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ABSTRACT
Volunteered geographic information (VGI) is crowdsourced information that can en-
rich and enhance research and applications based on geo-referenced data. However,
the quality of VGI is of great concern, and positional accuracy is a fundamental
basis for the VGI quality assurance. A buffer-zone method can be used for its as-
sessment, but the buffer radius in this technique is subjectively specified; as result,
different selections of the buffer radius lead to different positional accuracies. To
solve this problem, a statistically defined buffer zone for the positional accuracy
assessment in VGI is proposed in this study. To facilitate practical applications, we
have also developed an iterative method to obtain a theoretically defined buffer zone.
In addition to the positional accuracy assessment, we have derived a measure of po-
sitional quality, which comprises the assessment of positional accuracy and the level
of confidence in such assessment determined with respect to a statistically defined
buffer zone. To illustrate and substantiate the theoretical arguments, both numerical
simulations and real-life experiments are performed using OpenStreetMap. The ex-
perimental results confirm the high significance of the proposed statistical approach
to the buffer zone-based assessment of the positional uncertainty in VGI.
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ABSTRACT
Volunteered geographic information (VGI) is a crowdsourced information that can
enrich and enhance research and applications based on geo-referenced data. The
quality of VGI, however, is of great concern and positional accuracy is the funda-
mental basis for VGI quality assurance. Buffer-zone method is a way to assess po-
sitional accuracy. The problem of the current buffer-zone method is that the buffer
radius is subjectively specified. With different selections of buffer radius, we often
end up with different conclusions on positional accuracy. To overcome such short-
comings, we propose in this paper a statistically defined buffer zone for positional
accuracy assessment in VGI. To facilitate practical applications, we also construct
an iterative method to obtain the theoretically defined buffer zone in practice. To go
beyond positional accuracy assessment, we propose a measure of positional quality
which comprises the assessment of positional accuracy and the level of confidence
in such assessment with respect to the statistically defined buffer zone. To illustrate
and substantiate the theoretical arguments, we perform numerical simulations and
carry out real-life applications in the OpenStreetMap (OSM). The empirical results
render a firm support to the significance of the proposed statistical approach to
buffer-zone-based assessment of positional uncertainty in VGI.

KEYWORDS
Buffer-zone method; OpenStreetMap; Positional uncertainty; Statistically defined
buffer zone; Volunteered geographic information.

1. Introduction

Volunteered geographic information (VGI) is an important crowdsourced data that can
fundamentally enhance and enrich the information content in geographical research
(Goodchild 2007b). On the other hand, because such information is largely provided
by volunteers who are not professionals, the quality of VGI is an issue of great concern
in research and applications (Van Exel et al. 2010). The lack of standardization or
gatekeepers makes the quality of VGI a question mark (Goodchild and Li 2012). A
satisfactory solution to the quality issue of VGI will make this crowdsourced geo-
referenced information valuable to research and real-life decision making (Coleman
2013). Among other quality issues of VGI, positional accuracy is an essential problem
that needs to be resolved. How to characterize and measure positional accuracy has
thus become a fundamental problem in quality assessment of VGI (Goodchild and Li
2012).

In the literature, positional accuracy is employed as a measure of positional quality
in VGI, and the buffer-zone method is a common method for assessment (Senaratne
et al. 2017). Under the buffer-zone method, reference datasets have been used to assess
positional accuracy of map-based VGIs, mainly the OSM data (Kounadi 2009, Al-
Bakri and Fairbairn 2010, Ciep luch et al. 2010, Haklay et al. 2010, Helbich et al. 2013,
Arsanjani et al. 2015). The assessment results, however, directly depend on the choice
of the buffer radius as there is a strong positive correlation between the size of the
buffer radius and the assessment result of positional accuracy (Zhou 2017). However,
the buffer-zone method is a concept that has not been subjected to rigorous theoretical
and experimental investigations. Furthermore, buffer zones are subjectively specified
with no statistical justifications. Without a sound theoretical and computational basis,
it cannot provide a proper and reliable assessment and interpretation of positional
accuracy and its impact on the products or applications of VGI (Goodchild and Li
2012). Other than the process of measurement, much more is involved in assessing
positional quality of VGI, such as credibility, which makes it difficult to intrinsically
assess the quality (Goodchild 2007a, Haklay and Weber 2008).

Against this background, we employ the basic measurement-error (ME) model (Le-
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ung et al. 2004a) as the theoretical basis to formulate an objective and statistically
rigorous buffer-zone method for the assessment of positional quality in VGI. This
model treats the two end-point measurement-error vector of a road line segment as
a random vector, and error propagation from each point of the road becomes a sta-
tistical estimation problem (Xue et al. 2015). Because the conventional buffer-zone
method for VGI aims to capture the error band of the reference and calculate the
ratio that a VGI object falls within it, it is essential to equip the measure with a
rigorous statistical foundation. Using the ME model, we can estimate the confidence
interval of the error band with respect to each point on the road, and the confidence
intervals corresponding to all points together form the statistically defined buffer zone
for the assessment of positional accuracy. Since the theoretically derived statistical
buffer zone is an abstract set whose practical realization is difficult, we construct an
approximation method to estimate the true envelope. The buffer zone such obtained
possesses a probability (namely the confidence level) useful to the assessment of posi-
tional accuracy. The positional accuracy and the related probability together forms a
natural measure of positional quality in VGI.

In brief, the aim of this research is to provide a more reasonable, objective and
reliable measure for positional quality assessment in VGI with a sound statistical ba-
sis. The basic building block is the statistically defined buffer zone. In what follows,
we first discuss in section 2 the problem of the conventional buffer zone concept in
VGI and then construct the statistically defined buffer zone, together with a proce-
dure for its practical implementation in positional accuracy assessment. With that, we
construct an uncertainty measure of positional quality in section 3 and substantiate
the conceptual arguments with OSM applications. We then conclude the paper with
a summary and direction for further research in section 4.

