Event-B Development of Modelling Human
Intervention Request in Self-Driving Vehicle
Systems

+1,:1,2[0000—0001—8545—-907X : 2[0000—0003—4095—0732
Fahad Alotaibi®-2l I, Thai Son Hoang?! i

Asieh Salehi Fathabadi2[0000-0002-0508—-3066] ,1q Michael
Butler2[0000—0003—-4642—5373]

! College of Applied Computer Sciences (CACS), King Saud University, Riyadh,
11543, Saudi Arabia
2 School of Electronics and Computer Science (ECS), University of Southampton,
Southampton SO17 1BJ, U.K.
{f .a.alotaibi, t.s.hoang, a.salehi-fathabadi, m.j .butler}@soton .ac.uk

Abstract. In the design of autonomous systems, seamless integration
with human operators is crucial, particularly when humans are consid-
ered as a fail-safe for intervening in hazardous situations. This study
presents an Event-B intervention timing pattern designed to include hu-
man drivers’ responses when they act as fallback mechanisms in Self-
Driving Vehicle (SDV) systems. The proposed pattern outlines specific
timings for driver interventions following alerts from SDVs, offering a
clear set of expectations and conditions for human drivers during these
critical takeover instances. The usability of this pattern is demonstrated
through a case study, highlighting its importance for situations that re-
quire interventions. Ultimately, it sheds light on the operational aspects
of SDVs, ensuring a safe and orderly transition from automated to man-
ual control.
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1 Introduction

Autonomy has advanced the modern way of cooperation between humans and
machines. With the rapid development of advanced tools and techniques, the in-
teractions between humans and autonomous machines are becoming increasingly
complex [20]. Several classification approaches for defining autonomy have been
developed in different domains [19]. The International Society of Automotive En-
gineers (SAE) [17] classified the autonomy in Self-Driving Vehicles (SDVs) into
six levels for performing the Dynamic Driving Task (DDT). Beside fully manual
(Level 0), automation levels 1 to 3 (semi-automation) involve a human driver
within the DDTs, while automation levels 4 and 5 (high-automation systems)
do not engage with a human driver in DDTs [7]. Similarly, Unmanned Aerial
Systems (UAS), also known as drones, is organised into four levels, where the
inspector (human) is responsible for supervising a system at most levels [16].
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The engagement between humans and machines is widely known as the
Human-In-The-Loop System (HITLS) [10]. The HITLS can add advanced qual-
ifications to the autonomous system model to make it the top safety pick. Ac-
cording to the Insurance Institute for Highway Safety (ITHS) [12], the SDVs can
become ‘the safety pick’ when it is integrated with technology to prevent crashes.
One of these integrated systems is an HITLS that aims to prevent collisions by
creating a digital collaboration space between drivers and machines [4].

Although the SDVs can be built on the HITLS architecture, the behaviour
of drivers might have caused fatal accidents. When investigating an Uber self-
driving crash, the National Transportation Safety Board (NTSB) [8] found the
accident was caused by the internal components of an SDV when the autopilot
module failed to detect the later victim. The SDV was implemented to give a
human driver control of the vehicle in unmanaged areas; however, the driver was
distracted and did not react at the appropriate time.

Automotive companies, such as Tesla and Comma.ai, have used notification
mechanisms to ensure the responsiveness of human drivers. For instance, the
autopilot software of Comma.ai, known as OpenPilot [9], gives a driver 4 seconds
to react when the intervention request is sent. However, if the human driver
ignores intervention, the OpenPilot will gradually reduce the speed of the vehicle
after 6 seconds until the car is totally stopped.

Modelling intervention requests is crucial, especially when human drivers
play a key role in potential interventions. The need arises to develop methods
that thoroughly investigate the requirements and assumptions linked to human
responses. Understanding the intricacies of cognitive processes and decision-
making mechanisms during interventions is vital for ensuring the safety of a
system and the collaboration between humans and autonomous systems.

Therefore, this article presents the modelling methodology of time in Event-
B [1] using patterns. The intervention timing pattern is introduced to formally
model the timing properties when the automated machines may ask humans to
take control of a system. Our pattern is a specialisation of the trigger-response
pattern, in which trigger and response are both events (i.e., guarded actions)
combining with a the deadline pattern [18].

