψ ′
1, . . . ,Aψ ′

	,¬Aχ ′
1, . . . ,¬Aχ ′

t ,

A(δk′+1 → δk′+2),A(δk′+2 → δk′+3), . . . ,A(δn−1 → δn) � A(δk′+1 → ϕ).

Observe that Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχs ∈ a by Definition 4 and the assump-
tions a ∈ A and (25). Similarly, Aψ ′

1, . . . ,Aψ ′
	,¬Aχ ′

1, . . . ,¬Aχ ′
t ∈ a by the

assumption (26). Hence,

a,A(δk′ → δk′+1),A(δk′−1 → δk′), . . . ,A(δ1 → δ2) � A(ϕ → δk′+1),

a,A(δk′+1 → δk′+2),A(δk′+2 → δk′+3), . . . ,A(δn−1 → δn) � A(δk′+1 → ϕ).

Recall that δ1 � δ2 � · · · � δn by assumption (19). Then,

A(δ1 → δ2), . . . ,A(δn−1 → δn) ∈ a

by statement (14). Thus,

a � A(ϕ → δk′+1), (27)

a � A(δk′+1 → ϕ). (28)

Note that formula

(ϕ → δk′+1) → ((δk′+1 → ϕ) → (δk′+1 ↔ ϕ))

is a propositional tautology. Hence,

ϕ → δk′+1, δk′+1 → ϕ � δk′+1 ↔ ϕ

by the Modus Ponens rule applied twice. Then,

A(ϕ → δk′+1),A(δk′+1 → ϕ) � A(δk′+1 ↔ ϕ)
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by Lemma 6. Thus, a � A(δk′+1 ↔ ϕ) by statements (27) and (28). Hence, by the
Substitution axiom and the Modus Ponens inference rule,

a � Lδk′+1 → Lϕ.

Equation (13) implies that Lδk′+1 ∈ a because δk′+1 ∈ Δ. Then,

a � Lϕ.

Recall that Lϕ ∈ �0 ⊆ �∗
0 by the assumption of the lemma. Thus, Lϕ ∈ a because a

is a maximal consistent subset of �∗
0, which contradicts the assumption Lϕ /∈ a of the

lemma.
Case II k′ = n. Suppose that set Y is not consistent. Thus, there are formulae

Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχt ∈ a0 (29)

such that

Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχt � ϕ.

Hence, by Lemma 6,

AAψ1, . . . ,AAψm,A¬Aχ1, . . . ,A¬Aχt � Aϕ.

Then, by Lemma 5 and the Modus Ponens inference rule applied m times,

Aψ1, . . . ,Aψm,A¬Aχ1, . . . ,A¬Aχt � Aϕ.

Thus, by the Euclidianity axiom and the Modus Ponens rule applied t times,

Aψ1, . . . ,Aψm,¬Aχ1, . . . ,¬Aχt � Aϕ.

Hence, by assumption (29),

a0 � Aϕ.

Recall that Lϕ ∈ �0 by the assumption of the lemma. Hence, ϕ ∈ �0 by Definition 3.
Then, Aϕ ∈ �∗

0 by Eq. (8). Thus, Aϕ ∈ a0 because a0 is a maximal consistent
subset of �∗

0. Hence, Aϕ ∈ a by Definition 4 and the assumption a ∈ A. Then,
ϕ ∧Lϕ ∧L¬ϕ ∈ a by the definition of modality A. Hence, by propositional reasoning,

a � Lϕ.

Recall that Lϕ ∈ �0 ⊆ �∗
0 by the assumption of the lemma. Thus, Lϕ ∈ a because a

is a maximal consistent subset of �∗
0, which contradicts the assumption Lϕ /∈ a of the

lemma.
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Claim Xk′ ,Y ⊆ �∗
0.

Proof of Claim Consider any formula ζ ∈ Xk′ ∪ Y . It suffices to show that ζ ∈ �∗
0.

By Eqs. (20) and (24), it is enough to consider the following three cases:
Case I ζ ≡ ϕ or ζ ≡ ¬ϕ. Assumption Lϕ ∈ �0 of the lemma implies that ¬ϕ ∈ �0
by item 3 of Definition 3. Then, ϕ ∈ �0 because set �0 is closed with respect to
subformulae. Therefore, ϕ,¬ϕ ∈ �0 ⊆ �∗

0.
Case II ζ ≡ δ or ζ ≡ ¬δ for some formula δ ∈ Δ. Then, Lδ ∈ a by Eq. (13). Thus,
¬δ ∈ �0 by item 3 of Definition 3. Hence, δ ∈ �0 because set �0 is closed with
respect to subformulae. Therefore, δ,¬δ ∈ �0 ⊆ �∗

0.
Case III ζ ∈ a0. Then, ζ ∈ �∗

0 because set a0 is a subset of �∗
0.

