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Abstract—Orthogonal frequency division multiplexing
(OFDM) has been widely recognized as the representative
waveform for 5G wireless networks, which can directly support
sensing/positioning with existing infrastructure. To guarantee
superior sensing/positioning accuracy while supporting high-
speed communication simultaneously, the dual functions tend
to be assigned with different resource elements (REs) due to
their diverse design requirements. This motivates optimization
of resource allocation/waveform design across time, frequency,
power and delay-Doppler domains. Therefore, this article
proposes two cross-domain waveform optimization strategies
for effective convergence of OFDM-based communication and
sensing/positioning, following communication- and sensing-
centric criteria, respectively. For the communication-centric
design, to maximize the achievable data rate, a fraction of
REs are optimally allocated for communication according to
prior knowledge of the communication channel. The remaining
REs are then employed for sensing/positioning, where the
sidelobe level and peak-to-average power ratio are suppressed
by optimizing its power-frequency and phase-frequency
characteristics for sensing performance improvement. For
the sensing-centric design, a ‘locally’ perfect auto-correlation
property is ensured for accurate sensing and positioning by
adjusting the unit cells of the ambiguity function within its
region of interest (RoI). Afterwards, the irrelevant cells beyond
RoI, which can readily determine the sensing power allocation,
are optimized with the communication power allocation to
enhance the achievable data rate. Numerical results demonstrate
the superiority of the proposed waveform designs.

Index Terms—Positioning and sensing, dual-functional radar
and communication (DFRC), orthogonal frequency division mul-
tiplexing (OFDM), cross-domain waveform design, ambiguity
function.
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I. INTRODUCTION

With the commercialization of the fifth-generation (5G)
networks, early explorations of the game-changing sixth-
generation (6G) concept have been initiated by a collection of
countries, being envisioned to support unprecedented ubiqui-
tous sensing/positioning tasks aside from communication [2]–
[5]. Promoted by the ever-progressing digital signal processing
techniques, the transceiver structure for radar sensing and
data transmission has become increasingly correlated [6]–
[8]. This eventually enables direct target sensing/positioning
with the existing infrastructure of wireless cellular networks,
yielding the dual-functional radar and communication (DFRC)
philosophy [9]–[11]. Such cutting-edge technology can re-
alize both functions simultaneously with identical hardware
resources and efficient bandwidth/energy usage, which sup-
ports a plethora of emerging applications, e.g., autonomous
driving, smart home, extended reality (XR), airborne recon-
naissance/monitoring, etc. [12]–[14]. Thanks to these merits,
DFRC has attracted extensive attentions as a promising en-
abling technology for 6G wireless networks and is recognized
as one of six independent usage scenarios of 6G [15]–[17].

Existing literature has reached a consensus that the broad-
sense concept of DFRC can be classified into three categories:
co-existence, cooperation and co-design [18], [19]. Co-existing
radar and communication subsystems are mutually treated as
independent and adverse interferers, whilst the cooperation
counterpart can mitigate the interference through information
exchange. However, these two approaches do not fully inte-
grate sensing and communication subsystems, which induces
additional hardware expenses and computational complex-
ity for interference management. Alternatively, the co-design
philosophy shares unitary hardware platform and transmit
waveform for simultaneous sensing and communication, which
reaches true harmony across space, time and spectrum do-
mains. Therefore, this article is concentrated on the co-design
DFRC.

A. Related Works

An appropriate dual-functional waveform design is crucial
[20], which is challenging due to the diverse requirements of
sensing and communication functions. Specifically, sequences
with good auto-correlation property are usually preferable for
sensing and positioning applications, while communication
symbols tend to be random and stochastic, making it chal-
lenging to ensure consistent auto-correlation properties. To
address this problem, one promising representative is orthogo-
nal frequency division multiplexing (OFDM) [20]–[22], which
is widely adopted in current communication standards like
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the fourth-generation (4G) Long-Term Evolution LTE [23]
and 5G new radio (NR) [24] thanks to the merits of OFDM
signals, including robustness to frequency-selective fading
and easy implementation. Despite of its randomness, the
OFDM waveform possesses perfect auto-correlation property
when using constant-amplitude constellations, e.g., phase-shift
keying (PSK) [25]. Under such a waveform design, OFDM
can readily support accurate sensing/positioning with marginal
modifications to the existing infrastructure [26]. However, such
an ideal auto-correlation property is no longer guaranteed
when the quadrature amplitude modulation (QAM) format is
employed for higher spectral efficiency [25], [27]. Moreover,
for the application scenario which performs sensing and po-
sitioning in a broadcasting/scanning mode, whilst providing
directional access to user terminals simultaneously [28], [29],
the communication and sensing components should be non-
overlapped in the time-frequency domain to avoid possible
interference.

To tackle the aforementioned issues, a dual-functional
OFDM waveform design with interleaved subcarriers, ab-
breviated as OFDM-IS, was explored in the existing litera-
ture, where the dual functions are allocated with orthogonal
spectrum resources [30]–[34]. Specifically, in [30], the as-
signment and power allocation of OFDM subcarriers were
optimized for the sensing and communication subsystems
using a compound mutual-information (MI) based objective
function, where both a radar-selfish and a balanced design
strategies were developed. Another joint subcarrier and power
allocation optimization strategy was proposed in [31] and
[32], aiming to minimize the total power consumption under
constraints on the MI metric for radar sensing and the data rate
for communication. The work [33] further proposed a robust
multi-carrier waveform design against imperfect channel state
information, where the bit and power allocation strategies were
optimized with a greedy algorithm. Rather than adopting the
MI-related metrics for radar sensing, the study [34] optimized
the joint subcarrier and power allocation strategy between the
dual functions by minimizing the sidelobe-to-peak ratio in the
radar range profile1, whilst ensuring an acceptable level of the
communication data rate.

Unlike the aforementioned works which merely focused
on the frequency- and power-domain characteristics, some
studies extend the dual-functional waveform design to the time
domain by involving multiple consecutive OFDM symbols
[35]–[38]. The work [35] optimized power allocation in a
time-frequency range of interest to realize a favorable trade-off
between sensing and communication with limited feedforward.
In this study, however, the radar utilized the random and
stochastic communication symbols for target detection, which
limited the sensing performance. Another power allocation
optimization was proposed in [36], aiming to maximize the
compound signal-plus-distortion-and-noise ratio for sensing
and communication subsystems. Since the time-frequency
resources allocated for the two subsystems overlapped in
the work [36], there may be significant interference between

1The radar range profile is referred to as a one-dimensional correlation
function of the sensing sequence.

them. An optimum radar waveform was proposed in [37] to
maximize the channel capacity by minimizing the distance
between the communication symbols and the radar interfer-
ence. Although this design further enhanced the capacity of
the communication system, it neglected the required proper-
ties for the radar sequence. In [38], the optimum OFDM-IS
design for dual-functional waveform is investigated in both
time and frequency domains, and multiple resource element
(RE) assignment strategies were proposed. These strategies
can achieve large time-frequency radar aperture with a tiny
fraction of OFDM resources, whose optimality, however, was
not validated with sufficient theoretical derivations.

B. Motivation and Our Contributions
From the above discussions, most of the existing litera-

ture on OFDM-based dual-functional waveform design only
consider subcarrier assignment and power allocation within
a single OFDM symbol. In order to improve the speed
resolution in radar sensing, however, the coherent processing
interval usually have to be extended by incorporating multiple
consecutive OFDM symbols [6]. Considering the time-varying
characteristics of the channel in high-speed scenarios, e.g., au-
tonomous driving, it is difficult to apply the resource allocation
strategy within one single OFDM symbol to the extended time
interval. Consequently, to ensure the accuracy of positioning
and speed estimation, optimization of the waveform design
across multiple consecutive OFDM symbols is necessary. The
existing attempts for multiple symbols design mostly fail to
keep the communication and sensing signals orthogonal and
non-interfering with each other, and consequently the diverse
design requirements of the two subsystems cannot be fully
satisfied. To the authors’ best knowledge, the work [38] is the
only existing reference involving multiple consecutive OFDM
symbols that keeps the communication and sensing signals
orthogonal by RE and subcarrier assignment, but the design
of [38] suffers from some drawbacks as discussed above.
Against this background, we propose a cross-domain dual-
functional waveform design based on the OFDM-IS struc-
ture. The waveform coefficients are optimized across time,
frequency, power and even delay-Doppler domains, where both
a communication-centric and sensing-centric design method-
ologies are developed, respectively. The main contributions of
this paper can be summarized as follows.

