
A position-and-form-based distance and its
application in geographical analysis

May 22, 2024

Abstract

Position and form are basis characterizations of objects in space. However, in
the distance-based geographical analysis of objects, conceptualization of distance
is usually based on some representative point like centroid of objects and there-
fore suffers a significant loss of information associated with their forms. In this
paper, we propose a position-and-from-based distance to explicitly take into these
basis characterizations. For substantiation, its significance is demonstrated with
respect to methodology and application. In methodology, we show the form ef-
fect on existing geographical analyses based on only position-based distance and
show all point-distance-based analyses and relevant methods could be generalized
for study of objects with forms, using the pattern analysis by L statistic as an
example. In application, we demonstrate the proposed distance could successfully
solve the matching problem between the same object in the OpenStreetMap and
the correspondent standard reference data in a small region (to show where it is).
Such matching problem cannot be perfectly handled by the traditional methods
utilizing incomplete position and form information. The newly-proposed distance
is applicable to more real-life cases when the object forms have to be considered.
The proposed position-and-form-based distance and the associated methods could
give us a new perspective on the conceptualization of distance. Actually, it can
also be further extended to include other object attributes. Therefore, it is an ideal
notion of distance that can fully reveal the multi-facet nature of geographical re-
lations. The proposed research will advance the frontier of theoretical and applied
research in geography where distance plays an important role. (248/250 words)

1 Instruction

Space in general and distance in particular are the two most central concepts in geography
(Gatrell, 1983). To conceptualize space, it essentially needs some objects composing a
set. Then, distance can be defined as a relation, usually qualified as a numeric metric,
between a pair of objects that satisfies three conditions, namely i) positive definiteness, ii)
symmetry, and iii) triangle inequality. In a more general sense, distance can be considered
as a measure of dissimilarity of objects. A set with a defined relation, such as distance,
between its elements, like objects, creates a space (Gatrell, 1983). Geographical analysis
often involves the distance between objects in space. For example, examinations of the
spatial pattern of objects and their relationships, particularly those based on the notion
of distance, have been the common concern in geography (Boots and Getis, 1988). The
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distance-based methods, e.g., G function, F function, K function and the corresponding L
statistic (Baddeley et al., 2015; Boots and Getis, 1988; Diggle, 2003), have been powerful
tools for the examination of spatial patterns and relationships. Spatial statistics in general
and spatial auto-correlation in particular, including variogram (Cressie, 2015), Moran’s
I (Moran, 1950), and Geary’s C (Geary, 1954), often include distance as a key factor in
the analysis (see a special issue of Geographical Analysis (Griffith, 2009)). The famous
and yet controversial ”first law of geography” (Tobler, 1970) is a living testimony to the
importance of distance and spatial auto-correlation, in our understanding of relationships
among objects in space. It has generated tremendous research interest and debates in
both theory and applications since its inception (see a special issue of the Annals of the
Association of American Geographers ”On Tobler’s First Law of Geography” in 2004).
In geographically weighted regression (GWR), distance and spatial auto-correlation are
again specifically taken into consideration in the estimation of regression coefficients when
local relationships exist (Fotheringham et al., 1998).

One of the most common forms of geographical objects is point in space because any
objects can be abstracted as points given a sufficiently large scale of observation (Boots
and Getis, 1988). Consequently, distance has traditionally been specified between two
points. Although different definitions of distance have been proposed in geography over
the years, such as the time distance (Clark, 1977; Muller, 1978), economic distance (Lowe
and Moryadas, 1975), cognitive distance (Golledge et al., 1969; Lowrey, 1973), and social
distance (Hall, 1959, 1966; Laumann, 1966, 1973), the Minkowski p-metrics, especially the
Euclidean distance for p = 2, is the most common distance used in geographical studies
(Miller and Wentz, 2003). However, if the scale of observation is not large sufficiently,
spatial objects may only be generally conceptualized lines and areal units/zones/regions/-
polygons of various forms (used interchangeably in our discussion) (Boots and Getis, 1988;
Gatrell, 1983; Lloyd, 2014). Unfortunately, the specification of distance in geography
has little taken into consideration the exact forms of the objects. By the argument
of Alexander (1964), the form of an object actually affects its function. City size and
shape, for example, is a tell-tale story about the function of a city, e.g., infrastructure
development and public service (Batty and Longley, 1994; Batty, 2007, 2008, 2013). Also,
it is argued that the form and function of buildings are closely related (Nasar et al., 2005).
Therefore, the effect of forms of the objects (points, lines and polygons) on the distance
between them at a certain observational scale needs to be investigated. If the impact
of form cannot be ignored at a given scale of observation, we have to incorporate object
forms into consideration when we study the distance between them. As the matter of face,
the study of such form-related distance is also a central research problem in computer
vision (Loncaric, 1998; Veltkamp and Hagedoorn, 2001).

