
IoT

Article

An Assessment of the Performance of the Secure Remote
Update Protocol in Simulated Real-World Conditions

Andrew John Poulter * and Simon J. Cox

����������
�������

Citation: Poulter, A.J.; Cox, S.J. An

Assessment of the Performance of the

Secure Remote Update Protocol in

Simulated Real-World Conditions.

IoT 2021, 2, 549–563. https://

doi.org/10.3390/iot2040028

Academic Editor: Uday Tupakula

Received: 1 September 2021

Accepted: 19 September 2021

Published: 23 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
s.j.cox@soton.ac.uk
* Correspondence: a.j.poulter@soton.ac.uk

Abstract: This paper assesses the relative performance of the MQTT protocol in comparison to
the Secure Remote Update Protocol (SRUP) in a number of simulated real-world conditions, and
describes an experiment that has been conducted to measure the processing delay associated with the
use of the more secure protocol. Experimental measurements for power consumption of the devices
and the size of comparable TCP packets were also made. Analysis shows that the use of the SRUP
protocol added an additional processing delay of between 42.92 ms and 51.60 ms—depending on the
specific hardware in use. There was also shown to be a 55.47% increase in power consumption when
running the secure SRUP protocol, compared with an MQTT implementation.

Keywords: Internet of Things; MQTT; SRUP; security; analysis

1. Introduction

Much previous work regarding the Internet of Things (IoT) has considered devices
comprised of very low-power microcontrollers and the impact of security protocols [1]
such as Transport Layer Security (TLS) [2]; however, security for IoT message traffic is
vital, and the performance of low-cost ARM-based systems mean that small-footprint IoT
devices can be built around Single Board Linux computers. In this work we explore the
performance of a protocol utilizing both TLS and asymmetric (public-key) cryptography
(specifically the RSA (Rivest-Shamir-Adleman) crypto-system) to provide “Confidentiality,
Integrity, & Authenticity” [3] for IoT systems built using low-cost ARM-based single board
computers, in simulated real-world network conditions. Although previous work such
as [4] has examined the performance of public-key cryptographic primitives on IoT-style
devices with lower-powered microprocessors—the availability of much more capable
processors at low cost-points sees their use become more widespread.

1.1. Protocol Comparison

In this paper, we describe experiments conducted to assess the performance overhead
of the Secure Remote Update Protocol (SRUP) protocol against a simple unencrypted
Message Queuing Telemetry Transport (MQTT) messaging scheme.

1.1.1. MQTT

The MQTT protocol [5], is a brokered publish/subscribe messaging protocol, which is
very widely used within the IoT [6]. MQTT defines a hierarchical topic-based structure for
message separation, and clients may subscribe to receive the byte-steam data published by
other parties. By default MQTT is not secured; but MQTT over TLS can be implemented to
encrypt the message traffic and restrict access to the broker.

1.1.2. The Secure Remote Update Protocol

In our previous work [7], we have described the SRUP for IoT communications, which
is built on top of the MQTT protocol. SRUP defines a standard format for MQTT message

IoT 2021, 2, 549–563. https://doi.org/10.3390/iot2040028 https://www.mdpi.com/journal/iot

https://www.mdpi.com/journal/iot
https://www.mdpi.com
https://orcid.org/0000-0002-3438-3981
https://doi.org/10.3390/iot2040028
https://doi.org/10.3390/iot2040028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/iot2040028
https://www.mdpi.com/journal/iot
https://www.mdpi.com/article/10.3390/iot2040028?type=check_update&version=3


IoT 2021, 2 550

payloads. This format allows a standardized implementation of features such as message
signing to prove that messages originate from valid sources and that they have not been
changed in transit, and protection against replay attacks (where an attacker captures a
valid message and attempts to re-transmit or ‘replay’ that message at a later time of their
choosing in order to cause an effect [8]). SRUP makes use of MQTT over TLS to ensure
both confidentiality of the messages and access control to the MQTT broker [9] and uses
2048-bit RSA public/private key-pairs, and Secure Hash Algorithm version 2, with 256-bit
hash (SHA-256) message hashing for signatures.

The SRUP protocol was designed for use in the context of a centralized Command
and Control (C2) oriented IoT system. As such it assumes that all operations will take
place within a client / server model of communications, with command from a user going
via a C2 server to the device, and data going back to the user via the C2 server. In this
context, the inherently decentralized concepts of blockchain in an IoT context [10] were
not considered in the design of the protocol, since the C2 server is able to maintain an
authenticated log of events (if required) without this additional overhead.

