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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We used a mixed-method approach to 
characterise households’ maize yield 
gap and its drivers in Malawi. 

• We surveyed characteristics of 70 
smallholder households and observed 
farmers’ maize yield between 0.8 and 
10.9 t/ha. 

• We obtained a water-limited maize yield 
of 9.5 t/ha for the season 2019–2020 in 
the trial site. 

• Higher income and increased fertiliser 
application have the potential to close 
the yield gap. 

• Our approach is valuable in identifying 
high-productive areas and differentiated 
policy interventions to close the yield 
gap.  
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A B S T R A C T   

CONTEXT: Improving the productivity of smallholder farmers in sub-Saharan Africa is a key component in 
reducing poverty and increasing food security as crop production is a significant source of livelihood for the 
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majority of the population. Still, crop yields show a huge variability in smallholder farming systems whose 
productivity is poorly measured and understood. 
OBJECTIVE: In this work, we estimate maize (Zea Mays) yield gap in Southern Malawi (Phalombe district) and 
assess drivers of productivity gap under different socio-economic and biophysical contexts. 
METHODS: We use a mixed-method approach which integrates multi-source datasets (including primary ground- 
truth data we collected in the maize growing season 2019–2020 and secondary remote-sensing data), empirical 
and process-based crop-growth models (AquaCrop) to calculate the water-limited yield gap. In addition, we 
analyse the relationship between the relative yield (defined as the actual yield observed at the farmers’ plots 
normalised by the AquaCrop simulated water-limited potential yield) and possible socio-economic drivers which 
we collected through surveys administered to households iin the same season 2019–2020. 
RESULTS AND CONCLUSIONS: We obtained a water-limited potential yield for the maize hybrid SC649 of 9.5 t/ 
ha during the season 2019–2020 in the Malawian trial site. The observed actual yield at the households in the 
season 2019–2020 varied from 0.8 to 10.9 t/ha. The estimate of the yield gap ranged between 15% and 85% thus 
showing a large variability due to the high resolution, but low accuracy of the empirical model. Results suggest 
that with higher income and increased fertiliser application there is potential to increase the relative yield and 
that the marginal increase is spatially differentiated. 
SIGNIFICANCE: Our spatially-explicit approach to yield-gap analysis is valuable in identifying high-productive 
areas and differentiated policy interventions aimed at closing the yield and income gaps for smallholder farmers.   

1. Introduction 

Improving the productivity of smallholder farmers is recognized as a 
key component of the effort to reduce global poverty and increase food 
security (Olasehinde-Williams et al., 2020; Waha et al., 2018). Staple 
crops including maize (Zea Mays) have been the focus of several studies 
and the target of multiple policy interventions around the globe. Over 
the past decades, maize productivity has more than doubled in Europe 
and the USA while other regions have observed modest increases. In sub- 
Saharan Africa (SSA), for example, maize productivity has increased 
only by 10% (Hoffmann et al., 2018; Tittonell and Giller, 2013). This has 
been attributed to low use of fertilisers, use of poor-quality seeds, water 
scarcity, lack of mechanization and irrigation, degraded soil quality, and 
increased frequency of droughts and variability in rainfall patterns 
(Hillocks, 2014; van Dijk et al., 2020; van Loon et al., 2019). Yield gap is 
a concept widely used to analyse the potential scope for raising small-
holder farmers productivity (Hillocks, 2014; Sadras et al., 2015; Van 
Ittersum and Cassman, 2013). It represents the distance between the 
potential yield of a crop cultivar attainable when grown with water, 
nutrients, and biotic stresses successfully controlled, and the actual yield 
being achieved by farmers. The yield gap where there is no or poor 
irrigation infrastructure, such in most SSA, accounts for potential yield 
attainable in rainfed conditions, i.e., water-limited potential yield (Tit-
tonell and Giller, 2013; Van Ittersum et al., 2013; Silva et al., 2017). 