In particular, distance between a pair of objects with at least one not a point is often
transformed into the distance between points because of the simplicity in calculation.
It can be treated as a generalization of the point distance, exemplified by the distance
between centroids (Miller and Wentz, 2003), the minimum value of distance between
turning points of boundaries of two areal objects (Arkin et al., 1989; Latecki and Lakam-
per, 2000), difference in the two shortest inner distances between two landmark points in
each areal unit (Ling and Jacobs, 2007), and the minimum (Peuquet, 1992) or maximum
distance (Okabe and Miller, 1996) between a pair of points separately belonging to two
objects. Taking the whole object into consideration, the distance between two lines has
been measured by the epsilon band method (Skidmore and Turner, 1992), the Hausdorff
method (Abbas et al., 1995), the simple buffer method (Goodchild and Hunter, 1997),
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and the double buffer method (Tveite, 1999). Distance between areal units can be fur-
ther specified into two general types: The geometry-based distance, if only areal shapes
are considered; and the intensity-based distance, if there is extra information inside the
areal units (Veltkamp and Hagedoorn, 2001). In terms of the geometry-based distance, it
can be defined on the basis of the time series extracted from the boundaries of the areal
units. In the extracted time series, the Fourier spectrum (Zahn and Roskies, 1972), bend-
ing energy (Young et al., 1974), and dynamics (Kashyap and Chellappa, 1981) have been
employed to define the distance. In addition, syntactic analysis (Fu, 1974), multi-scale
feature (Witkin, 1984), approximation (Pavlidis, 2012), and decomposition (Liu and Sri-
nath, 1990) of boundaries can also enable us to quantify the distance in the shape-based
sense. Utilizing the whole areas, it has been introduced into the study of area distance
the Fréchet (Alt and Godau, 1995) and Hausdorff (Huttenlocher et al., 1993) distance,
shape matrices method (Davis, 1986), and the overlap area (Mount et al., 1996) and sym-
metric difference (Alt et al., 1996). Involving the intensity in areas, the area distance can
be calculated by the moment-based (Prokop and Reeves, 1992), morphological (Haralick
et al., 1987), and fractal method (Pentland, 1984).

Although there are quite a number of classical definitions on distance between lines or
areas, the point distance still plays an important role in geographical studies, especially
in the calculation of distance in spatial analysis and geographic information system (GIS)
which has been seemingly oblivious to the potential weakness in our negligence of the
impact of form on distance-based studies (Miller and Wentz, 2003). This might be par-
tially due to our lack of theories and methods for measuring and analyzing geographical
relationships with respect to geometric forms, particularly in relation to the notion of
distance (Miller and Wentz, 2003).

In this study, we explicitly incorporate form into our notion of distance. To facilitate
our discussion, we will limit forms to the two-dimensional space, the most common di-
mension in geographical studies. With this new notion of distance, we intend to show
the effect of the object form and to demonstrate the applicability of the proposed notion.
This paper is then organized as follows: In Section 2 a new notion of distance explicitly
incorporating the object form is proposed at conceptual level; In Section 3 the effect of
the object form on the traditional distance-based geographical analysis is shown by a
simple pattern analysis of a generated example using the L statistic. The feasibility of
generalization of these analyses and relevant methods from points to forms is also demon-
strated in this section; In Section 4 the applicability of the proposed distance notion is
justified by showing how to solve a real-life problem in a VGI study; In Section 5 the
paper ends with a summary and a bright outlook for further generalizations and more
possible applications of the proposed distance notion with the object form incorporated.

2 Position-and-Form Distance

As argued, the most basic characterization of an object is its position and form. There-
fore, a position-and-form-based distance for geographical analysis should satisfy some
conditions under which relationships of objects in space can be appropriately character-
ized. The position and form are the most basic dimensions of an object to which further
dimensions/attributes can be augmented. It is noteworthy that a point in space takes on
a value of zero for its form because it has no geometric structures.