1.2. Performance Metrics

Our experiments considered three performance metrics for SRUP vs. plain MQTT.

1. Network propagation and processing time;
2. Device power consumption;
3. Message size (in bytes).

2. Experimental Setup
2.1. Hardware

The experimental setup consisted of five IoT devices, each built from a Raspberry Pi
3B+ single board computer [11], fitted with a custom circuit board including LED (Light
Emitting Diode) status indications and a push button for user interaction. An example of
the device can be seen in Figure 1.

Figure 1. The experimental hardware, consisting of a Raspberry Pi 3B+ single-board computer, and a
custom circuit board.

For the purposes of this research paper, all experimentation was undertaken in lab-
based conditions. The devices were connected over Ethernet [12] to another Raspberry Pi
3B+ computer, running locally on the network, acting as a simple C2 server. The C2 server
was running custom software that selected one of the five devices at random, sent a SRUP



IoT 2021, 2 551

action message to the device requesting that it toggled the state of the LED, and waited
for a random interval before looping back. The program execution continued until each
device had received a total of 250 messages. This is illustrated at Figure 2.

Figure 2. A flowchart showing the execution of the C2 server during the experiment.

The a priori assumption was that a significant proportion of any additional delay would
be due to the time taken to process the cryptographic algorithms used for message signing.
In order to evaluate the extent to which the performance of the protocol is influenced
by the speed of the hardware, one additional device was built using a faster Raspberry
Pi 4 single board computer [13], allowing performance comparison with the other devices.
The Pi 4 was identical to the devices described above, apart from the Central Processing
Unit (CPU) and Random-Access Memory (RAM) configuration. This increased the CPU
from the Broadcom BCM2837B0, Quad-core Cortex-A53 (ARMv8) 64-bit System on Chip
(SoC) running at 1.4 GHz in the Pi 3B+, to a Broadcom BCM2711, Quad-core Cortex-A72
(ARM v8) 64-bit SoC running at 1.5 GHz. The RAM increased from from 1 GB of LPDDR2
to 2 GB of LPDDR4 SDRAM.

2.2. Software

The software consisted of the open source SRUP libraries (version 6.0) (built using
C++) and the Python front-end wrapper described in our previous work [14]. This enabled
the device code to consist of a short and easy-to-understand Python script.

2.3. SRUP vs. MQTT

In order to provide a baseline comparison, the performance of the devices was mea-
sured against the same hardware running a Python program (version 3.9.2) which used a
simple MQTT scheme to control the LED. This comparison program made no use of either
TLS for the MQTT message traffic encryption or RSA for message signing; this enabled the



IoT 2021, 2 552

measurement of the overhead caused by these components (the term overhead is used here
to refer to the potential additional burdens incurred from running SRUP, such as increased
message delays or power consumption).

When using SRUP, there is a one-time key exchange process which only occurs when
the device initially joins the C2 network. This process results in a short additional time
delay, which is not part of the usual operation of the protocol.

The key exchange process uses Secure Hyper-Text Transfer Protocol (HTTPS) rather
than MQTT to retrieve the key. As there is no equivalent step within the MQTT-only setup,
the key exchange element was deliberately excluded from the comparison experiment.

A diagram depicting factors associated with the total processing delay for a SRUP
message can be seen in Figure 3.

Figure 3. A diagram showing the factors associated with the processing delay for an SRUP message.

Although these were not all explicitly measured during the experimentation, the
travel time and broker processing delay are constant between both the SRUP and MQTT
experiments, as are the MQTT publish and receive times (not counting any message size-
related delays), and the time taken to perform the IoT device operation. As such the
experiment measures the cumulative delay of the message population, signing process,
verification and field extraction—plus a small amount of additional message propagation
delay for the larger message size. Further detailed work would be required in order to
profile the library code to identify the specific contribution of each of these elements to the
overall delay.