1) Communication-centric waveform design: To enhance
the sensing performance whilst ensuring the optimal
data rate, a fraction of REs within each frame of multi-
ple consecutive OFDM symbols are optimally assigned
for communication through a water-filling algorithm
based on prior knowledge of the time-frequency doubly-
dispersive channel. The radar sensing components are
then constituted by the concatenation of the remain-
ing REs, where the energy budget is optimized in
a subcarrier-wise manner to guarantee high peak-to-
sidelobe ratio (PSLR) of the radar ambiguity function.
The phase-frequency characteristic of the sensing com-
ponent is further adjusted based on the branch-and-
bound (BB) algorithm for the peak-to-average power
ratio (PAPR) reduction.
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2) Sensing-centric waveform design: To ensure superior
target sensing performance, we firstly construct a ‘lo-
cally’ perfect auto-correlation property by shaping the
radar ambiguity function of the integrated waveform
within a pre-defined region of interest (RoI) in the
delay-Doppler domain. Next we approximate Hermitian
symmetry for the 2-dimensional ambiguity function. The
unit cells of the ambiguity function beyond RoI, referred
to as ‘irrelevant cells’ for brevity, can then be directly
manipulated to determine the power allocation pattern
for sensing, where the REs with relatively low sensing
power are employed for data transmission with water
filling. Therein the irrelevant cells and the power allo-
cation strategy for communication are jointly optimized
for throughput enhancement in an alternating iterative
manner.

3) Numerical results are provided to validate the
superiority of the proposed communication-centric
and sensing-centric waveform designs. The proposed
communication-centric waveform is capable of
achieving a high PSLR within RoI and a low PAPR
while maintaining the optimal achievable data rate,
compared with its classical counterparts. On the other
hand, while ensuring a locally perfect auto-correlation
property, the proposed sensing-centric waveform
can approximate the maximum achievable data rate,
demonstrating the feasibility of the proposed alternating
iterative algorithm. Moreover, the effects of the key
parameters on sensing and communication performance
are investigated, to provide valuable guidance for
the implementation of the proposed sensing-centric
waveform design.

C. Structure and Notations

The remainder of this paper is organized as follows. Sec-
tion II introduces the system model. Section III defines the
RoI in the ambiguity function and presents the proposed
communication-centric waveform design. In Section IV, the
sensing-centric waveform design is formulated as an opti-
mization problem and an alternating iterative algorithm is
developed to solve the problem. Numerical results are provided
in Section V, which is followed by conclusions in Section VI.

In this paper, DFT(X, 1) and DFT(X, 2) denote perform-
ing discrete Fourier transformation (DFT) on every row and
every column of matrix X, respectively. IDFT(X, 1) and
IDFT(X, 2) denote performing inverse DFT (IDFT) on every
row and every column of X, respectively. (X)T and (X)∗

stand for the transpose and conjugate of X, respectively. |X|
and angle(X) denote the element-wise amplitude and phase
values of X, respectively. |X|2 is a matrix that contains the
element-wise absolute square values of X, and ∥X∥ denotes
the Frobenius norm of X. X ⊙ Y denotes the Hadamard
product of matrices X and Y. For a two-dimensional matrix
X, X(m, k) denotes the element in the m-th row and the k-th
column of X. 1 denotes the all-one matrix. x ∼ CN (0, σ2)
represents the random variable x that follows a complex
Gaussian distribution with mean 0 and variance σ2. ⌊·⌋ is

Communication 
UE

Communication Signal

Sensing Signal

Echo Signal

BS

Large-scale 
Antenna Arrays

Sensing 
Target

Fig. 1. Typical wireless network-based monostatic radar sensing scenario
with large-scale antenna arrays.

the floor operation that rounds a real number to the nearest
integer less than or equal to the number. card(N ) denotes the
cardinality of set N .

II. SYSTEM MODEL

We consider a wireless network-based monostatic radar
sensing scenario as illustrated in Fig. 1, where a base station
(BS) sends data to a user equipment (UE) while simulta-
neously scanning different directions alternatively for target
sensing by emitting radar signals. To guarantee sufficient array
gain, large-scale antenna arrays are employed to form highly
directional beams for sensing and communication, respec-
tively, especially for millimeter wave frequencies and above2.
It should be noted that, despite utilizing different beams for
communication and sensing, significant mutual interference
may arise from mainlobe overlap, sidelobe interference, beam
squinting, and etc [39], [40]. Consequently, the orthogonal
RE allocation is crucial to mitigate the interference between
communication and sensing. Since the antenna array with
directional beamforming is approximately equivalent to a sin-
gle directional antenna, we consider single-input single-output
systems for both sensing and communication for simplicity.

A. Signal Model

The OFDM-IS waveform is employed for target sensing and
data transmission, and the corresponding transceiver model is
depicted in Fig. 2. Specifically, a frame of M consecutive
OFDM symbols with Nc subcarriers is considered for each
coherent processing interval and the k-th subcarrier of the
m-th symbol is called the (m, k)-th RE. To avoid mutual
interference between the sensing and communication, these
two subsystems occupy different REs in each frame [30], [32],
[34]. For clarity we employ the matrix U ∈ ZM×Nc to indi-
cate whether REs are selected for sensing or communication
purpose

U(m, k) =

{
1, (m, k)-th RE is for sensing,
0, (m, k)-th RE is for communication.

(1)

Let S ∈ CM×Nc be the transmit signal matrix with S(m, k)
representing the modulated symbol on the (m, k)-th RE.

2This paper mainly considers the communication and sensing with direc-
tional beams. However, we highlight that the proposed resource allocation
methodology is also applicable to ISAC systems adopting wide beams or
omni-directional antennas.
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Fig. 2. Transceiver model of the OFDM-IS-based dual-functional system.

Then, the sensing and communication transmit signal matrices,
denoted as Sr ∈CM×Nc and Sc ∈CM×Nc , can be expressed
as

Sr =U⊙ S, (2)
Sc =(1−U)⊙ S. (3)

Define Pr ∈RM×Nc and Pc ∈RM×Nc as the power allo-
cation matrices for sensing and communication, which can be
written as Pr(m, k)= |Sr(m, k)|2 and Pc(m, k)= |Sc(m, k)|2,
respectively. By modulating Sr and Sc on different REs of
the OFDM frame, the time-domain transmit signals, xi(t),
i ∈ {r, c}, for sensing and communication, respectively, can
be expressed as

xi(t)=
1√
Nc

M−1∑
m=0

Nc−1∑
k=0

Si(m, k)e
j2πk∆f(t−mT )rect

(t−mT
T

)
,

(4)

where ∆f is the subcarrier spacing and T = 1/∆f is the
duration of one OFDM symbol, while rect(·) is the rectangle
function, which is defined by

rect(t) =

{
1, 0 ≤ t < 1,

0, otherwise.
(5)

Sampling xi(t) with the period T/Nc leads to the discrete
sequence x̄i(n) = xi(nT/Nc) as:

x̄i(n) =
1√
Nc

M−1∑
m=0

Nc−1∑
k=0

Si(m, k)e
j2π k(n−mNc)

Nc rectm(n), (6)

with n=0, 1, · · · ,MNc−1, where rectm(n)= rect
(
n−mNc

Nc

)
.

The cyclic prefix (CP) of length TG is then inserted to mitigate
the inter-frame interference. Therefore, the total duration of
one OFDM symbol TO is TO = T + TG. Afterwards,
the discrete signals are fed into the digital-to-analog (D/A)
converter and the transmitting (Tx) radio frequency (RF)
chain. In the analog precoding module, each RF chain is
connected to separate phase shifters to form the directional

beam. Finally, the directional beams obtained by the analog
precoding are transmitted through the antennas for sensing and
communication.