To simplify our investigation and explicate the effects, we target at objects with only
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position and form in our analysis, i.e., no other attributes about an object will be involved
in the consideration of the notion of the position-and-form-based distance. However, it
should be noted that the proposed distance concept can be extended to the general
situation in which objects are multi-facet, characterized by other attributes. In other
words, we specify distance with respect to only these two attributes in our analysis, i.e.
the position-based and form-based distance, but with possibility of further generalization
for more applicable to more general cases. With this premise, the position-and-form-based
distance should be defined with respect to the combination of these two basic attributes
with which their individual effects can also be separately examined.

Referring to Fig. 1, for illustration, we can calculate the position-and-form-based
distance between two given objects X1 and X2 as below. Step I, the centroids of objects
X1 and X2, CX1 and CX2 respectively, are first extracted to account for the information
about their positions. Although different definitions of distance have been proposed in
geography over the years, such as the time distance (Clark, 1977; Muller, 1978), economic
distance (Lowe and Moryadas, 1975), cognitive distance (Golledge et al., 1969; Lowrey,
1973), and social distance (Hall, 1959, 1966; Laumann, 1966, 1973), the Minkowski p-
metrics, especially the Euclidean distance for p = 2, is the most common distance used
in geographical studies (Miller and Wentz, 2003). Therefore, the Minkowski p-metric,
particularly the Euclidean distance, between them is used to measure distance between
two centroids. This is the first component: the position-based distance dp(X1, X2).

With respect to the form-based distance, it should also strictly satisfy conditions of
distance i)–iii) in the metric space, i.e., positive definiteness, symmetry, and triangle
inequality, for the purpose of combination with dp(X1, X2). To exclude the duplicate
consideration of the effect of position when form is considered, two objects are shifted to
let their centroids CX1 and CX2 coincide and then the form-based distance is calculated
in Step II in Fig. 1.

In addition to conditions i)–iii), the form-based distance, df (X1, X2), is expected to
satisfy the following conditions:

iv) df (X1, X2) should be a unified metric suitable for any forms including points, lines,
and polygons;

v) df (X1, X2) should be a metric directly qualifying the difference between two forms
without transforming them to other type of forms, such as from polygons to lines
or points;

vi) df (X1, X2) should remain the same if the relative relationship does not change, e.g.,
both of them simultaneously rotate by a certain degree or distorted in the same
manner;

vii) df (X1, X2) should be sensitive to any slight changes in forms of the objects.

It is noteworthy that condition vii), stipulating sensitivity, is in contrast to the robustness
to noise. It is understandable because distinguishing noise from the essential difference in
form is very difficult. To capture any slight change in the form-based distance, sensitivity
instead of robustness should be a more appropriate expected condition. If some changes
can be certainly attributed to noise, we can then set a threshold to filter these noise-caused
changes out. On the basis of conditions i)–vii), we select the Hausdorff distance, which
has been demonstrated as an effective distance to capture any slight difference between
two objects in arbitrary forms (Feder, 1988; Falconer, 1990), as an appropriate form-based

4



distance. We would like to emphasize here that we select the Huasdorff distance because
it is an appropriate distance satisfying the seven conditions but not implying that it is the
best one of all form distances. As illustrated in Step III in Fig. 1, the Hausdorff distance
can be simply obtained as: first create buffers of the object X1 and mark the minimum
buffer size δX1 for those that completely cover the object X2; and δX2 can be similarly
obtained; then the Hausdorff distance equals max{δX1 , δX2} and is the to be employed
form-based distance df (X1, X2).

After obtaining the position-based dp(X1, X2) and the form-based distance df (X1, X2),
it is necessary to combine them to construct the position-and-form-based distance d(X1, X2).
Leung et al. (2013) proposed an effective way to combine a position-based distance and
another attribute-based distance to form an intrinsic distance for the study of spatial
relationships. They prove that the combined measure is also a metric distance in the
strict sense, i.e., satisfying the distance conditions i)–iii). Along similar line of reason-
ing, we can define the position-and-form-based distance d(X1, X2) in the combination of
dp(X1, X2) and df (X1, X2) as

d(X1, X2) = cdp(X1, X2) + ecdf (X1,X2) − 1, (1)