2. Statistically defined buffer-zone method

2.1. The basic Measurement error (ME) model

From the modeling point of view, errors in GIS database can be reckoned mainly
as system error and random error (Leung et al. 2004a). In the processing of geo-
referenced data, random error, which is also called measurement error, is impossible
to avoid entirely (Wolf and Ghilani 1997). The basic ME model aims to determine
the error structures and location coordinates of objects in geo-referenced databases
(Leung et al. 2004a).

The basic ME model can be simply expressed as:

{
W = f(V ),

V = µ + ε, ε ∼ (0,Σε),
(1)

where f is a transfer function, W the indirect measurement-value vector obtained by
f , V the random measurement-value vector, µ the true value vector, and ε the random
ME vector with zero mean 0 and covariance matrix Σε. The transfer function f is case
specific. Through the model in (1), the uncertainty in W can be obtained from the
uncertainty in ε because the distribution of W can be theoretically calculated when
the distribution of ε is known (Herrador et al. 2005).
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2.2. The statistically defined buffer zone

The mapped road networks are approximations of the real-world counterparts, and
the same real-world road network may be represented differently in the VGI and
the reference because of different conceptualizations and professionalisms of the data
contributors. In general, the map road in the reference and the corresponding road
in the VGI may be represented or captured differently. The two may have different
topological structures. In general, a road may compose of several straight line
segments with each having a start and end point. However, there may be variations.
For example, the same real-world road is mapped by one road line segment in the
reference data, Figure 1 (c), but five road line segments in the OSM (Figure 1 (a)).
To better map the road network, one may adjust the positions of the start and end
points of the road line segments in the OSM (Figure 1 (b)) or increase the number of
road line segments with more vertices measured in the reference (Figure 1 (d)).

Figure 1 insert here with the caption: Different versions of the same road network
mapped within OSM and reference data.

The buffer-zone method was proposed to evaluate the accuracy of a coastline
(Goodchild and Hunter 1997), and it has also been applied to assess the accuracy
of OSM road networks (Haklay et al. 2010, Goodchild and Li 2012). It is a natural
idea to use the buffer-zone method to assess positional accuracy of VGI because the
reference data are inaccurate, and the true value is not known. The conventional
buffer-zone method treats the reference as data of higher quality. It ignores the
measurement errors of the reference data and treats the measurement values of
the reference data as the corresponding true values of the VGI. For illustration,
Figure 2 shows the relationship between the true location, the measurement and the
measurement error.

Figure 2 insert here with the caption: An illustration of the true location, the
measurement and the measurement errors of the endpoints of a road line segment.

For the corresponding roads in the VGI and the reference, the buffer zone should be
constructed on each road line segment of the reference in order to assess the positional
accuracy of the corresponding road in the VGI. According to such conceptualization,
when we employ the buffer-zone method, we need a reference which is usually a map
produced, for example, by the National Mapping Agency (NMA). In general, we add
a buffer of radius R on the road line segments of the reference map to evaluate the
percentage of the OSM road network that falls within the buffer and treat it as its
positional accuracy (Figure 3). Specifically, it is obtained as

positional accuracy =
OSM road falling within the buffer

total OSM road
. (2)

However, the method has a serious problem. For example, when we assess the
positional accuracy of the OSM road networks 1 and 2 in Figure 1 by the conventional
buffer-zone method with the specified buffer radius R1 and the reference road network
1, the positional accuracy of OSM road network 2 is higher than that of OSM road
network 1 (as shown in Figure 3 (a) and (b), respectively). However, OSM road
networks 1 and 2 will have the same positional accuracy (as shown in Figure 3 (b)
and (c)) when the buffer radius is set for R2 (R2 > R1). Apparently, different buffer
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radius lead to different assessment results of the same road network, making the
assessment of positional accuracy arbitrary, uncertain and unreliable. In addition,
this problem also exists when the OSM and reference road networks have the same
topology, e.g., the same real-world road is mapped by five road line segments in both
the OSM and the reference (see Figure 1 (b) and (d)). Figure 3 (d), (e) and (f)
show that when we assess positional accuracy of OSM road networks 1 and 2 by the
conventional buffer-zone method and the reference road network 2, the situation is
the same as that using reference road network 1. Therefore, in the worst case, one can
manipulate the assessment result by subjectively specifying a desirable buffer radius
in the conventional buffer zone method. In fact, the measurement errors of VGI are
heterogeneous. Thus it is inappropriate to ignore the impact of the measurement
errors of the reference data on the positional accuracy of VGI.

Figure 3 insert here with the caption: Concept and use of buffer zone in VGI
positional accuracy assessment.

The buffer-zone method proposed by Goodchild and Hunter (1997) has not been
evaluated theoretically and experimentally. To determine the size of the buffer radius
and to give an appropriate theoretical basis for the rigorous analysis of positional
accuracy, we need a formal basis on which the buffer can be statistically determined.
With respect to error analysis in vector-based GIS, Leung et al. (2004a,b,c,d) have
constructed a general framework for error analysis in measurement-based GIS.
However, it has not been employed in VGI quality assessment, though the potential
is there. There are indeed more complicated situations in VGI where the error
distribution is totally random (Haklay et al. 2010), but the buffer is created around
the reference map which is a conventional GIS product. The error analysis framework
by Leung et al. (2004a,b,c,d) can thus serve as a theoretical basis to statistically
determine the shape and size of a buffer. For easy reference, all key variables used in
this paper are listed in Table 1.

Table 1 insert here with the caption: The key variables and corresponding expla-
nation.

