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three-dimensional reconstruction 
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via X-ray microfocus Computed 
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the skeletons of long-lived bamboo coral (Family Keratoisididae) are promising archives for deep-
water palaeoceanographic reconstructions as they can record environmental variation at sub-decadal 
resolution in locations where in-situ measurements lack temporal coverage. Yet, detailed three 
dimensional (3D) characterisations of bamboo coral skeletal architecture are not routinely available 
and non-destructive investigations into microscale variations in calcification are rare. Here, we provide 
high-resolution micro-focus computed tomography (µCt) data of skeletal density for two species of 
bamboo coral (Acanella arbuscula: 5 specimens, voxel size, 15 µm (central branch scans) and 50 µm 
(complete structure scan); Keratoisis sp.: 4 specimens, voxel size, 15 µm) collected from the Labrador 
Sea and Baffin Bay deep-water basins, Eastern Canadian Arctic. These data provide reference models 
useful for developing methods to assess structural integrity and other fine-scale complexities in 
many biological, geological, and industrial systems. this will be of wider value to those investigating 
structural composition, arrangement and/or composition of complex architecture within the fields and 
subdisciplines of biology, ecology, medicine, environmental geology, and structural engineering.

Background & Summary
Deep-water bamboo corals form complex structures that, as they grow, archive seasonally resolved oceano-
graphic information1. This information is important for efforts to reconstruct both recent and ancient envi-
ronmental conditions2. Stands of these corals also play an important role in mediating benthic biodiversity and 
functioning by enhancing the density of bioturbators and sediment nutrient release3. However, a combination of 
their extended longevity (>100 years4) and slow growth rates5 mean that populations are vulnerable to physical 
disturbance6 such that intact specimens have seldom been sampled and are not widely available. Yet, detailed 
information on coral skeletal architecture is vital for understanding calcification strategies and growth patterns7 
in response to changing environmental circumstance, and can be informative for marine planning and conser-
vation measures8.

Techniques used to investigate the microstructure of coral skeletons, such as scanning electron microscopy 
(SEM) and the grinding of sections, have relied on methods that require high workloads, strict operability and 
destructive preparation work9. Recent imaging methods, such as high-resolution micro-focus computed tomog-
raphy (µCT) removes these constraints and, as it allows quantitative analyses of coral skeletal microarchitec-
ture, is emerging as a growing area of scientific focus10,11 for contemporary investigations of reef-building coral 
skeletons12–16.

This data descriptor presents µCT scans of two species of deep-water bamboo coral (Acanella arbuscula 
and Keratoisis sp.) obtained from the Eastern Canadian Arctic. These μCT scans can provide reference models 
which may be of use in the development of novel structural designs, analysis routines and computer models for 
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fields such as ecology17 orthopaedics18, environmental geology and structural engineering19. The data may also 
be of particular interest to those investigating radial growth patterns and banding20, coral calcification and bio-
erosion21, impacts of climate change on marine calcifiers22,23, coral skeletal-canal networks24 and coral-to-bone 
substitute biocompatibility25. The data files are provided as a sequence of stacked tagged image file format (TIFF) 
images for each scan. These tiff stacks can be opened by a variety of software, including Fiji/ImageJ, which 
includes instructions for opening in the accompanying user manual26.