Let sets b and c be anymaximal consistent subsets of�∗
0 that contain sets Y and Xk′ ,

respectively. Such subsets exist by the above claim and Lemma 3. Note that b, c ∈ A
by Definition 4 and Eqs. (24) and (20). Also, ¬ϕ ∈ Y ⊆ b by Eq. (24). Then, ϕ /∈ b
because set b is consistent. Additionally, ϕ ∈ Xk′ ⊆ c by Eq. (20).
Claim b ⊀a c.
Proof of Claim Suppose that b ≺a c. Thus, by Definition 5, there is a formula Lδ ∈ �0
such that Lδ ∈ a,

δ /∈ b, (30)

and

δ ∈ c. (31)

Hence, δ ∈ Δ by Eq. (13) and because set �0 is closed with respect to subformulae.
Recall that chain (19) is the ordering of all formulae in Δ. Let δ = δi for some i ≤ n.
We consider the following two cases separately:
Case I i ≤ k′. Then, ¬δ = ¬δi ∈ Xk′ ⊆ c by Eq. (20) and the choice of set c. Hence,
δ /∈ c because set c is consistent, which contradicts statement (31).
Case II i > k′. Then, δ = δi ∈ Y ⊆ b by Eq. (24) and the choice of set b, which
contradicts statement (30). ��

This concludes the proof of the lemma.

6.4 Final steps

Lemma 15 a � ϕ iff ϕ ∈ a for each agent a ∈ A and each formula ϕ ∈ �0.

Proof We prove the lemma by induction on the structural complexity of formula ϕ.
If formula ϕ is a propositional variable, then the required follows from item 1 of
Definition 2 and Definition 6. If formula ϕ is a negation or an implication, then the
required follows from items 2 and 3 of Definition 2, the induction hypothesis, and the
maximality and the consistency of the set a in the standard way.

Finally, let formula ϕ have the form Lψ .
(⇒) : Assume that Lψ /∈ a. Then, by Lemma 14, there are agents b, c ∈ A such that
ψ /∈ b, ψ ∈ c, and b ⊀a c. Thus, b � ψ and c � ψ by the induction hypothesis.
Therefore, a � Lψ by item 4 of Definition 2.
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(⇐) :Assume that Lψ ∈ a. Consider any agents b, c ∈ A such that b � ψ and c � ψ .
By item 4 of Definition 2 it suffices to show that b ≺a c. Indeed, by the induction
hypothesis, assumptions b � ψ and c � ψ imply thatψ /∈ b and ψ ∈ c. Then, b ≺a c
by Definition 5 and the assumption Lψ ∈ a of the case. ��

We are now ready to prove the completeness of our logical system. Recall that we
used the filtration technique to guarantee that the set of agents is finite. As a result, we
can prove the completeness, but not strong completeness of our system.

Theorem 2 (completeness) If a � ϕ for each agent a of each preference model, then
� ϕ.

Proof Suppose that � ϕ. Consider the singleton set {¬ϕ}. By Lemma 11, it can be
extended to a finite saturated set�0. Let�∗

0 be the extension of�0 defined by Eq. (8).
Assumption� ϕ implies that set {¬ϕ} is consistent. Then by Lemma 3, there is a maxi-
mal consistent subset a0 ⊆ �∗

0 such that {¬ϕ} ⊆ a0. Consider the canonical preference
model N (�0, a0). By Lemma 12, set a0 is an agent in the network N (�0, a0). Note
that, by the choice of set a0, we have ¬ϕ ∈ {¬ϕ} ⊆ a0. Thus, ϕ /∈ a0 because set a0
is consistent. Therefore, a0 � ϕ by Lemma 15. ��

We conclude this section with an observation that our logical system is decidable,
which follows from the completeness theorem.