2.4. Time Synchronization

In order to measure the overhead, the experiment made use of log files generated
by the devices and by the C2 server; these indicate the time at which the server initiated
the generation of the command and the time at which the receiving device had processed
the message. These two timestamps were used to calculate the elapsed wall-clock time.
In order to ensure that the clocks on both devices were synchronized as accurately as
possible, the device acting as a C2 server was also configured to act as an Network Time
Protocol (NTP) [15] server using the chrony tool (https://chrony.tuxfamily.org—accessed
on 17 September 2021). Since there was no requirement for precise synchronization to an
absolute time reference, the C2 server was running as the authoritative time source on the
local network. Configuring the device’s clocks to use the local time-server as their sole
source of time ensured that the clocks were as tightly aligned as possible.

https://chrony.tuxfamily.org


IoT 2021, 2 553

3. Network Conditions
3.1. Network Condition Simulation

For the purposes of the experiment, it was assumed that the hardware were to repre-
sent deployed IoT devices connected over a cellular data connection. Network condition
simulation was used in order to appropriately represent the behaviour of a cellular net-
work in different operating conditions. This simulation was conducted using the Linux tc
tool [16] and the associated tcconfig wrapper tools (such as tcset [17]).

Work by [18] provides performance data for cellular networks in a range of condi-
tions [18], and this was used to select representative parameters for tc. In order to assess
the performance comparison in a range of conditions, ten different cases were selected.
These were drawn from a software implementation of the [18] dataset produced by [19].
The cases selected ranged from the theoretical ‘best case’ (where all devices were running
on the same Local Area Network (LAN)) through to simulations of Fourth-Generation (4G)
and Third-Generation (3G) cellular networks (which, in turn, ranged from ‘good’ to ‘poor’
signal strength).

A simple real-world measurement was taken within an isolated area of the New
Forest National Park (on the south coast of the United Kingdom) in order to provide a
representative data point for deployment of a 3G device in a rural location. The New Forest
was selected as an area local to Southampton, with poor network coverage in order to
record a real-world ‘worst case’ for signal strength and network performance.

An assessment made using a smartphone ‘network cell information’ measurement
app [20] showed a very poor signal strength of -128 decibel-milliwatts (dBm) of Reference
Signals Received Power (RSRP), and 115 kilobits per second (kb/s) upload. A photograph
illustrating this is shown at Figure 4.

Figure 4. A screenshot from the mobile application used to assess cellular network performance in a
rural area of Southern England.

We wanted to assess the full range of cellular network conditions, from ‘very good’
to ‘very poor’ legacy networks (such as GSM (Global System for Mobile Communica-
tions: [21]), commonly referred to as Second-Generation (2G) networks). However, there
is a lack of published data for the simulation of the network conditions of GSM, and
therefore representative propagation delay data were taken for 3G networks from Kha-



IoT 2021, 2 554

touni et al., and the data transfer rates were capped at the ‘best case’ values for both the
Enhanced Data Rates for GSM Evolution (EDGE) [22] and General Packet Radio Service
(GPRS) [23] standards.

In order to establish a reasonable ‘worst case’, packet loss data taken from Ghaderi
and Boutaba [24] were applied, in addition to the simple network propagation delays, to
the network conditions simulation.

3.2. Experimental Conditions

The configuration for the experimental runs was as shown in Table 1; the full details
of the network condition parameters used for each of these can be found in Appendix A:

Table 1. Experimental Conditions

Experiment Condition

1 LAN Ethernet
(no network conditioning)

2 ‘Good’ strength 4G

3 ‘Medium’ Strength 4G

4 ‘Good’ 3G

5 ‘Poor’ 3G

6 2G EDGE ‘best case’

7 Observed 3G ‘poor’ signal
(including a capped data rate)

8 2G GPRS ‘best case’

9 3G ‘poor’ signal + 5% loss

10 2G GPRS + 10% loss

Each of these cases was run as an experiment, with all five devices running the
SRUP protocol.

For the comparison experiment (using the MQTT protocol), the ‘best case’, reasonable
‘worst case’, and three cases in between (cases 1, 2, 3, 5, and 9) were selected as being
representative of the overall problem-space. These five cases, where both SRUP and MQTT
were run, will be referred to as the ‘combined experiments’.

4. Measurements

Using the SRUP protocol, we expected to see an increase in the time taken for mes-
sage processing and in the power consumption of the device (both due to the additional
processing requirements of running the message signing algorithms), and the total size
of the data sent (due to the additional fields used by SRUP to ensure message security).
Therefore, the following measurements were taken:

4.1. Time

The actual performance measurement was assessed by analysis of the log files pro-
duced by the devices, and the server for any given experimental run. Full details of this
analysis can be seen in Section 5.

