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Abstract— We illustrate a novel version of Willems’
lemma for data-based representation of continuous-time
systems. The main novelties compared to previous works
are two. First, the proposed framework relies only on mea-
sured input-output trajectories from the system and no
internal (state) information is required. Second, our sys-
tem representation makes use of exact system trajectories,
without resorting to orthogonal bases representations and
consequent approximations. We first establish sufficient
and necessary conditions for data-based generation of sys-
tem trajectories in terms of suitable latent variables. Subse-
quently, we reformulate these conditions using measured
input-output data and show how to span the full behavior
of the system. Furthermore, we show how to use the devel-
oped framework to solve the data-based continuous-time
simulation problem.

Index Terms— Data-based representation, linear sys-
tems, continuous-time systems

I. INTRODUCTION

PARAMETRIZING system trajectories is an essential step
of data-driven control methods, since in such a framework

the design of controllers and control inputs can only be
performed on the basis of such description of the plant dy-
namics. For linear, time-invariant, discrete-time systems such
a parametrization was provided in [18], applied to data-driven
simulation in [7] and extended to multiple data sets in [16].
Many different applications of this result for control design
have been obtained, as described in the survey [8], and various
extensions to more general (discrete-time) system classes have
been developed such as, e.g., stochastic systems [3], linear
parameter varying systems [17] or classes of nonlinear systems
[2], [14].

More recently, two analogous parametrizations for
continuous-time systems have been proposed respectively in
[5] and [12]. Both approaches have been leveraged for control
design, see [6], [13]. In spite of their attractive theoretical
properties and their applicability to control design, none of
these results can be considered as the precise continuous-time
counterpart of the fundamental lemma in [18]. On the one
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hand, in [5] the conditions for generating system trajectories
from data are given in terms of the internal state of the
system (see [5, Lemma 2]), which must be measured along
with input-output trajectories. On the other hand, [12] uses
orthogonal bases representations of the continuous-time
trajectories, which implies that the resulting trajectories
generated with this method are inherently an approximation
of the true trajectories. It is desirable instead that data-based
continuous-time system trajectories can be computed exactly
and that they depend only on input-output measurements
(here regarded as the external variables).

In this work we make some progress towards these goals.
Combining some of the ideas of [5] and [11], in this paper we
provide the following contributions:

• We illustrate a new perspective on some of the results in
[5] by relating the differential equations that are required
for spanning system trajectories to the concept of “jets”
of input-output trajectories and their derivatives.

• We extend the approach of [5] for exact data-based trajec-
tory generation to the case of input-output measurements.

• We sketch some of the connections between the ap-
proaches of [5], [11] and [12].

• We show how to use the proposed method to solve the
data-based simulation problem.

The paper is organized as follows: in Section II we formulate
the problem of trajectory-parametrization for continuous-time
systems. In Section III we define the concept of sufficient
informativity for identification and, after establishing some
instrumental results, we formulate a higher-order, input-output
version of the fundamental lemma, generalizing the approach
of [5]. In Section IV we show how to use the obtained results
to solve the data-driven simulation problem. In Section V
we summarize our findings and discuss some of the research
directions currently being pursued.

Notation

We denote by R and N the sets of real and natural
numbers, respectively. R[s] is the ring of polynomials with
real coefficients, and Rg×q[s] is the set of g × q matrices
with entries in R[s]. Polynomials and polynomial differential
operators with constant coefficients are associated with each
other: if p0 + . . . + pLs

L ∈ R[s], then we define p
(

d
dt

)
by

p
(

d
dt

)
:= p0+ . . .+pL

dL

dtL
. This notation extends in a natural

way to polynomial matrices.



Rn denotes the space of n-dimensional vectors with real
entries. Rn×m denotes the set of n × m matrices with real
entries. The transpose of a matrix M is denoted by M⊤. If
M has full row rank, M† denotes a right inverse. If A and B
are two matrices with the same number of columns, we define
col(A,B) :=

[
A⊤ B⊤]⊤.

Given a continuous-time signal w : R → Rq , fix M ∈ N
and T ∈ R, and denote by H(w) the time-dependent matrix
(see also [5])

H(w) :=
[
w(·) w(·+ T ) . . . w(·+MT )

]
=:

[
w(·) σTw(·) . . . σMTw(·)

]
, (1)

where σ represents the time-shift operator defined by

στw(t) := w(t+ τ) , t ∈ R .

The L-th derivative of w is denoted as w(L) := dL

dtL
w.