B. Communication Channel Model

The standard multi-path time-varying channel model is
considered, which is expressed as

hc(t, f) =

L∑
l=1

αle
j2π(vlt−τlf), (7)

where L is the number of paths, and αl, τl and vl denote
the complex gain, delay and Doppler shift of the l-th path,
respectively [41]. For simplicity, we assume that each RE ex-
periences time-invariant flat channel fading [42]. By sampling
the channel with the period of TO in time domain and ∆f in
frequency domain, the discrete channel matrix Hc ∈ CM×Nc

corresponding to different REs within the OFDM frame can
be written as

Hc(m, k) =

L∑
l=1

αle
j2π(vlmTO−τlk∆f), (8)

which is assumed to be perfectly estimated and predicted. At
the receiving (Rx) end, after the analog combining, the Rx
RF chain, the analog-to-digital (A/D) conversion, CP removal
and DFT operation, the received signal matrix Yc ∈ CM×Nc

is obtained, which can be written as

Yc =Hc ⊙ Sc +Wc. (9)

Here Wc ∈ CM×Nc is the additive white Gaussian noise
(AWGN) matrix whose entries follow Wc(m, k)∼CN (0, σ2

c ).
For demodulation, the UE first estimates the channel matrix
based on the reference signals transmitted by the BS. Ac-
cording to the estimated channel matrix, the UE is able to
deduce the RE assignment matrix U and acquire the indices
of communication REs. Then the communication data can be
extracted from Yc by demodulation.
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C. Target Sensing
In this paper, the target sensing process mainly includes the

target detection, positioning and speed estimation. By denoting
the distance and radial speed of the target relative to the BS as
d and u, respectively, the received echoes ȳr(n) of the sensing
subsystem can be written as

ȳr(n) =x̄r

(
n−

⌊ 2d

cTs

⌋)
ej
(
2πn 2ufcTs

c

)
+ wr[n], (10)

where fc and Ts denote the carrier frequency and the sampling
period, respectively, while wr[n] denotes the thermal noise
plus the clutters from other directions, satisfying wr[n] ∼
CN (0, σ2

r ). The sensing signal matrix Yr ∈ CM×Nc can be
derived by the DFT and serial-to-parallel operation on ȳr(n),
and can be expressed as

Yr(m, k) =

mNc−1∑
n=(m−1)Nc

ȳr(n)e
j2π (n−(m−1)Nc)k

Nc . (11)

Assuming that the time delay of the target is shorter than
TG, the cross-correlation between the transmitted sensing
sequence and its echoes is equivalent to performing DFT and
IDFT on the Hadamard product of (Sr)

∗ and Yr, which is
expressed as

E =DFT(IDFT((Sr)
∗ ⊙Yr, 1), 2). (12)

Let ν = 0, 1, · · · ,M − 1 and µ = 0, 1, · · · , Nc− 1 denote the
indices of E in the Doppler and delay domains, respectively.
The target can be detected by the hypothesis tests:

H1 :
|E(ν, µ)|2

θ(ν, µ)
> Γ, H0 :

|E(ν, µ)|2

θ(ν, µ)
< Γ, (13)

where Γ is a predefined test threshold. Hypothesis H1 repre-
sents that the point (ν, µ) corresponds to a true target, and
vice versa for hypothesis H0. θ(ν, µ) is the average noise
power estimation at the point (ν, µ), which can be calculated
by averaging the value of |E(ν, µ)|2 [43], [44].

For a given point (ν0, µ0), if hypothesis H1 holds true,
distance d and radial speed u of the corresponding target can
be expressed respectively as [6]

d =
cµ0

2Nc∆f
, µ0 = 0, 1, · · · , Nc − 1, (14)

u =

{
cν0

2MfcTO
, ν0 = 0, 1, · · · , ⌊M/2⌋,

− c(M−ν0)
2MfcTO

, ν0 = ⌊M/2⌋+ 1, · · · ,M − 1,
(15)

where c is the speed of light. Since the time delay of the
target is limited by the CP length, the maximum sensing
ranges of distance and speed can be expressed as

[
0, cTG

2

)
and

(
− c

4fcTO
, c
4fcTO

)
, respectively. However, in practical ap-

plications, such as autonomous driving, the ranges of interest
are usually smaller than the maximum sensing ranges. This
will be discussed in the next section.

III. COMMUNICATION-CENTRIC WAVEFORM DESIGN

In this design, the sensing performance of the dual-
functional waveform is improved without compromising the
optimal communication data rate. Firstly, a fraction of REs

with good channel conditions are firstly assigned for commu-
nication to optimize the achievable data rate. Then the sensing
energy budget is optimally allocated to the remaining REs to
obtain high PSLR of the ambiguity function for sensing accu-
racy enhancement. Finally, the phases of sensing symbols are
designed for PAPR reduction using the BB algorithm. Before
detailing this design, we introduce the ambiguity function of
the OFDM-based sensing waveform.

A. Ambiguity Function of OFDM-Based Sensing Waveform

The ambiguity function is defined as a two-dimensional
correlation function in delay-Doppler domain, which can be
categorized into the cross-ambiguity function and the auto-
ambiguity function. We focus on the auto-ambiguity function
of the sensing sequence, i.e., its auto-correlation property,
which reflects its capability of radar sensing. Because the
auto-ambiguity function is utilized to characterize the property
of the sequence itself without considering external operations
on the sequence, the cyclic prefix part is not included in the
following derivation. Specifically, the auto-ambiguity function
χa(ν, µ) of the discrete signal x(n) with length N can be
expressed as [41], [43]

χa(ν, µ) =

N−1∑
n=0

x(n)x∗(n+ µ)ej2πνn/N , (16)

where µ and ν denote the delay and Doppler indices, respec-
tively. Considering an OFDM-based transmit sensing sequence
with Nc subcarriers and M symbols, without consideration of
noise, the cross correlation function between the OFDM-based
transmitted sensing sequence and its echo with the integer time
delay µ and the Doppler frequency shift f̂ can be written as

χ̂a(f̂ , µ) =

N−1∑
n=0

x(n)x∗(n+ µ)ej2π nM
N TOf̂ , (17)

where N = MNc. Comparing (16) with (17), it can be seen
that the continuous Doppler frequency shift f̂ is sampled with
the period of 1

MTO
in the discrete ambiguity function. As a

result, the resolution of the Doppler frequency shift in (16) is
1

MTO
. By substituting the OFDM-based sensing sequence (6)

into (16), the auto-ambiguity function can be derived as 3

χa(ν, µ) =

MNc−1∑
n=0

(M−1∑
m1=0

Nc−1∑
k1=0

S(m1, k1)ψ(n,m1, k1)

)

×
(M−1∑
m2=0

Nc−1∑
k2=0

S∗(m2, k2)ψ
∗(n+µ,m2, k2)

)
ej2π νn

MNc

=

MNc−1∑
n=0

(M−1∑
m1=0

(M−1∑
m2=0

ψ(n,m1, k1)ψ
∗(n+µ,m2, k2)

)
×
(Nc−1∑
k1=0

Nc−1∑
k2=0

S(m1, k1)S
∗(m2, k2)

))
ej2π nν

MNc , (18)

3Note that due to the existence of CP, the correlation of intra-symbol (m1 =
m2) points is calculated as circular correlation.
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where ψ(n,m, k) = ej2πk(n−mNc)/Nc rectm(n). Due to the
CP protection, the inter-frame (m1 ̸= m2) interference is
negligible. Therefore, (18) can be further expressed as

χa(ν, µ) =

M−1∑
m=0

Nc−1∑
n̄=0

Nc−1∑
k1=0

Nc−1∑
k2=0

(
ej2π (k1−k2)(mNc+n̄)−k2µ

Nc ×

S(m, k1)S
∗(m, k2)

)
ej2πν mNc+n̄

MNc , (19)

where n̄ = n −mNc. For simplicity, we focus on the auto-
correlation component of each subcarrier (k1 = k2), while
neglecting the cross-correlation component between different
subcarriers (k1 ̸= k2), since the cross-correlation is marginal
due to the subcarrier orthogonality [43]. Therefore, the auto-
ambiguity function can be approximated as

χa(ν, µ) ≈γ(ν, µ) · η(ν), (20)

with

γ(ν, µ) ≜
M−1∑
m=0

Nc−1∑
k=0

P (m, k)e−j2πµk/Ncej2πνm/M , (21)

η(ν) ≜
Nc−1∑
n̄=0

ej2πνn̄/(MNc). (22)

Note that only γ(ν, µ) is related to the waveform design.
Since γ(ν, µ) reaches its maximum when ν and µ are mul-
tiples of M and Nc, respectively, we consider the region
(ν, µ) ∈ Ω =

