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Test-analysis comparison metrics are mathematical functions that provide a quantitative measure of 

the agreement (or lack thereof) between numerical predictions and experimental measurements. While 

calibrating and validating models, the choice of a metric can significantly influence the outcome, yet the 

published research discussing the role of metrics, in particular varying levels of statistical information the 

metrics can contain, has been limited. This manuscript calibrates and validates the model predictions 

using alternative metrics formulated based on three types of distance-based criteria: (i) the Euclidian 

distance, i.e. the absolute geometric distance between two points; (ii) the Mahalanobis distance, i.e. the 

weighted distance that considers the correlations of two point clouds; and (iii) the Bhattacharyya 

distance, i.e. the statistical distance between two point clouds considering their probabilistic distributions. 

A comparative study is presented in the first case study, where the influence of various metrics, and the 

varying levels of statistical information they contain, on the predictions of the calibrated models is 

evaluated. In the second case study, an integrated application of the distance metrics is demonstrated 

through a cross validation process with regard to the measurement variability. 
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Nomenclature 

BC = Bhattacharyya coefficient 

C = covariance matrix 

dE = Euclidian distance 

dM1 = pont-to-population Mahalanobis distance 

dM2 = population -to- population Mahalanobis distance 

dB = Bhattacharyya distance 

em = unit vector with m dimension 

f(∙) = simulator in an uncertain system 

l, m = number of points in the feature sample 

P = probability density function 

p = number of parameters in an uncertain system 

q = number of features an uncertain system 

s2 = variance value of one feature variable 

u = number of bins in Bhattacharyya distance calculation 

X = parameter matrix 

x = observation vector of one parameter variable 

Y = feature matrix 

y = feature vector 

β = coefficient of the agent model 

μ = mean of normal distribution 

σ2 = variance of normal distribution 

Subscripts 

e = experimental data 



 

i, j, k = index of parameters and features 

n = numerical analyzed data 

I. Introduction 

Numerical models, widely used for the design, optimization, and assessment of aerospace engineering systems, are 

approximate representations of reality in that their predictions exhibit a level of disagreement from experimental measurements. 

The main sources of this disagreement can be classified as: parameter uncertainties due to imprecisely known input parameters 

(e.g. Young’s modulus, mass density, geometric size, and spring stiffness) introducing uncertainties to the model predictions; 

model form bias due to unavoidable simplifications and idealizations (e.g. linearized representations of nonlinear behavior, 

frictionless joint approximation) introducing systematic errors to the model predictions; and test variability due to hard-to-control 

random effects (e.g. environment noise, measurement uncertainties) making the experimental measurements only partially 

reproducible [1]. These first two sources are related to the model and can be mitigated through the well-known process of model 

calibration, which infers the likely parameter values and model bias from experimental measurements that improve the agreement 

between predictions and measurements [2, 3]. The calibrated models become conditioned upon the data that are calibrated against 

and therefore must be checked against an independent set of measurements for model validation [4-6].  

As a concise summary of the vast research on model calibration, this paper classifies the published calibration techniques into 

three paradigms depending on how uncertainties are characterized: (i) deterministic, (ii) stochastic, and (iii) robust calibration. 

Paradigm (i) includes the traditional sensitivity-based procedures which involve adjusting a nominal computer model based on a 

single set of experimental measurement [7, 8]. Over the last two decades, the significant role of uncertainty has been widely 

acknowledged [9, 10] allowing paradigms (ii) and (iii) to gain a growing research interests. Stochastic approaches to deal with 

uncertainty include Monte Carlo simulation (MCS) [11], covariance adjustment [12], and Bayesian calibration [13, 14]. The 

recently developed robust calibration [15, 16] formulates model calibration as a multi-objective problem with two distinct 

objectives: fidelity and robustness. Under this approach, the model is calibrated with the maximum allowable uncertainty, while 

providing acceptable fidelity to the measurements. 



 

Regardless of which paradigm is proposed, one must establish an appropriate, quantitative test-analysis comparison metric to 

assess the degree of similarity (or dissimilarity) between predictions and measurements [10, 17]. There are three basic aspects of 

this assessment [18]: (i) the quantities to be compared (i.e. system response features); (ii) the manner in which the comparison is 

made (i.e. mathematical function); and (iii) acceptable accuracy for the comparison (i.e. model adequacy). The focus of this paper 

is the second aspect, while the fact is all three aspects are interrelated. For instance, the response feature of interest can be a scalar 

value or vector representation (i.e. a series of natural frequencies or temporal/spatial variations), which in turn would dictate the 

mathematical functions to be used for comparison. Due to the widely varying types of response features, a unified metric is 

currently unavailable in published literatures [17].  

Earlier studies [1, 4, 19] termed the general comparison between predictions and measurements as (test-analysis) correlation. 

In the field of statistics, the concept of correlation refers to the dependency relationship, more specifically the linear relationship, 

between two variables [20]. In this context, correlation metrics refer in particular to the degree of linear relationship between 

predictions and measurements. Classical correlation metrics in vibration testing are modal assurance criterion (MAC) [21] for 

modal vectors and frequency response assurance criterion (FRAC) [22] for frequency response functions (FRFs). This paper, on 

the other hand, proposes using “distance metrics” to compare predictions with measurements, without focusing solely on 

correlations. Note that the distance studied herein is not only the geometric distance, but also generalized distance quantifying the 

difference between statistical populations. When information such as correlation, covariance, and distribution of the population is 

considered, another key characteristic of metric raises: deterministic or stochastic. 

The mathematical function used for a metric can be deterministic or stochastic in nature. Test variability, along with the 

uncertainties associated with input parameters and model form makes deterministic approaches prone to misleading comparisons 

[1]. Hence, it is necessary to consider uncertainty during the comparison of predictions and measurements. Furthermore, it is 

valuable to evaluate the influence of various uncertainty levels on the calibration results, which is also the objective of this paper. 

Various distance concepts can be found in the literature from the simplest geometric distance to concepts containing more 

statistical information such as Bhattacharyya and Kullback-Leibler distances. Among this wide range, three classical and distinct 

distance-based criteria, i.e. Euclidian, Mahalanobis, and Bhattacharyya distances are compared here, as they are well-known, 



 

commonly used, and easily applicable for test-analysis comparison. More importantly, these criteria contain increasing levels of 

statistical information by calculating the distance as point-to-point, point-to-population, and population-to-population. 

