
Semantics Formalisation – From Event-B
Contexts to Theories

Thai Son Hoang1[0000−0003−4095−0732], Laurent Voisin2[0000−0002−2426−0101],
Karla Vanessa Morris Wright3[0000−0002−0146−3176], Colin

Snook1[0000−0002−0210−0983], and Michael Butler1[0000−0003−4642−5373]

1 ECS, University of Southampton, Southampton SO17 1BJ, United Kingdom
{t.s.hoang,cfs,m.j.butler}@soton.ac.uk

2 Systerel, 1115 rue René Descartes, 13100 Aix-en-Provence, France
laurent.voisin@systerel.fr

3 Sandia National Laboratories, 7011 East Avenue Livermore, California 94550, USA
knmorri@sandia.gov

Abstract. The Event-B modelling language has been used to formalise
the semantics of other modelling languages such as Time Mobility (TiMo)
or State Chart XML (SCXML). Typically, the syntactical elements of
the languages are captured as Event-B contexts while the semantical el-
ements are formalised in Event-B machines. An alternative for capturing
a modelling language’s semantics is to use the Theory plug-in to build
datatypes capturing the syntactical elements of the language and oper-
ators to represent the various semantical aspects of the language. This
paper draws on our experience on the statemachines (part of SCXML)
to compare the two approaches in terms of modelling efforts.

Keywords: Statecharts, SCXML, Event-B, Theory plugin, Semantics
formalisation

1 Introduction

Previously, Event-B [1] has been used to formalise the semantics of modelling
languages such as Time Mobility (TiMo) [4] or State Chart XML (SCXML) [9].
Essentially, the semantics of the languages are captured as discrete transition
systems represented by the Event-B models. An advantage of this approach is
that the generic properties of the semantics can be captured as invariants of the
Event-B models while the syntactical constraints are expressed as the axioms, to
ensure the correctness of the semantics. Recent work on the Theory plug-in for
Rodin [6] enabled the formalisation of the Event-B method within the EB4EB
framework [7].

Our motivation for this paper is to explore the use of the Theory plugin for
capturing the semantics of other modelling languages. In particular, we want to
compare the pros and cons of the two modelling styles, using Event-B models and
the Theory plugin. We will use the SCXML as the example of the language to
be modelled, in particular, focusing on the untriggered state machine fragment.

2 T.S. Hoang et al.

In this short paper, we focus on the modelling efforts to capture the semantics
of SCXML. More in-depth comparison including the proving efforts will be our
future work.

The structure of the paper is as follows. Section 2 gives some background in-
formation about Event-B, the Theory plugin, and the formalisation of SCXML
semantics using Event-B standard constructs, i.e., contexts and machines. Sec-
tion 3 gives some comparison in formalising of the SCXML semantics using the
Theory plugin and using Event-B standard constructs. Section 4 gives a sum-
mary of the paper.

2 Background

In this section, we briefly review the Event-B modelling method, the Theory
plugin, and the formalisation of SCXML using Event-B models.

Event-B is a formal modelling method for system development [1]. An Event-B
model contains two types of components: contexts and machines. Contexts rep-
resent the static part of an Event-B model and can contain carrier sets (types),
constants and axioms constraining them. Machines capture the dynamic part
of an Event-B model as transition systems where the states are represented by
variables and the transitions are expressed as guarded events. An important fea-
ture of a machine is invariants which are safety properties that must be satisfied
in all reachable states. Proof obligations are generated to ensure that the invari-
ants are indeed established and maintained by the Event-B machines. To cope
with system complexity, contexts can be extended by further contexts (adding
more carrier sets, constants, or axioms), and machines can be refined. Consis-
tent refinement in Event-B guarantees that safety properties (e.g, invariants) are
maintained through the refinement process.

The Theory plugin for Rodin [3] enables developers to define new polymorphic
data types and operators upon those data types. These additional modelling
concepts (datatypes and operators) might be defined axiomatically or directly
(including inductive definitions). Not only restricted to the modelling capabil-
ity, the Theory plugin also offers developers the opportunity of extending the
reasoning capacity by writing automatic/interactive inference rules or rewrite
rules.

A formalisation of SCXML in Event-B is presented in [9]. SCXML [2] describes
UML-style statemachines with run-to-completion semantics. SCXML diagrams
provide a compact representation for modelling hierarchy, concurrency and com-
munication in systems design. In [9], we develop a formalisation of the semantics
of SCXML by separately modelling statemachines (untriggered statecharts) and
the run-to-completion semantics (triggered mechanism), and combine them to-
gether using the inclusion mechanism [5].

Semantics Formalisation – From Event-B Contexts to Theories 3

Our formalisation of Statemachines using Event-B contexts and machines [9],
relies on the mathematical definition of irreflexive transitive closure (in context
closure) and of a tree-shape structure (in context tree). The syntactical elements
of statemachines are captured in three separate contexts (each one extending
the other in order) named tree structure, regions, and transformations. Machine
active states essentially specifies the semantics of the statemachines, captured
as the set of active states. This can be seen on the left-hand side of Figure 1.