[
−⌊M

2 ⌋, · · · ,−1, 0, 1, · · · ,M−1−⌊M
2 ⌋

]
×
[
−

⌊Nc

2 ⌋, · · · ,−1, 0, 1, · · · , Nc−1−⌊Nc

2 ⌋
]

to avoid the ambiguity
problem in target detection [45]. As the sensing distance and
the speed of interest in practical applications are commonly
smaller than the maximum sensing ranges corresponding to
region Ω in the ambiguity function, we define the RoI Ωs in
the ambiguity function as

Ωs=

[
−
⌊
M

2a

⌋
, · · · ,−1, 0, 1, · · · , M

a
−1−

⌊
M

2a

⌋]
×
[
0, 1, 2, · · · , Nc

b
−1−

⌊
Nc

2b

⌋]
. (23)

Given the required sensing scopes of distance [0, d0] and speed
[−u0, u0], a and b are chosen as the largest factors of M and
Nc, respectively, such that

(
− c

4afcTO
, c
4afcTO

)
and

[
0, c

2b∆f

)
contain [−u0, u0] and [0, d0], respectively. That is, for Ωs of
(23), the sensing ranges of distance and speed are

[
0, c

2b∆f

)
and

(
− c

4afcTO
, c
4bfcTO

)
, respectively. Let F (Ωs) be the highest

sidelobe in RoI, namely,

F (Ωs)=max{|χa(ν, µ)| : (ν, µ) ∈ Ωs, (ν, µ) ̸= (0, 0)}. (24)

The PSLR within Ωs is |χa(0,0)|
F (Ωs)

, which is adopted to charac-
terize the sensing performance.

B. Waveform Design Methodology

The communication-centric waveform design consists of the
following three steps.

Step 1. Communication RE and power allocation: Given
the total communication power P̄c and the estimated commu-
nication channel Ĥc ∈ CM×Nc , the communication power

allocation strategy is to maximize the achievable data rate,
which is formulated as

P1 : max
Pc

M−1∑
m=0

Nc−1∑
k=0

log
(
1 + Pc(m,k)|Ĥc(m,k)|2

σ2
c

)
,

s.t.
M−1∑
m=0

Nc−1∑
k=0

Pc(m, k) = P̄c,

Pc(m, k) ≥ 0,
(25)

with m = 0, 1, · · · ,M − 1 and k = 0, 1, · · · , Nc − 1. For
brevity, the ranges of values for m and k are omitted in sequel.
Problem P1 can be solved by using the Karush-Kuhn-Tucker
(KKT) conditions, and the optimal solution is given by [46]

Pc(m, k) = max
{ 1

β ln 2
− σ2

c

|Ĥc(m, k)|2
, 0
}
, (26)

where 1
β ln 2 =

P̄c+
∑

(m,k)∈Ne

σ2
c

|Ĥc(m,k)|2

card(Ne)
and Ne contains the

indices of all the REs with non-zero power, i.e., Pc(m, k) > 0.
Step 2. Sensing RE and power allocation: According to

(26), if the (m, k)-th RE is under poor channel condition, i.e.,
|Ĥc(m, k)|2 is less than the threshold ς = σ2

cβ ln 2, it will not
be allocated for communication. By employing these inacti-
vated REs for sensing purpose, the time-frequency resources
for both subsystems will be completely orthogonal without
inducing mutual interference in principle, while ensuring the
optimal communication performance. Accordingly, the matrix
U defined in (1) can be expressed as

U(m, k) =

{
1, if |Ĥc(m, k)|2 ≤ ς,

0, if |Ĥc(m, k)|2 > ς.
(27)

Note that when the communication channel is relatively flat-
fading, the number of sensing REs may prove insufficient to
support high-resolution sensing. In order to mitigate this issue,
a minimum threshold is set for the number of sensing REs,
which is denoted as N̂r. If the number of sensing REs (i.e.,
the number of non-zero elements in U), denoted as Nr, is
less than the threshold N̂r, N̂r − Nr communication REs
with the lowest channel gains are re-assigned for sensing.
Since the REs with good channel conditions are chosen for
communication first, the sensing REs may be discontinuous
in both time and frequency domains, causing possible high
sidelobe in the ambiguity function. To reduce the sidelobe
level for enhancing sensing performance, the power allocation
strategy for sensing REs is to maximize the PSLR within Ωs,
which is formulated as

P2: max
Pr

|χa(0,0)|
F (Ωs)

,

s.t.
M−1∑
m=0

Nc−1∑
k=0

Pr(m, k)= P̄r, Pr(m, k)≥0,
(28)

where P̄r is the total sensing power budget. Since the main
peak |χa(0, 0)| is always equal to the total sensing power
NcP̄r, the problem P2 is equivalent to minimize the highest
sidelobe level given by:

P3: min
Pr

max
(0,0) ̸=(ν,µ)∈Ωs

|χa(ν, µ)|,

s.t.
M−1∑
m=0

Nc−1∑
k=0

Pr(m, k)= P̄r, Pr(m, k)≥0.
(29)
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Due to the minimax form of the objective function, it is
difficult to solve problem P3 directly. To address this issue, a
slack variable z0 is introduced as the optimization objective.
Accordingly, we add an extra constraint that all the sidelobes
within Ωs are less than z0. Then the optimization problem can
be expressed as

P4 : min
Pr

z0,

s.t. |χa(ν, µ)| < z0, (0, 0) ̸= (ν, µ) ∈ Ωs,
M−1∑
m=0

Nc−1∑
k=0

Pr(m, k)= P̄r, Pr(m, k)≥0.

(30)

Problem P4 now can be formulated into a quadratic problem,
which is solvable using the CVX toolbox [47].

Step 3. PAPR reduction: In addition to the PSLR in the
ambiguity function, the PAPR is also a significant metric for
sensing sequences. A high PAPR results in nonlinear distortion
of high power amplifier, which is detrimental especially for
the millimeter wave and Terahertz bands [48]. To tackle this
problem, we need to minimize the PAPR of the sensing
sequence, whilst retaining the high PSLR property. Recall
that the PSLR is mainly related to the power allocation Pr

according to (20), which inspires us to minimize the PAPR
by optimizing the phase of each element of Sr. Let θ(m, k)
denote the phase of the symbol on the (m, k)-th RE. The
PAPR of the sensing sequence among M OFDM symbols can
be expressed as

PAPR=

max
m,n

∣∣∣Nc−1∑
k=0

U(m, k)
√
Pr(m, k)e

j(θ(m,k)+2πnk/Nc)
∣∣∣2

1
M

M−1∑
m=0

Nc−1∑
k=0

U(m, k)Pr(m, k)

,

(31)

where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ Nc − 1. Since
the average power of all the symbols has been determined
by the proposed RE assignment and power allocation strat-
egy, minimizing the PAPR is equivalent to minimizing the
peak. Considering that the peak among M symbols is the
maximum value among the peak values of all symbols, we
can reduce it by lowering the peak value of each symbol
individually. Additionally, the peak values corresponding to
different OFDM symbols are independent of each other, the
phase-frequency characteristics of different OFDM symbols
can be optimized separately. Consider the case that the phases
of all the modulated symbols on different sensing REs are
selected from the set {0, 2π/R, · · · , 2π(R − 1)/R} with the
size R. Then the PAPR reduction problem for the m-th OFDM
symbol can be formulated as

P5 : min
θθθm

max
n

∣∣∣Nc−1∑
k=0

U(m, k)
√
Pr(m, k)e

jθ(m,k)e−j2πnk/Nc

∣∣∣2,
s.t. θ(m, k) ∈ {0, 2π/R, · · · , 2π(R− 1)/R},

(32)
where θθθm =

[
θ(m, 0), θ(m, 1), · · · , θ(m,Nc − 1)

]T
.

To solve this discrete optimization problem, we propose
a heuristic searching method based on the BB algorithm to
obtain a near optimal solution. The BB algorithm divides
the whole feasible region into several sub-regions, which
correspond to several sub-problems. For each sub-problem,

well-designed functions are employed to estimate its upper
and lower performance bounds. As the number of iterations
increases, the minimum upper and lower bounds among all the
sub-problems are obtained and updated. When the difference
between the minimum upper and lower bounds is lower than
a threshold, the iteration terminates and the solution that
achieves the minimum upper bound is adopted as the final
solution [49].