The Euclidian distance, perhaps the most widely used distance function, focuses only on the absolute geometric distance 

between two points. If information regarding the variances of populations is available, one can use the Mahalanobis distance [23], 

a weighted distance that considers the variance of the point clouds. If the entire probability distributions of populations are 

available, then one can use the Bhattacharyya distance [24], which provides a distance between two point clouds considering 

their probabilistic characteristics. Based on the above three distance criteria, this paper proposes five distance metrics whose 

principle, application and impact on model calibration and validation are elaborated through two case studies focusing on a 

laboratory scale steel frame. 

The main contributions of this paper includes: illustrating the impact of increased statistical information on the model 

calibration results; demonstrating the integrated application of both deterministic and stochastic metrics in a cross validation 

process; and proposing a MCS based approach for model calibration which is capable of using metrics with different levels of 

statistical information. Case studies with both simulated and real measurements are presented, after which key conclusions of the 

comparison study are discussed. 

II. Mathematical formulations 

A. Statistical description of the uncertain structural system 

In this paper, the model of a structural system is calibrated using a stochastic approach, in that the uncertain input parameters 

of the model are represented as random variables obeying given probabilistic distributions [9, 20]. Such distributions of 

parameters are determined based on design manual, modelling characteristics, and engineering expertise. The uncertain system is 

characterized by three major elements: input parameters x, output features y, and simulator f(∙) [25]: 

  1 2( ,  ,  ,  ),   1,  2,  ,  i i pf i q=  =y x x x  (1) 

where i is the index of the features; p and q are respectively the dimensionality of x and y. The simulator f(∙) is usually given as a 

sophisticated computer code (e.g. finite element model) or simplified function relationship (agent model). 



 

In deterministic calibration, measurements are often represented by only one observation of the features. The stochastic 

framework however allows the consideration of a population of feature observations in the measurements. Assuming m 

measurements are available, the feature sample is expressed as a matrix
m qY : 

  
1 2[    ]q=Y y y y  (2) 

where T

1 2( ,  ,  ,  ) ,  1,  2,  ,  .i i i miy y y i q=  =y  

In the following discussions, the subscripts e and n respectively denotes experimental measurements and numerical predictions. 

Ye is the feature sample obtained through repeated measurements, while Yn is predicted by numerous simulator analysis. Ideally, a 

sufficient number of identical prototypes of the structure are constructed using identical materials and procedures but with 

inevitable manufacturing tolerances and material heterogeneity. Ye obtained from this multi-structure multi-measurement strategy 

can represent various sources of test variability. The random effect of environment noise and measurement errors is represented 

by the repeated experimental measurements. The remaining inherent variation of the physical system can be numerically matched 

using MCS where the parameter configurations are randomly sampled from their distribution [26]. The resulting features Yn is a 

random sample obeying a feature distribution. 

The exact probabilistic distribution of the feature population is difficult to determine. However, observation samples of the 

population can be utilized to estimate the probabilistic characteristics via either moment estimation or maximum likelihood 

estimation techniques. The mean y  and variance 
2s  of the i-th feature are obtained as 
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where T T(1,  ,  1) ; .m m m m= =e e e  The mean vector 1qy and covariance matrix 
q qC  of the feature sample are 

determined as 
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Once the probabilistic characteristics of the feature sample are estimated, various statistical distances between Ye and Yn can 

be computed as test-analysis comparison metrics. 

B. Stochastic parameter calibration  

The parameters are calibrated to obtain an associated numerical model so that the distance between the model prediction and 

the measurement is minimized. In this sense, parameter calibration is essentially an optimization problem where the uncertain 

parameters are the control variables and the distance metric is the objective function. Commonly used optimization methods, such 

as simplex algorithm and gradient-based algorithm, can be employed to optimize the deterministic metrics. However, these 

methods are unlikely to be effective for all metrics, especially for stochastic metrics based on the Mahalanobis and Bhattacharyya 

distances. The stochastic nature of the metrics leads to a lack of smoothness of the objective function, which renders the 

traditional derivative-based method unstable. Consequently, this paper proposes a MCS stochastic calibration technique, which is 

effective and robust when utilizing various statistical distances as metrics.  

The MCS methodology is commonly used in the field of uncertainty analysis and some of the associated techniques (e.g. the 

return mapping approach or stepping technique [27]) have been successfully applied on practical engineering problems [28]. The 

return mapping approach is essentially an iterative modification method where the parameter dispersion is preset by a user-defined 

variation coefficient (ratio between the standard deviation and the mean) in each iteration. As a result, only the mean of the 

parameter is calibrated [29]. This paper expands the return mapping approach in two ways: first, the method proposed herein is no 

longer an iterative method but an approach containing two levels of MCS, which means the principle is more simple and direct; 

second, not only the mean but also the variance of the parameter can be calibrated with this proposed method. 

This two level MCS stochastic calibration approach is illustrated in Fig. 1 where only two parameters and two features are 

presented for clarity without loss of generalizability. In this approach, the mean μi as well as the variance σi
2 of xi is calibrated (i is 

either 1 or 2 in the following context). Intervals of μi and σi
2 are required as the starting point of the calibration. This approach is 

performed following the major steps: 

 



 

Step I Randomly sample the configurations of (μi, σi
2) within their intervals. 

Step II For each sampled data pair (μi, σi
2), a parameter sample Xn is randomly drawn from their distributions. Run the 

simulator (recall Eq. 1) for each parameter configuration inside Xn and the resulting features constitute the feature 

sample Yn. 

Step III Calculate the distance metrics between Yn and Ye. The specific instance (μi, σi
2) in Step I that gives the minimum 

metric value is identified and adopted as the calibrated value. 

x1

x2

y1

y2

Xn

YnN1(μ1, σ1
2)

N2(μ2, σ2
2)

σ1
2

μ1

σ2
2

μ2μ2

σ2
2

μ1

σ1
2 Ye

d(Yn, Ye)

(a) Step I: The 1st level MCS (b) Step II: The 2nd level MCS (c) Step III: The calculation of distance metrics
 

Fig. 1 The MCS stochastic calibration logic 

The shaded squares in Fig. 1(a) denote the intervals of μi and σi
2. The 1st level of MCS is performed within the shaded squares, 

and observations of the data pair (μi, σi
2) are obtained. No matter what probabilistic distribution xi obeys, the uniform distribution 

is employed for the 1st level of MCS, so that every data pair (μi, σi
2) in the shaded squares can be searched with equal probability. 