4.2. Power

Assessment was made of the average power consumption of one of the devices when
running both the MQTT and SRUP conditions. Measurement was made using a logging
Universal Serial Bus (USB) power meter.



IoT 2021, 2 555

4.3. Message Size

The network traffic was captured using Wireshark [25] and examined to identify the
size of the raw MQTT and the SRUP implementation’s MQTT messages.

5. Log File Analysis

All of the log file analysis was performed using the Python programming language
and Jupyter notebooks [26]. The popular pandas library [27] was used for ‘data wrangling’
and collation. This analysis involved:

1. Mapping the device ID to the logical device number;
2. Loading the log files from the C2 server for each experiment;
3. Stripping the unused columns out of the resulting dataframe;
4. Loading all of the log files from each device, for each experiment, and combining

them into a single Python object (a list of dictionaries of dataframes);
5. Generating a new dataframe for each row in the C2 log dataframe, recording the

device number, the type of operation (on or off), and the timestamp at which the
command was sent;

6. For each row in the dataframe generated in step 5, extracting the timestamp at which
this command was received by the device;

7. Calculating the time delay between sending and receiving, in milliseconds.

Each experiment generated a graph, which was used to check the data ingestion
process (exemplars shown in Figures 5 and 6). As expected, experiments where a delay
distribution had been applied had a significantly greater standard deviation. A similar
analysis process was also conducted for the experimental runs using MQTT.

Figure 5. A graph showing the delay distribution associated with SRUP message propagation and
processing time, for experiment 1 (no network conditioning).



IoT 2021, 2 556

Figure 6. A graph showing the delay distribution associated with SRUP message propagation and
processing time, for experiment 7 (observed 3G poor signal).

Once complete, the next step of the analysis process was to calculate the mean delay
for each device, for each experiment. The means for each device were then averaged in
order to calculate the combined mean for each experiment; the total processing overhead
for each experiment could then be calculated. Full details of the analyses can be seen in
the Jupyter notebooks [28], available along with the raw and processed data within the
experimental dataset.

6. Results
6.1. SRUP vs. MQTT Performance Comparison

A graph showing the mean delay for each of the SRUP experiments is shown in
Figure 7, and a graph showing the combined means for each device for a given experiment
(for both the SRUP and MQTT cases) is shown in Figure 8. The difference between the
mean delays for each protocol is shown in Figure 9.

Figure 7. A graph showing the mean SRUP message network and processing delay by device, for
each of the experiments.



IoT 2021, 2 557

Figure 8. A graph showing the total mean network and processing delay for both MQTT and SRUP
messages, in the five combined experiments (experiments 1, 2, 3, 5, and 9).

Figure 9. A graph showing the difference between the total mean network and processing delay the
five combined experiments.

The total combined mean processing overhead for SRUP, when compared with MQTT,
across all network conditions, was shown to be an additional 51.6 ms. This compares to
the worst-case of 56.1 ms when excluding the effects of the network delay (experiment 1).
Although on an Ethernet LAN this represents a significant additional delay (58.4 ms vs.
2.31 ms) compared with a wholly insecure system, when compared with a more repre-
sentative scenario for deployed IoT (experiment 3, medium strength 4G): the overhead
represents only 53.6 % of the MQTT delay (148 ms vs. 96.2 ms = 51.5 ms).

Even in the worst-case, the processing overhead means that only where a message
frequency exceeds 17.8 Hz (see Equation (1)), will the additional processing time be greater
than the natural message period. Since a typical real-world IoT device may be expected
to have a mean time between messages of minutes, the additional processing overhead
in the order of tens of milliseconds is a very small additional price to pay for the very
significant security benefits that the SRUP protocol offers. However, this result does show
that protocol in its current form may not be well suited to highly time-critical applications,
when running on lower-specification hardware.



IoT 2021, 2 558

A boxplot graph depicting the extent of the distribution of the data; and including the
minimum, maximum, median and 1st and 3rd quartiles (Figure 10) shows the distribution
of differences across all the combined experiments.

1
56.1 ms

= 17.8 Hz (1)

Figure 10. A box-plot chart showing the distribution of differences in the network and processing
delay between the MQTT and SRUP experiments, considered over all experiments.