Let Am denote ejθθθm , i.e., the k-th element of Am is
Am(k) = ejθ(m,k). Since the feasible region of Am(k) is
Φ =

{
1, ej 2πR , · · · , ej 2π(R−1)

R

}
, the whole feasible region of

Am is Ψ(0) = ΦNc , which is the Cartesian product of Nc Φs.
The problem P5 can be compactly written as

P(Ψ(0)) : min
Am

f(Am),

s.t. Am ∈ Ψ(0),
(33)

with

f(Am)=max
n

∣∣∣Nc−1∑
k=0

U(m, k)
√
Pr(m, k)Am(k)e−j2π nk

Nc

∣∣∣2. (34)

For each sub-region Ψ ∈ Ψ(0), denote its corresponding
sub-problem as P(Ψ). A lower bound of P(Ψ) can be derived
by a bounding function, which can be expressed as

fL(Ψ) = f
(
AL

m

)
, (35)

where AL
m is a relaxed solution of P(Ψ) that achieves the

lower bound. More specifically, suppose that the first k0
elements in Ψ remain in their original values, and its (k0+1)-
th element is fixed to a feasible value. By extending the
feasible region of the other elements to a continuous search
region, a relaxed problem PL(Ψ) can be expressed as

PL(Ψ) : min
Am(k0+1),··· ,Am(Nc−1)

f(Am),

s.t.
∣∣Am(k)

∣∣2 ≤ 1,
(36)

with k = k0 + 1, k0 + 2, · · · , Nc − 1. AL
m can be derived by

solving PL(Ψ) via the CVX toolbox, yielding the lower bound
fL(Ψ) of each sub-problem. On the other hand, by projecting
AL

m onto its closest feasible point, i.e.,

AU
m = argmin

Am∈Ψ(0)

||Am −AL
m||, (37)

an upper bound of each sub-problem is obtained, which can
be written as

fU(Ψ) = f(AU
m). (38)

The proposed PAPR reduction procedure is summarized in
Algorithm 1. We initialize the problem set S as {P

(
Ψ(0)

)
}.

The minimum upper bound BU and lower bound BL are
initialized as the upper and lower bounds of P

(
Ψ(0)

)
, re-

spectively. At each iteration, the sub-problem P(Ψ) with the
smallest lower bound in S is selected. Note that the first
k0 elements of Am in Ψ have been set to fixed values in
the previous iterations. If k0 = Nc, i.e., all the elements of
Am have already been set to fixed values, Ψ is non-divisible
and P(Ψ) is deleted from S, and the algorithm considers the
next smallest lower-bound subproblem in S. Otherwise, by
denoting the fixed value of Am(k) as ak ∈ Φ, the region Ψ can
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be expressed as Ψ = {a0}⊗{a1}⊗· · ·⊗{ak0−1}⊗ΦNc−k0 ≜
Ψ[k0] ⊗ΦNc−k0 , where ⊗ denotes the Cartesian product. Ψ is
divided into R smaller regions by fixing the (k0+1)-th element
of Am to each of the R values in ϕ, while the feasible region
of the remaining elements of Am is the full search region Φ,
which can be expressed as

Ψ1 = Ψ[k0] ⊗ {1} ⊗ ΦNc−k0−1,

Ψ2 = Ψ[k0] ⊗ {ej 2πR } ⊗ ΦNc−k0−1,
· · · ,
ΨR = Ψ[k0] ⊗ {ej 2π(R−1)

R } ⊗ ΦNc−k0−1.

(39)

Their corresponding problems, P
(
Ψ1

)
, P

(
Ψ2

)
, · · · ,P

(
ΨR

)
,

are added to S and the problem P
(
Ψ
)

is deleted from S.
The lower and upper bounds of each of these created sub-
problems are calculated by bounding functions to update BL

and BU. If the lower bound of a certain sub-problem is larger
than BU, it is deleted from S. To reduce the worst-case
computational complexity, we also keep card(S) to no more
than a threshold Ns by deleting sub-problems with relatively
larger lower bound from S. When the difference between BL

and BU is less than a threshold ϵ or S is an empty set, the
iteration procedure terminates. The solution corresponding to
BU is the final solution Aopt

m , and the symbol phase θθθm
is set as angle(Aopt

m ). As it can be seen, the worst-case
computational complexity of the proposed PAPR reduction is
O(card(S)Nc), which is much lower than the computation
complexity of exhaustive searching (O(RNc)). Besides, the
computational complexity can be further reduced by adjusting
the parameter ϵ.

IV. SENSING-CENTRIC WAVEFORM DESIGN

In this design, we first adjust the unit cells of the ambiguity
function within its RoI to guarantee the ‘locally’ perfect auto-
correlation property. Based on the correspondence between the
main part of the ambiguity function and the sensing power
allocation strategy, the irrelevant cells beyond RoI determine
the power allocation strategy. Then the irrelevant cells are
optimized together with the communication power allocation
strategy for throughput enhancement.

A. Problem Formulation
To provide accurate sensing, the sidelobe level in the

ambiguity function can be adopted to characterize sensing
performance, as mentioned in Section III. A sensing sequence
has a locally perfect auto-correlation property, when the value
of the highest sidelobe within RoI in its ambiguity function is
zero, which can be expressed as

|χa(ν, µ)| =γ(ν, µ)η(ν) = 0, (0, 0) ̸= (ν, µ) ∈ Ωs. (40)

Since η(ν) ̸= 0 (when M > 1), |χa(τ, ν)| = 0 is
equivalent to γ(ν, µ) = 0. Given the total sensing power∑M−1

m=0

∑Nc−1
k=0 Pr(m, k) = P̄r, γ(0, 0) is always equal to P̄r.

Therefore, the locally perfect auto-correlation property can be
obtained by setting the function γ(ν, µ) within RoI as

γ(ν, µ) =

{
P̄r, (ν, µ) = (0, 0),

0, (0, 0) ̸= (ν, µ) ∈ Ωs.
(41)

Algorithm 1 PAPR reduction method based on BB algorithm
Input: Sensing power allocation Pr, indicating matrix U,

termination threshold ϵ, pruning threshold Ns;
1: Initialization: S = {P(Ψ(0))}, BL = fL(Ψ

(0)), BU =
fU(Ψ

(0));
2: while BU −BL > ϵ and S ≠ ∅ do
3: Branching: Select P(Ψ) ∈ S such that fL(Ψ) is the

smallest;
4: if Ψ is non-divisible then
5: Delete P(Ψ) from S;
6: Continue; (go to line 3 Branching)
7: end if
8: Partition Ψ into R sub-regions Ψ1,Ψ2, · · · ,ΨR accord-

ing to (39);
9: Delete P(Ψ) from S;

10: Add P(Ψ1), P(Ψ2), · · · ,P(ΨR) to S;
11: Bounding: According to (35) and (38), calculate the

lower and upper bounds for P(Ψr), r = 1, 2, · · · , R;
12: Update BU and BL;
13: Pruning: If the lower bound of P(Ψr) is larger than

BU, delete P(Ψr) from S;
14: while card(S) > Ns do
15: Delete the sub-problem with the largest lower bound

from S;
16: end while
17: end while
18: return θθθm=angle(Aopt

m ) with f(Aopt
m )=BU.

According to (21), γ(ν, µ) is derived by performing DFT
and IDFT on Pr(m, k) along its column and row, respectively.
Therefore, Pr(m, k) can be derived by performing inverse
operations on γ(ν, µ), which can be expressed as

Pr(m, k)=
1

MNc

M−1−⌊M/2⌋∑
ν=−⌊M/2⌋

Nc−1−⌊Nc/2⌋∑
µ=−⌊Nc/2⌋

γ(ν, µ)ej2π µk
Nc e−j2π νm

M .