Previous attempts to estimate yield gaps in SSA (e.g. Assefa et al., 
2020; Tamene et al., 2016; van Dijk et al., 2020; van Loon et al., 2019; 
van Bussel et al., 2015; Doré et al., 2008) are often based on agronomic 
analysis using primary data collection at farmers’ fields or official yield 
statistics to estimate actual yield and controlled farm trials and/or crop 
modelling to estimate (water-limited) potential yield. The selection and 
combination of the above methodologies is context dependent and ul-
timately affects the uncertainty of the yield gap estimate (Maestrini 
et al., 2022). While official crop yield estimates based on farmers’ self 
reported yield are known to be highly uncertain but relatively inex-
pensive to collect, primary data collection may be more accurate but 
very resource intensive, especially when large areas are investigated. 
Crop simulation models represent a significant milestone in under-
standing and predict agro-ecosystem performance (Boote et al., 2013; 
Jones et al., 2017), but their use is still limited by the need for data and 
specialist knowledge for parameterization, calibration and testing 
before they can be applied with confidence (Boote et al., 1996). Model 
calibration and testing is, in principle, required for any new crop envi-
ronment and variety although, in practice, it may not be feasible due to 
lack of infrastructure and financial and human resources associated with 
collection of detailed phenological and growth analysis data (Hunt and 
Boote, 1998). In the case of SSA, for instance, crop models represent a 

major source of uncertainty as most of the their calibration and vali-
dation are done with data collected outside of SSA, thus considering a 
combination of environmental conditions and crop varieties that are not 
representative of the SSA context (Fraisse et al., 2001; Heng et al., 2009; 
Sima et al., 2020). 

Approaches based solely on agronomic analyses, such the ones 
described above, may fail to understand the complexity of smallholder 
farming systems and the reasons underlying yield gaps. Mixed-method 
approaches combining agronomic analysis with socio-economic anal-
ysis are generally considered more appropriate to understand the 
complexity of the smallholder farming systems and the conditions un-
derlying yield gaps (Mumo et al., 2018). Farmers surveys and interviews 
have been proven to be key in understanding smallholder farming sys-
tems because they can appropriately capture the heterogeneity of the 
landscape, small (on average) field size and diverse farming manage-
ment practices which may lead to large variability in the actual yields 
observed at the household scale (Mumo et al., 2018). There is thus the 
need to estimate yield gaps and its possible drivers on scales that 
consider temporal and spatial granularity to characterise productivity at 
the field level and to have a better understanding of this variability over 
time and space as this may also inform meaningful and targeted in-
terventions (Grassini et al., 2015; Hoffmann et al., 2018; Van Ittersum 
and Cassman, 2013; Affholder et al., 2013). 

The aim of this paper is to quantify the yield gap of smallholder 
farming systems in Southern Malawi and understand its drivers. To this 
end, we use a mixed-method approach which integrates multi-source 
datasets (including primary ground-truth data we collected in the 
maize growing season 2019–2020 and secondary remote-sensing data), 
empirical (based on remote-sensing data), and process-based crop- 
growth models to calculate the water-limited yield gap at fine scale. In 
addition, we analyse the relationship between the yield gap and possible 
socio-economic drivers (e.g., labour, access to fertilisers, gender, 
farming practices) which we collected through surveys administered to 
households in three Extension Planning Areas (EPAs) in Southern 
Malawi (Phalombe district) in the same season 2019–2020. The novel 
contributions of the paper are: i) a mixed-method framework to assess 
yield gap and its potential drivers, ii) a parametrization of the AquaCrop 
model for simulating water-limited growth of the maize hybrid SC649, a 
medium maturing maize hybrid grown in most of Southern Africa, 
calibrated and validated using detailed crop-phenological data collected 
at field trials in Malawi and Zimbabwe, and iii) a better understanding of 
the socio-economic characteristics of smallholder farmers in Phalombe 
district, their farming practices, and yield-gap drivers. 
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Table 1 
Main drivers identified in the surveyed literature and their impact on grain yield in rainfed smallholder farming in SSA (+ indicates directly proportional; − indicates inversely proportional;; +/− indicates context- 
dependent relationship).  

Factor Rel. Interpretation References Additional remarks 

Land availability − Labour and inputs may not increase accordingly because of limited capital. Berre et al. (2017) and references therein; Dzanku 
et al., 2015; Owens et al. (2003); Frelat et al. 
(2016). 