A road line segment is totally determined and controlled by the endpoints. Suppose
the endpoints are n0 and n1, and the corresponding random measurement-value vectors
are V 0 and V 1, respectively. According to the ME model in (1), they can be expressed
as the sum of the true value vector µ and the random ME vector ε with expectation
0 and covariance Σε. That is,

V = µ + ε, ε ∼ (0,Σε), (3)

where V = (V T
0 ,V

T
1 )T, µ = (µT

0 ,µ
T
1 )T, ε = (εT0 , ε

T
1 )T, Σε =

[
Σε0,0 Σε0,1

Σε1,0 Σε1,1

]
. Then for

any point nλ on the road line segment, its indirect measurement-value vector V λ is a
linear transformation of V :

V λ = ((1 − λ)I2, λI2)V , (4)

where λ ∈ [0, 1] and I2 is a second-order identity matrix. The corresponding true
value vector µλ, which is unknown, can be derived as the expectation of the indirect
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measurement-value vector V λ:

µλ = EV λ = ((1 − λ)I2, λI2)µ, (5)

and the corresponding random ME vector ελ can be derived as the difference between
the indirect measurement-value vector V λ and the true value vector µλ:

ελ = V λ − µλ = ((1 − λ)I2, λI2)ε. (6)

Because the expectation and covariance of ε are known, we can derive the expectation
Eελ and covariance Σελ of ελ as:

Eελ = ((1 − λ)I2, λI2)Eε = 0, (7)

Σελ = ((1 − λ)I2, λI2)Σε((1 − λ)I2, λI2)
T, (8)

Thus, we have

V λ = µλ + ελ, ελ ∼ (0,Σελ), (9)

where V λ represents the statistically derived measurement-value vector at point nλ,
with µλ being the corresponding true-value vector, and ελ being the ME vector hav-
ing expectation 0 and covariance Σελ . The conventional buffer-zone method uses a
subjective buffer radius to assess positional accuracy because it assumes that the ran-
dom ME vectors of each point are the same while in general it is not the case. Such
assumption and the subjectivity in determining the buffer radius thus lead to the
loss of information intrinsically carried by the random ME vectors of the endpoints,
causing a problematic, weak and sometimes contradictory assessment of positional
accuracy. Indeed, there is a probability distribution characterizing each measurement-
value vector. If we could involve such information, we could improve the assessment of
positional accuracy. In brief, the buffer radius should be determined by the structure
of the measurement error of the endpoints.

When we want to measure a specific quantity, we usually make repeated measure-
ments to estimate the quantity by the mean. Here the repeated measurements can
be considered as the samples of the random measurement-value vector, the mean can
be considered as the estimation of the true value vector and the sample covariance
can be considered as the covariance estimation of ME. These repeated measurements
can help us understand the corresponding random measurement-value distribution.
Therefore, the problem of deciding on the accuracy of a random measurement-value
vector is converted into the problem of statistical inference, i.e. the interval estima-
tion. Suppose the measurement error of the reference road endpoints n0 and n1 are
normally distributed, e.g., under the central limit theorem (Heuvelink 1998). For the
point nλ, we have

Σ−1/2
ελ ελ ∼ N2(0, I2), (10)

where Σ
−1/2
ελ is the inverse of Σ

1/2
ελ satisfying Σ

1/2
ελ (Σ

1/2
ελ )T = Σελ . We can see that

the two components of Σ
−1/2
ελ ελ are independent standard normal random variables.
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Thus, we have

(Σ−1/2
ελ ελ)T(Σ−1/2

ελ ελ) = εTλΣ
−1
ελ ελ ∼ χ2

2, (11)

where χ2
2 is a Chi-square statistic with 2 degrees of freedom. As a result, the confidence

interval of the random measurement-value vector V λ with confidence level 1 − α can
be constructed as

Uα
λ = {V λ : V λ = (vλx, vλy)T, (V λ − µλ)TΣ−1

ελ (V λ − µλ) ≤ χ2
2,α}, (12)

since P (V λ ∈ Uα
λ ) = P [(V λ − µλ)TΣ−1

ελ (V λ − µλ) ≤ χ2
2,α] = P [εTλΣ

−1
ελ ελ ≤ χ2

2,α] =

1 − α, where χ2
2,α is the upper α-quantile of the Chi-square distribution χ2

2 with 2
degrees of freedom. The confidence interval Uα

λ (i.e. the ellipse in Figure 4) means
the region within which the measurement-value vector will fall with probability 1−α.
Now, the positional accuracy of VGI should be assessed by examining whether the
measurement-value vector of each road point will fall within the relative ellipse and
the statistically defined buffer zone is the set of all these ellipses

Uα = {V λ : there is a λ, 0 ≤ λ ≤ 1, such that

(V λ − µλ)TΣ−1
ελ (V λ − µλ) ≤ χ2

2,α},
(13)

where V λ = (1 − λ)V 0 + λV 1. In the statistically defined buffer zone, the reference
data generating a region within each point can be treated as the corresponding
measurement-value vector with probability 1 − α. Essentially the union of all error
ellipses, Uα, could comprise all possible lines that one would get when repeatedly
measuring the start and end points with random measurement error and connecting
with straight lines all the point pairs within the 1 − α confidence interval. Then, the
positional accuracy of VGI assessed by the statistically defined buffer-zone method
aims to characterize whether the measurement-value vectors of VGI fall within the
proper region derived from the reference data, i.e. it treats the proportion of the VGI
road length, falling within the statistically defined buffer zone, in the total VGI road
length as the relative positional accuracy.

Figure 4 insert here with the caption: Error ellipses of two endpoints and an
intermediate point.