(42)

Since there is a one-to-one mapping between γ(ν, µ) and
Pr(m, k), we can use γ(ν, µ) as the optimization variable in-
stead of Pr(m, k) to reduce the dimension of the optimization
variable. This is because for a sensing with a locally perfect
auto-correlation property, the unit cells of γ(ν, µ) within Ωs

are fixed and we only need to optimize the unit cells in
the complementary set of Ωs, which are called irrelevant
cells. Pr(m, k) is always a non-negative real number, the
irrelevant cells should be designed under this constraint, which
is formulated as

P8 : find γ(ν, µ), for (ν, µ) ∈ Ω̄s,
s.t. Pr(m, k) ≥ 0,

Pr(m, k) = P ∗
r (m, k),

(43)

where Ω̄s denotes the complementary set of Ωs in Ω, and
Pr(m, k) = P ∗

r (m, k) is equivalent to γ(ν, µ) being centro-
hermitian symmetric, which can be expressed as

γ(ν, µ) = γ∗(−ν,−µ), (ν, µ) ∈ Ω. (44)

As seen in Fig. 3, the upper part Ωr and lower part Ω
′

r
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0

𝑁𝑁𝑐𝑐 − 1 − 𝑁𝑁𝑐𝑐/2

−⌊𝑁𝑁𝑐𝑐/2⌋ 0 𝒎𝒎

𝒌𝒌

DFT and IDFT

…

…

… …

𝛾𝛾(𝜈𝜈, 𝜇𝜇) 𝐏𝐏r

Upper Part 𝛀𝛀𝐫𝐫

− 𝑀𝑀/2 𝑀𝑀 − 1 − 𝑀𝑀/2

Lower Part 𝛀𝛀𝐫𝐫
′

Fig. 3. One to one mapping between γ(ν, µ) and Pr. The left figure illustrates different regions of γ(ν, µ), and the right figure shows the sensing power
allocation Pr, where the depth of the color indicates the amount of power for the (m, k)-th RE.

of the ambiguity function divided by the ν-axis are mutually
centro symmetric. Therefore, we only need to adjust the upper
part denoted by Ωr = [−⌊M/2⌋,−⌊M/2⌋+ 1, · · · ,M − 1−
⌊M/2⌋] × [0, 1, · · · , Nc − 1 − ⌊Nc/2⌋]. Ωr consists of the
RoI Ωs and the outer region Ωx. Since the unit cells in Ωs

are fixed to ensure perfect auto-correlation property locally,
the unit cells in Ωx are finally employed as the optimization
variables, which can be expressed as

P9 : find γ(ν, µ), for (ν, µ) ∈ Ωx,
s.t. Pr(m, k) ≥ 0.

(45)

Specifically, Ωx can be expressed as Ωr/Ωs, where / denotes
the difference operation between sets. For brevity, (ν, µ) ∈ Ωx

is omitted below, i.e., the optimization of γ(ν, µ) is referred
to as the optimization of the unit cells of γ(ν, µ) in Ωx. Each
solution to P9 corresponds to one of the possible realizations
of Pr, which can all realize locally perfect auto-correlation
property to guarantee superior sensing performance. The REs
with relatively low sensing power budget, i.e., lower than a
predefined threshold δ, are considered to have a marginal
impact on the sensing task. Hence, these REs are assigned
for data transmission, where the indicating matrix U can be
written as

U(m, k) =

{
1, if Pr(m, k) > δ,

0, if Pr(m, k) ≤ δ.
(46)

Afterward, the power allocation for different communication
REs is optimized for achievable data rate maximization. In this
way, the achievable data rate is related to both the irrelevant
cells of γ(ν, µ) and the communication power strategy. The
jointly optimization can be derived by combining P9 and
communication power allocation, which can be expressed as

P11 : max
γ(ν,µ),Pc

M−1∑
m=0

Nc−1∑
k=0

log
(
1+ (1−U(m,k))Pc(m,k)|Ĥc(m,k)|2

σ2
c

)
,

s.t.
M−1∑
m=0

Nc−1∑
k=0

Pc(m, k) = P̄c, Pc(m, k) ≥ 0,

Pr(m, k) ≥ 0,
(47)

where the relationship between γ(ν, µ) and U(m, k) is shown
in (42) and (46). Also the value for γ(ν, µ) within RoI
should satisfy (41), which is another constraint of the problem
P11. One intuitive method of solving problem P11 is to
exhaustively search for the values of γ(ν, µ) within Ωx, which
however imposes considerable computational complexity. On
the other hand, since there are two types of optimization
variables and the last constraint of the problem is non-convex,
it is difficult to solve the problem via the KKT conditions
directly. We propose a low-complexity alternating optimization
algorithm to solve problem P11 with near optimal solution.

B. Alternating Optimization Algorithm

P11 can be naturally divided into two sub-problems, the
communication power allocation problem and the irrelevant
cell design problem, which corresponds to the optimization
of Pc and the irrelevant cells of γ(ν, µ), respectively. For
tractability of solving P11, we optimize these two variables
alternatively in an iterative manner. Denote the variables
optimized after the i-th iteration as P

(i)
c and γ(i)(ν, µ). Ac-

cordingly, P(i)
r and U(i) can be calculated based on γ(i)(ν, µ)

according to (42) and (46). Further denote the maximum
achievable data rate in the i-th iteration as r(i). At the
beginning, we initialize γ(ν, µ) as γ(0)(ν, µ). How to do this
is discussed in (53) at the end of this subsection. In the i-th
iteration, the optimization of Pc is formulated as

P12 :max
Pc

M−1∑
m=0

Nc−1∑
k=0

log
(
1+(1−U(i−1)(m,k))Pc(m,k)|Ĥc(m,k)|2

σ2
c

)
,

s.t.
M−1∑
m=0

Nc−1∑
k=0

Pc(m, k) = P̄c, Pc(m, k) ≥ 0.

(48)
On the other hand, the optimization of the irrelevant cells of
γ(ν, µ) can be expressed as

P13 : max
γ(ν,µ)

M−1∑
m=0

Nc−1∑
k=0

log
(
1+

(1−U(m,k))P (i)
c (m,k)|Ĥc(m,k)|2

σ2
c

)
,

s.t. Pr(m, k) ≥ 0.
(49)
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Algorithm 2 Sensing-centric waveform design procedure
Input: Total communication power P̄c, total sensing power

P̄r, estimated communication channel Ĥc, region of in-
terest Ωs, maximum number of alternating iterations Im,
maximum number of inner iterations Jm, termination
thresholds for outer and inner loops ϵ1 and ϵ2;

1: Initialize γ(0)(ν, µ), P(0)
r and U(0) according to P16, (42)

and (46);
2: while i ≤ Im or |r(i) − r(i−1)| < ϵ1 do
3: Allocate the communication power P

(i)
c according to

P12;
4: while j ≤ Jm or |r̄(i,j) − r̄(i,j−1)| < ϵ2 do
5: Calculate γ(i,j)(Pr, ν, µ), P

(i,j)
r according to P14;

6: j = j + 1;
7: end while
8: Calculate U(i) according to (46);
9: i = i+ 1;

10: end while
11: return Pc, Pr, U.

The sub-problem P12 can be solved by employing the KKT
conditions, and the optimal solution is given by

P (i)
c (m, k)=

{
max

{
1

β̄ ln 2
− σ2

c

|Ĥc(m,k)|2 , 0
}
, U (i−1)(m, k)=0,

0, U (i−1)(m, k)=1,
(50)

where 1
β̄ ln 2

=
P̄c+

∑
(m,k)∈Ne

σ2
c

|Ĥc(m,k)|2

card(Ne)
and Ne contains the

indices of all the REs with non-zero power, i.e., P (i)
c (m, k) >

0 [46]. By contrast, the solution of the sub-problem P13 is
challenging to obtain, because the mapping function between
U(m, k) and Pr(m, k) is discontinuous and non-convex. To
tackle this issue, an intuitive approach is to employ a linear
continuous function of Pr(m, k) to approximate U(m, k),
which can be expressed as U(m, k) ≈ Pr(m, k)/A, where A is
a normalization factor of Pr(m, k) and can be set as the largest
element of P

(0)
r . Obviously, this is a rough approximation.