The main advantage of the Event-B model is its support for a stepwise mod-
elling approach by refinements. The second strength of an Event-B model is
supported by the toolset Rodin [2], which involves both theorem proving and
model checking (ProB) [14]. These advantages of Event-B, make it an appropri-
ate method for formal modelling of complex systems.

The rest of the paper is structured as follows. Section 2 provides background
on the Event-B formal modelling language and the introduction to our case
study. Section 3 introduces the intervention timing pattern for modelling driver
responses. Section 4 illustrates the approach using the case study. Section 5
discusses the advantages and results of using the intervention timing pattern.
Section 6 presents related work and Section 7 concludes our article.
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2 Background

In this section, we first review some background information on Event-B (Sec-
tion 2.1) before giving the introduction to our case study (Section 2.2).

2.1 Event-B

Event-B [1] is a formal method commonly used for system analysis and mod-
elling. Event-B is similar to other formal methods, as it uses concise mathemat-
ical language to address the inaccuracy and vagueness of requirements specifi-
cation. The safety properties treated as invariants are verified, which aims to
remove any inconsistency in the verified model.

A formal model in Event-B [1] includes two parts: contexts and machines.
Contexts involve the static parts of a model and provide axiomatic characteris-
tics. A context contains the definition of the carrier sets, constants and axioms
that constrain the constants and carrier sets. Machines are the dynamic parts
of the model. An Event-B machine involves variables v, invariants I(v) that con-
strain the variables, and events. An event is ‘an atomic transition’ that changes
the states of the system. The transition state of an event is constrained through
the guards and the actions. For instance, for an event e with parameters t, the
guard of the event can be written as G(t,v), and the action of the event can be
represented as v:=E(t,v). An event e can only be enabled when its guard G (t, v)
holds for some parameter t and its affects on variable v is specified by the action
E(t,v).

e == any t where G(t,v) thenv:= E(t,v) end

One of the principal advantages of Event-B is its utilisation of patterns to
address complex modelling challenges. The Event-B pattern serves as a generic
structure that can be applied to various aspects of modelling the dynamic be-
haviours of a system. Furthermore, the machine inclusion plug-in [11] facilitates
the transformation of a pattern into a concrete example, thereby easing the appli-
cation of these generic structures across numerous use cases. Machine inclusion
in Event-B introduces two principles: 1) machine inclusion (includes clause), and
2) event synchronisation (synchronises clause). For instance, inclusion allows for
modularising and combining models. A machine m0 could be included in a new
machine m1 as follows:

machine ml includes m0 as inclusionName

(The keyword as allows the inclusion of multiple copies of the same machine with
appropriate prefixing). This inclusion means that event el of m1 may synchronise
with event e0 of m0 specified as follows:

event el synchronises inclusionName.e0 end

Synchronisation means the guards of el and e0 are conjoined and their actions
are executed simultaneously [11].
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2.2 The ALC Case Study

The case study examined in this article focuses on the Automated Lane Cen-
tring (ALC). The primary function of the ALC system is to maintain the SDV
in the centre of its desired/target lane, with the human driver responsible for
performing lane change manoeuvres [3, p. 3]. Furthermore, it is crucial to ac-
knowledge that the ALC system does not replace the need for a human driver.
Even though it assists with lane centring, the human driver is expected to stay
alert and prepared to assume manual control when necessary.

Given the unpredictability of human drivers, there is a possibility that warn-
ings and intervention signals may be disregarded. A study from the Crash Warn-
ing Interface Metrics program (CWIM) [13] suggests that after receiving an
auditory alert, a driver may take roughly 700 milliseconds to override the sys-
tem and steer manually. Other research indicates a more extended period, with
drivers taking around 10 seconds to refocus and attend to the road [15]. Automo-
tive companies such as Tesla and OpenPilot have thus incorporated notification
systems to keep human drivers alert. For instance, OpenPilot [9] gives drivers
a 4-second window to react to an intervention prompt. If ignored, OpenPilot
emits an auditory warning, and after 6 seconds, it decelerates the vehicle until
the SDV comes to a complete stop.