with an empirical penalty parameter c, referring to Step IV in Fig. 1. If df (X1, X2) is
short, then d(X1, X2) is approximately cdp(X1, X2) + cdf (X1, X2). We re-emphasize in
here that d(X1, X2) is a distance in the strict sense, i.e., satisfying the distance conditions
i)–iii). With such combination of the position and form distance, we can examine the
composite effect of position and form on a relationship, and we can individually examine
the effect of each component also. Similarly, more attributes of an object can be easily
incorporated into the position-and-form-based distance by adding one more attribute
distance da(X1, X2), defined as the difference in the corresponding attribute, to d(X1, X2).
And more detailed information about the combination of two different distances can be
referred to Leung et al. (2013).

3 Effect of the Object Form

Given the positive-definite property of df (X1, X2), it is easy to observe the effect of
the form-based distance on increasing d(X1, X2). In this section, we examine the form
effect on one of the fundamental distance-based methods in geographical analysis, i.e., L
statistic. As an illustrative example, we employ the L statistic to investigate the form
effect on the spatial pattern consisted of lines, the most simple example of forms.

Point pattern analysis is a basic research topic in geographical analysis (Boots and
Getis, 1988). Three basic point patterns are usually considered, namely the complete
spatial randomness (CSR), clustered, and regular pattern (Boots and Getis, 1988). The
CSR, a result of a homogeneous Poisson point process, is taken as a benchmark. Points
that distribute together tend to take on the clustered pattern, whereas those which are
more spread out tend to take on a regular pattern. If points follow the CSR pattern like
the example generated in a area [0, 1] × [0, 1] in R2 as exhibited in left panel of Fig. 2,
the expected number of point-to-point distance less than h divided by the intensity is

K(h) = πh2, and the corresponding L(h) equals
√
K(h)/π − h with a value zero (Boots

and Getis, 1988; Lloyd, 2014). The clustered and regular pattern should respectively have
L statistic significantly larger and smaller than that of the CSR pattern. The confidence
interval for the significance test can be determined by the Monte Carlo experiment with
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surrogates generated by the same homogeneous Poisson point process. For each h, the
corresponding quantiles of L(h) determines the confidence interval. In this study, we use
the 95% confidence interval, represented by the red dashed envelope in Fig. 3. L(h) of
the generated points is around zero and always locate in the confidence interval for all
h ∈ [0, 0.4] (Fig. 3), indicative of a consistent result, i.e., not significantly different from
the CSR point patterns.

Then, a line with length 1/32 is introduced for each point with the line centroid
locating at the exact position of the corresponding point and the line orientation inde-
pendently randomly assigned (right panel of Fig. 2). We replace the centroid-to-centroid
distance by the position-and-form-based distance with c = 1 and recalculate the corre-
sponding L(h). To set c at 1, we can examine how the form-based distance impacts the
position-and-form-based distance by directly comparing to the position-based distance.
It can be observed that the recalculated L(h) now falls into the 95% confidence interval
of the CSR point pattern, i.e., in the red dashed envelop in Fig. 3, only if h ≥ h0 ≈ 0.17.
Analogous to the CSR point pattern, it is reasonable to consider the patterns of lines
with their centroids and orientations independently and randomly generated as CSR. In
this sense, the conclusion with respect to the line pattern based on the centroid pattern
analysis would be misleading. Furthermore, it seems that the difference between L(h)
on the basis of centroid distance and position-and-form-based distance almost unvaries
if h > 0.1 (the estimated trend is only -0.00049). As detailized in Fig. 4, such difference
indeed unchanges if h > 0.1 with the mean value about -0.01. Therefore, we define this
mean value an effect indicator to quantify the effect of lines on the pattern analysis. In
another sense, if we investigate the pattern based only on the position information, then
this effect indicator should be added to correct L(h) for form pattern.

Here, we would like to highlight the importance of h0 for the pattern analysis using
L statistic that h0 can actually indicate when the effect of lines can be ignored. Essen-
tially, h0 give a measure of sufficient large scale of observation, over which lines could be
extracted as points for the pattern analysis without drawing misleading conclusions. For
scales below h0, the effect of lines has to be taken into consideration. Therefore, the new
confidence interval for the CSR line patterns should be determined by L(h) based on the
position-and-form-based distance. In Fig. 4, this new confidence interval is represented
by a blue dashed envelope, based on which the consistent conclusion on the generated line
pattern could be drawn for all scales h, i.e., not significantly different from the CSR line
patterns. In addition, the mean L(h) of these generated CSR line patterns is calculated,
which should correspond to the zero-value horizontal line, indicative of the expected L(h)
of a prefect CSR pattern. As presented in Fig. 3, the mean L(h) for the CSR line pattern
is always below that for the CSR point pattern.