But by carefully selecting the range of values for Pr(m, k), it
can be made a tight approximation. More specifically, if the
value of Pr(m, k) is close to 0 or A, the error of the linear
approximation is negligible. Considering 0 ≤ Pr(m, k) ≤ A,
the term Pr(m, k)(1 − Pr(m, k)/A) can be used to indicate
how close Pr(m, k) is to 0 or A. If Pr(m, k) is equal to 0 or
A, the term is equivalent to 0. On the other hand, if Pr(m, k)
is significantly different from both 0 and A, the value of the
term becomes large. Therefore, −Pr(m, k)(1−Pr(m, k)/A) is
added to the optimization objective of P13 as a penalty term,
which then becomes:

P14 : max
γ(ν,µ)

M−1∑
m=0

Nc−1∑
k=0

log
(
1+

(1−Pr(m,k)
A )P (i)

c (m,k)|Ĥc(m,k)|2

σ2
c

)
−λPr(m, k)

(
1− Pr(m,k)

A

)
,

s.t. 0 ≤ Pr(m, k) ≤ A,
(51)

where λ is a weight factor that trades off between the achiev-
able data rate and the requirement for the range of values for
Pr(m, k).

Since the optimization objective of P14 is not a concave
function, P14 is difficult to maximize directly. To tackle this
issue, a lower bound of the optimization objective is derived
by converting the second term Pr(m, k)(1 − Pr(m, k)/A)
with its linear approximation. According to the Minorize-
Maximization (MM) algorithm, by maximizing the lower
bound in each iteration, the results will finally converge to
the optimal solution of the original problem [50]. Therefore,
we maximize the lower bound of the optimization objective
iteratively, where the problem in the j-th iteration can be
formulated as

P15 :max
γ(ν,µ)

M−1∑
m=0

Nc−1∑
k=0

log
(
1+

(1−Pr(m,k)
A )P (i)

c (m,k)|Ĥc(m,k)|2

σ2
c

)
−λ

(
Pr(m, k)− 2P (i,j−1)

r (m,k)
A Pr(m, k)

)
,

s.t. 0 ≤ Pr(m, k) ≤ A.
(52)

P
(i,j−1)
r (m, k) is calculated based on the optimization results
γ(i,j−1)(ν, µ) in the (j − 1)-th iteration. Besides, we denote
the optimization result of the objective function in the (j −
1)-th iteration as r̄(i,j−1). If j is larger than the maximum
number of iteration Jm, or

∣∣r̄(i,j) − r̄(i,j−1)
∣∣ is less than a

predefined threshold ϵ2, the iteration procedure is terminated,
and the value of γ(i)(ν, µ) is obtained as γ(i,j)(ν, µ). Given
the non-convex nature of problem P11, the convergence of
the alternating iterative algorithm depends on the initial value.
To strike a balance between computational complexity and the
optimality of the solution, it is advisable to select an initial
value that is not only easy to obtain but also reasonably close
to the optimal solution. Following this philosophy, we derive
the initial value γ(0)(ν, µ) by solving the following problem:

P16 : min
γ(ν,µ)

M−1∑
m=0

Nc−1∑
k=0

Pr(m, k)|Ĥc(m, k)|2,

s.t. Pr(m, k) ≥ 0,

(53)

which is a linear programming problem, and can be readily
solved with low complexity. The objective function aims to
allocate low sensing power to REs with high communica-
tion channel gains, i.e., |Ĥc(m, k)|2 is large. This avoids
the sensing subsystem to occupy high-quality communication
channels, while ensuring the optimal sensing performance.

The complete procedure of sensing-centric waveform design
is given in Algorithm 2. The main computation complexity of
Algorithm 2 lies in the two iterations corresponding to Line
2 and Line 4, and the total iteration number is no more than
ImJm. In our simulation, when ϵ1 = 10−3 and ϵ2 = 10−1, the
total iteration number is less than 20 with the probability of
90%. Although the computation complexity is acceptable for
the BS, it may pose a challenge for UE with low computational
capability to acquire the indices of communication REs. To
address this issue, BS can utilize the physical downlink control
channel to convey the indices of communication/sensing REs
or partial allocation information to UE in order to reduce the
computation complexity.

V. NUMERICAL RESULTS

Numerical results are provided to validate the proposed
communication-centric and sensing-centric waveform designs



11

TABLE I
SYSTEM PARAMETERS

Symbol Parameter Value
fc Carrier frequency 240 GHz
∆f Subcarrier spacing 240 kHz
Nc Number of subcarrier 128/512

T OFDM symbol duration 4.1470 µs
TG Cyclic prefix length 1.0368 µs
TO Total OFDM symbol duration 5.1838 µs
M Number of OFDM symbol 32

dm Maximum range 155 m
vm Maximum relative speed ±60 m/s

and to provide useful guidelines for the implementation of the
proposed designs. The simulation system parameters are listed
in Table I.

A. Communication-Centric Design

Fig. 4 presents the ambiguity function of the sensing
component generated by our proposed communication-centric
waveform design. The sensing scopes of distance and speed
are set as [0, 60]m and [−20, 20]m/s, respectively. The corre-
sponding RoI is derived according to (23), which is outlined
with red lines in Fig. 4. It can be seen that since there are non-
negligible sidelobes outside the RoI, the PSLR in the whole
ambiguity function is 7 dB. However, the level of sidelobes
within the RoI is marginal, leading to a PSLR of 12 dB
within the RoI. Such a high PSLR provides a lower false
alarm rate because the probability of noise or clutters being
mistaken as targets is reduced [44]. Besides, a high PSLR is
advantageous for improving the resistance to interference and
the resolution of closely spaced targets [51], [52]. Therefore,
the proposed communication-centric waveform can guarantee
superior sensing and positioning performance within the RoI,
whilst attaining the maximum data throughput at the same
time.

Fig. 5 illustrates the sensing and communication perfor-
mance of the proposed communication-centric waveform and
existing designs, in terms of the PSLR within RoI and the

RoI

Fig. 4. Ambiguity function of the sensing component generated by the
proposed communication-centric waveform design.
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(a) Fast time-varying channel
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(b) Slow time-varying channel

Fig. 5. Performance comparison between the proposed communication-centric
waveform and existing designs in terms of PSLR as the function of the channel
quality threshold ς with 128 subcarriers.

achievable data rate, where a wide range of the channel quality
threshold ς is adopted and the number of subcarrier is set to
128. The fast and slow time-varying channels are considered
in Figs. 5(a) and 5(b), respectively, with the former having a
larger Doppler frequency offset range (∼ 100 kHz) than the
latter (∼ 1 kHz). The three existing designs are the range
profile (RP) based waveform [34], the MI based waveform
[30], and the equal power waveform. The RP based waveform
allocates the sensing power to each OFDM symbol separately
and optimizes PSLR in the range profile. The MI based
waveform optimizes MI between the target impulse response
and received signals, while the equal power waveform evenly
distributes the sensing power among the sensing REs.

For a fair comparison, all the four waveforms are based
on the communication-centric criterion. In other words, for a
given communication power P̄c, all the four waveforms are
designed by firstly allocating REs with high-quality channel
conditions, i.e.,

∥∥Ĥc(m, k)
∥∥2 ≥ ς , for data transmission.

Therefore, the achievable data rates of all the four waveforms
are the same, which is referred to as ‘data rate of all the
waveforms’ and corresponds to the black dashed curve in
Figs. 5(a) and 5(b). It is observed that as the threshold ς
increases, fewer REs are allocated to communication, and this
results in a decrease in the achievable data rate.

By contrast, as ς increases, more REs are allocated to
sensing, and this leads to an increase in the PSLR within
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(a) Fast time-varying channel
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(b) Slow time-varying channel

Fig. 6. Performance comparison between the proposed communication-centric
waveform and existing designs in terms of PSLR as the function of the channel
quality threshold ς with 512 subcarriers.

the RoI. It can be seen that the proposed communication-
centric waveform is capable of significantly improving the
PSLR compared with the three benchmark waveforms in both
fast and slow fading channels. In the slow fading channel,
where the channel condition for each OFDM symbol remains
nearly unchanged within a frame, our proposed waveform
improves the PSLR by about 1 dB compared to the RP based
waveform. Conversely, in the fast fading channel, where the
channel conditions among OFDM symbols vary quickly, the
joint design over multiple OFDM symbols is necessary for
sensing performance enhancement. In this case, our proposed
waveform improves the PSLR by nearly 5 dB over the second
best RP based waveform.