As shown in Fig. 1(b), the 2nd level of MCS is performed on each sampled (μi, σi
2) associated with the distribution of xi. The 

normal distribution Ni(μi, σi
2) is taken as an example. Once the parameter sample Xn is randomly drawn, the simulator is run on 

each parameter configuration inside Xn and the resulting features constitute the feature sample Yn. The uncertainties in Xn are thus 

propagated as the distribution of the feature sample Yn. 

In Fig. 1(c), The distance between Yn and Ye is calculated as d(Yn, Ye), where d(∙) denotes various distance metrics (which will 

be discussed in following subsection). At the end of the process, the data pair (μi, σi
2) with the minimum distance is identified as 

the calibrated value for that particular metric. A large number of numerical analyses are required in the process. For example, 

when the sample size in the 1st and 2nd levels of MCS are respectively 104 and 103, then totally 107 analyses are required. If the 



 

simulator is a computationally expensive model, the calculation cost can become unacceptable. Techniques such as design of 

experiments and agent modeling (i.e. response surface modeling, metamodeling) [4, 30] are suggested to reduce the computational 

burden.   

This two level MCS process is specifically designed to allow for the calibration of not only means but also variances. If only 

the mean of a parameter needs to be calibrated, the 2nd level of MCS is not required. In this case, the parameter sample Xn in Fig. 

1(b) becomes unnecessary and only the single mean point 
nx  is required. Thus, instead of computing the sample Yn, only its 

mean point ny  is calculated in Fig. 1(c). The distance between ny  and Ye is calculated with either the Euclidian distance 

(point-to-point) or the Mahalanobis distance (point-to-population). In other words, only when the variance needs to be calibrated, 

the population-to-population distance is calculated in Step III where the random sample Yn is required.  

C. Distance-based test-analysis comparison metrics 

Three distance criteria (i.e. the Euclidian, Mahalanobis, and Bhattacharyya distances) are presented to calculate the 

test-analysis metric d(Yn, Ye) in Fig. 1(c). The proposed metrics are either point-to-point, point-to-population, or 

population-to-population types, implying various levels of statistical information are involved. Overall five distinct metrics based 

on these three distance criteria are evaluated in Section III. 

1. Euclidian distance 

The Euclidian distance is an absolute geometric distance between two points. It is a commonly used distance function with an 

intuitive geometrical meaning and simple to calculate. It is expressed as  

  
1/2

T

E ( , ) ( ) ( )n e n e n ed  = − − y Y y y y y  (5) 

where 
ey  is mean vector of the experimental sample Ye; yn is a row vector in the numerical sample Yn (i.e. a single observation 

point). The Euclidian distance is a point-to-point distance in that Eq. 5 represents the geometric distance from a single numerical 

point to the center point of the experimental sample. 



 

2. Mahalanobis distance 

The Mahalanobis distance is a classical statistical distance widely used in cluster analysis and image processing [31]. This 

distance involves the covariance matrix of the data, implying it considers the correlation of variables in the feature sample [32]. In 

practical applications, this correlation relationship among features is general, and cannot be ignored within the stochastic 

framework. Hence the Mahalanobis distance is gaining increasing interest in uncertainty analysis and model validation [1, 33]. 

The Mahalanobis distance proposed herein can be further divided into point-to-population distance and 

population-to-population distance. The classical point-to-population Mahalanobis distance between the single numerical point ya 

and the experimental sample Ye is expressed as  

  
1/2

T 1

M1( , ) ( ) ( )n e n e e n ed − = − − y Y y y C y y  (6) 

where 1

e

−
C  is inverse of the covariance matrix of the experimental sample. Eq. 6 differs from the Euclidian distance in that it 

considers the correlations of features in the experimental sample. If the covariance matrix in Eq. 6 is an identity matrix, the 

Mahalanobis distance reduces to the Euclidian distance. Nevertheless, as the point-to-population Mahalanobis distance handles 

only one numerical point, it contains the covariance information only from the experimental sample but not from the numerical 

sample. Hence, when it is employed as a calibration metric, only the means of the parameters can be calibrated, and the variances 

are ignored. In this sense, the point-to-population Mahalanobis distance has a similar effect with the deterministic Euclidian 

distance. 

The alternative population-to-population Mahalanobis distance is expressed as 

  
1/2

T 1

M2 ( , ) ( ) ( )n e n e pool n ed − = − − Y Y y y C y y  (7) 

where 
ny  is the mean vector of Yn. Eq. 7 is also termed as the “pooled” Mahalanobis distance as it contains the pooled 

covariance matrix Cpool: 

  
( 1) ( 1)

2

n e
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l m
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where l and m are respectively the number of points in Yn and Ye; Cn and Ce are respectively the covariance matrices of Yn and 

Ye. Unlike the point-to-population Mahalanobis distance, the calculation process of Cpool involves the variance information from 

both numerical and experimental samples [34] allowing the pooled Mahalanobis distance to calibrate the parameter variance. 

3. Bhattacharyya distance 

The Bhattacharyya distance, widely used in signal processing and pattern recognition [35], is a statistical distance capable of 

quantifying the dissimilarity between two probabilistic distributions [36]. The Bhattacharyya distance is applicable to any data 

samples regardless of their distribution functions [37]. This characteristic makes it specifically appropriate for the stochastic 

model calibration where the distribution of the feature cannot be exactly determined. The Bhattacharyya distance is expressed as 

  
B( ,  ) ln[BC(P ,  P )]n e n ed = −Y Y  (9) 

where BC is the Bhattacharyya coefficient, quantifying the probabilistic overlap between Pn and Pe, the probability density 

functions (PDFs) of the numerical and experimental populations. For continuous distributions, the BC is expressed as 

  BC(P ,P ) P ( )P ( )n e n ey y dy= Y  (10) 

where Y
denotes the integration over the feature space. When the number of features 1q  , Pn and Pe become q-dimension 

joint PDFs. 

In practical applications, the exact distributions needed in Eq. 10 are likely to be unavailable. In such situations, the histogram 

formulation [36] is proposed to estimate the probability mass function (PMF) of a discrete distribution of the feature. The interval 

of the feature is first determined and subsequently divided into a pre-defined number of bins. This number, termed as u, can be 

approximately estimated as [38]: 

  2/51.87( 1)u m −  (11) 

where m is the number of points in the sample. The next step is to group the points into corresponding bins. Probability of the 

points belonging to a particular bin is determined as dividing the number of points in this bin by the total number of points. The 

discrete probability distribution can be listed once the probabilities of all bins are calculated. The Bhattacharyya coefficient 

between two discrete distributions is then defined as: 



 

   
1

BC(P ,P ) P ( )P ( )
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n e n i e i

i

y y
=

=  (12) 

where P ( )n iy and P ( )e iy are respectively the PMFs in the ith bin of the numerical and experimental samples. 