2.2.1. The simplified buffer-zone envelope

In practice, it is usually difficult to use Uα directly because it is a family of plane
ellipses. For the practical application of our statistically defined buffer-zone method,
the envelope of the ellipse family must be captured to represent the buffer-zone. Math-
ematically, an envelope means a curve, surface, or higher-dimensional object tangent
to a given family of lines or curves or surfaces or higher-dimensional objects, respec-
tively. Thus, the envelope here means a curve tangent to the ellipse family. Obviously,
the curve that connects the farthest points from the ellipse to the reference road is the
envelope we want (see Figure 5). For each error ellipse, e.g. Uα

λ , λ ∈ [0, 1], its farthest
points to the reference road are the points with the same slope of the reference road,
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which is obtained by solving the simultaneous equations:
(V λ − µλ)TΣ−1

ελ (V λ − µλ) = χ2
2,α,

dvλy
dvλx

= (v1y − v0y)/(v1x − v0x),
(14)

where (v0x, v0y)T = V 0, (v1x, v1y)T = V 1 and (vλx, vλy)T = V λ. In fact, consider the
standard parametric representation of an ellipse (x, y) = (acost,bsint), 0 ≤ t ≤ 2π,
and a general line function Ax+By+C = 0, the distance from any point of the ellipse
to the line is

d =
|Aacost + Bbsint + C|√

A2 + B2
, 0 ≤ t ≤ 2π, (15)

and equation (15) reaches the extremum when Aasint = Bbcost. Then, the slope of
the ellipse

dy

dx
=

dy

dt
/

dx

dt
= −bcost

asint
(16)

shows that the slope of the extremum point is −A/B, which is exactly the slope of the
line function. With enough points obtained from equation (14), the curve connecting
these farthest points from the ellipses to the reference road line segment can accurately
capture the envelope. However, in practice we cannot afford to calculate for infinite
number of points. Thus, the envelope needs to be fitted by a finite number of selected
points and represented by a general expression, such as the Cubic Spline Interpolation
or Fourier Series. For practical applications, a line in the GIS is produced by the
straight line connecting the input points. So, an envelope in GIS applications can be
fitted by serval line segments. What remains to be determined is the specific number
of points to be generated to produce an acceptable envelope.

Figure 5 insert here with the caption: Approximate envelope in buffer zone. The
envelope in bold is the statistically defined buffer-zone; c1, c2, c3 and c4 are the
farthest points of two end-points. L is the distance between the midpoint of an
approximation and the midpoint of the relative true envelope.

Undoubtedly, the farthest points, c1, c2 and c3, c4, from the ellipses to the reference
road line segment obtained by equation (14) with respect to the two end-points are
necessary for the close approximation of the envelope because the parts of the error
ellipses from c1 to c2 and from c3 to c4 belong to the true envelope (see Figure 5). As
the part of the envelope from c1 to c3 is symmetric to the part from c2 to c4, we only
use the part from c2 to c4 for our discussion. Consider in the most straightforward
way, we directly connect c2 with c4 as an approximation, lc2,c4 , to the bottom part of
the envelop in Figure 6 (a), i.e. it may be used as the envelope by the conventional
buffer-zone method (It should be noted that the conventional buffer-zone method
does not ever use error ellipse to define the radius). The approximation is obviously
not an acceptable approximate envelope in this case because there is a visible gap
between the approximation (in blue) and the true envelope, especially at the midpoint
(see Figure 6 (d)).
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Figure 6 insert here with the caption: Illustration of buffer-zone envelope approxi-
mation. (a) lc2,c4 is the approximate envelope connecting two points c2 and c4. (b)
lc2,c5 , lc5,c4 is the improved approximate envelope connecting three points c2, c5 and
c4. (c) lc2,c6 , lc6,c5 , lc5,c7 , lc7,c4 is the further improved approximate envelope connecting
five points c2, c6, c5, c7 and c4. (d) The comparison of the approximation precision of
the approximate envelope in (a), (b) and (c).

Based on the approximate envelope lc2,c4 in Figure 6 (a) that connects c2 with c4
directly, we construct the acceptance level (AL) index to measure the acceptance level
of the approximate envelope as follows:

AL = 1 − MPE

L
, (17)

where L is as indicated in Figure 5 which is the distance between the midpoint of lc2,c4
and the corresponding point of the true envelope, and MPE is the mean position
error between the midpoint of the current two adjacent points, which are used for
approximation, and the corresponding point on the true envelope. In fact, the AL
index indicates how much error of the approximate envelope lc2,c4 (in Figure 6 (a))
has been eliminated by the current approximate envelope. With a smaller MPE,
the current approximate envelope will have a larger AL which indicates that it has
further eliminated the error than the previous approximate envelope, leading to a
better approximate envelope. For the initial approximation, lc2,c4 , its AL obviously is
0 because its MPE is exactly L. It means that the farthest points, c2 and c4, used
for approximation are not enough to produce an acceptable approximate envelope.
Thus, we further select the point on the true envelope which is used to calculate
MPE to produce a better approximate envelope as shown in Figure 6 (b). Now, its
AL = 1 − L1+L2

2L (see Figure 6 (d)), where MPE is L1+L2

2 . Starting with the initial
points c2 and c4, we can calculate the acceptance level of the current approximate
envelope. To obtain a closer approximation to the true envelope, we can perform
the above procedure iteratively until an acceptable approximate envelope is obtained.
That is, to better the first-step approximation (in Figure 6 (a)), we select the point
on the true envelope which will be used to calculate MPE in next step (as shown in
Figure 6 (b)). The above procedure will be iteratively applied as shown in Figure 6
(c). Apparently, the AL index will get to be sufficiently large when more points are
involved throughout the iterative process. Specifically, we specify a level of acceptance
AL to which the iterative procedure is required to achieve for the final approximate
envelope.