The analysis also shows that the SRUP protocol is robust to even extremely poor
network conditions. Even in the worst case (case 10), all messages were correctly received
within 4030 ms (σ = 183 ms, x̄ = 220 ms) (Figure 11) due to the robust nature of the
underpinning MQTT protocol.

Figure 11. A graph showing the delay distribution associated with message propagation and
processing time, for experiment 10 (2G GPRS + 10% packet loss).

6.2. Raspberry Pi 3B+ vs. Raspberry Pi 4

The additional processing power of the Pi 4 was shown to have a benefit in reducing
the overhead incurred by the use of SRUP. The Pi 4 was, on average, 8.68 ms faster than the
Pi 3B+ when using the SRUP protocol; in comparison, the MQTT protocol was just 0.274 ms
faster in the same context. Thus, the use of a Pi 4 reduces the total overhead processing
delay to 42.9 ms for SRUP.

6.3. SRUP vs. MQTT Power Consumption

A graph showing the instantaneous power consumption for a Raspberry Pi 3B+ device,
running the combined experiment (case 1) is shown at Figure 12.



IoT 2021, 2 559

Figure 12. A graph showing the instantaneous power consumption of the experimental device, by
time, for a combined experiment (case 1).

The mean power consumption for the MQTT run is 1.31 W (σ = 0.0401 W), which
compares to a mean power consumption of 2.04 W (σ = 0.0470 W) for SRUP. The power
consumption of the device when running SRUP can thus be shown to be an additional
728 mW when compared with MQTT.

This represents an increase in power-consumption of 55.5 %. (See Equation (2)).

728 mW
1.31 W

× 100 = 55.5 % (2)

If the device was powered over USB (at 5 V) from a 10,000 mAh battery, the energy of
the battery may be expressed as (10,000 × 5) / 1000 = 50 W h.

50 W h
1.31 W

= 38.1 h (3)

50 W h
2.04 W

= 24.5 h (4)

38.1 h− 24.5 h = 13.6 h (5)

From this we can calculate (Equations (3)–(5)) that the battery would be expected to
last for 38.1 h of continual MQTT activity, vs. 24.5 h of SRUP operation; a difference of 13.6 h
of continuous operation. A real-world IoT application, however, would be very unlikely to
be operating in a state of continuous message exchange, and in may typically exchange at
most a few messages per minute; therefore, the additional power required to process the
messages represents only a very small proportion of the overall power consumption.

6.4. SRUP vs. MQTT Message Size

Analysis of the Wireshark traffic capture shows the differences between the message
lengths. For the MQTT setup, a single text character was sent as the message payload
using either an ASCII (American Standard Code for Information Interchange): ‘1’ or a ‘0’
(ASCII 31 or 30) corresponding to the on or off operation. This, combined with the MQTT
topic used to identify the destination device (e.g., test/d1), results in a message size of
80 bytes.



IoT 2021, 2 560

In comparison, for the SRUP experiment, the same signal was sent using a message
comprised of:

• One byte (0x00 or 0xFF) to signify the operation to perform (on or off );
• A two-byte SRUP message header;
• An eight-byte sequence ID;
• An eight-byte sender ID;
• A variable-length token;
• The RSA signature.

The message is sent to an MQTT topic corresponding to the device ID prefixed by the
word SRUP. This results in an SRUP message size of 359 bytes, and an overall TLS packet
length of 430 bytes. This represents an approximately 540% increase in data for the SRUP
application when compared with MQTT.

An example dataframe corresponding to each of these two message types can be seen
at Figure 13.

Figure 13. The raw network data, captured in Wireshark, for two messages (an MQTT message (top),
and a SRUP message (bottom)). In each case the messages carry the same data. Note that the plain
MQTT message is unencrypted, in contrast to the SRUP message.



IoT 2021, 2 561

7. Conclusions

We have shown that the overhead associated in processing messages sent using our
new Secure Remote Update Protocol (SRUP), in comparison with insecure Message Queu-
ing Telemetry Transport (MQTT) messages, is independent of the network conditions.
SRUP has also been shown to have an overhead that is tolerable for all messaging ap-
plications bar those that are the most time-sensitive or those requiring a higher message
frequency than 17.8 messages-per-second.