II. PROBLEM STATEMENT

In the behavioral framework, a dynamical system is de-
scribed by its behavior B, which consists of all input-output
system trajectories that are admissible by the system dynamics,
see [19]. In this paper, we consider a linear differential
behavior B with m inputs and p outputs, i.e., u ∈ Rm, y ∈ Rp.

In [5, Theorem 2] it was shown that, under mild condi-
tions, a data-based system representation of a controllable
continuous-time system B is given by

col (u, y) :=

[
u
y

]
=

[
H (u)
H (y)

]
α, (2)

where H(u), H(y) are defined as in (1), (u, y) ∈ B are the
data collected from the system, (u, y) ∈ B is any input-output
system trajectory and α : R → RM+1 satisfies the differential
equation (see [5, Lemma 2])[

H (u)
H (x)

]
α(1) = −

[
H

(
u(1)

)
0

]
α+

[
u(1)

0

]
. (3)

Here, x ∈ Rn corresponds to a state variable for the system
B that must be measurable for (3) to be solved in practice.
Equations (2)-(3) imply that every possible input-output trajec-
tory of the system B can be computed in a data-based fashion
by performing suitable time-varying linear combinations using
the collected input-state-output data.

In this paper we obtain alternative conditions that allow to
represent the behavior B measuring only input-output data.
That is, we wish to avoid the use of state information in our
expression of B. This is formalized in the following problem.

Problem 1: Using only measurements of the external vari-
ables, determine sufficient and necessary conditions for the
data-based system representation of continuous-time systems.

In the following section, we present our solution to this
problem. First, we obtain sufficient and necessary conditions to
generate system trajectories in terms of a latent variable. Then,
we use the obtained insight to state sufficient and necessary
conditions in terms of (measured) input-output data.

III. MAIN RESULTS

A. Data-based representation of controllable systems
If the differential linear behavior B is controllable (see

Definition 5.2.2, p. 153 of [10]), then it can be described in
image form as[

u
y

]
=

[
D0 +D1

d
dt + . . .+DL

dL

dtL

N0 +N1
d
dt + . . .+NL

dL

dtL

]
ℓ , (4)

where ℓ is a d-dimensional latent variable, L ∈ N, and Di, Ni,
i = 0, . . . , L, are matrices of appropriate dimensions. Without
loss of generality, we assume that ℓ is observable from u and
y. Notice that (4) can be rewritten as

[
u
y

]
=

[
D0 D1 . . . DL

N0 N1 . . . NL

]
ℓ

ℓ(1)

...
ℓ(L)

 . (5)

For fixed M ∈ N and T ∈ R, and using the signals u, y
and ℓ, we define the time-varying matrices H(u), H(y) and
H(ℓ) as in (1). Assuming that u is sufficiently smooth, we
also define analogous matrices for the i-th derivative of u, y
and ℓ, denoted as H(u(i)), H(y(i)) and H(ℓ(i)), respectively.
Notice that the derivative of H(u) is given by

d

dt
(H(u)) :=

[
d
dt (u) (·) . . . d

dt (σMTu) (·)
]
. (6)

Since differentiation and time-shift are commutative, we con-
clude that

d

dt
(H(u)) = H

(
u(1)

)
.

Analogous definitions and equalities hold for the matrices
H(y) and H(ℓ).

From these definitions and (5) we conclude that

[
H(u)
H(y)

]
=

[
D0 D1 . . . DL

N0 N1 . . . NL

]
H(ℓ)

H(ℓ(1))
...

H(ℓ(L))

 .

Now, let α : R → RM+1 and define the new signals

u := H(u)α and y := H(y)α .

From the derivations above we conclude that

u = H(u)α =
[
D0 D1 . . . DL

]


H(ℓ)
H(ℓ(1))

...
H(ℓ(L))

α , (7)

and

y = H(y)α =
[
N0 N1 . . . NL

]


H(ℓ)
H(ℓ(1))

...
H(ℓ(L))

α . (8)

We now state necessary and sufficient conditions for
col(u, y) defined by (7)-(8) to belong to B. These conditions
are given in terms of the latent variable ℓ.



Proposition 1: Let col(u, y) be defined by (7)-(8) with α :
R → RM+1. Assume that the latent variable ℓ is observable
from the external variables u, y.