For example, Figure 1 depicts a scenario involving an SDV and the need for
driver intervention. Subfigure 1a demonstrates the vehicle accurately positioned
within its target lane. However, a noticeable shift towards the right lane line
occurs in Subfigure 1b, necessitating corrective input from the driver. Despite
this assistance, Subfigure 1c continues the SDV’s trajectory towards the right.
The situation escalates in Subfigure 1d, where the SDV is precariously close to
exiting its lane, underscoring the urgency for immediate driver intervention to
prevent a potential hazard.

Furthermore, it is critical to expeditiously elucidate how the SDV system sig-
nals a human driver to assume manual control of the vehicle. Figure 2 provides
a vital illustration of this integral sequence within the operations of SDVs, with
a particular emphasis on the transition from autonomous operation to manual
intervention. Upon detection of a scenario necessitating human involvement, the
SDV system promptly issues an intervention notification to the driver, concur-
rently initiating a countdown sequence. In the event of a delayed response from
the driver, the system activates an auditory alarm, serving as an additional
prompt, and institutes a supplementary waiting period. In the continued ab-
sence of driver responsiveness, the system proactively transitions to a mitigation
strategy mode, implementing a series of safety measures, including vehicular de-
celeration. Subsequent to this intervention, the SDV system retains control for
a predefined duration, ensuring the maintenance of vehicular stability.

In this article, particular attention is given to the scenarios where human
drivers might not respond aptly to the ALC’s intervention alerts. The objective
is to examine the sequence of a driver’s actions when the ALC system prompts
manual intervention, as follows:
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Fig. 1. From stability to hazard: tracing lane-assistance in ALC

1. The ALC system issues a request for intervention and initiates a pre-specified
time (countdown) for the driver’s response.

2. If the driver does not respond within the specified time, the ALC system
triggers an auditory alert to attract the driver’s attention.

3. From the moment of the auditory alert, the driver is given a further specific
time window in which to react.

4. If the driver still does not react within the specified time, the ALC system
proactively reduces the SDV ’s speed.

3 Intervention Timing Pattern

The intervention timing pattern investigates how a human operator might re-
spond when the automated machine asks for intervention. Our pattern not only
models the reaction of a human operator but introduces new requirements and
assumptions that need to be considered to make the SDV system safe.

This pattern explains our modelling choice and offers a broad context for
understanding key properties such as time progression, the clock (timer), human
reaction time and alert time. The primary concept involves using guarded events
with time constraints; thus these guarded events can be triggered only when the
system reaches a specific time.

The time progression is also designed as an event; therefore, there is no need
to modify the underlying language of Event-B. The variable time is defined
as a natural number, which allows time constraints, such as alert time, to be
expressed as constants or as relationships between different times. Moreover,
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Fig. 2. Human driver intervention sequence in ALC system

time observations can be represented by other events determining future states
(events) of a system.

3.1 Defining the Pattern

The intervention pattern is explained through an example Event-B model. This
model can be reused in order to add different time considerations. As shown in
the below, the intervention pattern has six variables:

machine mQ

variables

redFlag //denotes a system enters a hazardous event

time //indicates any time of a system

requestTime //time when automated system issues a request to intervene
alarmFlag //sounding an alarm

alarmTime //time waiting for a response before the alarm is sounding
reactionTime //time when a human operator may react

invariants

Qinvl: time € Ny Qinv2: requestTime €N @inv3: alarmTime € N
Qinv4: redFlag € BOOL Qinv5: alarm € BOOL Qinv6: reactionTime € N

— time: This represents the current time of a system. The incrementation of this
value implies the time progression.
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— requestTime: This indicates any time in the future when a system may issue a
request to intervene.

— reactionTime: This indicates any time in the future when a driver may respond to
a request to intervene.

— alarmTime: This denotes a future time when a driver does not react to a request
to intervene, and the auditory notification is immediately sounded.

— redFlag: This is a boolean flag that indicates a system issuing a request to intervene.

— alarmFlag: This is also a boolean flag that explains the status of the sound alert.