The benefits of using the SRUP protocol are that it provides: (1) encrypted and
authenticated messages, and (2) resilience to replay attacks (where an attacker captures a
valid message and attempts to re-transmit it to cause an effect). These benefits are highly
significant for any real-world application of Internet of Things (IoT) technologies; without
message encryption, the data contained within the messages may be freely obtained by
anyone with access to the transport network or anyone who is able to ‘sniff’ traffic leaving
or entering the devices or servers. Authentication ensures that messages are protected
from both deliberate tampering or accidental corruption in transit, and ensures that only
validated and approved senders can issue commands to devices.

The SRUP protocol offers protection against replay attacks by removing the possibility
of an attacker capturing a valid message; such protections greatly enhance the security of
IoT systems, rendering them much more suitable for use in applications such as building
management or monitoring.

We have also shown that, although there is a cost in terms of the power consumption
of devices using SRUP, this is only an issue for battery-powered devices. Further research
is recommended to evaluate the power consumption demands of running SRUP on battery-
powered devices that utilize specialized low power hardware. Additionally, no work
has yet been conducted to examine the implications of running SRUP on embedded
microcontrollers, such as the ESP32.

Although the data packet size of SRUP is significantly increased compared with MQTT,
we have shown that SRUP traffic is robust to even extremely poor network conditions and
that messages are still successfully delivered. This increased packet size does, however,
mean that the protocol is not well-suited for use with extremely constrained bandwidth
communications bearers, such as LoRa [29] or SigFox [30].

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, and
investigation, A.J.P.; writing—original draft preparation, A.J.P.; writing—review and editing, A.J.P.
and S.J.C.; visualization, A.J.P.; supervision, S.J.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been funded by the United Kingdom Defence Science and Technology
Laboratory (Dstl). Dstl is a part of the U.K. Ministry of Defence.

Data Availability Statement: All data, and analysis, pertaining to this research can be obtained
as “Dataset for An assessment of the Performance of the Secure Remote Update Performance in Simulated
Real-World Conditions” [28].

Conflicts of Interest: The authors declare no conflict of interest.



IoT 2021, 2 562

Appendix A. Network Conditioning Simulation Setup

The detailed network conditioning settings for each of the ten experiments was as
shown in Table A1.

Table A1. The detailed network conditioning settings for each of the ten experiments.

Experiment Description Distribution Used tc Settings Applied

1 LAN Ethernet No network conditioning -

2 Good Strength
4G

H3G_Access_AB.good.4G←↩
.no_roaming -

3 Medium Strength 4G TIM.medium.4G.no_roaming -

4 Good 3G TIM.good.3G.no_roaming

5 Poor 3G TIM.bad.3G.no_roaming

6 2G EDGE
best-case - –rate 384 Kbps –delay 115.6 ms

7 Observed
3G poor signal - –rate 115 Kbps –delay 122.6 ms

–delay-distro 40.6

8 2G GPRS
best-case - –rate 40 Kbps –delay 122.6 ms

–delay-distro 40.6

9 3G poor signal
+ 5% loss - –rate 115 Kbps –delay 122.6 ms

–delay-distro 40.6 –loss 5

10 2G GPRS
+ 10% loss - –rate 40 Kbps –delay 122.6 ms

–delay-distro 40.6 –loss 10

References
1. Restuccia, G.; Tschofenig, H.; Baccelli, E. Low-Power IoT Communication Security: On the Performance of DTLS and TLS 1.3.

In Proceedings of the 2020 9th IFIP International Conference on Performance Evaluation and Modeling in Wireless Networks
(PEMWN), Berlin, Germany, 1–3 December 2020; pp. 1–6. [CrossRef]

2. Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3; Standard RFC 8446; Internet Engineering Task Force: Fremont,
CA, USA, 2018. Available online: https://tools.ietf.org/html/rfc8446 (accessed on 17 September 2021).

3. Braun, J.; Buchmann, J.; Demirel, D.; Geihs, M.; Fujiwara, M.; Moriai, S.; Sasaki, M.; Waseda, A. LINCOS: A Storage System
Providing Long-Term Integrity, Authenticity, and Confidentiality. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security (ASIA CCS’17), New York, NY, USA, 2–6 April 2017; pp. 461–468. [CrossRef]

4. Shim, K.A. A Survey of Public-Key Cryptographic Primitives in Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2016,
18, 577–601. [CrossRef]

5. Banks, A.; Gupta, R. MQTT Version 3.1.1, OASIS Standard. 29 October 2014. Available online: http://docs.oasis-open.org/mqtt/
mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf (accessed on 17 September 2021).