In this section, we demonstrate the effect of the object form on traditional distance-
based geographical analysis only by a simple case, i.e., the pattern analysis using L
statistic. Similarly, the effect of form on all other distance-based methods and analyses for
points, such as G function, F function, K function, and spatial auto-correlation analysis
including Moran’s I, Geary’s C, and variogram, could be investigated. Furthermore, all
these distance-based methods and analyses can be generalized for forms, simply replacing
the point distance by our proposed position-and-form distance. In addition, GWR is a
useful tool for exploring the local variation of spatial structures over space (Fotheringham
et al., 1998; Leung et al., 2000a,b; Leung, 2010). In case studies, GWR is often applied to
some regional data. However, the weight is usually determined according to the centroid-
to-centroid distance. It is of interest to explore how the form can impact on the GWR
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local coefficients under the proposed position-and-form-based distance.

4 Volunteered Geographic Information

With the development of private mobile sensors and Web 2.0, the geographic researchers
are more interested in an alternative source of data, i.e., Volunteered Geographic Infor-
mation (VGI), because of its free and enrich content (Goodchild, 2007). However, the
mechanism of VGI also raises the researchers’ concern about the data quality, because
no certification or expert knowledge of the data contributor is required (Flanagin and
Metzger, 2008; Kounadi, 2009; Goodchild and Li, 2012).

As one of the most representative projects of VGI, OpenStreetMap (OSM) has been
developed to a free and online editable map of the world in the past decade, where the
researchers could freely access and download the data under an open data licence (Haklay
and Weber, 2008). Meanwhile, many researchers are interested in assessment of the OSM
data quality from the extrinsic and intrinsic aspect (Haklay et al., 2010; Senaratne et al.,
2017). For the extrinsic quality assessment, the researchers always compare the OSM
dataset with a standard reference dataset and in such cases, map matching is an essential
pre-process for data comparison. The majority of the currently existing literature focus on
the network matching (e.g. road network), whereas there are only few approaches for the
area objects matching (Ruiz-Lend́ınez et al., 2017). Huh et al. (2013) developed a method
to detect the point pairs corresponding to polygon object pairs, using a string matching
method based on a confidence region model of a line segment. Fan et al. (2014) defined the
correspondence among building footprints of OSM and ATKIS existent if the intersected
area goes over 30 percent of the minimum footprints area. However, these methods cannot
produce a high accurate result in the complicated high-density building region, because
the OSM building footprints data is generally produced by manually digitalizing the Bing
map images. Such digitalization may introduce the the distortion-caused random offset
to the OSM data. In these cases, the overlapping area is inconvincible to accurately
define the correspondence.

In this section, the proposed distance is introduced to the matching case and the
matching result will be compared with the overlapping area method result. The experi-
ment data is a subset of OSM building data in kowloon (the highlight region in Fig. 5),
and the iC1000 Digital Land Boundary Map (Hong Kong SAR Authority digital map) is
introduced as reference data for comparsion. For the simplicity, the OSM data and the
reference data will be termed as OSM building and STD buidling repectively, and their
centroid of gravity will be termed as OSM centroid and STD centroid repectively. Fig. 6
is the details of the experiment region, and the matching pair is manually labeled as Oi

and Si firstly to show the true correspondence.
Fig. 6 shows a general matching error when we employ the matching method proposed

by Fan et al. (2014). O0,O1,O2,O3 and O7 have the similar shape with S0, S1, S2, S3 and
S7 respectively, but there are some different offsets between each corresponding pair. Such
offset decreases their overlapping below the corresponding standard, i.e., the defined 30
percent of the minimum footprint area. However, each of these pairs of footprints obvi-
ously represent the same ground truth. Besides, O6 should be matched to S6 according
to the position and shape. However, it has a bigger intersection with S7 thus would be
matched to S7.