Methods
Five specimens of Acanella arbuscula and four specimens of Keratoisis sp. were collected from two deep-water 
stations (Davis Strait; 63° 20.7198′ N; 58° 11.7426′ W, 1311 m, 3.5 °C, salinity 34.9, 29th July 2021, Disko Fan; 67° 
57.9786′ N, 59° 29.6286′ W, 889 m, 1.1 °C, salinity 33.5, 2nd August 2021) using a remotely operated submers-
ible (Sub-Atlantic® Comanche, Forum Energy TechnologiesTM, USA) during the 2021 Amundsen expedition  
(15th July 2021 – 12th August 2021, CCGS Amundsen). These stations reside within the historically heavily 
fished27, and now Marine Conservation Areas (since 201728,29), of the Eastern Canadian Arctic. Permits to 
Fish for Scientific Purposes were obtained from Fisheries and Oceans Canada (Licence NL-6515-21; Licence 
S-21/22-1030-NU). A. arbuscula is considered an indicator of Vulnerable Marine Ecosystems30 whilst Keratoisis 
sp. has not, to date, been found anywhere else in the world31. Where possible, the corals were sampled at or close 
to the basal internode (near the base of the specimen at the sediment surface). Any external debris and residing 
fauna were carefully removed from the collected colonies using tweezers before each specimen was sealed in a 
plastic Ziplock bag and frozen at −20 °C. After 72 hours, the specimens were removed from the freezer and care-
fully cleaned with jets of re-circulated 0.45 µm membrane-filtered seawater (FSW) at 4 °C using a WaterPikTM 
before being placed back in −20 °C32. The cleaned skeleton portions were then sealed in new Ziplock plastic 
sample bags enclosed in Tupperware (Acanella arbuscula) or PVC vinyl tubing (Keratoisis sp.) before being 
transported to the University of Southampton, UK. Here, the specimens were re-housed within Perspex tubes, 
sealed with polystyrene bungs (Fig. 1), and brought to the μ-VIS X-ray Imaging Centre (www.muvis.org) for 
µCT scanning. Specifically, imaging took place at the centre’s 3D X-ray Histology (XRH) facility at the University 
Hospital Southampton33, which is a dedicated division for biomedical imaging.

Reconstruction of biogenic structures was achieved using a custom designed Nikon XT micro-focus com-
puted tomography housed within the 3D X-ray Histology (XRH) facility. This system is based on the XT H 
225 ST (Nikon Tring, UK). As the system used to acquire the scan data requires the corals to be held vertically, 
specimens were secured upright in custom-made Perspex holding tubes with polystyrene bungs to ensure sta-
bility and prevent movement during rotation (360 degrees) and scanning (Fig. 1). The scans (acquisition time:  
15 – 83 minutes; total projections: 2001 – 3501) were all performed at 80 KVp using a Molybdenum target with 
no filtration. The detector in the scanner is 2850 × 2850 pixels and was used un-binned. For the overview scans 
of A. arbuscula at 50 µm a 12 W power could be used but, for the higher resolution scans (15 µm; A. arbuscula 
and Keratoisis sp.) power was reduced to 6.9 W to allow for a sharper (smaller) X-ray focal spot (see Table 1 
for more scan parameters). Additionally, a tube of water was scanned at the same time as the samples under 
the same beam conditions to allow it to be used as a density phantom. The work this data was collected to sup-
port focuses on studying the phenotype (microanatomy), which does not require densitometric calibration. 
However, it was recognised that this may be valuable in the future so the raw data required to calibrate the 
scans was collected at the same time for futureproofing the datasets. As of now, the data-size limitations set by 
repositories dictate that access to these raw data files can only be obtained from the authors. All reconstructions 

Fig. 1 (a) Overview, (b) Close-up and (c) Radiograph of an Acanella arbuscula specimen inside a Perspex 
holding tube in the micro-focus computed tomography scanner housed within the 3D X-ray Histology (XRH) 
Biomedical Imaging Unit facility at University Hospital Southampton.
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were performed using CT Pro 3D 6.6 or 6.7 (Nikon Xtek, Tring UK). The reconstructions were performed using 
Nikon CT Pro/CT Agent with the beam hardening 4 preset. The software performs a linearisation operation 
of the beam hardening curves using a pre-determined correction profile. Preset 4 uses the following variables: 
CoefX4 = 0.0, CoefX3 = 0.0, CoefX2 = 0.8, CoefX1 = 0.2, CoefX0 = 0.0, Scale = 4.44. No additional ring filter or 
noise filter was specified.