6. Colombo, P.; Ferrari, E.; Tümer, E.D. Regulating Data Sharing across MQTT Environments. J. Netw. Comput. Appl. 2021,
174, 102907. [CrossRef]

7. Poulter, A.J.; Johnston, S.J.; Cox, S.J. SRUP: The Secure Remote Update Protocol. In Proceedings of the 2016 IEEE 3rd World
Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 42–47. [CrossRef]

8. Feng, Y.; Wang, W.; Weng, Y.; Zhang, H. A Replay-Attack Resistant Authentication Scheme for the Internet of Things. In
Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; Volume 1, pp. 541–547.
[CrossRef]

9. Poulter, A.J.; Johnston, S.J.; Cox, S.J. Extensions and Enhancements to “the Secure Remote Update Protocol”. Future Internet 2017,
9, 59. [CrossRef]

10. Leng, J.; Ye, S.; Zhou, M.; Zhao, J.L.; Liu, Q.; Guo, W.; Cao, W.; Fu, L. Blockchain-Secured Smart Manufacturing in Industry 4.0: A
Survey. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 237–252. [CrossRef]

11. Raspberry Pi Foundation. Raspberry Pi 3 Model B+ Specification. Available online: https://www.raspberrypi.org/products/
raspberry-pi-3-model-b-plus/ (accessed on 17 September 2021).

http://doi.org/10.23919/PEMWN50727.2020.9293085
https://tools.ietf.org/html/rfc8446
http://dx.doi.org/10.1145/3052973.3053043
http://dx.doi.org/10.1109/COMST.2015.2459691
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://dx.doi.org/10.1016/j.jnca.2020.102907
http://dx.doi.org/10.1109/WF-IoT.2016.7845397
http://dx.doi.org/10.1109/CSE-EUC.2017.101
http://dx.doi.org/10.3390/fi9040059
http://dx.doi.org/10.1109/TSMC.2020.3040789
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/


IoT 2021, 2 563

12. IEEE. IEEE Standard for Ethernet; Technical Report; IEEE: Piscataway, NJ, USA, 2018. [CrossRef]
13. Raspberry Pi Foundation. Raspberry Pi 4 Tech Specs. Available online: https://www.raspberrypi.org/products/raspberry-pi-4-

model-b/specifications/ (accessed on 17 September 2021).
14. Poulter, A.J.; Johnston, S.J.; Cox, S.J. pySRUP—Simplifying Secure Communications for Command Control in the Internet of

Things. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019;
pp. 273–277. [CrossRef]

15. Mills, D.; Delaware, U.; Kasch, W. Network Time Protocol Version 4: Protocol and Algorithms Specification; Standard RFC 5905;
Internet Engineering Task Force: Fremont, CA, USA, 2010. Available online: https://tools.ietf.org/html/rfc5905 (accessed on 17
September 2021).

16. Kuznetsov, A.N. Iproute2 Routing Commands and Utilities. Available online: https://man7.org/linux/man-pages/man8/tc.8.
html (accessed on 17 September 2021).

17. Hombashi, T. Tcconfig: A tc Command Wrapper. Open Source Software. 2020. Available online: https://github.com/thombashi/
tcconfig (accessed on 17 September 2021).

18. Khatouni, A.S.; Trevisan, M.; Giordano, D. Data-Driven Emulation of Mobile Access Networks. In Proceedings of the 2019 15th
International Conference on Network and Service Management (CNSM), Halifax, NS, Canada, 21–25 October 2019; pp. 1–6.
[CrossRef]

19. Trevisan, M. Mobile Network Latency Emulator. Open Source Software. 2019. Available online: https://github.com/marty90/
mobile-latency-emulator (accessed on 17 September 2021).

20. M2Catalyst LLC. Network Cell Info App. Available online: https://m2catalyst.com/apps/network-cell-info (accessed on 17
September 2021).

21. Sultan, A.; Pope, M. Digital Cellular Telecommunications System (Phase 2+) (GSM); Universal Mobile Telecommunications System
(UMTS); Network Architecture; Technical Report 3GPP TS 23.002; European Telecommunications Standards Institute: Valbonne,
France, 1999.