3 Formalisation using Contexts/Machines vs Theories

In this section, we present an attempt to formalise the semantics of statemachines
using theories, in comparison with the contexts/machines as in [9]. Figure 1 show
our strategy for developing a semantics of statecharts using theories. Here inter

represents the intersection.

Fig. 1. Formalisation of statemachines: contexts/machines vs theories

3.1 Formalisation of closure

In [9], the (irreflexive) transitive closure is formalised as a constant with an
axiom defining its value. Various theorems capturing the properties of closure are
derived from the axiom. Here STATE is a carrier set defining the set of states in
the statemachines.

constants closure
axioms
@def−closure: closure= (λ r · r∈ STATE↔ STATE | inter({p | r⊆ p∧ p;p⊆ p}))
theorem @typeof−closure: closure∈ (STATE↔ STATE)→ (STATE↔ STATE)
theorem @closure strengthen: ∀ r· r⊆ closure(r)
theorem@closure transitivity: ∀ r·closure(r);closure(r)⊆ closure(r)
theorem@closure minimal: ∀ r·(∀ p· r⊆p∧ p;p⊆p⇒ closure(r)⊆p)

Using the Theory plug-in, closure is defined as an operator in a theory for type
parameter S. This operator is polymorphic with respect to this type parameter

4 T.S. Hoang et al.

and hence can be utilised in different contexts (compared with the constant
defined in the context for a specific STATE set).

3.2 Formalisation of tree

Using contexts, the definition of trees is given as a constant Tree with its value
defined using set comprehension and utilising transitive closure. In this defini-
tion, Sts represents the set of nodes in a tree, rt represents the root of the tree,
prn is the parent relationship of the tree, and cl is the same previously defined
closure operator.

axioms@def−Tree:Tree= {Sts 7→ rt 7→ prn |
Sts⊆ STATE∧ rt∈ Sts∧ prn∈ Sts \ {rt}→ Sts∧ (∀ n · n∈ Sts \ {rt}⇒ rt∈ cl(prn)[{n}])}

Following the EB4EB framework [7], we formalise tree as a datatype with a
well-definedness operator. The datatype is polymorphic with a type parameter
NODE and operator TreeWD stating similar conditions in the axiom @def−Tree.

3.3 Formalisation of the Statechart Syntactical Elements

The syntactical elements of the statecharts are captured in three contexts to
introduce the different aspects gradually: (1) tree-shape structure (2) parallel
regions, and (3) transformations (an abstraction of transitions between states,
including enabling, entering, and exiting states for each transformation). We
will not present the details of the formalisation here, but refer the readers to [9].
Using the Theory plugin, we define the STATECHART datatype as in Figure 2.
Notice that we decide to define the STATECHART datatype all at once rather

Semantics Formalisation – From Event-B Contexts to Theories 5

Fig. 2. Statechart datatype

than gradually introducing its aspects. Datatypes in the Theory plugin are closed
and hence cannot be extended. An example is the use of the Tree datatype for
part of the STATECHART datatype resulting in a “nesting” effect. This results
in operators of the form shown to define the well-definedness for Regions of a
statechart. In order to get to the states of a statechart st, one needs to use
States(Tree(st)) due to this nesting effect.

3.4 Formalisation of the Statechart Semantical Elements

In [9], the semantical elements of the statecharts are captured in a machine with
a variable representing the active states of the statechart. Invariants capture
properties, such as there is always an active state and if a child state is active
then its parent state must be active.

Using the Theory plugin, we define a datatype ACTIVE STATECHART for
this purpose (we omit some details due to space reasons). This datatype wraps
the STATECHART datatype together with the active states. The well-definedness
operator ActiveStatechartWD captures the properties that we want to impose on
the statechart semantics.

The semantics of the statechart is captured as the following direct definition of
the transform operator.

6 T.S. Hoang et al.

Cons ACTIVE STATECHART(Statechart(a sc),
(Active(a sc) \ Exiting(Statechart(a sc))(tr)) ∪ Entering(Statechart(a sc))(tr))

Given a well-defined active statechart a sc and a transformation tr of that state-
chart, i.e., tr∈Transformations(Statechart(a sc)), the transform operator construct a
new active statechart by updating the active states of the statechart by removing
tr’s exiting states and then adding the entering states of tr.

Consistency of the statechart semantics can now be expressed as the following
theorem (to be proved).

The theorem says that any transformation of an active statechart preserves the
well-definedness of the active statechart. The proof of this theorem using the
Theory plugin will be our future work.