The following statements are equivalent:

1) col(u, y) ∈ B;
2) d

dt

(
H(ℓ(i))α

)
= H(ℓ(i+1))α, i = 0, . . . , L− 1;

3) H(ℓ(i))α(1) = 0, i = 0, . . . , L− 1.
Proof: We prove first the equivalence of statements 1)

and 2). Since col(u, y) is given by (7)-(8), we can write

col(u, y) =

[
D0 . . . DL

N0 . . . NL

]
H(ℓ)

H(ℓ(1))
...

H(ℓ(L))

α . (9)

Moreover, from (4) we know that col(u, y) ∈ B if and only
if there exists a latent variable trajectory ℓ′ such that

col(u, y) =

[
D0 +D1

d
dt + . . .+DL

dL

dtL

N0 +N1
d
dt + . . .+NL

dL

dtL

]
ℓ′ . (10)

Subtracting (9) from (10) and applying the observability
assumption, we conclude that

H(ℓ(i))α = ℓ′(i) , i = 0, . . . , L .

This implies

d

dt

(
H(ℓ(i))α

)
=

d

dt

(
ℓ′(i)

)
= ℓ′(i+1)

= H(ℓ(i+1))α , i = 0, . . . , L− 1 .

This concludes the proof of 1) ⇐⇒ 2).
To prove the equivalence of 2) and 3), apply Leibniz’s rule

d

dt

(
H(ℓ(i))α

)
= H(ℓ(i+1))α+H(ℓ(i))α(1) ;

conclude that 2) holds if and only if H(ℓ(i))α(1) = 0.
In Proposition 1 a characterization of system trajectories

is given: the trajectories ū, ȳ computed via (7)-(8) are an
admissible input-output trajectory for the system if and only
if α satisfies any of the conditions in statements 2) or 3).
Such conditions cannot be verified directly from the input-
output data, since the latent variable ℓ corresponding to a
given input-output trajectory is in general not available for
measurement. Moreover, since no assumption is made on the
data u, y used in (7)-(8) (e.g., informativity), Proposition 1
does not provide a data-driven description of the behavior B.
Consequently the result is of limited use when considering
the data-driven simulation problem, that consists of finding
an output trajectory corresponding to a given input and initial
conditions on the external variables.

In order to state a data-based system characterization in
terms of the external variables only, we need first to define
the notion of sufficiency of information.

B. Sufficiently informative external trajectories
The importance of the “jets” of system trajectories in

the characterization of linear differential systems has been
suggested in [19] and has been elegantly established in [4] for
the case of infinitely differentiable functions and of solution
spaces “with sufficiently many smooth functions” (for the
definition, see Remark 2, p. 817, in [4]).

In [11], [12] jets have been applied to characterize the
concept of “persistency of excitation” and to provide a ver-
sion of Willems’ lemma based on representations of system
trajectories in the space of the sequences of their Chebyshev
coefficients. It has been shown that a natural framework in
which to pose any question related to continuous-time data
(persistency of excitation, identifiability, “sufficient informa-
tivity”, etc.) is that consisting of finite “jets” generated by
system trajectories col(u, y):

JL(u, y) :=
[
u⊤ u(1)⊤ . . . u(L)⊤ y⊤ . . . y(L)⊤]⊤ ,

(11)
where one assumes that L ≥ ℓag(B), the lag of the system.
Thus, the concept of jet refers to the organization of the
input-output trajectories and its derivatives as the vector-valued
function of time in (11). In the following we denote by JL(B)
the set of admissible L-jets:

JL(B) := {JL(u, y) | col(u, y) ∈ B} .

Each jet (11), together with the corresponding shifts and time
intervals defined as in (1), defines a data matrix:

H(u)
H(u(1))

...
H(u(L))
H(y)

H(y(1))
...

H(y(L))


. (12)

Remark 1: Note that (12) requires knowledge of the deriva-
tives of the input and output trajectories of up to the L-th order.
This is a common requirement in the continuous-time system
identification literature; methods to compute an approximation
of these derivatives have been investigated (see [15] and the
discussion in [11, Section V]). In the remainder of this paper,
we assume availability of these derivative signals.

Definition 1: Let ηi ∈ R1×m, θi ∈ R1×p, i = 0, . . . , L,
for some L ≥ ℓag(B). Moreover, consider a trajectory
col(u, y) ∈ B and fix the values M ∈ N, T ∈ R. The tuple
(col(u, y),M, T ) is sufficiently informative for identification
if, for each fixed t′, the equality

[
η0 . . . ηL θ0 . . . θL

]


H(u(t′))
...