22. Schramm, P.; Andreasson, H.; Edholm, C.; Edvardsson, N.; Hook, M.; Javerbring, S.; Muller, F.; Skold, J. Radio interface
performance of EDGE, a proposal for enhanced data rates in existing digital cellular systems. In Proceedings of the VTC’98, 48th
IEEE Vehicular Technology Conference, Pathway to Global Wireless Revolution (Cat. No.98CH36151), Ottawa, ON, Canada, 21
May 1998; Volume 2, pp. 1064–1068. [CrossRef]

23. Naper, H.P.; Pope, M. Digital Cellular Telecommunications System (Phase 2+) (GSM); Universal Mobile Telecommunications Sys-
tem (UMTS); General Packet Radio Service (GPRS); Service Description; Stage 2; Technical Report 3GPP TS 23.060; European
Telecommunications Standards Institute: Valbonne, France, 1999.

24. Ghaderi, M.; Boutaba, R. Data Service Performance Analysis in GPRS Systems. In Proceedings of the 2004 IEEE 15th International
Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No.04TH8754), Barcelona, Spain, 5–8 September
2004; Volume 1, pp. 556–560. [CrossRef]

25. Goyal, P.; Goyal, A. Comparative study of two most popular packet sniffing tools—Tcpdump and Wireshark. In Proceedings of
the 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN), Girne, Northern
Cyprus, 16–17 September 2017; pp. 77–81. [CrossRef]

26. Perkel, J.M. Why Jupyter is data scientists’ computational notebook of choice. Nat. News 2018, 563, 145–146. [CrossRef] [PubMed]
27. Stančin, I.; Jović, A. An overview and comparison of free Python libraries for data mining and big data analysis. In Proceedings

of the 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 977–982. [CrossRef]

28. Poulter, A.J. Dataset for an Assessment of the Performance of the Secure Remote Update Performance in Simulated Real-World
Conditions. 2021. Available online: http://eprints.soton.ac.uk/id/eprint/449089 (accessed on 17 September 2021).

29. Zourmand, A.; Kun Hing, A.L.; Wai Hung, C.; AbdulRehman, M. Internet of Things (IoT) using LoRa technology. In Proceedings
of the 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 29 June
2019; pp. 324–330. [CrossRef]

30. Lavric, A.; Petrariu, A.I.; Popa, V. SigFox Communication Protocol: The New Era of IoT? In Proceedings of the 2019 International
Conference on Sensing and Instrumentation in IoT Era (ISSI), Lisbon, Portugal, 29–30 August 2019; pp. 1–4. [CrossRef]

http://dx.doi.org/10.1109/IEEESTD.2018.8457469
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
http://dx.doi.org/10.1109/WF-IoT.2019.8767205
https://tools.ietf.org/html/rfc5905
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://github.com/thombashi/tcconfig
https://github.com/thombashi/tcconfig
http://dx.doi.org/10.23919/CNSM46954.2019.9012691
https://github.com/marty90/mobile-latency-emulator
https://github.com/marty90/mobile-latency-emulator
https://m2catalyst.com/apps/network-cell-info
http://dx.doi.org/10.1109/VETEC.1998.686403
http://dx.doi.org/10.1109/PIMRC.2004.1370932
http://dx.doi.org/10.1109/CICN.2017.8319360
http://dx.doi.org/10.1038/d41586-018-07196-1
http://www.ncbi.nlm.nih.gov/pubmed/30375502
http://dx.doi.org/10.23919/MIPRO.2019.8757088
http://eprints.soton.ac.uk/id/eprint/449089
http://dx.doi.org/10.1109/I2CACIS.2019.8825008
http://dx.doi.org/10.1109/ISSI47111.2019.9043727

	Introduction
	Protocol Comparison
	MQTT
	The Secure Remote Update Protocol

	Performance Metrics

	Experimental Setup
	Hardware
	Software
	SRUP vs. MQTT
	Time Synchronization

	Network Conditions
	Network Condition Simulation
	Experimental Conditions

	Measurements
	Time
	Power
	Message Size

	Log File Analysis
	Results
	SRUP vs. MQTT Performance Comparison
	Raspberry Pi 3B+ vs. Raspberry Pi 4
	SRUP vs. MQTT Power Consumption
	SRUP vs. MQTT Message Size

	Conclusions
	Network Conditioning Simulation Setup
	References