For a multivariate distribution including q features, the calculation process becomes increasingly more complex due to the 

need for a joint PMF and the total number of elements in Eq. 12 is no longer u but uq. When multiple features are considered in a 

study, the Bhattacharyya distance against a particular feature, namely the marginal Bhattacharyya distance, can be calculated 

using this feature’s marginal distribution. In this case, P ( )n iy and P ( )e iy  refer to the marginal PMFs of the particular feature. 

D. Random sampling method for experimental sample preparation 

The metrics based on the Mahalanobis and Bhattacharyya distances require sufficient experimental observations, which not 

always available in practical applications. The authors propose a probabilistic random sampling method based on a finite number 

of experimental measurements to generate a “semi-experimental” sample. As the ASME’s verification and validation standard 

[39] indicates, a normal distribution of the uncertainty is a convenient and feasible assumption in the absence of sufficient 

experimental data. In this context, each feature is assumed to obey normal distribution. Furthermore, the correlation relationship 

among features is another consideration when generating the semi-experimental sample. A joint multivariate normal distribution 

of the whole feature space is proposed to represent the correlation. 

Assuming only one prototype of the structure is available, a small amount of measurements constitute the original 

measurement sample. The mean vector y  and covariance matrix C of the original measurement sample can be estimated from 

Eq. 4. Then the joint PDF of the q-dimensional normal distribution is given as follows 

  
1 T1 1

PDF( ) exp ( ) ( ) ,
2| | (2 )q

− 
= − − − 

 
y y y C y y

C
 (13) 

where 
T

1 2[ , , , ]qy y y=y  is an arbitrary feature point belonging to the experimental population. Using the PDF, a 

semi-experimental sample containing any number of points is randomly sampled. It is demonstrated in Section IV that not only 

the distribution characteristic of each single feature, but also the correlation between different features is represented in the 

semi-experimental sample. 



 

III.  Case study I: Comparative application in parameter calibration 

A. Description of the structure and the numerical model 

The proposed structure is a two-storey frame constructed by vertical and horizontal beams with different cross-sections. All 

beams are made of A36 mild steel and connected by bolts, which meet the SAE-J429-Grade-5 standard. The laboratorial setup and 

geometry details of this frame are shown in Fig. 2. A simplified finite element (FE) model is developed in MSC.Nastran using 

one-dimensional elements. Detail information of the FE model is given in Table 1. 
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Fig. 2 The laboratoral setup of the frame structure and its geometry details 

 

Table 1 Mesh information of the FE model in MSC.Nastran 

Element type of the vertical beams 

(with angel cross-section) 
CBEAM 

Element type of the horizontal beams  

(with flat cross-section) 
CBAR 

Nodes number 316 

Elements number 328 

The difficulty of modeling the bolted connections results in significant model form uncertainties in their numerical 

representation. The vertical beams with angle cross-section are simplified by the one-dimensional elements, implying that the 

offset of the vertical centroid inside the cross-section is an important calibration parameter. The selected calibration parameters of 



 

this FE model are listed in Table 2. The parameters are assumed to follow normal distributions with both the means and the 

variances in need of calibration. The intervals on these values are determined based on characteristics of this structure, as detailed 

in Table 2. The first four natural frequencies of the structure are proposed as features.  

Table 2 Calibration parameters of the FE model 

Parameters 
Mean 

Intervals 

Variance 

Intervals 
Descriptions 

E1 (1011Pa) [0.5, 2.5] [0, 0.2] Young’s modulus of the elements of the upper connections 

E2 (1011Pa) [0.5, 2.5] [0, 0.2] Young’s modulus of the elements of the middle connections 

Offset (10-2m) [0.0, 3.0] [0, 0.2] Offset of the vertical elements 

 (103Kg/m3) [7.0, 9.0] [0, 0.2] Overall mass density of the frame 

As mentioned in Section II, in order to reduce the calculation burden of MCS approach, this example employs the quadratic 

polynomial agent model which is trained based on the FE model predictions. As the dimensionality of parameters and features are 

respectively four and three, the quadratic polynomial model between the k-th feature and the above four parameters is formulated 

as 

  
4 4 4

2

0

1 1

     1,2,3k k k k

k i i ij i j ii i

i i j i

y x x x x k   
=  =

= + + + =    (14) 

where k is the feature index; x1-4 denote the four parameters; β is the undetermined coefficients. Application of this agent model 

follows the three typical steps: 

1) Preparing the training sample from the FE predictions; 

2) Estimating the undetermined coefficients using the training sample; 

3) Assessing the precision of the agent model before it can be used. 

Not actually being the focus of this paper, Steps 1) and 2) are omitted for clarity. A thorough description on the relative 

techniques can be found in Ref. [30]. For Step 3), the assessment result is given in Table 3 where five parameter configurations 

are randomly sampled within the intervals in Table 2. Percentage errors of the agent model predictions are evaluated with 

comparison to the FE predictions. As shown in Table 3, the mean absolute error (MAE) of each feature is extremely small, 

demonstrating that the quadratic polynomial agent model is feasible in the following calibration procedure. 

 

 



 

Table 3 Precision assessment of the agent model (% error corresponding to the FE predictions in parentheses) 

Assessment 

No. 