The field of view for the desired resolution did not allow the full height of the Keratoisis sp. samples  
(11.1 – 24.5 cm) to be scanned in a single scan, so multiple overlapping vertical scan positions (n = 3) were 
used which were then concatenated after reconstruction. The chosen overlap was designed specifically to 
exclude cone-beam under-sampling artifacts that occur at the top and bottom of the reconstructed space 
from the concatenated volume. The concatenation was performed using a custom written macro for Fiji titled 
‘AutomaticConcatenationPlusIntensityEqualisation’ from the XRH toolbox34, which enables the user to man-
ually or automatically select the fusion slice on each volume. If textural information is sufficient and variation 
from slice to slice significant, the selection can be done automatically. If not, the user can select to bypass the 

Species Scan type Acquisition mode

Isotropic 
voxel edge 
size (µm)

Isotropic 
voxel edge 
size (µm)

Beam 
Energy 
(KVp)

X-ray 
Power (W)

Number of 
projections

Frames per 
projection

Exposure 
time per 
frame (ms)

Approx. total time 
per acquisition 
(min)

Acanella arbuscula
Complete structure Circular (360°) CT 50 50 80 12 2501 4 89 15

Central branch Circular (360°) CT 15 15 80 8.9 2001 4 125 17

Keratoisis sp. Complete structure Circular (360°) CT 15 15 80 8.9 3501 4 354 83

Table 1. Typical operating parameters during scans of Acanella arbuscula and Keratoisis sp. specimens in the 
custom designed Nikon XT micro-focus computed tomography housed within the 3D X-ray Histology (XRH) 
facility.

Fig. 2 A scaled transverse slice (voxel size, 15 µm) from the (a) Acanella arbuscula 8-bit coral volumes image 
set and (b) Keratoisis sp. 8-bit coral volumes image set showing rings of low density organic tissue (dark grey) 
and higher density calcium carbonate (light grey) at the node-internode connection, viewed in Fiji26 (v2.3.0). 
Each coral volume image set consists of numbered images that are sequentially stacked to create the three-
dimensional coral model.
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automatic slice selection and select the fusion slice manually. The script then crops the bottom volume between 
“slice one” and up to the “selected slice”, and top volume from “selected slice” up to “last slice”, and before stitch-
ing them into a single volume adjusts the contrast and brightness of the first image of the top volume to match 
that of the last image of the bottom volume. This ensures a smooth transition from one volume to the other 
and corrects the intensity variations caused by the heel effect. Intensity calibration is carried out by sampling 
regions of interest (ROIs) and fitting a straight line using mean intensity values. The parameters obtained from 
the calibration are applied to the “top” stack to linearly shift the intensity window of the top volume. The two 
stacks are subsequently concatenated into a single stack and a preview of the concatenated stack is generated by 
performing a radial reslice to allow the user to evaluate the “smoothness” of the transition. The process can then 
be repeated to concatenate a third volume onto of the resulted volume-1 + volume-2 volume, etc. Following 
concatenation on the 32-bit, the resulted volume it was converted to 8-bit in Fiji/ImageJ (v 1.53c26) to reduce the 
data size making it easier to process. These complete volumes were then exported as tiff stacks to enable upload 
into the Polar Data Centre35, as such, the macro does not need to be run a second time on the data files.

In the stacked images (Fig. 2) and three-dimensional volumes (Fig. 3), levels of grey scale reflect the level 
of X-ray attenuation caused by variation in bulk density. In this case, brighter pixels represent denser material 
(calcium carbonate) with darker pixels representing less dense material (organic tissue). To refine coral visualis-
ations, the three-dimensional image captured of the holding tube can be discarded during image processing to 
leave the skeletal volume (Fig. 3).