Theorem 3 Set {ϕ ∈ � | � ϕ} is decidable.
Proof The set {ϕ ∈ � | � ϕ} is recursively enumerable because it is axiomatisable.
Also, the set {ϕ ∈ � | � ϕ} is recursively enumerable because our logical system is
sound and complete with respect to the preference models with finite sets of agents.
Therefore, the set {ϕ ∈ � | � ϕ} is decidable. ��

7 The logic of conditional likes

In the previous sections, we considered such unconditional likes statements as “a likes
logicians” and “a likes philosophers”. In this section, following Lang et al. (2002),
we consider conditional likes statements such as “among all philosophers, a likes
logicians”. We write the last statement as

a � L(“is a logician” | “is a philosopher”).
Below, we formally introduce the syntax and the semantics for a language with

conditional likes modality L(· | ·) and discuss possible axioms for conditional likes.
We also show that unconditional likesmodality L is definable through conditional likes
modality but not the other way around.

7.1 Syntax and semantics

The language �+ that we consider in this section is defined by the grammar:

ϕ := p | ¬ϕ | ϕ → ϕ | L(ϕ | ϕ).
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We read L(ϕ | ψ) as “likes those who have property ϕ, among those who satisfy
condition ψ”. We again assume that disjunction ∨, conjunction ∧, and biconditional
↔ are defined in our language in the standard way. We also assume the same about
constant �.

The semantics of formulae in language �+ could be defined by replacing item 4
of Definition 2 with

a � L(ϕ | ψ), when ∀ b, c (i f b � ¬ϕ ∧ ψ and c � ϕ ∧ ψ, then b ≺a c). (32)

Note that the conditions b � ¬ϕ ∧ ψ and c � ϕ ∧ ψ imply that b �= c. Thus, just
like it was in the case of unconditional likes, a replacement of the strict relation ≺a in
the above statement with the no-strict relation 
a results in an equivalent definition of
the conditional likes modality. See our discussion after Definition 2. Observe also that
formulae L(ϕ | �) is equivalent under the above semantics to the formula Lϕ. Thus, the
logical system that we consider in this section could be considered to be an extension
of the logical system for unconditional likes modality from the previous section. As
before, “for all agents” modality Aϕ can be defined as ϕ ∧ L(ϕ | �) ∧ L(¬ϕ | �).

7.2 Axioms

Below are some of the universally true properties that can be expressed in the language
�+.
1. L(ϕ1 | ψ1) ∧ L(ϕ2 | ψ2) → L(ϕ1 ∧ ϕ2 | ψ1 ∧ ψ2),
2. L(ϕ1 | ψ1) ∧ L(ϕ2 | ψ2) → L(ϕ1 ∨ ϕ2 | ψ1 ∧ ψ2),
3. L(ϕ1 ∧ ϕ2 | ψ) → L(ϕ1 | ϕ2 ∧ ψ),
4. L(ϕ1 ∨ ϕ2 | ψ) → L(ϕ1 | ¬ϕ2 ∧ ψ).

Note, however, that unlike unconditional likes modality, which has a relatively simple
axiomatisation, conditional likes modality has much less trivial and harder-to-express
properties. An example of them is

∧

0≤i<n

L(ϕi | ψi ) →
∨

0≤i<n

A¬(ϕi ∧ ψi ∧ ¬ϕi ′ ∧ ψi ′),

where, for each i , integer i ′ < n is such that i ′ ≡ i + 1 (mod n). We believe that this
property does not follow from properties 1–4 listed in the beginning of this subsection
and that it cannot be reduce to a combination of some simple principles.

We prove the soundness of this principle in the theorem below. A complete axioma-
tisation of modality L(ϕ | ψ) remains an open question.

Theorem 4 For an arbitrary preference model (A, {≺a}a∈A, π), any agent a ∈ A,
any n ≥ 1, and any formulae ϕ0, . . . , ϕn−1, ψ0, . . . , ψn−1, if a � L(ϕi | ψi ) for each
i < n, then there is i < n such that

a � A¬(ϕi ∧ ψi ∧ ¬ϕi ′ ∧ ψi ′),

where i ′ < n is such that i ′ ≡ i + 1 (mod n).
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Proof Towards contradiction, suppose that

a � L(ϕi | ψi ), ∀ i < n (33)

and

a � A¬(ϕi ∧ ψi ∧ ¬ϕi ′ ∧ ψi ′),

for each i < n, where i ′ < n is such that i ′ ≡ i + 1 (mod n). Thus, by Lemma 1, for
each i < n there is an agent bi ∈ A such that