Parameter configurations 

(x1, x2, x3, x4) 

y1 (Hz) y2 (Hz) y3 (Hz) y4 (Hz) 

FE Agent FE Agent FE Agent FE Agent 

1 (1.50, 1.98, 1.62, 7.95) 20.61 20.62 
(0.05) 

27.46 27.81 
(1.32) 

30.62 30.52  
(-0.33) 

43.09 43.17 
(0.20) 

2 (1.07, 2.15, 2.86, 8.17) 21.78 
21.76 
(-0.11) 27.46 

27.68 
(0.78) 28.70 

28.50  
(-0.71) 38.93 

38.92 
(-0.03) 

3 (2.16, 0.86, 0.63, 7.52) 20.15 20.19 
(0.20) 

26.55 26.47 
(-0.29) 

29.86 29.89  
(0.11) 

44.60 44.56 
(-0.09) 

4 (2.14, 0.63, 0.35, 7.17) 20.37 
20.42 
(0.27) 26.09 

26.32  
(0.91) 29.60 

29.72  
(0.42) 45.12 

45.21 
(0.19) 

5 (2.38, 1.72, 1.94, 7.60) 21.53 21.53 
(0.00) 

29.60 29.82  
(0.73) 

31.11 31.22  
(0.34) 

44.00 44.09 
(0.20) 

Mean absolute errors   0.13%  0.81%  0.38%  0.14% 

B. Parameter calibration 

The simulated experimental feature sample is obtained by assigning nominal values to the parameter means (Table 4) and 

variances (Table 5), randomly generating a parameter sample containing 1000 points, and running a simulator (i.e. an agent model 

calculation using Eq. 14) at each sampled point. In the following description, the term “test” is utilized to denote the simulated 

experimental data, which serves as the target to be recovered through calibration. Another different set of parameter values are 

proposed as the initial values waiting to be calibrated. Due to the initial parameters being different from the test parameters, the 

initial features exhibit obvious errors compared with the test features. The mean absolute errors (MAE) of the initial feature 

sample in Table 4 (mean) and Table 5 (variance) are respectively 13.9% and 240%, implying a calibration process is required. 

During the calibration, five distinct distance metrics are evaluated: 

1. A point-to-point Euclidean distance between the numerical means and the test means, denoted Metric ED; 

2. A point-to-population Mahalanobis distance between the numerical means and the test samples, denoted Metric MD-1; 

3. A population-to-population Mahalanobis distance between the numerical and test samples, denoted Metric MD-2; 

4. A population-to-population Bhattacharyya distance between the numerical and test samples, denoted Metric BD; 

5. An integrated Euclidean and Bhattacharyya metric where the means are calibrated with the Euclidean distance and the 

variances are calibrated with the Bhattacharyya distance, denoted Metric ED-BD. 

These metrics belong to either deterministic or stochastic categories depending on whether or not uncertainty in the numerical 

sample is considered. As point-to-point/population metrics, Metrics ED and MD-1 require only the numerical mean point to 



 

evaluate their values, implying only the parameter mean can be calibrated, and hence they become deterministic metrics. During 

the calculation of Metrics MD-2, BD, and ED-BD, numerical samples are generated based on the mean and variance. The 

randomly generated sample exhibits a slight difference in each calculation, yielding unequal calculated values even if the mean 

and variance are fixed. This is the reason for classifying Metrics MD-2, BD, and ED-BD as stochastic metrics.  

The above deterministic metrics can be optimized using typical optimization methods such as simplex algorithm and 

gradient-based algorithm [40]. However, the calculation of Metrics MD-2, BD, and ED-BD involve a randomly generated sample. 

The stochastic nature of the metrics leads to a lack of smoothness of the objective function, which renders the standard local 

optimization methods inadequate. In the following evaluation, all of the five metrics are calibrated using the MCS stochastic 

calibration technique described in Section II.  

 

Table 4 Means of the parameter and feature samples (% errors corresponding to the test values in parentheses). 

 Test Initial 
Calibrated samples 

ED MD-1 MD-2 BD ED-BD 

Parameters 

E1  
(1011Pa) 2.0 

1.0 
(-50.0) 

1.96 
(-2.00) 

1.84 
(-8.00) 

1.83 
(-8.50) 

2.39 
(19.5) 

1.96 
(-2.00) 

E2  

(1011Pa) 
2.0 

1.0 
(-50.0) 

1.93 
(-3.50) 

2.01 
(0.50) 

2.49 
(24.5) 

1.91 
(-4.50) 

1.93 
(-3.50) 

Offset  
(10-2m) 1.0 

2.0 
(100) 

0.98 
(-2.00) 

1.03 
(3.00) 

1.09 
(9.00) 

0.94 
(-6.00) 

0.98 
(-2.00) 

  
(103Kg/m3) 7.5 

8.5 
(13.3) 

7.50 
(0) 

7.49 
(-0.13) 

7.56 
(0.80) 

7.46 
(-0.53) 

7.50 
(0) 

Mean absolute errors 53.3% 1.88% 2.91% 10.7% 7.63% 1.88% 

Features 

f1 (Hz) 20.72 
20.09 
(-3.04) 

20.70 
(-0.10) 

20.76 
(0.19) 

20.67 
(-0.24) 

20.75 
(0.14) 

20.68 
(-0.19) 

f2 (Hz) 28.44 
24.69 
(-13.2) 

28.34 
(-0.35) 

28.32 
(-0.42) 

28.34 
(-0.35) 

28.62 
(0.63) 

28.28 
(-0.56) 

f3 (Hz) 32.55 
26.24 
(-19.4) 

32.31 
(-0.74) 

32.31 
(-0.74) 

32.38 
(-0.52) 

32.80 
(0.77) 

32.43 
(-0.37) 

f4 (Hz) 46.49 
37.29 
(-19.8) 

46.33 
(-0.34) 

46.25 
(-0.52) 

46.27 
(-0.47) 

46.90 
(0.88) 

46.38 
(-0.24) 

Mean absolute errors 13.9% 0.38% 0.47% 0.40% 0.61% 0.34% 

 

 

 

 

 

 

 



 

Table 5 Variances of the parameter and feature samples (% errors corresponding to the test values in parentheses). 

 Test Initial 
Calibrated samples 

ED MD-1 MD-2 BD ED-BD 

Parameters 

E1  0.12 
0.05 
(-58.3) 

-- -- 
0.1871 
(55.9) 

0.1321 
(10.1) 

0.1061 
(-11.6) 

E2  0.02 
0.15 
(650) 

-- -- 
0.1288 
(544) 

0.0350 
(75.0) 

0.0473 
(137) 

Offset  0.12 
0.05 
(-58.3) 

-- -- 
0.0476 
(-60.3) 

0.1927 
(60.6) 

0.0967 
(-19.4) 

  0.02 
0.15 
(650) 

-- -- 
0.1510 
(655) 

0.0120 
(-40.0) 

0.0228 
(14.0) 

Mean absolute errors 354% -- -- 328% 46.4% 45.4% 

Features 

f1  0.1133 
0.2884 
(155) 

-- -- 
0.3216 
(184) 

0.1678 
(48.1) 

0.1124 
(-0.79) 

f2  0.5509 
1.2248 
(122) 

-- -- 
1.3252 
(141) 