Example 1. Assumed that there are two reference observations, V 0 and V 1, of the
road endpoints, n0 and n1, where V = (V T

0 ,V
T
1 )T = (0, 0, 6, 4)T. The related ME is

ε ∼ N4(0,Σε) which is a four-dimensional normal random variable with expectation 0
and covariance Σε. Let us consider three different correlation situations of ME between
two endpoints to illustrate how the statistically defined buffer zone is obtained under
each situation with 0.99 acceptance level:

Correlation situations:

a. Positive: Σε0,0 = Σε1,1 = σ2I2, σ = 0.4, Σε0,1 = Σε1,0 =

[
0.16 0.018
0.018 0.16

]
;

b. Negative: Σε0,0 = Σε1,1 = −Σε0,1 = −Σε1,0 = σ2I2, σ = 0.1;
c. Independent: Σε0,0 = Σε1,1 = σ2I2, σ = 0.1, Σε0,1 = Σε1,0 = 0.
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The results are depicted in Figure 7. It can be observed that the simplified
approximate envelope has a good performance in approximating the true envelope.
In situation a, the approximate envelope connecting five equally spaced points,
c1, c3, c5, c7 and c9, can approximate the true envelope with an acceptance level higher
than 0.99. In Figure 7 (a), the first-step approximation (in blue) has AL = 0, thus we
further connect the initial points, c1 and c9, to the midpoint, c5, of the true envelope
to form the second-step approximation (in red). As the second-step approximation
has AL = 0.954 which is smaller than the pre-specified acceptance level 0.99, we again
better the second-step approximation with the third-step approximation (in green)
which has AL = 0.9969. As the acceptance level of the third-step approximation
is higher than the pre-specified acceptance level, we finally use the third-step
approximation to approximate the true envelope. Situation (c) is like the situation
a (as shown in Figure 7 (c)). While in situation (b), the second-step approximation
(in red) connecting, c1 and c3, to the midpoint of the true envelope, c2, already has
AL = 1, which means that we can produce an acceptable approximate envelope in
two-step iteration (as shown in Figure 7 (b)).

Figure 7 insert here with the caption: Illustration of buffer zone approximation
under three correlation situations. (1 − α = 0.95;AL = 0.99).

With the above practical realization of the statistical buffer zone stipulated in equa-
tion (13), the ratio that an OSM road network falls within the buffer zone of the refer-
ence road network is equivalent to the ratio that the OSM falls within the approximate
envelope, which means

positional accuracy =
OSM road falls within the approximate envelope

total OSM road
. (18)

The buffer zone obtained by the conventional method thus becomes a special case of
our statistically defined buffer zone when we have equal buffer width for each point
of the reference road. Therefore, the AL-index-based statistical buffer zone renders a
more reasonable, objective and reliable assessment of positional accuracy with a strong
statistical basis.

3. Positional uncertainty of OSM road networks

3.1. Positional uncertainty

Error and accuracy are used to assess the quality of digital positional data in geo-
graphic information science. The idea is borrowed to assess positional quality in VGI.
In conventional GIS, positional measurements are made by the professionals, which
means measurements can be modified by the measurement process. However, the po-
sitional measurements in VGI come from various sources, making their modifications
by the measurement process difficult if not impossible (Flanagin and Metzger 2008).
It is believed that positional uncertainty is more proper to describe the quality of VGI
(Goodchild 2007a). From the statistical perspective, uncertainty can be characterized
by the level of confidence, a probability argument, we have on an estimation. With
positional accuracy defined in (18), we can build on it to construct a measure to char-
acterize positional uncertainty with respect to the buffer zone. It is on this basis we
propose the following characterization of positional uncertainty.
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As discussed in section 2, the statistically defined buffer-zone method constructs
a region within which all the points could be the corresponding measurement values
with probability 1−α. Assessment results of positional accuracy obtained are related
to the pre-specified confidence level, i.e. the region has different forms with different
confidence levels. We thus need to take the confidence level into the characterization
of uncertainty in quality assessment by using positional accuracy and the associated
level of confidence to characterize positional uncertainty as follows:

positional uncertainty = (positional accuracy ; confidence level), (19)

where positional accuracy is obtained from equation (18) and confidence level is spec-
ified in equation (13). Therefore, positional uncertainty in VGI can describe the preci-
sion of the results of positional accuracy assessment based on the statistically defined
buffer zone. In summary, positional accuracy and positional uncertainty are two mea-
sures of positional quality of VGI. Positional accuracy can be assessed more accurately
with a statistical buffer zone and positional uncertainty is the improvement of posi-
tional accuracy as it further incorporates the uncertainty embedded in the statistical
buffer zone.

3.2. Positional uncertainty assessment of the intersection in OSM road
networks

In section 2, we have analyzed positional uncertainty of the line segment of a road. It
should be noted that a road network is defined (approximately) by the collection of line
segments joining relevant points (Kiiveri 1997). To analyze positional uncertainty of a
road network, we need an additional measure: positional uncertainty of an intersection.
Intersections can be divided into two categories in terms of the way, direct and indirect,
they are generated.

The direct intersection is generated by the corresponding measurements, it is the
start or end points of four road line segments. Despite almost all the intersections in
OSM are direct intersections, their positional uncertainty should be assessed according
to the matching intersections in the reference map. With sufficient measurements, a
reasonable region of the random measurement-value vector of a direct intersection in
the reference map can be constructed on the basis of the statistically defined buffer-
zone method, and the positional uncertainty of the corresponding intersection in OSM
can then be assessed by equation (19).

However, the indirect intersection is just the intersection of two road line segments,
its location is not determined by the direct measurements but the four start and
end points of the two road line segments. Within such situation, the location of the
indirect intersection is a nonlinear transformation of the related start and end points.
Due to the nonlinearity of the transfer function f , we can only give an approximation
to the ME of the indirect intersection. Leung et al. (2004a,b,c,d) used the first-order
Taylor series expansion to replace the nonlinear transfer function. Xue et al. (2015)
extended the work by using higher-order Taylor series expansion method. However, the
statistically defined buffer zone provides an easy and direct way to capture positional
uncertainty of the intersection.

Since the statistically defined buffer zone effectively captures positional uncertainty
of a road line segment, positional uncertainty of the intersection of line segments
can be captured by overlaying the associated statistically defined buffer zones of the
relevant line segments. The approximation method aims to find the covariance matrix
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of the corresponding random measurement error of the intersection, which we use
to characterize positional uncertainty of the intersection. By connecting the selected
points in turn, positional uncertainty of the intersection is represented by a closed
area (Figure 8 (a)), and the buffer zone of its positional uncertainty can be obtained
by overlaying the relevant road line segments.

