Geospatial data matching using an optimization-based geo-graph model embedded with multiscale similarity relationships
abstract.
Geospatial data matching is one fundamental research in GIScience. The growth of available geodata sources has demanded more advanced matching methods in order to support the reliability of consequent research. Existing matching methods mainly focused on the similarity measures which can be categorized as entity-scale and area-scale measures. The entity-scale measures coupled with area-scale measures could provide sound matching results under various circumstances; thus, we proposed the geo-graph model integrating multiscale similarities for matching. To capture the similarity of area-scale relationships, a new form of polygons is defined to avoid the incompatibility between polygonal objects and graph. The polygons are represented by their centroids corresponding to the nodes in the graph. And the arcs between the centroids are produced by the defined rules to constitute the geo-graph with centroids. Then, the entity-scale measures are employed in matching process with optimization based on general graph matching. And it is further developed to address the M:N matching issues. To illustrate and substantiate the theoretical arguments, the real-life experiments are performed using OpenStreetMap. The experimental results confirm the high significance of the proposed model to comprehensively reveal the multi-facet nature of geospatial correspondences.
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1. Introduction
Geospatial data matching is one fundamental research in GIScience. It is a process of finding the corresponding objects representing the same real-world entity for different datasets. Much subsequent research cannot be conducted without it, such as data integration, map conflation, and error detection, especially for the analysis of big geodata which also referred to as volunteered geographical information (VGI) (Goodchild, 2007). Although the big geodata provide a wealth of valuable geoinformation, it is always accompanied with some inevitable problems leading to a difficult matching, e.g., the different representations of the same real-world entity in the multiscale datasets with untraceable data sources and heterogeneous data qualities (Goodchild and Li, 2012; Liu et al., 2018). Moreover, the unceasing growth of available geodata sources causing manual geodata matching practically unfeasible, which has demanded more advanced matching methods for data conflation or quality assessment in order to support the reliability of consequent research further (Fan et al., 2014). It is crucial, then, to identify the corresponding objects comprehensively.
The existing matching methods mainly focused on the similarity measures which can be organized as geometry, attributes, semantics, topology and context (Xavier et al., 2016). The geometric measures are the main indicators to employ in matching based on the locations and shapes of objects. The distance between spatial objects (Li and Goodchild, 2011; Bergman and Oksanen, 2016; Liu et al., 2018) and ratio of overlapping areas (Gösseln and Sester, 2003; Wang et al., 2013; Qi et al., 2010) have been widely used to determine the matching candidates. The attributes and semantics refer to the non-geometric properties of objects, such as the type and name which are related to the function (Li et al., 2018). The above three measurement types are all based on the descriptions of various distance between two objects, including geometry, attributes and semantics. Meanwhile, regardless of the properties of the tested object itself, the topology and context measures focus the relationships among the investigated objects. The topological measures are commonly used as a complementary measure, because small differences of topological relations between two datasets may lead to different matching results (Fu et al., 2018). With respect to context, Samal et al. (2004) proposed a proximity graph based on landmarks measuring the context for the whole study area, but the matching procedures are sensitive to the landmarks leading to high uncertainty of results. Without landmarks, the context is also defined as the neighbourhood of each object which measured in terms of the nearest neighbour graph (Zhang et al., 2014). Based on these studies, graph virtually is a promising solution to measure context which also has been widely employed in image-based matching by the computer society to characterize the structure information (van and van, 2003; Duchenne et al., 2011; Park and Yoon, 2017).