0.6847 
(24.3) 

0.5665 
(2.83) 

f3  0.3347 
1.9514 
(483) 

-- -- 
1.1976 
(258) 

0.3903 
(16.6) 

0.3880 
(15.9) 

f4  0.9178 
2.7696 
(202) 

-- -- 
2.2368 
(144) 

1.0890 
(18.7) 

0.8993 
(-2.02) 

Mean absolute errors 240% -- -- 181% 26.9% 5.39% 

1. Results with Metric ED 

Metric ED is calculated between the means of the numerical and test samples. The initial sample is calibrated towards the 

mean of the test sample without consideration of variance information. The calibration effect is illustrated by the positional 

relationship of the test, initial, and calibrated samples as shown in Fig. 3. The black, blue, and red point clouds are respectively the 

test, initial, and calibrated samples surrounded by ellipses which indicate the 95% confidence intervals of the samples. In the 

following context, the calibrated sample is termed as “Sample” followed by its corresponding metric. For example, the calibrated 

sample according to Metric ED is termed as Sample ED.  

 In Fig. 3, the positional relationship is separately illustrated in three sub-figures which represent three planes of f1 vs. f2, f1 vs. 

f3, and f2 vs. f3. For clarity, other planes (f1 vs. f4, f2 vs. f4, and f3 vs. f4) are omitted in the following context, but can be checked in 

Appendix A. The initial sample is shifted with respect to the test sample, while Sample ED is calibrated as its center point is 

mostly coincident with the test sample. Notice however, as the parameter variance remains unchanged, the 95% confidence 

interval ellipse of Sample ED remains different from the test sample.  



 

The calibration result is also shown in Table 4 where MAEs of the calibrated parameters and features are respectively 1.88% 

and 0.38%, which are much smaller than the initial errors. Because Metric ED involves no information of variances, Sample ED 

has the same variance as the initial sample and consequently the variance of Sample ED is omitted in Table 5. 

 

Fig. 3 The test, initial, and calibrated scatters in planes of different frequencies with Metric ED 

2. Results with Metric MD-1 

Metric MD-1 is the point-to-population Mahalanobis distance, where the point is the mean of the numerical sample and the 

population is the test sample. Metric MD-1 is actually a weighted Euclidean distance that considers the covariance only in the test 

sample and has no relationship with the numerical sample (recalling Eq. 6). Hence this metric is incapable of calibrating the 

parameter variance, which is similar to Metric ED. 

As shown in Fig. 4, the center points of Sample MD-1 and the test sample are coincident, while their ellipse patterns are 

different. In Table 4, the MAEs of the calibrated parameters and features are respectively 2.91% and 0.47%, which are similar to 

the Metric ED results. This implies both the two metrics are capable of calibrating the means but not the variances.  

 

Fig. 4 The test, initial, and calibrated scatters in planes of different frequencies with Metric MD-1 



 

3. Results with Metric MD-2 

Unlike Metric MD-1, Metric MD-2 is the pooled Mahalanobis distance between two samples. The calculation process of 

Metric MD-2 involves the pooled covariance matrix which contains both test and numerical covariance information. It is thus 

possible to alter the variance of the numerical samples.  

The MAEs of parameter and feature means are respectively 10.7% and 0.40%, as shown in Table 4. As for the variances in 

Table 5, MAEs of the parameter and feature are respectively 328% and 181%. The large errors for the variances show that Metric 

MD-2 can only “change”, but cannot “calibrate” the variance. As clearly seen in Fig. 5, the center points of Sample MD-2 and test 

sample coincide, while the ellipse of Sample MD-2 is obviously larger than the ellipse of test sample.  

 

Fig. 5 The test, initial, and calibrated scatters in planes of different frequencies with Metric MD-2 

4. Results with Metric BD 

The results with Metric BD exhibit its capability for variance calibration, as shown in Table 5. The MAE of parameter 

variance is 46.4%, which is much less than the initial error 354%. The MAE of the feature variance is also reduced from 240% to 

26.9%. As for the calibrated means, the MAE of parameters (7.63%) is higher than the previous metrics. The features means MAE 

(0.61%) is still low, although slightly higher than the previous metrics as shown in Table 4. 

The result is also illustrated in Fig. 6, where the ellipse patterns between the test and calibrated samples show better agreement 

than previous metrics, although slight discrepancies still exist. Nevertheless, this discrepancy is reduced by Metric ED-BD in the 

following subsection. 



 

 

Fig. 6 The test, initial, and calibrated scatters in planes of different frequencies with Metric BD 

5. Results with Metric ED-BD 

Metric ED-BD is a combined metric that integrates the Euclidean and Bhattacharyya distances between two samples. As 

described in the previous subsection, Metric BD is capable of calibrating both mean and variance; however, the calibration 

precision of mean is lower than Metric ED. In this case, the means are first calibrated with the Euclidean distance and variances 

are subsequently calibrated with the Bhattacharyya distance.  

 An integrated advantage can be checked from Tables 4 and 5. The MAEs of parameter and feature means (1.88% and 0.34%) 

are both lower than the result with Metric BD (7.63% and 0.61%). Besides, the errors of feature variances are furthermore reduced 

compared with the result of Metrics BD. Metric ED-BD’s improvement with respect to Metric BD could be demonstrated more 

obviously through Fig. 7 where Sample ED-BD is more coincident with the test sample than what in Fig. 6. Ellipses of Sample 

ED-BD and the test sample have almost the same positions, shapes, and orientations. 

 

Fig. 7 The test, initial, and calibrated scatters in planes of different frequencies with Metric ED-BD 

 

 



 

C. Cross comparison and result analysis 

This subsection gives an overall comparison of the feature samples calibrated using the above five metrics. The distances 

between the calibrated samples and the test sample are detailed in Table 6. Note that all of the calibrated samples are randomly 

generated based on the given parameter means (Table 4) and variances (Table 5). The stochastic nature of the calibrated samples 

leads to a slight change in the distance values. Nevertheless, the constant tendencies are summarized as follows. 

As can be seen from the row labeled as Euclidian distances in Table 6, Sample BD has the largest value, compared with the 

other calibrated samples whose values are at similar and lower levels. This is because the Euclidian and Mahalanobis distances are 

respectively the absolute and weighted distances between sample means, while the Bhattacharyya distance concentrates on the 

sample distributions. When only error of the mean is concerned, the performance of Bhattacharyya distance is not as good as the 

others by nature. However, as Sample ED-BD is first calibrated using Metric ED, it has the similar Euclidian distance as Sample 

ED. 