As aforementioned, position and form are the most characterisation of objects in
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space. We attempt to correctly match the OSM footprints to their correspondent standard
reference objects based on the position and form information. On one hand, we utilize
their position-based information for match of the OSM footprints. The matching result
is almost prefect expect that O6 is miss-matched to S7 (see Tab. 1). On the other hand,
we use the form-form distance. Each OSM footprint matches to the correct standard
reference footprint except O2 and O12, both of them matching to the wrong standard
reference footprints S1 and S8 respectively. In addition, all of O1,O3,O10 and O11 match
to more than one standard reference footprints, but the true correspondent reference
footprint is included. As the matter of fact, the overlapping information is also determined
by their position and form but may be too sensitive to offset of the OSM objects. However,
even if the overlapping area is too small to meet the matching standard, the correctly
matched pairs of the OSM and STD object may still have the small distance showing
their similarity larger than other pairs.

The situation in the case asks to consider the matching from position and form to-
gether because the position-position distance could provides correct matching pair for the
matching error in the form-form distance and vice versa. For example, position-based
information miss-match O6 to S7, but form-based information match O6 to S6 correctly.
In this way, the position-based and form-based information could be the additional in-
formation to each other for a more accurate matching result. It means the position-and-
form distance proposed in the paper could provides a useful measure to characterize the
distance between each pair of the footprints in OSM building and STD building. In the
proposed distance, the paremeter c is defined as 0.1 because the position imformation and
form information are both important to characterize the distance in this case. Actually,
Tab. 1 shows that the position-and-form distance could capture all the correspondence
in Fig. 6 correctly.

5 Conclusions

Geographical analysis often involves the distance between objects in space. The most
basic characterization of an object is its position and form. Distance between objects is
a typical relation in the metric space or a measure of dissimilarity of objects. Based on
the positions of two objects, we can measure their distance. Such distance is essentially a
position-based measure of how far away one object is from the other. Conventionally, the
representative point of an object is its centroid. Distance between the centroids has been
extensively used to analyze spatial relationships of objects according to their positions in
space. However, such distance measure does not consider the form of an object which is
also a basic characterization of an object in space and usually bears significant information
about its function. Therefore, distance based solely on the positions of the representative
points of objects suffers from a significant loss of information associated with their forms.
Hence, an ideal distance for distance-based geographical analysis is the one that takes
both position and form of the objects as its constituent components. This is exactly what
the existing notions of distance fail to capture. Without considering both position and
form, the relationships that we are unravelling may be incomplete or dubious.

In this study, we have proposed a notion of distance explicitly incorporating infor-
mation about both position and form of objects. At conceptual level, we formulate a
position-and-form-based distance combined the position-distance and form-distance as
its constituent components. With such proposed distance notion, we can examine the
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composite and individual effect of position and form on a relationship. We conceptually
demonstrate the correctness of the position-and-form-based distance. Similarly, the ob-
ject attributes other than form could be further integrated into proposed distance notion.

In methodology, we show the form effect on existing geographical analyses based on
only position-based distance and how to generalize these analyses and relevant methods
for study of objects with forms based on the proposed position-and-form-based distance,
using the pattern analysis by L statistic as an example.

In application, we utilize the position-and-form-based distance to perfectly solve a
matching problem of the OSM objects to the STD objects, which cannot be handled by
the traditional methods based on the overlapping areas. Actually, the position-and-form-
based distance is a potential tool for more real-life case studies. For example, the variation
in economic attributes such as the gross domestic product of cities an important research
topic (Huang and Leung, 2002). Although each city is an areal unit surrounded by its
administrative boundary, the distance employed to determine the regression coefficients
in GWR is usually between the city centroids (Huang and Leung, 2002). It is of interest
to explore the dependence of interested variables on the form of cities can impact on the
GWR local coefficients using the proposed position-and-form-based distance. Another
research topic is the relationship between the form and function for cities and buildings,
which has been recognized in relevant fields (Alexander, 1964; Batty and Longley, 1994;
Batty, 2007, 2008, 2013; Nasar et al., 2005). It is possible to investigate whether the
similarity in function well corresponds to the similarity in form measured by the form-
based distance. In addition, a road network can be treated as the skeleton of a city.
Its spatial structure is closely related to its service efficiency. Essentially, the spatial
structure is based on the form of lines. In the dimension of space, spatial analyses based
on the position-and-form-based distance between roads can provide a new perspective to
connect form and function. In terms of time, the evaluation of a road network can be
done by detecting it changes along with time using the position-and-form-based distance.