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]According to the scale of the proximity measurements, we further category the five similarity measures as entity-scale measures and area-scale measures. The entity-scale measures, i.e. geometry, attributes and semantics describe the proximity between two objects; whereas the area-scale measures, i.e. topology and context capture similarity of relationships between objects in an area. Under the situation of employing entity-scale measures, the identified corresponding objects should be similar enough to each other. If there is a little information about the datasets, or the error is large and heterogeneous, the entity-scale measures may cannot fully provide correspondences of two datasets (Tversky, 1977). The area-scale measures, or say geographical context, may help to reduce the uncertainty when searching for corresponding objects (Xavier et al., 2016). Thus, the entity-scale measures coupled with area-scale measures could provide sound matching results under various circumstances (Neira and Tardos, 2001). Actually, the similarity between two objects in matching procedures confirms the high likelihood of each identified matching pairs. And the proximity of area-scale relationships can further guarantee the reliability and stability of all the corresponding objects if they are involved in matching also.
In this article, we proposed the geo-graph model integrating multiscale similarity relationships for matching. The model is developed from the general graph matching issues in computer vision for measuring geographical context at first. Because of the incompatibility between polygonal objects and graph, polygons are represented into a new form. Regarding the node in graph, the support of polygons is replaced by their centroids. And the arcs between the centroids are produced by the defined rules. The corresponding generated graph of geospatial objects is termed as geo-graph. Then, the multiscale measures are coupled within the geo-graph matching procedures. Specifically, the contextual similarity is measured by the distance of adjacency matrices. For a comprehensive matching, the commonly used entity-scale measures are integrated into the optimization formulation with area-scale measures. To address the M:N matching issues, the matching results are allowed to repeat, i.e. one object can be assigned to any object in the other dataset at the same time. Moreover, the results are related to a specific dataset; thus, an algorithm is developed to produce an overall matching result.
The rest of this article is structured as followed. In Section 2, the details of the geo-graph model are described. The effect of the proposed geo-graph model is justified in section 3 by showing how it solves a real-life problem involving the matching of buildings in OpenStreetMap (OSM). Finally, we conclude the paper with a summary and directions for further research in section 4.
2. The geo-graph model
2.1 The general graph matching
Graph matching is the common method used in computer vision to study the structural similarity of two images. Mathematically, a graph  in its basic form is composed of vertices and arcs (also known as edges).  is the set of vertices and  is the set of arcs of the graph . If two vertices in , say , are connected by an arc , then it is represented as . In general, the connectivity of a graph also can be represented in the matrix form, wherein the element  is 1 for all , and 0 for the rest. Then, the structure of graphs can be captured by the related adjacency matrix . The adjacency matrix distance is the widely used measure to describe the similarity of two graphs (Van et al., 2002; Duchenne, 2011), which measures the closeness between the adjacency matrices. Table 1 is the basic notations used in this article.
Table 1. The basic notations and the corresponding explanations.
	notation
	explanation