The Mahalanobis distance is calculated based on Metric MD-2, which utilizes the pooled covariance matrix of two samples. 

As a result, Sample MD-2 has the smallest value in the corresponding row of Table 6. However, a calibrated sample with the 

smallest Mahalanobis distance does not mean it has a favorable representation of the test sample. Fig. 5 and Table 5 clearly show 

that the variance of Sample MD-2 is much larger than the reference. This increasing tendency can be explained by the formulation 

of Metric MD-2. The pooled covariance Cpool plays an important role in variance calibration, where a larger Cpool leads to a 

smaller distance (recalling Eq. 7). Because the experimental covariance is fixed as a target, Cpool increases only when the 

numerical covariance increases. As a result, the calibrated variance does not converge to the reference but obviously increases 

when Metric MD-2 is minimized. 

The last row in Table 6 concerns the Bhattacharyya distance. The values of Samples BD and ED-BD are clearly reduced 

compared with other samples. It is necessary to state that Sample ED-BD possesses an even smaller value than Sample BD. This 

is because the calculation process of Bhattacharyya distance is also influenced by the coincidence of the means between two 

samples. A better performance in the Euclidian distance obviously brings a smaller Bhattacharyya distance between Sample 

ED-BD and the test sample. As shown in the last column of Table 6, Sample ED-BD has the advantages of the smallest Euclidian 



 

and Bhattacharyya distances, and its Mahalanobis distance is still relatively low. All of these advantages are visually illustrated in 

Fig. 7. 

Table 6 Cross comparison of the distances among feature samples 

 Calibrated samples VS. test sample 

Sample ED Sample MD-1 Sample MD-2 Sample BD Sample ED-BD 

Euclidian distance 0.3081 0.3646 0.3072 0.5102 0.2353 

Mahalanobis distance 0.7692 0.6782 0.2374 0.6567 0.4773 

Bhattacharyya distance 0.3618 0.3612 0.3252 0.2031 0.1644 

Based on the above analysis, a general guideline on metric selection during model calibration is proposed as follows. 

1) In case of single experimental measurement, only Metric ED is feasible among the above five metrics. A single set of 

parameter value is obtained through a deterministic calibration without any statistical treatment. 

2) When multiple measurements are available, either deterministic or stochastic calibration is applicable depending on the 

practical requirement. a) If only parameter means are demanded, Metrics ED and MD-1 are proposed for deterministic calibration. 

Being simple and intuitive, the classical Metric ED is the first recommendation for this case. Metric MD-1 is the weighted 

geometric distance and it is sensitive to slight changes in the test variance (e.g. measurement errors). Consequently, it is proposed 

in certain applications [28, 30] to check the stability of the calibrated results. b) A stochastic calibration is necessary when both 

parameter means and variances are demanded. Metric MD-2 considered herein is not recommended as it can only change, but 

cannot calibrate the variance. Metric BD is a more comprehensive metric with a higher level of statistical information. It contains 

the probability distribution information of two samples, and hence the calibrated sample has a more similar distribution with the 

target sample. However, the calibration precision on the means is smaller than the Euclidian distance. The classical Euclidian 

distance together with measurement means should be the primary consideration even in stochastic calibration processes. Metric 

ED-BD is consequently proposed as the first choice because of its global advantages. 

IV.  Case study II: Validation with regard to measurement uncertainties 

In practical experiments, measurements are acquired with hard-to-control random effects, such as environment noise and 

measurement errors. The distance metrics become useful for model selection when alternative calibrated models are found to 



 

demonstrate comparable fidelity with regard to uncertainties in multiple measurements. This section presents a cross validation 

process with an integrated application of both deterministic and stochastic metrics. 

A. Experimental data preparation 

This case study employs the same structure as Section III but with realistic experimental data. In order to represent test 

variability, the measurements are repeated four times by different people with different configurations of the sensors. The random 

sampling method in Section II.D is employed to generate the semi-experimental sample with 1000 points based on these four 

measurements, which are listed in Table 7. The semi-experimental sample and four original measurement points are illustrated in 

Fig. 8. A sketch of the probabilistic density function of the joint distribution between the 2nd and 4th frequencies is shown in Fig. 9. 

Further statistical information of the semi-experimental sample is presented in Table 8. The correlation coefficient between two of 

each frequency is defined as 
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C C
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where C is the covariance matrix. The correlation coefficient reflects the strength and direction of the linear relationship of the 

frequency pair, which is also illustrated by the orientation of the scatter ellipse in Fig. 8. Another statistical feature is the 

coefficient of variation, i.e. the ratio between the standard deviation and the mean. It is employed to quantify the degree of 

dispersion of the each frequency in the semi-experimental sample. As shown in Table 8, the coefficient of variation of the first 

frequency is relatively lower than the higher order frequencies. This tendency conforms to the practical experience that the higher 

order modes are always more sensitive to the test variability compared with the low order modes. 

Table 7 The original 4 sets of experimental data  

Participant No. 
f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) 

1 18.11 24.38 31.14 41.97 

2 18.13 24.02 30.64 39.78 

3 18.05 23.26 29.97 37.77 

4 18.27 23.22 27.95 39.95 

 

 

 



 

Table 8 The correlation matrix, mean, and coefficient of variation of the semi-experimental sample 

 f1 f2 f3 f4 

Correlation matrix 

f1 1 -0.33 -0.80 0.29 

f2 -0.33 1 0.82 0.75 

f3 -0.80 0.82 1 0.27 

f4 0.29 0.75 0.27 1 

Mean 18.14 23.70 29.88 39.79 

Coefficient of variation 0.0052 0.0238 0.0476 0.0418 

 

 

Fig. 8 The random sampling of the experimental data on the plane of the 2nd and 4th frequencies 

 

Fig. 9 The joint probabilistic density function of the 2nd and 4th frequencies 

B. Cross validation with deterministic and stochastic metrics 

A deterministic calibration using Metric ED is individually performed on the FE model developed in Section III, according to 

each of the four measurements. The corresponding four calibration results of this model (termed as Model-1) are listed in Table 9. 