Data records
All data records (in addition to information regarding data structure, file names, and folder structure) listed in 
this section are available at the Polar Data Centre35. To override the default maximum number of displayed files 
(n = 1000) in each sub-directory, add the following string “&max = N” to the end of the repository URL, where 
“N” is the number of files you would like to access. Computed tomography three-dimensional 8-bit volumes have 

Fig. 3 Representative example of reconstructed three-dimensional coral model for Acanella arbuscula created 
from the stacked 8-bit coral volumes images in Dragonfly (v2022.1); approximate dimensions 89 × 85 × 142 
(XYZ) mm.
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been converted to stacked tagged image file format (TIFF) images with associated dimension data (image width, 
image breadth, stack height) and scan information presented in portable document format reports (pdfs) to 
enable access by multiple processing programs. There are five sets of images for A. arbuscula complete structure 
(n = 5), five sets of images for A. arbuscula central branch (n = 5) and 4 sets of images for Keratoisis sp. (n = 4).

technical Validation
µ-Ct calibration. Regular quality assurance inspections are carried out on the µ-CT scanner to verify 
its metrological and geometrical (alignments) accuracy for conducting the scans. The geometry of source to 
object and source to detector distances are verified whenever there is any significant physical interaction with 
the source such as re-alignment, change of filament, or source anode change. This calibration process involves 
scanning a specially designed phantom known as an ‘hourglass’36, which consists of three pairs of high-sphericity 
spheres. The sphere sizes are as follows: two spheres with a diameter of 3.000 mm, two spheres with a diameter of 
6.000 mm, and two spheres with a diameter of 9.525 mm, and each sphere is kept in contact with its size-coun-
terpart. By using this phantom, it becomes possible to accurately determine a known distance, specifically the 
centre-to-centre distance of the spheres, in a threshold-independent manner. If the measured distance deviates 
beyond the acceptable limits of metrological accuracy, the system’s calibration parameters are adjusted to ensure 
agreement between the measured distance and the actual distance.

Usage Notes
The software options suitable for analysing the data files range from open-source suites, such as Fiji/ImageJ26, 
ITK Snap37 or HOROS® (The Horos Project) to commercial software suites such as VGSTUDIO MAX (Volume 
Graphics), Avizo® (Thermo Fisher Scientific), Simpleware (Synopsys Inc), OsyriX® (Pixmeo), or Dragonfly 
(Object Research Systems). For instructions on how to open the files please refer to the user manual of the software 
chosen. The toolbox containing the custom written macro “AutomaticConcatenationPlusIntensityEqualisation”  
has a file which summarises the functionality of each script and gives an overview of the options available for 
each script34.

Code availability
The code used for the concatenation of scans is available as part of the XRH toolbox at https://doi.org/10.5281/
zenodo.1114875234.

Concatenation code description
A high-level overview of the custom concatenation code is given below. This can be used as template to repro-

duce the code in any language the reader is more familiar with.

Start
1. Prompt user to select the “BOTTOM” stack and store its title and bit depth.
2. Prompt user to select the “TOP” stack and store its title and bit depth.
3. Set measurements for analysis.
4. Create a dialog box to configure options.
5. Retrieve selected options from the dialog box.
6. If bit depths are different, display error message and exit.
7. If manual XY translation option is selected:

a. Set the measurement tool to a point.
b. Prompt the user to select a point of alignment in the “btm” stack and measure its coordinates.
c. Prompt the user to select a point of alignment in the “top” stack and measure its coordinates.
d. Calculate the translation values and convert them to pixel units.
e. Translate the “top” stack using the calculated translation values.

8. If automatic slice selection option is selected:
a. Prompt user to navigate to fusion point in “btm” stack.
b. Create reference image from selected slice.
c. Normalize reference image.
d. Normalize each slice in “top” stack.
e. Subtract reference image from “top” stack.
f. Calculate standard deviation for each slice.
g. Find slice with minimum standard deviation.

9. If manual slice selection option is selected:
a.  Prompt user to navigate to fusion point on both “top” and “bottom” volumes and retrieve the slice numbers.

10.  Create duplicates of “btm” and “top” stacks by cropping btm volume between “slice 1” up to the “selected slice”, 
and “top” volume from “selected slice” up to “last slice”

11. Perform intensity calibration by sampling ROIs and fitting a straight line.
12. Apply intensity calibration parameters to “top” stack.
13. Concatenate cropped “btm” and cropped & calibrated “top” stacks into single stack.
14. Perform preview concatenation by creating radial reslice.

End
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