The three categories focus on various aspects of timing. The first category
involves establishing an intervention timer within hazardous events that require
intervention. An example can be found in the request event, which indicates the
entrance of a hazardous event when a system waits for a response before an alarm is
raised. This event is triggered when the machine prompts a request for intervention.
Consequently, the intervention timer is configured within this event as follows:

event request

any

/* Maximum time of a system waiting for a response before raises an alertx/
duration

when

/*Any time is given for waiting for a human’s responsex/

©grdl: duration € Ny

/*No intervention request and alarm is OFFx/

Q©grd2: redFlag = FALSE A alarmFlag = FALSE

then

/*Specify a time of waiting for a driver before the alarm soundsx/
Qactl: alarmTime := time 4 duration

/*Update the time of issuing a request to intervenesx/

Qact2: requestTime : = time

/*Update a flag of issuing a request to intervenex/

Qact3: redFlag := TRUE

/*No reaction from human yets/

Qact4: reactionTime : =0

end

After the creation of the intervention timer in the request event, the timeline for
the intervention pattern is as outlined in Figure 3. It includes the first requirement
(R1), which must be considered to allow the human operator to respond when the
automation issues a request to intervene. The initialisation of time for a request to
intervene (requestTime) is defined according to the current time of a system (time). In
order to give a driver a chance to respond, the parameter duration indicates the waiting
time of a system before the alarm is sounded. Therefore, the alert time (alarmTime)
can be defined as the end of the waiting time.

First Requirement (R1): When an intervention request is issued, the automated
machine should give the human operator a limited time to react (duration).

The second category of the intervention timer is time progression, as shown in Fig-
ure 4. In this modelling technique, the current time can be changed with an observation
of the tick event as follows:

event tick where

/*Work only if a system issued a request to intervenesx/
Oflag_intervene: redFlag = TRUE

/*System time doesn’t reach an alert time yets/

@no_alarm: redFlag = TRUE A alarmFlag = FALSE = time < alarmTime
/*System time arrives on alert time, so the alarm must be operatings/
Q@alarmOn: (time = alarmTime A redFlag = TRUE) = alarmFlag = TRUE
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then
/* Increment timer %/
@actl: time:=time + 1

end
Issuing a request Time of
to intervene alerting
Current
time
duration Euture
time
requestTime = alarmTime =
time duration + time
Fig. 3. Creation of intervention timer
Issuing a request to Time of alerting
intervene -
Current Possible values of the Possible values of the
i new time before sounding new time after sounding
ime the alert the alert
p Future
time
alarmFlag = FALSE alarmFlag = TRUE

requestTime alarmTime

Fig. 4. Time progression in intervention timer

The tick schedules the time progression associated with the alarm property. For
instance, the guard alarmOn captures a critical specification when the current time is
already at the alert time; therefore, the auditory notification must be sounded before
computing the new value of time. To model the alarm property, the second require-
ment (R2) is introduced, signifying that the autonomous system will send an auditory
notification if the human response is still pending.

Second Requirement (R2): If the human operator fails to react within the
duration time, the automated machine should immediately trigger an alarm (auditory
notification)

This aspect is modelled in the notify event as follows:
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event notify where

/*System issues a request to intervene, while an alarm is not sounding */
Q@grdl: alarmFlag = FALSE A redFlag = TRUE

/*System time equal to or has moved beyond alert times/

OtimeAlarm: time > alarmTime

then

/*Update value of alarmx/

Qactl: alarmFlag := TRUE

end

The third category of the intervention timer models human interventions that occur
either before or after the auditory notification sounds. To capture these two potential
forms of human reaction, the intervene event is outlined with various time intervals. The
first variant of this event, addressing human reactions prior to the auditory notification,
is modelled as follows:

event intervene when

Qgrd1: redFlag = TRUE

/*Possible values of system time when a human may reactx/
Q©grd2: time < alarmTime

then

/*Update a driver reaction times/

QreceivedReaction: reactionTime : = time

Qupdateflag: redFlag := FALSE
end

The guards within the first variant of the intervene event play a crucial role in
encapsulating the third requirement (R3), which highlights the potential for a human
response prior to the activation of the auditory alarm. The grd2 guard in this initial
form of the intervene event sets a confined timeframe, allowing for human reaction
before the system’s current time aligns with the alert time. Under these specified con-
ditions, Figure 5 demonstrates the narrow window of opportunity available for a human
to respond before triggering the auditory notification.