 

In additional to Model-1, another FE model (termed as Model-2) with a different parameter configuration is proposed for 

comparison. The calibration parameters of Model-2 and their intervals are detailed in Table 10. Similarly, Model-2 is separately 

calibrated using Metric ED according to each of the four measurements. The four calibration points of each model are extended to 

a random sample using the same method illustrated in Fig. 8. Means of the samples, as well as their relative errors compared with 

the semi-experimental sample, are presented in Table 9. The similar mean errors imply that the alternative Model-1 and Model-2 

possess comparable fidelity with regard to the measurements. In additional to the means, the correlation matrices and coefficients 

of variation of the calibrated samples of Model-1 and Model-2 are presented in Table 11. A more comprehensive validation 

process considering the statistical information is performed to assist in model selection. 

Table 9 Calibrated means according to the four measuring participants in Table 7 

Participant No. 
Model-1 Model-2 

f1 (Hz) f2 (Hz) f3 (Hz) f4(Hz) f1 (Hz) f2 (Hz) f3 (Hz) f4(Hz) 

1 18.37 24.24 30.20 43.16 19.22 24.15 30.21 42.66 

2 18.33 23.29 28.90 41.48 18.97 23.63 29.01 41.29 

3 18.22 22.06 27.99 39.96 18.74 21.92 28.15 39.79 

4 18.28 22.94 27.75 40.30 18.80 22.96 27.79 40.17 

Sample mean 
(% error) 

18.30 
(0.87%) 

23.09 
(-2.55%) 

28.68 
(-3.99) 

41.18 
(3.49%) 

18.93 
(4.35%) 

23.15 
(-2.29) 

28.77 
(-3.68) 

40.95 
(2.92%) 

Mean absolute error 2.73% 3.31% 

 

Table 10 Calibration parameters of Model-2 

Parameters Intervals Descriptions 

E1 (1011Pa) [0.5, 2.5] Young’s modulus of the upper connections 

E2 (1011Pa) [0.5, 2.5] Young’s modulus of the middle connections 

T1 (10-3m) [2.0, 5.0] Thickness of the upper connections 

T2 (10-3m) [2.0, 5.0] Thickness of the middle connections 

 

Table 11 Correlation matrices and coefficients of variation of the calibrated samples of Model-1 and Model-2 

 
Model-1 Model-2 

f1 f2 f3 f4 f1 f2 f3 f4 

Correlation matrix 

f1 1 0.98 0.87 0.94 1 0.91 0.97 0.9992 

f2 0.98 1 0.87 0.95 0.91 1 0.79 0.92 

f3 0.87 0.87 1 0.98 0.97 0.79 1 0.96 

f4 0.94 0.95 0.98 1 0.9992 0.92 0.96 1 

Coefficient of variation 0.0034 0.0378 0.0377 0.0431 0.0115 0.0426 0.0375 0.0317 

 



 

The cross validation considered herein is essentially a study on the robustness of the calibration results with regard to the test 

variability. The calibration sample with a lower degree of dispersion indicates a low sensitivity, i.e. high robustness, in the 

presence of the measurement uncertainty. The degree of dispersion is quantified by the coefficient of variation in Table 11, and 

visually illustrated by the position relations of the scatters in Fig. 10. Similarly, planes of only the first three frequencies are 

presented in the figure and the planes relative to the fourth frequency can be checked in Appendix B. 

 

  (a) Model-1 

 

  (b) Model-2 

Fig. 10 Comparison of the test and calibrated scatters of Model-1 and Model-2 

Note that the calibration samples are no longer expected to coincide with the measurement samples. In this case study, the 

multiple measurements are repeated on the same structure implying the structural characteristics are not significantly changed. 

The test variability considered herein is primarily caused by the uncertainties in experimental procedure, e.g. environment noise 

and measurement errors. The attempt to compensate the test variability by modifying the parameters of the FE model is not the 

objective of this validation process. However, different FE models, with different levels of model form error, have different 

sensitivity with regard to test variability. This phenomenon is clearly illustrated by the comparison between Fig. 10 (a) and (b), 



 

where Sample Model-1 and the test sample have more overlap, compared with Sample Model-2. This means Model-1 is less 

sensitive (i.e. more robust) than Model-2 in presence of test variability. Ideally, a calibrated model exhibits maximum robustness 

when its calibration sample completely falls into the region of the test sample. However, because of the hard-to-control 

randomness in the test procedure, this ideal case is normally not seen in practical application. A quantitative assessment of the 

sensitivity is provided by Metric BD as listed in Table 12, where a smaller Bhattacharyya distance of Model-1 reveals its lower 

sensitivity and higher robustness compared with Model-2. Metric BD is utilized here as an appropriate tool for cross validation in 

the presence of test variability. 

Table 12 Bhattacharyya distances between the test sample and calibration samples of Model-1 and Model-2 

 Model-1 VS. test sample Model-2 VS. test sample 

Bhattacharyya distance 1.2599 3.0594 

 

V. Conclusions 

Based on the Euclidian, Mahalanobis, and Bhattacharyya distance-based criteria, five test-analysis comparison metrics 

(Metrics ED, MD-1, MD-2, BD, and ED-BD) are evaluated and compared in model calibration. Emphasis is given to the impact 

of increased statistical information on the calibration results. An integrated application of both deterministic and stochastic metrics 

is proposed in a cross validation process. Following a deterministic calibration using Metric ED, the sensitivity and robustness of 

the calibration results are assessed by Metric BD with regard to measurement uncertainties. 

This work provides the framework to utilize and evaluate the distance metrics with varying levels of statistical information 

during model calibration and validation. The stochastic metric is more comprehensive for uncertainty treatment as the contained 

statistical information is increasing, while the calculation burden is naturally rising. With the rapid development of computer 

technology, it is expected that these distance metrics ensure the quantitative uncertainty analysis and robust prediction of 

variability, which are highlights in computational mechanics engineering. 



 

Appendix 

A. Supplements of Section III: The scatters relative to the fourth frequency  

 

Fig. A.1 Scatters of Sample ED in the planes relative to the 4th frequency 

 

Fig. A.2 Scatters of Sample MD-1 in the planes relative to the 4th frequency 

 

Fig. A.3 Scatters of Sample MD-2 in the planes relative to the 4th frequency 

 



 

 

Fig. A.4 Scatters of Sample BD in the planes relative to the 4th frequency 

 

 

Fig. A.5 Scatters of Sample ED-BD in the planes relative to the 4th frequency 

 

B. Supplements of Section IV: The scatters relative to the fourth frequency  

 

 (a) Model-1 



 

 

 (b) Model-2 

Fig. B The test and calibrated scatters of Model-1 and Model-2 in the planes relative to the 4th frequency 
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