The relationship may be more complex, i.e., − for small land size and 
+ for large land size (Dzanku et al., 2015). 

Fertiliser + The right timing and amount of fertiliser usually guarantee higher yield. Berre et al. (2017); Beza et al. (2017); Mueller 
et al. (2012); Rusinamhodzi et al. (2013). 

The combined use of fertiliser and improved hybrid seeds may have a 
super-additive effect on actual yield (Dzanku et al. (2015) and 
references therein). 

Weeding practices and 
herbicides 

+ They decrease the weed-crop competition for water and nutrients. Dzanku et al. (2015); Affholder et al. (2003); Doré 
et al. (1997). 

The final impact may depend on other factors, e.g., capital availability 
to access the inputs and labour, stand density, soil fertility. 

Walking distance home- 
field 

+/− Farmers may preferentially allocate fertiliser and labor to fields close to 
their home especially if this is where high-value crops are cultivated. 

Berre et al. (2017); Tittonell et al. (2005).  

Off-farm activities + They may increase the capital available for investment in labour and 
inputs. 

Assefa et al. (2020); Tamene et al. (2016); Berre 
et al. (2017).  

Farming experience +/− Farmers may take advantage from indigenous knowledge and previous 
management experience, but they may also be reluctant to adopt improved 
farming practices. 

Tamene et al. (2016); Berre et al. (2017). Farming experience tends to be correlated to farmer’s age. 

Education + It may increase the likelihood that farmers adopt new technologies. Dzanku et al. (2015); Phiri et al. (2012).  
Improved hybrid seeds + Hybrid seeds usually guarantee higher yield and are more resistant to 

droughts and pests. 
van Loon et al. (2019); Asiedu et al. (2007). The final impact may depend on other factors, e.g., the combined use 

of fertiliser and herbicide or capital availability. 
Soil fertility + Soil rich in nutrients usually guarantees higher yield. van Loon et al. (2019); Affholder et al. (2013). The actual impact may be context dependent and may vary across sites 

and seasons. 
Gender (male) + Males and females may have unequal access to productive inputs, land size 

and productivity, and labour. 
Van Vugt et al. (2017); Andersson Djurfeldt et al. 
(2019); Burke and Jayne (2021) and references 
therein. 

Females tend to have less time to dedicate to farming because of 
traditional chore and family-care responsibilities. 

Access to market + It allows farmers to buy inputs and sell outputs. Affholder et al. (2013). It generally correlates with the use of improved seeds which usually 
guarantee higher yield. 

Labour + It allows for better and more timely agricultural management practices. Kimhi (2006); Beshir et al. (2012); Silva et al. 
(2019). 

The relationship may be more complex, i.e., + for relatively low levels 
and - for relatively high levels of labour (Dzanku et al., 2015). 

Connection to 
agricultural Extension 
officers 

+/− It may enhance the impact of policies and uptake of new knowledge and 
technology. 

Dzanku et al. (2015); Tamene et al. (2016); Owens 
et al. (2003).  

Livestock ownership + It may provide manure and animal labour. Dzanku et al. (2015); Komarek and Msangi (2019).   
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2. Smallholder farming systems in Southern Malawi 

Malawi is one of the poorest countries in the world with 70% of the 
population living on less than USD 1.08 per day (Bhatti et al., 2021). 
Agriculture is the main economic sector in Malawi with smallholder 
farmers, operating under a low-input rainfed system, representing 90% 
of the sector (Tchale, 2009; Mthakati et al., 2012). The average size of 
smallholder farmer plots has decreased in time from between 0.5 and 
2.5 ha in 2012 (Phiri et al., 2012) to approximately 0.32 ha in 2016 (Li 
et al., 2021). Maize is the dominant crop all over the country, but mostly 
in Southern Malawi which is also the most populated and cultivated 
region. Most of the population rely on farming for their subsistence. In 
fact, smallholder farmers directly consume over 60% of the maize they 
cultivate which represents approximately 54% of their caloric intake 
(Aragie et al., 2018; Minot, 2010). 