bi � ¬(ϕi ∧ ψi ∧ ¬ϕi ′ ∧ ψi ′),

where i ′ < n is such that i ′ ≡ i + 1 (mod n). Hence, by item 2 of Definition 2,

bi � ϕi ∧ ψi ∧ ¬ϕi ′ ∧ ψi ′ ,

where i ′ < n is such that i ′ ≡ i + 1 (mod n). Then,

b0 � ϕ0 ∧ ψ0, b0 � ¬ϕ1 ∧ ψ1,

b1 � ϕ1 ∧ ψ1, b1 � ¬ϕ2 ∧ ψ2,

b2 � ϕ2 ∧ ψ2, b2 � ¬ϕ3 ∧ ψ3,

. . . . . .

bn−2 � ϕn−2 ∧ ψn−2, bn−2 � ¬ϕn−1 ∧ ψn−1,

bn−1 � ϕn−1 ∧ ψn−1, bn−1 � ¬ϕ0 ∧ ψ0.

These statements can be rearranged as,

b0 � ¬ϕ1 ∧ ψ1, b1 � ϕ1 ∧ ψ1,

b1 � ¬ϕ2 ∧ ψ2, b2 � ϕ2 ∧ ψ2,

b2 � ¬ϕ3 ∧ ψ3, b3 � ϕ3 ∧ ψ3,

. . . . . .

bn−2 � ¬ϕn−1 ∧ ψn−1, bn−1 � ϕn−1 ∧ ψn−1,

bn−1 � ¬ϕ0 ∧ ψ0 b0 � ϕ0 ∧ ψ0.

Thus, by assumption (33) and statement (32),

b0 ≺a b1 ≺a b2 ≺a · · · ≺a bn−1 ≺a b0.

Therefore,b0 ≺a b0 because relation≺a is transitive byDefinition 1,which contradicts
≺a being a strict partial order by the same Definition 1. ��
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7.3 Undefinability

In this section, we show that conditional likes modality L(· | ·) is not definable in our
original language �. To achieve this, we consider the preference model depicted in
Fig. 2. It has four agents: a, b, c, and d. The only preference in the model is that
agent c prefers agent a over agent d. Without loss of generality, we assume that the
language has only two propositional variables: p and q. Finally, let π(p) = {a} and
π(q) = {a, d}. In other words, propositional variable p is true only about agent a and
propositional variable q is true only about agents a and d, see Fig. 2.Wewill show that
agents b and c are indistinguishable in language � and that they are distinguishable
in a language containing conditional likes modality L(· | ·).

We start the proof with two auxiliary lemmas. The first of them is true because
relation ≺b is empty.

Lemma 16 If X and Y are any two sets of agents in the preference model depicted in
Fig.2 such that X ∪ Y = {a, b, c, d} and x ≺b y for all x ∈ X and all y ∈ Y , then
either set X or set Y is empty.

The second auxiliary lemma is true because agents b and c are not in relation ≺c

with any other agents.

Lemma 17 If X and Y are any two sets of agents in the preference model depicted in
Fig.2 such that X ∪ Y = {a, b, c, d} and x ≺c y for all x ∈ X and all y ∈ Y , then
either set X or set Y is empty.

Proof If b ∈ X , then set Y must be empty because b ⊀c y for any y ∈ {a, b, c, d},
see Fig. 2. Similarly, if b ∈ Y , then set X must be empty. ��
Lemma 18 b � ϕ iff c � ϕ for any formula ϕ ∈ �.

Proof We prove the statement by induction on the structural complexity of formula
ϕ. If formula ϕ is propositional variable p or q, then the statement holds by item 1 of
Definition 2 and because b, c /∈ π(p) and b, c /∈ π(q). If formula ϕ is a negation or an
implication, then the statement of the lemma follows from the induction hypothesis
and either item 2 or item 3 of Definition 2 in the standard way.

Suppose that formula ϕ has the form Lψ .
(⇐) : Suppose that c � Lψ . Consider sets

X = {x ∈ A | x � ψ},
Y = {y ∈ A | y � ψ}.

Fig. 2 A preference model

123



Synthese          (2024) 203:210 Page 23 of 26   210 

The assumption c � Lψ implies that x ≺c y for each agent x ∈ X and each agent
y ∈ Y by item 4 of Definition 2. Then, either X = ∅ or Y = ∅ by Lemma 17. Hence,
b � Lψ again by item 4 of Definition 2.
(⇒) : The proof is similar, but it uses Lemma 16 instead of Lemma 17. ��

The next lemma follows from statement (32) and the specification of the model in
Fig. 2.