In summary, the proposed position-and-form-based distance and the associated meth-
ods could give us a new perspective on the conceptualization of distance. Actually, it can
also be further extended to include other object attributes into the measure. Therefore,
it is an ideal notion of distance that can fully reveal the multi-facet nature of geographi-
cal relations. The proposed research will advance the frontier of theoretical and applied
research in geography where distance plays an important role.
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Fig 1: Illustrative procedure for the calculation of the position-and-form-based distance
between two objects X1 and X2.

Fig 2: Illustrative example of a point pattern (left panel) and the corresponding line
pattern with their centroids locating on the points (right panel).

Fig 3: Illustrative example to show the form effect on the pattern analysis using lines as
an example.

Fig 4: Effect of the form of lines on the pattern analysis with respect to L statistic quan-
tified by an effect indicator about -0.01, defined as the mean difference between L(h)
on the basis of centroid-to-centroid distance and position-and-form-based distance
for h > 0.1.

Fig 5: The position of experiment data in Kowloon OSM footprints data where the
buildings have been highlighted.

Fig 6: The subset of OSM building footprints data (OSM building) and the correspon-
dent standard reference data (STD building) with their related centroid of gravity,
OSM centroid and STD centroid.

14



Step I 
𝑋1 𝑋2 

𝐶𝑋1 𝐶𝑋2 

Step II 

𝛿𝑋1  

Step III 

𝛿𝑥2  

𝑑𝑝 𝑋1,𝑋2  = 𝑑𝑀(𝐶𝑋1 ,𝐶𝑋2) 

𝑑𝑓 𝑋1,𝑋2 =  max {𝛿𝑋1 , 𝛿𝑋2}  

𝑑 𝑋1,𝑋2  = 𝑐𝑑𝑝 𝑋1,𝑋2 + 𝑒𝑐𝑑𝑓(𝑋1,𝑋2) − 1 

Step IV 

Figure 1:

Figure 2:

15



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

h

L
(h
)
=

√

K
(h
)/
π
−

h

 

 
Mean L(h) for CSR point pattern
Theoretical L(h)=0
95% confidence interval for CSR point attern
L(h) for the generated CSR point pattern
L(h) for the generated CSR point pattern with random lines
Mean L(h) for CSR point pattern with random lines
95% confidence interval for CSR point pattern with random lines

h
0

Difference
due to the
effect of
form

Figure 3:

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

h

e
ff

e
c
t 

o
f 

th
e

 o
b

je
c
t 

fo
rm

slope = −0.00049

Figure 4:

16



0 1,000 2,000500 M

Legend

OSM building

STD building

Figure 5:

S2

S5

S7
S6

S4

S1

S0 S9

S3

S8

S11

S12

S10

O9

O8

O7O6

O5

O4

O3

O2

O1

O0

O12

O11

O10

0 10 205 M

Legend

OSM centroid

STD centroid

OSM building

STD building

Figure 6:

17



Table 1: The matching results of three kinds of distance, the position-position distance,
the form-form distance and the position-form distance.(Note: the bold number is the
minimum value of each row which means the OSM object on the row is closest to the
STD object on the column of the minimum value based on the specific distance.)

The position-position distance

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

O0 9.02 44.97 35.55 26.55 28.49 44.38 29.31 32.80 39.30 58.68 50.70 64.73 59.55
O1 45.98 7.27 12.80 22.05 23.43 15.92 45.05 41.03 33.27 20.79 30.23 34.04 16.24
O2 35.85 12.28 7.64 13.19 17.20 18.43 38.40 35.51 30.40 28.63 31.87 39.76 25.87
O3 25.68 21.34 12.57 8.09 16.07 25.37 33.78 32.57 31.06 37.75 36.63 47.21 35.81
O4 38.03 30.44 27.15 27.68 3.82 15.21 20.71 16.39 11.34 29.86 19.29 33.34 39.90
O5 51.44 25.91 28.31 33.97 18.00 2.96 34.94 29.21 18.34 14.05 11.58 19.28 29.26
O6 44.68 52.65 48.32 46.07 24.22 35.04 6.56 5.92 16.30 47.86 29.54 44.98 61.75
O7 49.11 48.82 46.08 45.74 21.98 28.79 13.71 8.03 9.37 40.38 21.15 36.32 56.18
O8 53.52 43.69 42.99 44.92 21.20 21.47 22.73 16.27 6.63 31.04 11.09 26.05 48.80
O9 64.00 28.87 35.26 43.37 31.90 15.27 48.61 42.59 31.01 2.22 19.14 12.67 24.37
O10 61.26 42.28 44.13 48.39 26.94 19.20 33.65 27.15 15.95 23.33 4.92 15.23 43.89
O11 72.37 43.70 48.64 55.32 37.93 24.23 48.37 41.87 30.23 17.95 16.40 3.06 40.03
O12 57.56 12.96 22.63 32.71 34.38 22.28 55.58 50.92 41.61 18.06 34.78 32.95 5.22