	
	The graph  where 1 is the index of the graph

	
	The adjacency matrix of graph 

	
	The i-th node of graph 

	
	The i-th arc attribute of graph 

	
	The j-th vertices attribute of graph 

	
	The permutation matrix operated on graph 



Briefly, the general graph matching is a process of finding the optimal vertices-to-vertices correspondences between two graphs (Feng et al., 2013). Let and  be two graphs, they are strictly matched if and only if there exists a permutation matrix  such that . The general form of the graph matching problem, then, can be modelled as the optimization of permutation matrix  to minimize the matching error  in Eq. (1). That is,
		(1)
where  is the permutation matrix  such that the difference between  and  is minimal with the selected distance norm.
2.2 The geo-graph generation for the geospatial data
The graph studied in computer society is generated from the images, where the structural information is abstracted from the raster data. In terms of the geospatial data matching, the investigated objects are mainly represented with vector data (Xavier et al., 2016). In fact, the context of geographic objects is comparable to the structure of images, but the graph cannot be applied for polygons directly. Thus, the graph for geospatial data characterizing its contextual information needs to be further defined and clarified. To distinguish the two graphs, the graph specifically generated from geospatial vector data is termed as geo-graph in this study. It should be noted that the term, geo-graph, has been proposed to study graph partitioning problems when each vertex corresponds to a particular area of the plane (Douglas et al., 2012), but there is no ambiguity because we both focus on how the boundaries of these objects dictate its structure.
Following the basic concept of graph, the road networks are graphs in terms of the corresponding geographical context intrinsically. Figure 1(a) shows a common part of the road networks, where two vertices in a road network are connected through an arc if there is a road link between them. In this way, the context can be represented by the graph connectivity (see Figure 1(b)). Besides, the nodes and the arcs are also associated with the attribute information. A natural idea is to encode the attribute information into the corresponding vertices or arcs. Specifically, the road networks can be modelled by a geo-graph. That is,
[bookmark: _Hlk14280800]		(2)
where  is the adjacency matrix created with the i-th arc attribute, and  is the vector containing the j-th attribute of all vertices. For example,  and  in Figure 1(b) characterize the number of lanes on each road and the locations of the vertices respectively.
[image: C:\Users\usr\OneDrive\research proposal\polygon matching\Figures\Figure1\Figure1.jpg]
Figure 1. Illustrations of (a) a common part of the road networks; (b) the relevant geo-graph of (a); (c) a group of buildings; (d) the related geo-graph of (c).
In contrast to road networks, the polygonal objects are incompatible with the geo-graph as they cannot be modelled by the Eq. (2) directly. Taking buildings as an example, each building is represented by an area standing in GIS individually without the connectivity depicted by the arcs (see Figure 1(c)). Actually, each building within the building groups is comparable to a node in the road networks. The centroid of buildings, thus, can be used to represent the corresponding location in a map. And the building shape can be encoded as an attribute on the relevant centroid then. The polygonal objects with point-based support can be represented by a geo-graph now where the number of arcs is zero. Indeed, the situation of zero arcs is equivalent to the full arcs, i.e. every two buildings are connected (see Figure 1(d)). Under the circumstance, the geographical context of each building is the same and cannot provide information about correspondences then. To capture the true contextual information of buildings, the arcs should be generated in terms of the following two rules we defined in this study:
The arcs should not cross the road networks;
The arcs between two buildings should not intersect with a third building.
The first rule divides the investigated building groups into urban blocks (Fan et al., 2016) by the road networks. The city-scale geo-graph matching of the polygonal objects (see Figure 2(a)), then, walks into a group of geo-graphs matching with respect to the urban blocks. It can decrease the computational complexity by shrinking the number of matching objects. Figure 2(b) shows that the divided geo-graphs eliminate considerable complexity from the city-scale one. In fact, the city scale is the extent of the whole tested dataset and the urban-block scale is the area of the dataset for practical matching.
[image: ]
Figure 2. The complete geo-graphs of polygonal geographic objects on (a) the city scale, and (b) the urban-block scale.
The second rule we defined aims to simplify the complete geo-graphs within the urban blocks and further improve the reliability and stability of the matching results. The geographical context of an object is represented by its associated arcs here, but each object is linked to all the other objects leading to an identical geographical context for all objects. It means the context similarity has no difference for different object pairs; thus, the previous complete geo-graph virtually cannot provide context information for matching. However, sometimes the distant objects may also have the spatial relationships. To better describe the geographical context, we supposed that two objects has no relationship if their arc intersect with a third object (see Figure 3). In this way, the nearby objects are naturally related, and the far objects can also get related but only with a low likelihood.
[image: ]
Figure 3. The geo-graph of buildings constrained by the second rule.
2.3 The geo-graph matching
2.3.1 A context measure based on geo-graph