Figure 8 insert here with the caption: Determination of positional uncertainty
of the intersection of two road segments with simulated data. (a)The simplified
statistically defined buffer zone for the intersection road line segments. (b) The
simulated endpoints and related intersection points. (c) The simulated points falling
within the simplified statistically defined buffer zones. (d) The positional uncertainty
of the intersection point captured by the simplified statistically defined buffer zone.
(1 − α = 0.95;AL = 0.99).

Example 2. Assumed that there are two intersecting road line segments La and
Lb, with endpoints measurement-value vectors V a = (0, 0, 6, 4)T,V b = (2,−2, 3, 7)T,
respectively, and having the same ME vector ε ∼ N4(0,Σε), where Σε0,0 = Σε1,1 =
σ2I2, σ = 0.1,Σε0,1 = Σε1,0 = 0.

The indirect intersection measurement-value vector V i is a nonlinear transformation
of four endpoints V a and V b (Leung et al. 2004a). It is generally difficult to directly
use the basic ME model (Leung et al. 2004c). However, the simplified statistically
defined buffer zone provides a way to capture the positional uncertainty about the
intersection. By 1000 numerical simulations, positional uncertainty of the intersection
is shown in Figure 8 (b). The simplified statistically defined buffer zone can capture all
the positional uncertainty of the intersecting road line segments (see Figure 8 (c)). And
for the intersection, its positional uncertainty can be captured by the overlaid region
of the simplified statistically defined buffer zones on the road line segments (see Figure
8 (d)). It should be noted that there are some points falling outside the overlaid region
because the statistically defined buffer-zone is derived with 0.95 confidence level.

3.3. OSM Experiment

For a better understanding of the concept and computation of our proposed measure
of positional uncertainty, we use it to examine the quality of the road data in the OSM
of the Kowloon peninsula of Hong Kong. The experimental data are extracted from
china-latest.osm.pbf, which is a file downloaded from Geofabrik containing all OSM
data up to 2018-03-26T20:43:02Z. The reference is the iC1000 Digital Land Boundary
Map prepared by the Land Information Centre, Survey and Mapping Office at the
Lands Department (the official land information office) of the Hong Kong Special
Administrative Region.

3.3.1. Positional uncertainty assessment of road line segment

To illustrate in details the practical implementation of the statistically defined buffer
zone, we used Nathan Road, a major road, as a test case first. We collected all the
Kowloon OSM nodes with a tag ”name = Nathan Road” and put them in ArcGIS to
generate the road for comparison. We, then, projected the data onto the Hong Kong
1980 Grid coordinate system as depicted in Figure 9 (b). For illustration, Figure 9 (a)
and (c) show a good road section of the OSM data (when the OSM data fall within
the reference boundary) and a bad road section of the OSM data (when part of the
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OSM data intersect or fall outside the reference boundary), respectively. It shows
that the positional error in the OSM road network is distributed unevenly. Thus, we
cannot correct the data through a simple displacement or rotation. Furthermore, the
conventional buffer-zone method cannot characterize the error distribution through
a pre-defined buffer radius whereas the statistically defined buffer zone can because
the buffer zones are constructed through the reference itself while the conventional
buffer-zone method considers the OSM data to subjectively set the buffer radius.
Because the road map in the reference data use boundaries to represent road but the
OSM road data are captured in two lines (e.g., the thin red lines in Figure 9 (a) and
(c)) running in opposite directions along a road, we need to use the corresponding
center lines to represent the road in both the reference and the OSM and use the
positional uncertainty of the OSM centerline to represent the positional uncertainty
of the OSM data.

Figure 9 insert here with the caption: Road representation in the reference map
and OSM. (a)Blown-up view of the upper box demarcated in (b), which is the good
section of the OSM data. (b)Original data under Hong Kong 1980 Grid coordinate
system. (c)Blown-up view of the lower box demarcated in (b), which is the bad
section of the OSM data that intersect the reference boundary. (d), (e) and (f)are the
center lines of the road in (a), (b) and (c), respectively. The red lines are the OSM
data and the green lines are the reference data.

The Figures 9 (d), (e) and (f) show the relative center lines with respect to Figures
9 (a), (b) and (c). We merge the two thin red OSM road lines and the boundaries
of the reference road into one center line through ArcGIS, respectively. Clearly, the
center line of the good section of the OSM has a better positional quality than that in
the bad section because the OSM center line in Figure 9 (d) completely overlaps with
the reference center line while there is an apparent offset of the two center lines in
Figure 9 (f). For the good section, no matter how small the buffer radius is specified by
the conventional method, positional quality is extremely high because the OSM center
line completely overlaps with the reference line. For the same reason, similar result is
obtained by our proposed method. For the bad section of the road, however, different
buffer radius subjectively specified by the conventional method lead to different
positional accuracies as shown in Figure 10 (a). The OSM center line (in red) falls
within the 4-m buffer (in green) but falls outside the 2-m buffer (in blue). Therefore,
using two subjectively specified radius of the buffer zone will give two different
conclusions about the positional uncertainty. It is thus confusing whether we should
use the 2-m buffer zone or the 4-m buffer zone to assess the positional accuracy of the
road in such case. Apparently, such specification of buffer radius by the conventional
method is unacceptable. On the other hand, the statistically defined buffer-zone (in
yellow) as shown in Figure 10 (b) is constructed from the data themselves. It aims
to capture the true position of the road and the buffer width is independent of the
OSM data. It should be noted that the covariance used in this section is estimated
by the simulated measurements made with reference to the measurement on each node.