By comparing Fig. 5(a) with Fig. 5(b), it can be seen that
the PSLR performance of the three existing designs in the
fast fading channel situation are generally worst than their
PSLR performance in the slow fading channel scenario, which
is to be expected. However, the PSLR performance of our
proposed design is actually better in the fast fading case
than in the slow fading one. The reason for this ‘unexpected’
phenomenon can be explained as follows. In the slow fading
channel, due to the relatively stable channel conditions, certain
subcarriers under high-quality channel may remain allocated

for communication within multiple consecutive OFDM sym-
bols. Accordingly, the sensing subsystem is unable to employ
these subcarriers throughout the whole processing interval,
which induces high sidelobes in the ambiguity function. By
contrast, in the fast fading channel, the RE allocation between
communication and sensing subsystems changes dynamically
across multiple OFDM symbols, allowing the sensing subsys-
tem to utilize diverse subcarriers at different instants in the
processing interval. Then through our proposed joint multi-
symbol power optimization, the sensing system is capable of
effectively integrating information from different subcarriers,
resulting in an increase in the PSLR within the RoI, compared
with the slow fading case. Furthermore, through the proposed
PAPR reduction method of Algorithm 1, our communication-
centric waveform manages to obtain acceptable PAPR levels
of 5.83 dB (when employing binary PSK) and 4.81 dB (when
employing quadrature PSK), which achieves more than 8 dB
PAPR reduction over those without phase adjustment. This
reduces the impacts of possible nonlinearity from imperfect
hardware devices, e.g., high power amplifier, on the sens-
ing/positioning performances.

Fig. 6 investigates the sensing and communication perfor-
mance of the proposed communication-centric waveform and
the three existing designs with 512 subcarriers. Compared with
Fig. 5, the bandwidth is enlarged by increasing the number
of subcarriers. It can be seen that our proposed scheme still
outperforms three existing designs in term of PSLR with RoI.
Some phenomena depicted in Fig. 6 bear a basic resemblance
to those observed in the small bandwidth case in Fig. 5, which
can be explained by using the same underlying principles.
It is worth noting that the PSLR of our proposed scheme
exhibits an improvement of approximately 6 dB, compared
with the small bandwidth case. This is because, as the number
of subcarriers increases while communication power remains
constant, the sensing function is able to occupy a greater
number of REs, leading to an increase in the PSLR within
RoI.

B. Sensing-Centric Design

Figs. 7(a) and 7(b) compare the achievable data rates of
the proposed sensing-centric waveform with those of the two
baselines with respect to the sensing ranges of distance and
speed, respectively, where different ratios of the sensing power
to the communication power are considered. More specifically,
the baseline, referred to as ‘maximal value’, is set to an upper
bound of the achievable data rate obtained by maximizing
the communication performance without the consideration of
sensing. The other baseline is a comb-shaped max-aperture
radar slicing (Comb-MaRS) waveform proposed in [38]. As
expected, the achievable data rates of our proposed waveform
and the baselines increase with the decrease in the ratio of the
sensing power to the communication power, since more power
is allocated to the communication subsystem. In the Comb-
MaRS waveform, the RE assignment strategy remains constant
regardless of variations in the sensing ranges. Consequently,
the communication data rate of the Comb-MaRS waveform
does not fluctuate as the sensing range of distance/speed
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(a) Achievable data rate versus sensing range of distance
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(b) Achievable data rate versus sensing range of speed

Fig. 7. Achievable data rate comparison with respect to the sensing ranges
of distance and speed. The sensing range of speed is set as [−60, 60]m/s in
(a) and the sensing range of distance is set as [0, 60]m in (b).

increases. By contrast, our proposed scheme adapts the RE
assignment strategy in accordance with variations in sensing
range. As the sensing ranges of distance and speed increase,
i.e., the RoI becomes larger, the number of irrelevant cells
decreases, which results in the reduction of the dimension
of optimization variables for communication performance.
Therefore, the achievable data rate of our proposed wave-
form degrades slightly with the increase in sensing ranges of
distance and speed. However, the achieved data rate of our
sensing-centric waveform still closely approaches the maximal
value and outperforms that of the Comb-MaRS scheme when
the sensing ranges of distance and speed are no more than
40 m and ±50m/s, respectively, which validates the feasibility
and effectiveness of Algorithm 2. Moreover, regarding sensing
performance, the simulations indicate that the PSLR of our
scheme (∼ 20 dB) significantly surpasses that of the Comb-
MaRS scheme (∼ 3 dB).

Fig. 8 investigates the sensing and communication perfor-
mances of the proposed sensing-centric waveform, in terms
of the PSLR within the RoI and the achievable data rate,
with respect to the sensing power threshold δ for each
RE. Specifically, the PSLRs within the RoI under different
ratios of the sensing power to the communication power
are illustrated by the blue curves, while the achievable data
rates are illustrated by the orange curves. It can be seen
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Fig. 8. PSLR and achievable data rate as the functions of threshold δ, where
λ = 0.02 and the sensing ranges of distance and speed are set as [0, 50] m
and [−60, 60] m/s, respectively.
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Fig. 9. Relative data rate increment with respect to λ, where δ = 0.03 and
the sensing ranges of distance and speed are set as [0, 50] m and [−60, 60]
m/s, respectively.

that the PSLR degrades with the increase of δ when δ is
larger than 0.03. This is because more REs are designated
for the communication subsystem, even though some of them
have significant impact on the sensing performance. On the
other hand, when δ is between 10−3 to 10−1, the achievable
data rate exhibits only a very marginal improvement as δ
increases. This is attributed to the fact that the additional
communication REs may operate under unfavorable channel
conditions. Consequently, we can set δ between 10−3 and 0.03
in order to achieve a good trade-off in the RE assignment that
guarantees the accurate sensing and positioning with minimal
impact on communication performance.

Fig. 9 presents the communication performance of our pro-
posed sensing-centric waveform, in terms of the relative data
rate increment with respect to λ, which is the weighting factor
of the penalty term in P14. The relative data rate increment
is calculated as the difference between the current achievable
data rate and the data rate at λ = 0. As λ increases, we observe
a significant rise in the achievable data rate when λ is less
than 0.02, followed by a rapid decline when λ > 0.06. This
is because when λ < 0.02, the penalty term cannot effectively
constrain the values of Pr(m, k), reducing λ leads to a larger
approximation error that negatively impacts the achievable
data rate. On the other hand, when λ > 0.06, the penalty
term outweighs the data rate maximization, and increasing λ
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degrades the communication performance. Therefore, in this
example, λ can be set between 0.02 and 0.06 numerically to
balance the penalty term and communication performance.

VI. CONCLUSIONS

In this paper, a cross-domain OFDM-based waveform de-
sign methodology, including communication- and sensing-
centric waveform designs, was proposed for sensing perfor-
mance enhancement with minimal impact on communication
capabilities. In the communication-centric waveform design,
the sensing performance, characterized by the PSLR and PAPR
of the sensing component, was optimized with well-designed
power- and phase-domain waveform coefficients. On the other
hand, the sensing-centric design ensured a ‘locally’ perfect
auto-correlation property for the sensing sequence by adjusting
the ambiguity function value within the RoI of the integrated
waveform while minimizing its impact on communication.
Numerical results showed that the sensing component of the
proposed communication-centric waveform achieves signifi-
cantly higher PSLR and low PAPR, compared with the existing
waveform designs. Moreover, the proposed sensing-centric
waveform approaches the maximum achievable data rate while
providing a ‘locally’ perfect auto-correlation property for
accurate sensing and positioning.

There exist several open issues for our proposed cross-
domain waveform design methodology, which are set aside
as our future work due to the page limit. The implementa-
tion of the proposed waveform relies on consistent channel
estimations at both the BS and UE sides. However, there
may be errors in the prediction and estimation of the com-
munication channel in practical systems, leading to perfor-
mance degradation. We will carry out performance analysis
and investigate improved schemes against estimation errors.
Besides, to inform UE with low computational capability about
the RE allocation strategy with limited cost, the trade-off
between transmission overhead and computation complexity is
worth further investigation and needs to be carefully balanced.
Secondly, since the sensing-centric waveform design is formu-
lated as a non-convex optimization problem, a quasi-optimal
solution is derived by the proposed alternating optimization
algorithm. To obtain the optimal waveform design, more ad-
vanced optimization algorithms (e.g., the Majorize-Minimize
algorithm and second-order optimization) will be explored.
Finally, the antenna array with directional beamforming cannot
be regarded as a single directional antenna under some non-
ideal factors (e.g., beam squint effect). Therefore, the joint
design of the hybrid beamforming and the integrated waveform
will be investigated in depth in our future work.
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