Third Requirement (R3): A human operator might respond before sounding an
auditory notification.

Issuing a request to Time of
intervene alerting

Possible values of the current time
when a human responded to the
intervention request.

Al
- ~

— oS, Future

time

reactionTime := time

requestTime alarmTime

Fig. 5. Human’s response window time before alert notification

Similarly, the second form of the intervene event outlines several conditions that
allow a human to react after the auditory notification has sounded, which is modelled
as follows:
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event intervene when

Qgrd1: redFlag = TRUE

/*System has already raised an alarms/
Q©grd2: time > alarmTime

then

/*Update a driver reaction times/
QreceivedReaction: reactionTime : = time
/*Update values of flag/

Qupdateflag: redFlag := FALSE

end

The adjustment in the grd2 guard contributes to capturing the fourth requirement
(R4) that indicates the possibility of receiving a human response after the alarm sounds.
Specifically, it implies that the system’s current time has already surpassed the alert
time. Given these conditions, Figure 6 illustrates the possible window of time in which
a human may react after the auditory notification is triggered.

Fourth Requirement (R4): A human operator might respond after sounding an
auditory notification.

Issuing a request to Time of
intervene alerting

Possible values of the current
time when a human responded
to the intervention request

duration A
— (S X P> Future time

reactionTime = time

requestTime alarmTime

Fig. 6. Human’s response window time after alert notification

Since the intervention timer is executed only when a request to intervene is issued,
the invariants between the automated machine and a human are simple, and we have
only to satisfy the following three invariants.

Qalarm_state: alarmFlag = TRUE = redFlag = TRUE
Q@waiting_response: redFlag = TRUE A alarmFlag = FALSE = requestTime < time A time < alarmTime

Qalerting: alarmFlag = TRUE A redFlag = TRUE = time > alarmTime

The invariant alarm_state indicates that the alarm signal can only be sent if there
is still a need for human intervention. Additionally, the invariant waiting response
underscores that a system allocates a specific duration for the human to respond if
an intervention request is dispatched (i.e., redFlag = TRUE). Specifically, the current
time of the system (time) can go beyond the moment of issuing the intervention request
(requestTime) up to the alert time (alarmTime). This duration is thus represented
as requestTime < duration < alarmTime, where the system time equals the time of
issuing the intervention request. On the other hand, the invariant alerting denotes that
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an auditory notification is only activated (i.e., alarmFlag = TRUE) if the system’s
current time exceeds this defined duration.

In this modelling strategy, three assumptions (As) are incorporated into the formal
model:

— A1: A human operator might respond immediately or after the auditory notifica-
tion is activated.

— A2: The waiting time, or duration, is not strictly defined, for example 3 seconds.
Instead, it is treated as a parameter representing any positive number.

— A3: The automated machine is assumed to be in a safe state during the entire
process of alerting and receiving responses from the human operator.

4 Application to ALC Case Study

This section describes the application of the intervention timing pattern to the ALC
case study. Considering that this pattern primarily addresses moments when the system
initiates intervention prompts, we have partitioned our application into two distinct
Event-B machines®. The first machine covers the driving scenarios in which the ALC
system is likely to issue intervention requests during the actuation task. Following that,
the second machine employs Event-B refinement to show the implementation of the
intervention timing pattern in response to a potential intervention request arising from
the abstract model. The majority of proof obligations in this application are verified
either automatically using Rodin provers or with the assistance of additional exter-
nal prover plugins, such as Satisfiability Modulo Theories (SMT) for theory solving.
Detailed discussions of the Event-B model are presented in their subsequent sections.

4.1 Abstract Machine: (ALC actuation task)

The abstract machine presents a scenario where intervention might be needed in the
operation of the ALC system. A problematic situation can occur if the ALC system
autonomously modifies the steering angle and vehicle speed, leading to the SDV drifting
from the target lane. This potential issue is elaborated upon and visually represented
in Figure 1.