Maize is grown during the rainy season from November to April. The 
sowing period ranges from mid November to the end of December, while 
the harvesting period ranges from the end of April to the end of July. The 
actual crop season depends on the individual farmers’ agricultural 
practices and, mostly, on the onset of the rainy season which is impacted 
by the farm location, its altitude, and the local weather conditions. 
Malawi is among the most sensitive countries to climatic shocks in 
Southern Africa (Minot, 2010; Clay et al., 2003; Aragie et al., 2018). The 
whole country is prone to hydrometeorological hazards such as droughts 
or dry spells, but also localized floods (Anghileri et al., 2022; Sato et al., 
2020). The Southern region is characterised by semi-arid conditions 
with average temperature equal to 25 ◦C and unimodal precipitation 
with annual average equal to 700 mm (Ngongondo et al., 2011). Inter-
annual climate variability has increased in the last decades and it is 
expected to be further impacted by climate change, which, together with 
temperature increase, will impact particularly maize cultivation 
(Abramoff et al., 2023; Zhao et al., 2017). 

Malawi has experienced several food crises (Hess and Syroka, 2005; 
Harrigan, 2008; Pourazar, 2017) and the number of severely food 
insecure people is steadily increasing (FAO, ACA, AUC, 2021). Actual 
maize yield is around 2 t/ha on average and it is considered largely 
smaller than what could be potentially achieved (Tchale, 2009; Mtha-
kati et al., 2012). Cultivated soils have been depleted because of 
increased pressure on land and insufficient inputs (Tchale, 2009). 
Cropland expansion at the expense of forest has been used by farmers as 
a strategy to improve their productivity by cultivating more fertile soils. 
However, land scarcity and increased soil erosion demonstrate unsus-
tainable cropland use in Malawi (Li et al., 2021). This is indeed a major 
concern within the country and policies have been implemented to 
promote agriculture intensification. Among those, the Agricultural Input 
Subsidy Programme has been likely the most successful one. The Pro-
gramme introduced vouchers to smallholder farmers for buying fertil-
isers and improved hybrid seeds for maize production. It generally 
increased maize yields across the country (Dorward and Chirwa, 2011; 
Banik and Chasukwa, 2019) though there are varied results on its suc-
cess (Matita et al., 2022). 

Crop yield is generally characterised by large spatial and temporal 
variability in smallholder farming systems. Understanding the reasons 
behind this variability is extremely complex because there are a variety 
of agronomic and meteorological factors which interact with diverse 
agricultural practices and socio-economic conditions of smallholder 
farmers ultimately confounding the cause-effect relationships between 
productivity drivers and final yield (Affholder et al., 2003). To disen-
tangle these relationships, understanding the specific context in the area 
of interest is key (Doré et al., 1997). We thus conducted a literature 
review, which is however not intended to be systematic, which is sum-
marised in Table 1 and Fig. 1. Although this paper focuses on maize yield 
in Southern Malawi, we expanded our review to grain crop production 
(instead of maize only) in rainfed smallholder farming systems in Sub- 
Saharan Africa (instead of Malawi only) so as to enlarge the number 
of papers analysing the relationship between yield and its drivers. A 

complex picture emerges with multiple interactions between econom-
ical, social, and bio-physical factors. For most of the identified drivers, 
the literature is unanimous in identifying a (direct or inverse) propor-
tional relationship to the yield, while for a few of them the relationship 
seems to be context dependent, suggesting that the mechanisms gov-
erning yield drivers are worth analysing to improve our understanding 
of the relationships one to another and to the yield. 

3. Methodology 

This study focuses on the Phalombe district located in Southern 
Malawi (Fig. 2). We used a mixed-method approach (Fig. 3) which in-
cludes: i) a biophysical analysis based on multi-source datasets (ground 
and remote sensed) and mathematical models to estimate the water- 
limited yield gap at fine scale and ii) a socio-economic analysis based 
on data collected through surveys administered to households in the 
three EPAs to understand the factors that drive maize yield. The next 
sections describe the primary data collection and modelling steps in 
detail while Table 2 summarises the dataset used in each modelling step. 