Figure 10 insert here with the caption: Illustration of the paradox arises from the
subjectively specified buffer zone. (a) The conventionally specified buffer zone with
a 2-m buffer (in blue) and 4-m buffer (in green). (b) The statistically defined buffer
zone (in yellow) constructed through simulated measurements.
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Figure 11 insert here with the caption: Contrasting the assessments of positional
uncertainty via the conventional and the statistical buffer zones. (a) The OSM road
center falls within the conventional 4-m buffer zone (in green) but the right side of
the OSM road intersects the reference boundary, the statistically defined buffer zone
is completely covered by the conventional 2-m buffer zone (in blue). (b) The OSM
road center falls within the statistically defined buffer zone (in yellow) but outside
the conventional 2-m buffer zone (in blue). The solid red line is the OSM road center
and the dotted red lines are the left and right sides of the OSM road, respectively.

The assessment results of positional accuracy with respect to the three types
of buffer zones in Figure 10 are shown in Table 2. It shows that the statistically
defined buffer-zone method gives the positional accuracy like the conventional 2-m
buffer-zone, but the conventional 4-m buffer-zone produces a much higher positional
accuracy assessment. Table 2 cannot display the superiority of statistically defined
buffer-zone method but reveals a problem in using conventional buffer-zone method,
i.e. which buffer zone, 2-m or 4-m, should we use? They are both subjectively defined
but deliver completely different results. The conventional method will probably
use the 4-m buffer zone because it will pre-define the positional accuracy as about
0.95. To further substantiate the issue, let’s look at Figure 11. Here, Figure 11 (a)
shows a problem with the 4-m buffer zone. This part of the OSM road has a poor
positional quality because the right side of the OSM road (dotted line) intersects
the boundary of the reference road. However, the related center road (red line) falls
within the 4-m buffer, and in this way, the 4-m buffer zone gives the OSM road a
high positional accuracy which is in contradiction with the ground truth. In contrast,
the 2-m buffer zone gives this OSM road section a poor positional accuracy which is
consistent with the actual situation because the related center line falls outside the
buffer zone. In this sense, the 2-m buffer zone more faithfully assesses the positional
quality of this part of the OSM road than the 4-m buffer zone. On the other hand,
when we look at Figure 11 (b), there is also a problem using the 2-m buffer zone.
This part of the OSM road does not have a bad positional quality as they are in
a reasonable position in a crossroad, but the related road center falls outside the
2-m buffer zone. It means that the 2-m buffer zone gives this part of the OSM
road a poor positional quality which is in contradiction with the ground truth. In
contrast, the 4-m buffer zone gives this part of the OSM road a good positional
accuracy which is consistent with the actual situation. So, we cannot give a convinc-
ing answer to the above paradox if the radius of the buffer zone is subjectively defined.

Table 2 insert here with the caption: Assessment results of positional accuracy with
three kinds of buffer zone.

Such problem, however, does not exist in the use of the statistically defined buffer
zone (as shown in Figure 11). The statistically defined buffer-zone method assigns
probability to the reference road, giving the positional accuracy assessment a proba-
bilistic and objective characterization that builds on the data themselves. According
to equation (19), the positional uncertainty of Nathan Road in the OSM is:

positional uncertainty = (0.6709 ; 0.95).

This gives an informative assessment of positional uncertainty in VGI. That is, we
are 95% confident that the positional accuracy is 0.6709. Because the buffer zone is
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constructed through equation (13) where α = 0.05, it means that the probability of
the OSM road measurement-value vectors falling within the buffer zone is 0.95. This
is a very important information about the assessment result because it describes the
precision of the result with a specific buffer radius (see Figure 8 (d)). According to
equation (14), the buffer radius is negatively related to the precision, meaning that we
must make a trade-off between the two. In short, positional accuracy only provides the
assessment of accuracy, 0.6709, without the level of precision. Positional uncertainty,
on the other hand, provides both accuracy and precision so that we know the level of
confidence in the assessment, i.e. the buffer radius.

3.3.2. Positional uncertainty assessment of road networks

The Positional uncertainty of road networks can be characterized by the road line
segments and intersection point. In section 3.1, we have investigated the positional
uncertainty of the road line segment, and the positional uncertainty of the intersection
point is obtained by overlaying the statistically defined buffer zones of the intersecting
roads. In this section, we illustrate the positional uncertainty of the road network
in the Kowloon OSM data obtained by the conventional buffer-zone method and
the statistically defined buffer-zone method. Figure 12 is the positional accuracy
assessment results based on different subjectively specified buffer widths. It shows
that 6 m is the buffer width whose positional accuracy is closest to 95%. Since the
quality distribution in VGI is heterogeneous (Goodchild and Li 2012), the test area
is clipped into a 40 × 40 fishnet to represent the quality difference.

Figure 12 insert here with the caption: The positional accuracy assessment results
with different pre-specified buffer widths.

Figure 13 shows the grid-cell-based distribution map of positional accuracy
assessment of the OSM Kowloon road network. The positional accuracy assessment
results are evenly divided into five levels, the darker the color the higher the positional
accuracy. The blank grid cell means that there is no standard reference road in
it. The conventional buffer-zone method used in Figure 13 (a) has a pre-specified
buffer width of 6 m, because we can make the test data reach 95% positional
accuracy. However, the related positional accuracy distribution map cannot pro-
vide the information on the heterogeneous quality among the grids because the
positional accuracy in most of the cells are beyond 0.8. Since the conventional
buffer-zone method aims to make the test data achieve 95% positional accuracy,
the buffer width must be made large enough before the grids with poor quality
could get a proper positional accuracy assessment. This automatically takes away
the quality difference among the cells. On the contrary, the positional accuracy
distribution map based on the statistically defined buffer zone can clearly differen-
tiate the quality difference among the cells. Since it is constructed from the data
themselves, it can faithfully and precisely represent the quality of the data in each cell.

Figure 13 insert here with the caption: Distribution of the positional accuracy
assessment results based on (a)The conventional buffer-zone method and (b)The
statistically defined buffer-zone method.