In the static part of the model, the potential positions of an SDV are represented
by the abstract set POSITION, which denotes the various positions to which an SDV
may travel. Since a lane could be considered part of these positions, we define the
constant Lane as a subset of set POSITION in the following manner:

Otypeof—Lane: Lane C POSITION
To model the movement of an SDV, we introduce an abstract constant MOVE,

which activates a specific speed and steering angle to achieve a new position, enabling
the SDV to transition across multiple locations.

QOtypeof—move: MOVE € POSITION x SPEED x STEERING_ANGLE — P; (POSITION)

Note that for a position pos, a speed spd, and a steering angle agl, MOVE(pos — spd — agl)
gives the set of positions that the vehicle might move into.

3 An  Event-B model is publicly available as a Rodin archive at:
https://doi.org/10.5281/zenodo.10944865
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In the dynamic part of the model, the physical position of the SDV is modelled
as a variable ALC_POSITION, accompanied by a safety invariant ALC_POSITION &
Lane, signifying that the SDV must always reside within the Lane. Furthermore, the
initial position of the SDV is represented as a constant init_position, which stipulates
that the SDV’s starting position must be within the Lane, denoted as init_position €
Lane. The modelling of the actuation task for an ALC system involves five events. The
first event, ALC_actuation, abstractly captures the determination of the steering and
speed settings for an SDV as follows:

event ALC_actuation any speed steering
where

/*Definition of steering and speedx/
Q@grdl: speed € SPEED

Q©grd2: steering € STEERING_ANGLE
/*No intervention requests/

Q©grd3: redFlag = FALSE

then

/*Specify steering and speed for ALC systems/
@actl: ALC_SPEED := speed

Qact2: ALC_STEERING : = steering
end

The second event, accept_move, presumes that the SDV can transition to a new
position as described below:

event accept_move where

/*A new position leads to a position inside Lanes/

Qgrdl: MOVE(ALC_POSITION +— ALC_SPEED — ALC_STEERING) C Lane

/*No intervention requestx/

Qgrd2: redFlag = FALSE

then

/*Moved into a new position inside the target lane x/

Qactl: ALC_POSITION :€ MOVE(ALC_POSITION — ALC_SPEED — ALC_STEERING)
end

The third event, required_intervention, initiates an intervention request when the
speed and steering are set to move the SDV to a position outside the lane, as detailed
below:

event required_intervention where

/*A new position leads to a position outside Lanex/

Qgrdl: MOVE(ALC_POSITION +— ALC_SPEED — ALC_STEERING ) ¢ Lane
Q@grd2: redFlag = FALSE

then

/*Initiates an intervention requests/

Qactl: redFlag:= TRUE

end

The fourth event, mitigate_move, presumes that the ALC system is capable of
implementing a mitigation strategy when the proposed speed and steering risk moving
the SDV out of the lane. This is achieved by instituting an adjusted or mitigated
steering and speed as detailed below:

event mitigate_move any mitigated_sp mitigated_steer

where

Qgrdl: mitigated_sp € SPEED A mitigated_steer € STEERING_ANGLE
/*Intervention request was sents*/

Qgrd2: redFlag = TRUE

/*Specification on the ALC mitigation modesx/

Qgrd3: MOVE(ALC_POSITION +— mitigated_sp — mitigated_steer) C Lane
then

/*Moved into a new position inside the lanex/

Qactl: ALC_POSITION :€ MOVE(ALC_POSITION — mitigated_sp — mitigated_steer)
end
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The final event, human_intervene, simulates the human response to the intervention

request as follows:

event human_intervene any manual_sp manual_steer

where

Q@grdl: manual_sp € SPEED A manual_steer € STEERING_ANGLE

Qgrd2: redFlag = TRUE

/*Assumption that the human responses correctly/

©grd3: MOVE(ALC_POSITION +— manual_sp — manual_steer) C Lane

then

/*Moved into a new position inside the target lane */

@actl: ALC_POSITION : € MOVE(ALC_POSITION +— manual_sp +— manual_steer)

Qact2: redFlag := FALSE

end

4.2 Refined Machine: (Intervention Timing Pattern)

The refined model is specifically developed to incorporate the intervention timing pat-
tern within its structure. This model utilises the concept of machine inclusion in Event-
B to extend and build upon the foundational concepts presented in Section 3.1. The
main benefit of this approach lies in its ability to instantiate the intervention timing
pattern on two separate occasions within the model:

1. The first instantiation models the time-sensitive aspects leading up to the point at
which an auditory notification is issued to the driver.
machine m1 refines m0 sees cO

/+First instantiation is included as beforeAlarms/
includes intervention TimingPattern. m0 as beforeAlarm

2. The second instantiation of the intervention timing pattern is activated following
the auditory notification. At this stage, the SDV engages its mitigation mode,
which is a response mechanism to correct or manage the situation that requires
the intervention.

machine m1 refines m0 sees cO

/*Second instantiation is included as after Alarmx/
includes interventionTimingPattern. mO as afterAlarm

These applications of the intervention timing pattern will be summarised in the
following steps.

1) Pre-Notification Temporal Modelling and Establishing Intervention Timing
Before Auditory Alerts: The implementation of the intervention timing pattern in
the refined machine incorporates intervention events. The temporal elements involved
are synchronised with the request event, which is integrated into the abstract re-
quired_intervention event. Consequently, the model initialises the timing aspects at
the moment when the ALC system requires intervention.

/*Timing aspects modelled in the request event are included in the required intervention events/
event required_intervention extends required_intervention synchronises beforeAlarm . request end

The tick event, which is associated with the initiation of an intervention request,
is incorporated as follows:

/*The time progression associated when ALC issues a request to intervenesx/
event tick synchronises beforeAlarm. tick end
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When the time progression reaches the alert moment and the driver has not reacted,
an auditory notification is issued. This is facilitated by the synchronised notify event
within the alarm event, detailed as follows:

/*Auditory notification is issued if driver does not react/
event alarm synchronises beforeAlarm. notify end

However, the driver may react during the time progression before the auditory
notification is sent. This response is captured by the synchronised intervene event,
which aligns with the abstract human_intervene event, as outlined below:

/*Driver may intervene before auditory notifications/
event human_intervene extends human_intervene synchronises beforeAlarm . intervene end

2) Post-Notification Mitigation Strategy and ALC Response Mechanisms Fol-
lowing Auditory Alerts: The implementation of the intervention timing pattern also
addresses the timing properties subsequent to the activation of the auditory notifica-
tion. Thus, the synchronised request event is integrated within the event that presumes
the auditory notification has been issued, as described below.

/*Reinitialise the intervention timer after alarm soundedx/
event alarm synchronises afterAlarm . request end

The tick event is also synchronised with the progression of time that corresponds
to the moment when the alarm sounds, as outlined below:

/*Schedule time progression with the alarm is soundedsx/
event tick synchronises afterAlarm . tick end

To capture the essential timing property that allows a driver to respond after the
auditory notification has been issued, the abstract human_intervene event is extended to
the human _react_after_alarm event. This expansion includes the synchronised intervene
event, as illustrated below:

/*Driver may intervene after auditory notifications/
event human_react_after_alarm extends human_intervene synchronises afterAlarm .intervene end

However, if a driver fails to respond, the mitigation strategy of the ALC system
may be initiated. In this instance, the synchronised notify event is incorporated as
follows:

/*Mitigated movement applied if a driver fails to respondsx*/
event mitigate_move extends mitigate_move synchronises afterAlarm . notify end

5 Discussion

The intervention timing pattern is a critical component in the development of SDV
systems, especially when considering the human driver as a fallback option during
hazardous driving events. It outlines a structured method for specifying the timing
properties needed to model the windows of opportunity for a driver’s intervention
response. This pattern finds applicability in autonomous or semi-autonomous systems
where a human operator has an oversight role and is expected to take more active
control in some hazardous situations, such as veering outside lanes. In these systems,
a failsafe mode is available, for instance, to decelerate, in case the operator does not
respond in a timely manner.
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The analysis employs a two-step instantiation process to precisely chart the timing
of a driver’s potential responses to the ALC system’s prompts. This modelling strategy
differentiates between scenarios in which a driver might respond before the urgency
of auditory notification is perceived, and situations where the driver’s reaction occurs
after acknowledging the notification. This approach facilitates a thorough examination
of the range of a driver’s possible reaction times in relation to the auditory signals from
the ALC system.