The geo-graph is intrinsically an attributed graph, where the relevant matching issues can be built upon the existing approaches to the attributed graph matching. The primary issue in geo-graph matching is to measure the context similarity when uncertainty and decay are involved, while it has been extensively explored in the literatures of structural pattern recognition (Umeyama, 1988; Almohamad and Duffuaa, 1993; Caelli and Kosinov, 2004). As its effect in the structural pattern recognition, Eq. (1) describes the optimal matching results of two graphs. For the object , its context is exactly the i-th row (or column) of the corresponding adjacency matrix. And the context similarity between  and  is captured by the difference between the i-th row (or column) of  and the j-th row (or column) of . The matching error is the overall context similarity between  and the permutated  based on . Thus,  in Eq. (2) can identify the corresponding object pairs with the maximum overall context similarity.
2.3.2 Combining context measure with entity-scale measures
With contextual information, the true correspondences are still difficult to get fully captured due to the intrinsic combinatorial nature in the matching and the existence of structural corruption and inexactness (Feng et al., 2013), e.g. the missing geographic features in one of the datasets, and different adjacency patterns of geo-graph. In addition to the context measure, entity-scale measures are developed to characterize the detailed relationships between two objects. And it is a natural idea to address geospatial data matching with both context measure and entity-scale measures. Because, in this way, the matching of corresponding objects can not only consider the local information (entity-scale measures) but also the global constraints (context measure).
For the geo-graph, the adjacency matrix is further developed to a series of attributed matrices, wherein the nonzero elements are replaced by the specific attribute information with various forms. Besides, in regard of the vertices, there are also associated vectors characterizing the relevant attribute information (see Figure 1 (b)). In fact, the entity-scale measures between  and  also can be calculated with the i-th element of  and the j-th element of  (for the arcs , the attribute is). Then, the combined measure can be simply defined as the sum of context measure and entity-scale measures. With respect to Eq. (2), the combination can be represented as a penalized term added to the context measure. That is,
		(3)
where the upper right number on  and  indicate their belonged geo-graphs,  and  are weights determined by the importance, ,  is an appropriate matrix operator for the i-th arc attribute, and ,  is some vector operators for the j-th vertices attribute. 
Now, the problem of geospatial data matching is converted to the optimization issue shown in Eq. (3). The similarity of the geographical context within different datasets is considered by the general graph matching Eq. (2), while the local attribute similarity is further measured and balanced in terms of the penalty terms in Eq. (3), i.e. . 
2.3.3 M:N matching
The geographic objects have several kinds of correspondence (Liu et al., 2018), i.e. the same real-world entity may be represented by different numbers of components in the various datasets. It means one vertex in a geo-graph can be related to a set of vertices in the other geo-graph. Under this situation, the permutation matrix  in Eq. (3) is allowed to repeat, e.g. to permute the vertices sequence  into  where  repeated twice.
[bookmark: _Hlk25155306]The permutation  defined in Eq. (3) is essentially the vertex correspondence from geo-graph  to geo-graph . For each vertex  in , one vertex in  is selected as the matching result, i.e. , where  is the index of the vertices in , such that Eq. (3) is satisfied. Whereas this permutation  is based on the geo-graph  guaranteeing each vertex in  has a correspondence in . In other words, it is virtually , because the matching results  based on the  may be inconsistent to . And all the vertices in  are assumed to have correspondence in , and  is the optimization with respect to the used measures. Without any ambiguity,  is equivalent to  for the following part of the article, where they both represent the optimal matching results.
[bookmark: _Hlk17283141][bookmark: _Hlk17283444][bookmark: _Hlk17282389]To fix the problems, this study proposed a framework associated with geo-graph for M:N object matching (see Figure 4). Firstly, both the matching results  and  are produced independently. The vertex  has the matching result , and also the vertex  has the matching result . If  is only assigned to  and  is only assigned to , then  is one-to-one matched to . In contrast, if  is assigned both to  and other vertices in geo-graph , these vertices in  are combined as a unit, and vice versa. Next, with respect to each unit in , the matching results of its components are further combined as a new unit in , and vice versa. Repeating the previous step until the identified units is consistent to the previous step, and the unit in  and the corresponding unit in  is recognized as M:N object matching. It should be noted that the M:N object matching revealed here is actually the many-to-many object matching, because the situation of object missing cannot be identified.
[image: ]
Figure 4. The framework for M:N object matching with geo-graph model.
3. Evaluations
3.1 Compatibility with existing optimization-based methods
The proposed geo-graph model is designed to combine geographical context information and the entity-scale information for geospatial data matching. While the combination here is relaxing, many existing object matching methods can also be implemented on the geo-graph model. Moreover, it provides a general model for simultaneously matching both linear objects and polygonal objects, i.e. the matching algorithms of linear objects are also applicable to the polygons and vice versa. With the support of polygons changing to point, the only difference between them is the existence of connectivity in road networks. However, the geo-graph model has shrunk it with the involvement of geo-rules.
As the geo-graph model is descripted on polygons in the above sections, a linear object matching method (Li and Goodchild, 2011) is illustrated with geo-graph model. In specific, they proposed a similarity index for linear object matching, i.e. the combination of Hausdorff distance and Hamming distance (Hamming 1950). Wherein the Hausdorff distance and Hamming distance are the similarity measures of geometric and semantic information respectively. With the geo-graph model, their method can be remodelled by
	 	