It should be noted that the statistically defined buffer zone used in the experiment
is derived with α = 0.05, which means the positional accuracy assessment has a 95%
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credibility. Therefore, for each grid in Figure 13 (b), the positional uncertainty gives
the positional accuracy assessment with 0.95 confidence probability. Not only can we
objectively assess the accuracy of the OSM road network but can also assess it with a
level of confidence.

4. Discussion and conclusion

In this paper, we have discussed how to assess positional quality of road networks
in VGI. We argue that the conventional buffer-zone method does not have a sound
theoretical foundation and statistical basis for the construction of the buffer zone and
the sound interpretation of the assessment results. To overcome this problem, we have
built on the basic measurement-error model of Leung et al. (2004a) to give a statis-
tical and experimental analysis of buffer-zone construction and application. However,
the buffer zone such derived involves a family of ellipses which is difficult to obtain
by direct calculation. For practical implementation, we have simplified the procedure
to obtain an approximate envelope for the ellipse family through an iterative process
based on the AL index. The approximate envelope is obtained by iteratively con-
necting adjacent points by a straight line until enough number of points is involved,
i.e. a specified AL value is reached, in determining the envelope that can be used to
replace the theoretically defined buffer zone. This greatly facilitates the use of the
buffer-zone method in real-life positional quality assessment. Furthermore, the simpli-
fied statistically defined buffer zone helps us to capture the positional uncertainty of
the intersection points directly. The statistically defined buffer-zone method therefore
provides a sound statistical buffer-zone construction and applications. To better assess
positional quality, we have also proposed a measure for positional uncertainty which is
a pairwise measure that gives the assessment of positional accuracy and the associated
level of confidence with respect to the buffer zone.

However, it should be noted that positional accuracy assessment and positional
uncertainty is made with respect to a reference. While VGI is a crowdsourced data
with real-time or near-real-time updates, the reference, on the other hand, may not
be as frequently updated. Further research should investigate how to synchronize the
two to make the assessment of positional quality even more reliable.
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Table 1. The key variables and corresponding explanation.

Variables Explanation

V The random measurement-value vector of a location.
V a The random measurement-value vector of the location of road line segment a.
Vi The random measurement-value vector of the location of the intersection.
µ The true value vector of a location.
ε The random measurement error of a location.
Uα
λ The statistical buffer-zone on any point λ with the level of significance α.

Table 2. Assessment results of positional accuracy with three kinds of buffer zone.

Buffer-zone type Length within buffer Total length Positional accuracy

Conventionally defined 2-m buffer zone 2311.37 m 3573.75 m 64.68%
Conventionally defined 4-m buffer zone 3377.06 m 3573.75 m 94.50%
Statistically defined buffer zone 2397.63 m 3573.75 m 67.09%
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Figure 1. Different versions of the same road network mapped within OSM and reference data.

Figure 2. An illustration of the true location, the measurement and the measurement errors of the endpoints

of a road line segment.

Figure 3. Concept and use of buffer zone in VGI positional accuracy assessment.

Figure 4. Error ellipses of two endpoints and an intermediate point.

Figure 5. Approximate envelope in buffer zone. The envelope in bold is the statistically defined buffer-

zone; c1, c2, c3 and c4 are the farthest points of two end-points. L is the distance between the midpoint of an

approximation and the midpoint of the relative true envelope.

Figure 6. Illustration of buffer-zone envelope approximation. (a) lc2,c4 is the approximate envelope connect-
ing two points c2 and c4. (b) lc2,c5 , lc5,c4 is the improved approximate envelope connecting three points c2,

c5 and c4. (c) lc2,c6 , lc6,c5 , lc5,c7 , lc7,c4 is the further improved approximate envelope connecting five points
c2, c6, c5, c7 and c4. (d) The comparison of the approximation precision of the approximate envelope in (a),

(b) and (c).

Figure 7. Illustration of buffer zone approximation under three correlation situations. (1 − α = 0.95;AL =
0.99).

Figure 8. Determination of positional uncertainty of the intersection of two road segments with simulated

data. (a)The simplified statistically defined buffer zone for the intersection road line segments. (b) The simu-

lated endpoints and related intersection points. (c) The simulated points falling within the simplified statisti-
cally defined buffer zones. (d) The positional uncertainty of the intersection point captured by the simplified

statistically defined buffer zone. (1− α = 0.95;AL = 0.99).

Figure 9. Road representation in the reference map and OSM. (a)Blown-up view of the upper box demarcated

in (b), which is the good section of the OSM data. (b)Original data under Hong Kong 1980 Grid coordinate

system. (c)Blown-up view of the lower box demarcated in (b), which is the bad section of the OSM data that
intersect the reference boundary. (d), (e) and (f)are the center lines of the road in (a), (b) and (c), respectively.

The red lines are the OSM data and the green lines are the reference data.

Figure 10. Illustration of the paradox arises from the subjectively specified buffer zone. (a) The conventionally

specified buffer zone with a 2-m buffer (in blue) and 4-m buffer (in green). (b) The statistically defined buffer
zone (in yellow) constructed through simulated measurements.

Figure 11. Contrasting the assessments of positional uncertainty via the conventional and the statistical
buffer zones. (a) The OSM road center falls within the conventional 4-m buffer zone (in green) but the right
side of the OSM road intersects the reference boundary, the statistically defined buffer zone is completely

covered by the conventional 2-m buffer zone (in blue). (b) The OSM road center falls within the statistically

defined buffer zone (in yellow) but outside the conventional 2-m buffer zone (in blue). The solid red line is the
OSM road center and the dotted red lines are the left and right sides of the OSM road, respectively.

Figure 12. The positional accuracy assessment results with different pre-specified buffer widths.

Figure 13. Distribution of the positional accuracy assessment results based on (a)The conventional buffer-

zone method and (b)The statistically defined buffer-zone method.

19


	titlepage.pdf
	revision.pdf