H(u(L)(t′))
H(y(t′))

...
H(y(L)(t′))


= 0



implies
L∑

i=0

ηiu
(i)(t) +

L∑
i=0

θiy
(i)(t) = 0 ,

for all col(u, y) ∈ B and all t.
Definition 1 states that the data col(u, y) organized in a matrix
as in (12) is sufficiently informative for identification if, for
each fixed time t′, the left annihilators of the matrix are in
one-one correspondence with the differential equations that
describe B. Since col(u, y) ∈ B, the set of left-annihilators
of (12) for any selection of M ∈ N and T ∈ R contains the
set of annihilators of B. Data informativity holds if the con-
verse inclusion holds, i.e. if the matrix (12) contains enough
information to uniquely determine the generating behavior.

Note that the condition in Definition 1 can be verified from
data by checking whether the matrix (12) has the same rank
at all times. It can be shown (similarly as in Proposition 2 of
[11]) that this rank must be equal to m(L+ 1) + n, where n
is the dimension of a minimal internal state of B.

Remark 2: Establishing sufficient conditions for informa-
tivity for identification is often achieved by using persistently
excitating input signals, see [5], [11] for alternative definitions.
In this paper, we aim to derive sufficient and necessary condi-
tions for data-based system representation of continuous-time
systems without the need of using persistently exciting inputs.
This is similar in spirit to the relaxations of the conditions
of Willems’ lemma developed in [9] for the discrete-time
case. Designing persistently exciting inputs to guarantee the
conditions in Definition 1 will be investigated elsewhere.

C. From input-output data to admissible L-jets

The following result is a data-based characterization of
linear differential systems analogous to that provided in [5],
based only on the external variables u and y.

Proposition 2: Let col(u, y) ∈ B and define the data matrix
(12). Let α : R → RM+1 be continuously differentiable.
Define an (m+ p)(L+ 1)-dimensional function by

H(u)
...

H(u(L))
H(y)

...
H(y(L))


α . (13)

The following statements are equivalent:
1) (13) is an admissible L-jet;
2) The following equations hold for i = 0, . . . , L− 1:

d

dt

(
H(u(i))α

)
= H(u(i+1))α

d

dt

(
H(y(i))α

)
= H(y(i+1))α ; (14)

3) The following equations hold for i = 0, . . . , L− 1:

H(u(i))α(1) = 0

H(y(i))α(1) = 0 . (15)

Moreover, if (col(u, y),M, T ) is sufficiently informative for
identification, then any u, y with u continuously differentiable
satisfies col(u, y) ∈ B if and only if its L-jet JL(u, y) can be
written as in (13) with α ∈ RM+1 satisfying the statements
in 2) and 3).

Proof: The equivalence of 2) and 3) follows from the
equalities for i = 0, . . . , L− 1:

d

dt

(
H(u(i))α

)
= H(u(i+1))α+H(u(i))α(1)

d

dt

(
H(y(i))α

)
= H(y(i+1))α+H(y(i))α(1) .

We prove 1) =⇒ 2). Since (13) is an admissible L-jet, there
exists col(u′, y′) ∈ B such that u′(i) = H(u(i))α and y′(i) =
H(y(i))α, i = 0, . . . , L. It follows that for i = 0, . . . , L− 1

u′(i+1) = H(u(i+1))α =
d

dt

(
u′(i)

)
=

d

dt

(
H(u(i))α

)
y′(i+1) = H(y(i+1))α =

d

dt

(
y′(i)

)
=

d

dt

(
H(y(i))α

)
.

To prove that 2) =⇒ 1), observe that the (m+ p)(L+ 1)-
dimensional function defined by

f0
...
fL
g0
...
gL


:=



H(u)
...

H(u(L))
H(y)

...
H(y(L))


α ,

is the L-jet of col(f0, g0) since 2) implies that fi = f
(i)
0 and

gi = g
(i)
0 , i = 0, . . . , L−1. That such jet is admissible follows

from the fact that the set of left-annihilators of (12) contains
the set of annihilators of B and, consequently, col(f0, g0)
satisfies the differential equations describing B.

We prove the last statement. Consider any trajectories u, y.
From the implication 2) =⇒ 1), if JL(u, y) can be written
as in (13) with α satisfying 2) and 3), then col(u, y) ∈ B.
Conversely, consider any admissible L-jet JL(u, y) of the
system with continuously differentiable u. Since the data u, y
is sufficiently informative for identification, the set of left
annihilators of (12) at each time t′ is isomorphic with the set
of annihilators of B. This implies that JL(u, y) can be written
as (13) for some continuously differentiable α ∈ RM+1. The
proof is completed with the fact 1) =⇒ 2) shown above.