where the elements  and  in  and  are Hamming distance and Hausdorff distance between linear objects  and  respectively. Specifically, the attributed adjacency matrix  consists of the geographical names and  is composed of the set of vertices associated on the arcs. The applicable research has been done in their paper; thus, the linear objects are not studied in this section.
3.2 The real-life experiments
3.2.1 Study area and data
OSM data as an open-source data covering almost all the human activity places. The rich contents and easy accessibility make it an attractive alternative of authorized data. However, the different professional levels of contributors may result in data with different quality (Goodchild and Li, 2012). Under the situation, the error distribution is uneven (Haklay, 2010b; Zhang et al., 2019) leading to a puzzle in object matching. In this section, the proposed geo-graph model will be used to find the correspondences of buildings between OSM data and the official datasets of Kowloon, Hong Kong (see Figure 5). The experimental data are extracted from china-latest.osm.pbf, which is a file downloaded from Geofabrik containing all OSM data up to 2019-08-12T20:14:02Z. The reference is the iC1000 Digital Land Boundary Map prepared by the Land Information Centre, Survey and Mapping Office at the Lands Department (the official land information office) of the Hong Kong Special Administrative Region. Both OSM data and the official data are transferred to WGS 1984.
[image: ]
Figure 5. The location of the research areas (black boxes) and corresponding details of the reference buildings and OSM buildings.
3.2.2 Experiments
For a better illustration of the proposed geo-graph model, two urban blocks in Figure 5 are selected to show the matching progress. The polygons in blue are the reference buildings and in rose are the OSM buildings. In fact, the buildings in Kowloon can be separated into lots of subgroups by road networks, based on the prosperous line-based matching algorithms, the subgroups of the reference datasets and OSM datasets are assumed to be already matched. In detail, the selected urban block (a) in Figure 4 has 58 reference buildings and 55 OSM buildings, and the urban block (b) has 60 reference buildings and 54 OSM buildings. It means the general concerned issue in polygon matching, i.e. M:N object matching, is involved in the experiments. Besides, the building distribution pattern of the urban block (b) is much more complex than that of the urban block (a). Applying the geo-graph model to these two urban blocks, thus, has the intention of demonstrating the robust of the geo-graph model.
With respect to the urban block (a) in Figure 4, the centroids of the reference and OSM buildings are extracted as their representations respectively. For the reference data, each two centroids are connected by a line segment (see Figure 5 (a)), and the generated line segments intersecting the buildings that not of the corresponding centroids are deleted then (see Figure 5 (b)). In fact, the dropped line segments are supposed to be the unlikely happened relatedness of the associated building pairs. Because the line segments intersecting the buildings that not of the corresponding centroids are caused by the distribution pattern and the shapes of the buildings, the remained line segments can capture the topology of the distribution pattern, i.e. the geographical context, and somewhat topology of the buildings. Now, we have the geo-graph of the reference buildings in urban block (a), and the geo-graph of the relevant OSM buildings is also generated in the same way (see Figure 5 (b) and (d)).
[image: ]
Figure 6. The generated complete graphs of (a) reference (purple) and (b) OSM (red), and their geo-graphs (c) and (d).
As the fundamental basis for the characterization of polygonal objects, position and geometric form are the commonly used similarity measures in general. In addition to the Euclidean distance of the centroids and the shape similarity of buildings, the geo-graph is employed here to optimize the permutation  for polygonal objects matching. That is,
	 	(4)
where  represents the similarity of topological structures,  is the position-and-form-based distance (Zhou et al, submitted) between the reference buildings and OSM buildings.
Based on Eq. (4), the matching results of urban block (a) are illustrated in Figure 6. The combination of five reference buildings are recognized as the correspondence of the group of three OSM buildings and they are depicted by the red dashed rectangle. The red dashed ellipse shows another 2:1 matching result, i.e. two reference buildings are matched to one OSM building. Except for these buildings, the other 51 buildings in Figure 6 (a) and (b) are matched one to one, and the matching results are all correct.
[image: ]
Figure 7. The red dashed rectangle and ellipse are the recognized M:N matching pairs in (a) reference dataset and (b) OSM dataset for urban block (a).
With respect to the more complex circumstance, urban block (b) has relative the same quantity of buildings but the involuted topology of the distribution pattern. Repeating the above workflow on urban block (b), Figure 7 (a) and (b) illustrate the matching results. All the M:N matching results are shown by the red dashed polygons. In fact, many of these results are caused by the disturbance of the buildings with no correspondence. Based on Eq. (4), these buildings without correspondences will also be assigned correspondences in another dataset, and it makes the one-to-one cases become wrong M:N matching results. Besides, the geo-graphs of the reference data and OSM data have comparable structures (see Figure 7 (c) and (d)), thus the involved geographical knowledge is robust in this study. In fact,  in Eq. (4) is a reliable similarity measure for the topology of polygons distribution pattern.
[image: ]
Figure 8. The matching results of urban block (b). (a) the identified units for reference dataset. (b) the identified units for reference dataset. (c) the geo-graph of reference dataset. (d) the geo-graph of OSM dataset.
To further illustrate the effectiveness of the geo-graph model, the common matching method (Fan et al., 2014) for quality assessment of OSM building footprints is compared in Table 2. For urban block (a), there are virtually 53 pairs of 1:1 correspondence and 2 pairs of M:N correspondence. The proposed geo-graph model, i.e. Eq. (4), recognized 51 pairs of 1:1 correspondence and 2 pairs of M:N correspondence, wherein all the identified 1:1 correspondence and one M:N correspondence are correct. With overlapping ratio, 33 pairs of 1:1 correspondence and 9 pairs of M:N correspondence are produced. But only 29 pairs of recognized 1:1 correspondence and none of M:N correspondence are correct. With respect to urban block (b), the geo-graph model also has better effect. Regarding of 1:1 correspondence, the geo-graph model can recognize more matching pairs and keep a higher accuracy, while both these two methods cannot perform well for M:N object matching.
Table 2. The matching results by geo-graph model and overlapping ratio.
	