3.1. Biophysical and socio-economic household data collection 

We used the official yield data from the Ministry of Agriculture in 
Malawi to identify 3 EPAs that showed historically low, medium and 
high yields and which were, at the same time, accessible (in terms of 
distance one from another and street conditions, to ease the logistics of 
data collection). As a result, Naminjiwa, Tamani, and Waruma EPAs in 
Phalombe district (Fig. 2) were identified. Within these 3 EPAs, we 
selected a pool of possible plots using satellite high resolution images to 
ensure that they were spread across the EPAs, free from trees and 
characterised by an area not smaller than 30 × 30 m2 (to ensure the 
comparison of the measured bio-physical variables with the remote 
sensing data used in the actual yield modelling, see Section 3.2). Finally, 
by visiting the plots on the ground, we removed plots where maize was 
not cultivated as main crop (i.e., at least on half of the plot area) to 
reduce the impact of maize competition with intercrops on the final 
yield. Using non-probability sampling, we then selected 150 farm plots 
and we recorded GPS coordinates of the four corners. The size of the 
plots resulting from this procedure ranged from 0.03 to 0.55 ha, with a 
mean value of 0.17 ha. 

We collected in-situ data in all these plots across the maize growing 
season 2019–2020 (see Li et al. (2022) for more details). We also 
measured maize biomass and grain yield in late March 2020, simulta-
neously to the farmers’ harvesting, on a subset of 70 plots (we could not 
complete the data collection in the remaining 80 plots due to logistical 
difficulties arisen by the COVID-19 pandemic). More precisely, we 
sampled three subplots of 1 × 2 m2 in each plot where the grain was 
shelled from the cob and weighed. We then measured the grain moisture 
content using a grain moisture metre. The final maize grain yield data 
shown in this paper are presented with a correction for moisture content 
of 12%. We calculated the average of the three subplot measurements to 
represent the whole household plot. 

In terms of socio-economic variables, we collected various pieces of 
information on the households characteristics and agricultural practices 
adopted in the same subset of 70 plots where we measured maize yield. 
The survey questionnaire was asked to the household heads and covered 
questions including socioeconomic, agricultural management practises 
and accessibility to inputs and information. We collected data about the 
characteristics of the household, such as householder head gender, age, 
education, marital status, years of experience in farming, household size 
and income from farm and off-farm activities. Additionally, we collected 
data on the farming practices, such as relative to the use of fertiliser, 
herbicide and pesticide, date of sowing and harvesting, maize seed type, 
number and type of intercrops, if any, labour involved into field prep-
aration, sowing, and harvesting, pest and disease attacks, relationship 
with Extension Planning Officers and access to subsidies for seeds and 
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fertilisers. 

3.2. Actual yield modelling 

We considered two different estimates of actual yield at the farmers’ 
fields. The first estimate, called hereafter observed actual yield 

(
YObs

a
)
, 

refers to the in-situ data we collected at the 70 farmer plots (see Section 
3.1). The second estimate, called hereafter RS-simulated actual yield 
(
YRS

a
)
, refers to the simulation of an empirical linear model calibrated 

using the observed actual yield and high-resolution remote sensing (RS) 

data (more precisely, we used the seasonal-peak red-edge vegetation 
index from Sentinel-2 as detailed in Li et al. (2022)). The use of this 
model allowed us to estimate the actual yield at 30 × 30 m2 spatial 
resolution (and consequently the yield gap) in areas wider than the plots 
sampled in this work. Being mindful, however, that the empirical re-
lationships between yield and RS-vegetation indexes are generally 
location specific (Bokusheva et al., 2016), we applied the model to the 
areas cultivated with maize (according to the World Bank Data Catalog 
2019) in the Phalombe district only. There we could reasonably assume 
that the soil and water conditions and the agricultural practices did not 
change considerably from the sampled plots, eventually limiting the 
model extrapolation error. We refer the reader to Li et al. (2022) for the 
detailed description of the RS-data selection, model calibration and 
validation procedure, while we report the model performances in the 
three EPAs in Section 4.2 for the readers’ convenience. 