Remark 3: Proposition 2 allows to generate every (u, y) ∈
B with continuously differentiable u. A similar differentia-
bility requirement was made in [5], which was later relaxed
to include piecewise continuously differentiable inputs [5,
Corollary 1]. Such relaxation was possible because of the
availability of state measurements assumed in that work, and
will be investigated elsewhere for our input-output setting.

Remark 4: In Proposition 2 it is not necessary to assume
controllability of B as required in [5], [12], since we assume
that the data are sufficiently informative for identification; con-
trollability is needed if the data-based system representation
is obtained using a persistently exciting input.



The result in Proposition 2 provides a data-based character-
ization of continuous-time system trajectories alternative to
those in [5], [12]. The main difference with the results in
[12] is that we do not use orthogonal bases representations.
When using orthogonal bases in practice, one must truncate the
series representation; hence, such method inherently provides
only approximate expressions for the system trajectories. In-
stead, the mathematical representation of system trajectories
by means of (13) is exact, as is that obtained in [5]. The
most important difference between the results of [5] and
Proposition 2 is that the latter does not require measuring the
state as required in [5, Lemma 2]. However, it is important to
highlight that Proposition 2 is not an input-output version of
the results in [5]. Other important differences distinguish the
two methods, as we analyze in the following subsection.

D. Relations with the results in [5]
The developments in [5] make use of input-state represen-

tations of continuous-time systems

B :=

{
col(u, x) | d

dt
x = Ax+Bu

}
, (16)

and it is assumed that the state x ∈ Rn is directly measurable.
Under these assumptions, choosing L = ℓag(B) = 1, the

jet (11) associated with col(u, x) ∈ B is

J1(u, x) =
[
u⊤ u(1)⊤ x⊤ x(1)⊤]⊤ .

From Proposition 2, we derive the following result.
Proposition 3: Let col(u, x) be a trajectory of (16); define

the data matrix by 
H(u)

H
(
u(1)

)
H(x)

H
(
x(1)

)
 . (17)

Let α : R → RM+1 be continuously differentiable and define
a 2(m+ n)-dimensional function by

H(u)
H

(
u(1)

)
H(x)

H
(
x(1)

)
α . (18)

The following statements are equivalent:
1) (18) is an admissible 1-jet for (16);
2) The following equations hold:

d

dt
(H(u)α) = H(u(1))α and

d

dt
(H(x)α) = H(x(1))α ;

3) The following equations hold:

H(u)α(1) = 0 and H(x)α(1) = 0 .
The condition H(u)α(1) = 0 appearing in statement 3) of

Proposition 3 does not appear in the analogous result Lemma
2 of [5]. This occurs since in our setting we work with
jets consisting of the derivatives of x and u, while in [5]

trajectories are generated from the matrix

 H(u)
H(x)

H
(
x(1)

)
, where

data associated with the derivative of u are not present. The

additional condition H(u)α(1) = 0 appearing in Proposition 3
is required since in our setting we need to impose that the
derivative of H(u)α equals H(u(1))α.

Note that the results in [5] can only be used when the
internal state x is available, i.e., if y = x. However, when
this is the case the procedure in [5] can be applied without
the need to compute the derivative of x (compare Section II).
On the other hand, Proposition 2 can be applied regardless
of the availability of the state, although trajectory derivatives
must be approximated.

IV. THE DATA-BASED SIMULATION PROBLEM

The data-driven simulation problem consists of finding an
output trajectory corresponding to given initial conditions on
the external variables trajectories and a given input trajectory.

Using Proposition 2, this problem is solved as follows.
Proposition 4: Let col(u, y) ∈ B and assume that

(col(u, y),M, T ) is sufficiently informative for identification.
Consider an input trajectory ū at least L+1 times differentiable
with L ≥ ℓag(B). Moreover, suppose that the output initial
conditions ȳ(i)(0), i = 0, . . . , L, are available. Then, the
output trajectory y corresponding to these initial conditions
and the input ū is given by ȳ(t) = H(y(t))α(t), where
α : R → RM+1 is a solution to the differential equation

H(u)
...