Lemma 19 b � L(p | q) and c � L(p | q).

The next theorem follows from the last two lemmas.

Theorem 5 Modality L(· | ·) is not definable in language �.

8 Conclusion

Wehave proposed an egocentric approach to reasoning about higher-order preferences.
Unlike the previous works on preference and desire logics, the egocentric approach
allows us to express higher-order preferences using nested statements of the form
“agent a likes those who like philosophers”. We have considered unconditional and
conditional modalities capturing such preferences. We have observed that uncondi-
tional modality is definable through conditional, but not the other way around. Our
main technical result is a sound, complete, and decidable logical system describing
the properties of the unconditional likes modality.

An interesting direction for future research is to introduce the distinction between
de re and de dicto likes. An agent might like a group of people because they are
philosophers or the group liked by the agent just happens to consist of philosophers.

Appendix

To keep this article self-contained, in this appendix, we prove the standard lemmas
mentioned in Sect. 4.
Lemma 4 If X , ϕ � ψ , then X � ϕ → ψ .

Proof Suppose that sequenceψ1, . . . , ψn is a proof from set X ∪{ϕ} and the theorems
of our logical system that uses the Modus Ponens inference rule only. In other words,
for each k ≤ n, either

1. � ψk , or
2. ψk ∈ X , or
3. ψk is equal to ϕ, or
4. there are i, j < k such that formula ψ j is equal to ψi → ψk .

It suffices to show that X � ϕ → ψk for each k ≤ n. We prove this by induction on k
through considering the four cases above separately.
Case I: � ψk . Note that ψk → (ϕ → ψk) is a propositional tautology, and thus, is an
axiom of our logical system. Hence, � ϕ → ψk by the Modus Ponens inference rule.
Therefore, X � ϕ → ψk .
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Case II: ψk ∈ X . Then, similar to the previous case, X � ϕ → ψk .
Case III: formula ψk is equal to ϕ. Thus, ϕ → ψk is a propositional tautology.
Therefore, X � ϕ → ψk .
Case IV: formula ψ j is equal to ψi → ψk for some i, j < k. Thus, by the induction
hypothesis, X � ϕ → ψi and X � ϕ → (ψi → ψk). Note that formula

(ϕ → ψi ) → ((ϕ → (ψi → ψk)) → (ϕ → ψk))

is a propositional tautology. Therefore, X � ϕ → ψk by applying the Modus Ponens
inference rule twice. ��
Lemma 5 � Aϕ → AAϕ.

Proof Note that formula A¬Aϕ → ¬Aϕ is an instance of the Reflexivity axiom. Thus,
by contraposition, � Aϕ → ¬A¬Aϕ. Then, taking into account that � ¬A¬Aϕ →
A¬A¬Aϕ by the Euclidianity axiom, one can conclude that

� Aϕ → A¬A¬Aϕ. (34)

At the same time, ¬Aϕ → A¬Aϕ is an instance of the Euclidianity axiom. Thus, �
¬A¬Aϕ → Aϕ by contraposition. Hence, � A(¬A¬Aϕ → Aϕ) by the Necessitation
inference rule. Thus,

� A¬A¬Aϕ → AAϕ

by the Distributivity axiom and the Modus Ponens inference rule. The last statement,
together with statement (34), implies the statement of the lemma by the laws of propo-
sitional reasoning. ��
Lemma 6 If ϕ1, . . . , ϕn � ψ , then Aϕ1, . . . ,Aϕn � Aψ .

Proof By Lemma 4 applied n times, the assumption ϕ1, . . . , ϕn � ψ implies that

� ϕ1 → (ϕ2 → . . . (ϕn → ψ) . . . ).

Thus,

� A(ϕ1 → (ϕ2 → . . . (ϕn → ψ) . . . ))

by the Necessitation inference rule. Hence, by the Distributivity axiom and the Modus
Ponens inference rule,

� Aϕ1 → A(ϕ2 → . . . (ϕn → ψ) . . . ).

Then, Aϕ1 � A(ϕ2 → . . . (ϕn → ψ) . . . ), again by the Modus Ponens inference rule.
Therefore, Aϕ1, . . . ,Aϕn � Aψ by applying the previous steps (n − 1) more times. ��
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