4 Summary

This short paper provides some insights comparing the two modelling styles for
formalising semantics of modelling languages: using Event-B contexts/machines
(Approach 1) vs using the Theory plugin’s theories (Approach 2). Using Ap-
proach 1, essentially the model corresponds to a single statemachine, whereas
with Approach 2, statemachines are modelled as a datatype. Context extension
is a natural way to develop the statemachine’s syntactical elements gradually in
Approach 1, however, attempts to do this using theory extensions with Approach
2 results in nested datatypes which are cumbersome to use (see Section 3). An
alternative is to use type class extension for theories [8]. In both approaches, the
syntactical constraints on the models can be represented. In Approach 1, these
are captured as axioms in the context contraining the syntactical elements. Us-
ing Approach 2, the well-formedness conditions are encoded as well-definedness
predicate operators. Semantical properties are also captured in both approaches:
as machine invariants in Approach 1, and as theory theorems in Approach 2. In
the future, reasoning about refinement using Approach 1 requires duplication
of the models (representing the abstract and the concrete statemachines). On
the other hand, the explicit representation of statemachines as objects from a
datatype in Approach 2 allows us to write theorems in first-order logic about
these well-defined objects. We expect that using Theory will help with stat-
ing and reasoning about refinement relationships. While we use the example of
statemachines to compare Approaches 1 and 2, these comparisons are applicable
to formalisation of other type of models, e.g., UML-B statemachines, SCXML
statecharts, etc.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

Semantics Formalisation – From Event-B Contexts to Theories 7

2. Barnett, J.: Introduction to SCXML, pp. 81–107. Springer International Publishing,
Cham (2017), https://doi.org/10.1007/978-3-319-42816-1_5

3. Butler, M.J., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods - Essays
Dedicated to Jifeng He on the Occasion of His 70th Birthday. Lecture Notes in
Computer Science, vol. 8051, pp. 67–81. Springer (2013), https://doi.org/10.

1007/978-3-642-39698-4_5

4. Ciobanu, G., Hoang, T.S., Stefanescu, A.: From TiMo to Event-B: Event-driven
timed mobility. In: 2014 19th International Conference on Engineering of Complex
Computer Systems, Tianjin, China, August 4-7, 2014. pp. 1–10. IEEE Computer
Society (2014), https://doi.org/10.1109/ICECCS.2014.10

5. Hoang, T.S., Dghaym, D., Snook, C.F., Butler, M.J.: A composition mechanism
for refinement-based methods. In: 22nd International Conference on Engineering of
Complex Computer Systems, ICECCS 2017, Fukuoka, Japan, November 5-8, 2017.
pp. 100–109. IEEE Computer Society (2017), https://doi.org/10.1109/ICECCS.
2017.27

6. Hoang, T.S., Voisin, L., Salehi, A., Butler, M.J., Wilkinson, T., Beauger, N.: The-
ory plug-in for Rodin 3.x. CoRR abs/1701.08625 (2017), http://arxiv.org/abs/
1701.08625

7. Riviere, P., Singh, N.K., Ameur, Y.A., Dupont, G.: Formalising liveness properties in
Event-B with the reflexive EB4EB framework. In: Rozier, K.Y., Chaudhuri, S. (eds.)
NASA Formal Methods - 15th International Symposium, NFM 2023, Houston, TX,
USA, May 16-18, 2023, Proceedings. Lecture Notes in Computer Science, vol. 13903,
pp. 312–331. Springer (2023), https://doi.org/10.1007/978-3-031-33170-1_19

8. Snook, J., Butler, M.J., Hoang, T.S.: Developing A new language to construct
algebraic hierarchies for event-b. In: Feng, X., Müller-Olm, M., Yang, Z. (eds.)
Dependable Software Engineering. Theories, Tools, and Applications - 4th Inter-
national Symposium, SETTA 2018, Beijing, China, September 4-6, 2018, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10998, pp. 135–141. Springer
(2018). https://doi.org/10.1007/978-3-319-99933-3 9, https://doi.org/10.1007/

978-3-319-99933-3_9

9. Wright, K.V.M., Hoang, T.S., Snook, C.F., Butler, M.J.: Formal language semantics
for triggered enable statecharts with a run-to-completion scheduling. In: Ábrahám,
E., Dubslaff, C., Tarifa, S.L.T. (eds.) Theoretical Aspects of Computing - ICTAC
2023 - 20th International Colloquium, Lima, Peru, December 4-8, 2023, Proceedings.
Lecture Notes in Computer Science, vol. 14446, pp. 178–195. Springer (2023), https:
//doi.org/10.1007/978-3-031-47963-2_12

https://doi.org/10.1007/978-3-319-42816-1_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1109/ICECCS.2014.10
https://doi.org/10.1109/ICECCS.2017.27
https://doi.org/10.1109/ICECCS.2017.27
http://arxiv.org/abs/1701.08625
http://arxiv.org/abs/1701.08625
https://doi.org/10.1007/978-3-031-33170-1_19
https://doi.org/10.1007/978-3-319-99933-3_9
https://doi.org/10.1007/978-3-319-99933-3_9
https://doi.org/10.1007/978-3-319-99933-3_9
https://doi.org/10.1007/978-3-031-47963-2_12
https://doi.org/10.1007/978-3-031-47963-2_12

	Semantics Formalisation – From Event-B Contexts to Theories