H(u(L−1))
H(u(L))
H(y)

...
H(y(L−1))


α(1) = −



0
...
0

H(u(L+1))
0
...
0


α+



0
...
0

ū(L+1)

0
...
0


(19)

with initial conditions given by

H(u(0))
...

H(u(L)(0))
H(y(0))

...
H(y(L)(0))


α(0) =



ū(0)
...

ū(L)(0)
ȳ(0)

...
ȳ(L)(0)


. (20)

Proof: From Proposition 2, we know that there exists an
α such that the jet

[
ū⊤ . . . ū(L)⊤ ȳ⊤ . . . ȳ(L)⊤]⊤ is

given by (13). Moreover, from (15) we have that (13) is an
admissible L-jet for B if and only if

H(u)
...

H(u(L−1))
H(y)

...
H(y(L−1))


α(1) =



0
...
0
0
...
0


. (21)

Notice that (21) does not contain information about the input
ū. This is solved by noticing from (13) that ū(L) = H(u(L))α.
Taking the derivative on both sides of this equality, we get

ū(L+1) = H(u(L))α(1) +H(u(L+1))α .



Including this set of equations in (21), we obtain (19).
In (19) we have a system of implicit differential equations

which can be solved using standard software packages for the
numerical solution of differential equations.

In some cases the differential equations (19) can be refor-
mulated and solved more easily (see also Section IV-C in [5]).
Assume that the data matrix on the left-hand side of (19) has
full row rank (this assumption is discussed below); in such
case, it is easy to see that solving the differential equation

α(1) = −



H(u)
...

H(u(L−1))
H(u(L))
H(y)

...
H(y(L−1))



† 

0
...
0

H(u(L+1))
0
...
0


α

+



H(u)
...

H(u(L−1))
H(u(L))
H(y)

...
H(y(L−1))



† 

0
...
0

ū(L+1)

0
...
0


. (22)

provides also a solution of (19). This is an explicit system of
differential equations of the form α̇(t) = A(t)α(t)+ν(t) that
corresponds to a linear time-varying dynamical system and,
thus, can be solved using standard software packages.

The full row rank requirement for the data matrix[
H(u)⊤ · · · H(u(L))⊤ H(y)⊤ · · · H(y(L−1))⊤

]⊤
(23)

on the left-hand side of (19) is only needed to conveniently
solve (22) using well-known methods, although any solution
obtained directly from (19) is equally valid. Insights about
sufficient conditions to guarantee that (23) has full row rank
can be obtained from known results in the discrete-time case.
For example, it was shown in [1] that a discrete-time data
matrix, analogous to (23), can have full row rank only if
L = ℓag(B) and p ℓag(B) = n, where p is the number
of outputs and n is the dimension of a minimal state of
the system. Also in [1], a method to obtain full row rank
matrices when p ℓag(B) > n was developed. This method
relies on constructing non-minimal system states using input-
output information. Pursuing these ideas for the continuous-
time case is an interesting subject of future research.

Remark 5: An important practical aspect of the described
procedure is that performing these operations on digital
computers requires the use of samples of data, instead of
continuous-time signals. This allows for the numerical solution
of (19) or (22). Moreover, even when using trajectory samples,
our continuous-time system representation has computational
complexity advantages with respect to using the discrete-time
Willems lemma in [18]. We refer the reader to [5, Section IV-
C] for the details about these issues.

V. CONCLUSIONS

We presented a novel version of Willems’ fundamental
lemma for continuous-time systems and provided sufficient
and necessary conditions for the data-based representation of
system trajectories. The proposed approach overcomes the
drawbacks of the existing methods in [5] and [12], since it
fully describes exact system trajectories using only external
variables. We also showed how to use this system description
to solve the continuous-time data-driven simulation problem.

Future research directions include investigating the compu-
tation of non-minimal state variables for continuous-time sys-
tems and their application to data-based system representation.
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nomial bases for data-driven analysis and control of continuous-time
systems”, IEEE Trans. Aut. Contr., doi: 10.1109/TAC.2023.3321214.

[14] J. G. Rueda-Escobedo and J. Schiffer, “Data-driven internal model
control of second-order discrete Volterra systems”, Proc. 2020 IEEE
59th CDC, 2020, pp. 4572-4579.

[15] H. Unbehauen and G. P. Rao, “A review od identification in continuous-
time systems”, Annual Reviews in Control, vol. 22, pp. 145-171, 1998.

[16] H. J. van Waarde, C. De Persis, M. K. Çamlibel and P. Tesi, “Willems’
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