	
	Accuracy of recognizing matching categories
	Accuracy within recognized matching categories

	Areas
	Method
	1:1
	M:N
	1:1
	M:N

	Urban block (a)
	Geo-graph
	51/53
	2/2
	51/51
	1/2

	
	Overlapping ratio
	33/53
	9/2
	29/33
	0/9

	Urban block (b)
	Geo-graph
	39/48
	9/2
	39/39
	2/9

	
	Overlapping ratio
	36/48
	15/2
	20/36
	2/15



In this section, we have demonstrated the effect of the geo-graph model as a general framework of geographical data matching. It should be noted that only a simple position-and-form distance is used in geo-graph model except the adjacency matrix, but the geo-graph model produced much better results than a commonly used method. Especially the 1:1 correspondence recognized by geo-graph model are all correct, which shows that the context, i.e. the object distribution pattern, is a useful measure for 1:1 correspondence.
4. Discussion and conclusion
In this work, the multiscale similarity relationships-based geospatial data matching is discussed. The quality of reference datasets is generally guaranteed by the high standard data collection procedures, e.g., the BDOT10k building should be mapped on the basis of their footprint or maximal outline at the fixed accuracy, equivalent to the scale of 1:10000 (Da, 2016). In contrast, VGI datasets have a lack of such standard procedures (Goodchild and Li, 2012). OSM users’ community provides no strict rules, only recommends that outer edge of the building wall should be mapped if possible, while its accuracy and level of detail is heterogeneous. Under the situation, the geographic objects approximating the same real-world entity in different datasets cannot be appropriately matched in terms of the commonly used similarity measures. To solve this problem, the geo-graph model is proposed to provide comprehensive and reliable correspondences by considering the entity-scale similarity and area-scale similarity together in matching procedures. The entity-scale similarity is described between two objects confirming the high likelihood of the identified correspondences from a local perspective. Whereas the area-scale similarity characterizes the similarity of relationships between objects from a global perspective, e.g. the polygon distribution pattern. However, the matching result produced by the geo-graph model is based on a particular dataset, sometimes leading to the inconsistent results for different datasets. To have the overall correspondences, we have modified the procedure to generate consistent result for all datasets. Furthermore, the consistent result helps to identify the M:N matching pairs and, therefore, fit most matching circumstances.
[bookmark: _GoBack]However, the proposed model has an issue regarding the M:N matching. The object actually has no correspondence in another dataset cannot be recognized principally under the situation. As the non-one-to-one matching pairs can be correctly identified by the geo-graph model, further studies in this area should investigate a more detailed with respect to M:N matching.
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Geospatial data matching using an optimization-based geo-graph 

model embedded with multiscale similarity relationships 

abstract. 

Geospatial data matching is one fundamental research in GIScience. The growth 

of available geodata sources has demanded more advanced matching methods in 

order to support the reliability of consequent research. Existing matching methods 

mainly focused on the similarity measures which can be categorized as entity-scale 

and area-scale measures. The entity-scale measures coupled with area-scale 

measures could provide sound matching results under various circumstances; thus, 

we proposed the geo-graph model integrating multiscale similarities for matching. 

To capture the similarity of area-scale relationships, a new form of polygons is 

defined to avoid the incompatibility between polygonal objects and graph. The 

polygons are represented by their centroids corresponding to the nodes in the graph. 

And the arcs between the centroids are produced by the defined rules to constitute 

the geo-graph with centroids. Then, the entity-scale measures are employed in 

matching process with optimization based on general graph matching. And it is 

further developed to address the M:N matching issues. To illustrate and 

substantiate the theoretical arguments, the real-life experiments are performed 

using OpenStreetMap. The experimental results confirm the high significance of 

the proposed model to comprehensively reveal the multi-facet nature of geospatial 

correspondences. 

Keywords: geospatial data matching; geo-graph model; multiscale similarity 

relationships; object matching; optimization 

1. Introduction 

Geospatial data matching is one fundamental research in GIScience. It is a process of 

finding the corresponding objects representing the same real-world entity for different 

datasets. Much subsequent research cannot be conducted without it, such as data 

integration, map conflation, and error detection, especially for the analysis of big geodata 

which also referred to as volunteered geographical information (VGI) (Goodchild, 2007). 

Although the big geodata provide a wealth of valuable geoinformation, it is always 