The form-form distance

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

O0 2.13 3.24 3.56 3.30 7.49 2.31 3.87 4.37 2.39 4.54 4.34 3.49 4.80
O1 3.16 1.03 1.29 1.05 8.43 3.04 2.87 1.56 3.54 5.99 3.90 3.77 5.92
O2 3.30 1.11 1.36 1.12 8.20 3.00 3.04 1.81 3.26 5.52 3.51 3.46 5.54
O3 3.30 1.30 1.39 1.32 8.21 2.98 3.00 2.05 3.32 6.65 3.96 4.37 6.69
O4 7.55 7.22 7.28 7.22 3.08 6.77 7.76 8.41 6.07 3.86 5.29 4.99 3.73
O5 5.44 3.60 3.88 3.64 7.81 1.69 3.21 4.11 2.31 4.91 4.59 3.96 5.10
O6 4.41 2.96 3.08 3.05 8.42 3.34 1.61 3.57 3.56 5.68 5.58 5.20 5.84
O7 5.01 3.04 3.09 2.95 9.56 3.44 4.71 1.38 3.64 6.42 4.36 5.28 6.77
O8 4.55 2.50 2.75 2.55 8.36 2.27 3.05 3.91 1.57 5.38 3.96 3.17 5.72
O9 6.09 4.97 4.87 4.95 5.28 3.27 4.90 5.76 3.37 2.19 5.54 4.97 3.79
O10 3.30 3.84 4.15 3.89 7.14 2.85 4.39 4.06 2.22 4.04 1.52 2.45 4.37
O11 4.06 3.51 3.46 3.52 6.45 1.92 3.46 4.36 1.17 3.24 2.27 1.41 3.59
O12 5.68 4.07 4.30 4.07 7.35 3.17 3.89 4.86 2.22 4.21 4.71 3.86 4.57

The position-form distance

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

O0 1.14 4.88 3.98 3.05 3.96 4.70 3.40 3.83 4.20 6.44 5.61 6.89 6.57
O1 4.97 0.84 1.42 2.32 3.67 1.95 4.84 4.27 3.75 2.90 3.50 3.86 2.43
O2 3.98 1.35 0.91 1.44 2.99 2.19 4.19 3.75 3.43 3.60 3.61 4.39 3.33
O3 2.96 2.27 1.41 0.95 2.88 2.88 3.73 3.48 3.50 4.72 4.15 5.27 4.53
O4 4.93 4.10 3.79 3.83 0.74 2.49 3.24 2.96 1.97 3.46 2.63 3.98 4.44
O5 5.87 3.03 3.30 3.84 2.98 0.48 3.87 3.43 2.09 2.04 1.74 2.41 3.59
O6 5.02 5.61 5.19 4.96 3.74 3.90 0.83 1.02 2.06 5.55 3.70 5.18 6.97
O7 5.56 5.24 4.97 4.92 3.80 3.29 1.97 0.95 1.38 4.94 2.66 4.33 6.59
O8 5.93 4.65 4.62 4.78 3.43 2.40 2.63 2.11 0.83 3.82 1.59 2.98 5.65
O9 7.24 3.53 4.15 4.98 3.89 1.91 5.49 5.04 3.50 0.47 2.65 1.91 2.90
O10 6.52 4.70 4.93 5.31 3.74 2.25 3.92 3.22 1.84 2.83 0.66 1.80 4.94
O11 7.74 4.79 5.28 5.95 4.70 2.64 5.25 4.73 3.15 2.18 1.90 0.46 4.43
O12 6.52 1.80 2.80 3.77 4.52 2.60 6.03 5.72 4.41 2.33 4.08 3.77 1.10
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