The benefits of utilising the intervention timing pattern in SDV systems are mul-
tifaceted:

— Requirement and Assumption Identification: The intervention timing pat-
tern serves as a structured framework that identifies specific requirements and
assumptions related to the driver’s engagement in the SDV’s autonomous opera-
tions. By explicitly defining these parameters, it assists in shaping a comprehensive
understanding of the role and expectations of human intervention, ensuring that
both system developers and stakeholders have a clear blueprint to refer to.

— Addressing Modelling Challenges: One of the complex aspects of modelling
SDV systems lies in accounting for the uncertain nature of a driver’s response
during autonomous operations. The intervention timing pattern plays a crucial role
in overcoming this issue. It establishes a methodical framework that integrates the
possibility of human responses into the system’s functional procedures, ensuring
that these variables are included in the system design even if they are not directly
detectable. Therefore, it ensures that the model remains robust and reflective of
real-world scenarios where driver reactions may not always be apparent.

— Driver Inclusion Beyond Fallback: Traditionally, the role of a driver in an SDV
system is often relegated to that of a mere fallback option—intervening only when
the system fails or is unsure of the next course of action. However, the intervention
timing pattern encourages developers to transcend this limited view. It prompts the
consideration of the driver as an active participant, capable of varying responses
across different scenarios. This, in turn, aids in crafting a more robust and realistic
model of fallback mechanisms within the SDV system.

In summary, the intervention timing pattern not only accentuates the intricacies of
human intervention in automated systems but also propels a forward-thinking approach
to SDV system development. This pattern is instrumental in acknowledging the range
of possible human reactions, guiding the creation of systems that excel technically
while also being attuned to human behaviour and needs. Such an approach promotes a
seamless integration of humans and machines, aiming for a balanced and cooperative
relationship.

6 Related Work

Cansell et al. [6] developed a pattern to model the timing and order of events within
systems, using time-stamped actions and reactions to simulate real-time processes.
Their model uses a clock (timer) to track current time and events set to trigger at
future times. The system advances time and activates events accordingly. However,
this model does not handle interruptions during event sequences.

Butler and Falampin [5] proposed a refinement strategy of timing properties that in-
troduces a clock variable representing the current time and an operation that progresses
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the clock. Therefore, time constraints are added to the clock to handle interruptions
during event sequences where the clock cannot move beyond the specific point at which
the deadline is violated.

Based on this methodology, many studies, such as [18,21], have been carried out
to extend Event-B with timing properties. Sarshogh and Butler [18] propose a trigger
response pattern to develop Event-B models with several timing properties such as
deadline, delay and expiry. Their approach assigns timestamps for trigger and response
events and employs a tick event to prevent the global clock from moving to a point
where time constraints between the trigger and response events would be violated. Zhu
et al. [21] extended the work of [5,18] to provide formally the semantics and syntax
between the trigger and response events.

In autonomous systems, our pattern targets how humans react when automated
machines trigger intervention. We specify an intervention timeline based on the human
reaction time and the alert time. The deadline can be seen as the time when a driver
may react, while the alert time combines the delay and expiry based on the received
human’s response. Therefore, we specify the criteria for triggering intervention based
on these timelines. Nonetheless, the time-sensitive characteristics associated with the
autonomous functions continue to be a significant issue. For instance, the timing aspects
related to observing the driving environment and determining the target path are not
fully investigated.

7 Conclusion and Future Work

This paper introduced the intervention timing pattern for managing the timing of in-
terventions in SDV systems, conceptualised within the Event-B framework. The focus
was on defining the time-sensitive parameters that handle when and how human drivers
should take over control in critical situations. The intervention timing pattern specifies
the essential temporal constraints when human drivers must intervene. Various driver
responses were identified and their implications for system functionality were analysed.
The actuation task of the ALC system served as a case study, validating the adaptabil-
ity of the timing pattern to accommodate different driver behaviours. Future research
is set to explore additional temporal dimensions in SDV systems, especially those tim-
ing properties critical to autonomous operations such as environmental perception and
the determination of driving decisions.
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