3.3. Potential yield modelling 

3.3.1. AquaCrop model calibration using ground-truth data 
We estimated the potential maize yield using AquaCrop, a crop 

growth model developed by the FAO to address food security and assess 
the effect of the environment and management on crop production 
(Steduto et al., 2009; Vanuytrecht et al., 2014). The model is water 
driven and simulates the attainable biomass and crop yield in response 
to water availability which is one of the major constraints in SSA (Raes 
et al., 2009; Steduto et al., 2009). It has successfully been adopted in 
several applications from climate change impact studies (Bird et al., 
2016; Mabhaudhi et al., 2018; Gadédjisso-Tossou et al., 2018) to test 
agricultural and water management options to improve crop production 
(Bello and Walker, 2017), such as, e.g., irrigation systems (Araya et al., 
2016; Jalil et al., 2020; Gadédjisso-Tossou et al., 2020). Thanks to its 
simple and generic structure, the model can be easily implemented for 
major crops using only precipitation, daily maximum and minimum 
temperature and reference evapotranspiration as forcing data, although 
usually requires some calibration for improving model accuracy for new 
environments and crop varieties (Heng et al., 2009). To this end, we 
conducted growth analysis field trials during the 2019–2020 cropping 
season in Zimbabwe and Malawi. 

The field trial in Zimbabwe is located in the SeedCo Rattray Arnold 
Research Station (31◦13′S; 17◦40′E, 1341 m a.s.l.) and is characterised 

Fig. 1. Schematic representation of the relationship between the main drivers identified in the surveyed literature (see also Table 1) and actual grain yield in rainfed 
smallholder farming in SSA (own graphical representation of the surveyed literature). 

Fig. 2. Map of the Phalombe district in Southern Malawi and location of the 
three Extension Planning Areas (EPAs) of Naminjiwa (N), Tamani (T), and 
Waruma (W) and the field trial (Tr) where we collected bio-physical and socio- 
economic data. The picture on the bottom shows some of the household plots 
we analysed in Naminjiwa. 
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by reliable rainfall (between 750 and 1000 mm) from November to April 
and greyish brown sands and sandy loams. The field trial in Malawi is 
located in the Namijiwa Vocational Training Centre (15◦45′S; 35◦40′E, 
766 m.a.s.l.) which is situated in Phalombe District (Fig. 2). We planted 
the maize hybrid SC649 (bred by SeedCo Ltd. and released in 2015), a 
medium maturing maize hybrid grown in most of Southern Africa, 
specifically Zimbabwe, South Africa, Malawi, Zambia and Mozambique 
with good yield and performance stability.2 It is a relatively tall hybrid 
and places its cobs at slightly above 1.5 m. Compared to other medium 
maturing maize varieties, it produces up to 13 t/ha in high-potential 
environments, approximately 9 t/ha in medium-potential environ-
ments, and approximately 3 t/ha in low-potential environments. It is 
characterised by moderate drought-tolerance and tolerance to grey leaf 
spot and maize streak virus. We purposely selected this hybrid variety 
because, although smallholder farmers may use various seeds, it is well 
adapted to different niche environments and can be reasonably taken as 

a reference in our whole area of interest. 
The field trial in Zimbabwe was 70 × 70 m2 and in Malawi 40 ×

38 m2 and in both trials maize was grown under rainfed conditions and 
using the recommended plant population of 53,333 plants/ha. To ensure 
that there was no nutrition stress, we applied fertilisers based on the 
highest recommended rate by SeedCo for high-yielding varieties. Com-
pound D (7–14-7) was applied at a rate of 600 kg/ha the day after 
planting and top dressing ammonium nitrate (34.5% N) was applied four 
weeks after emergence at 500 kg/ha. Trials were kept weed free through 
routine hand weeding. Crops were regularly monitored for early 
symptoms of diseases or insect attacks and would be controlled imme-
diately to avoid yield losses. We routinely collected data during the 
growing season. The timing of key phenological events such as emer-
gence, tasselling, silking, anthesis, senescence and maturity was moni-
tored daily (in calendar days after planting). Above ground destructive 
sampling was conducted weekly and plants were air dried until there 
were no observed changes in total above ground biomass. Trials from 
Zimbabwe were used for model calibration while trials from Malawi 
were used for model validation. 

Fig. 3. Schematic representation of the mixed-method approach adopted in this study.  

Table 2 
Summary of the datasets used in this study.  

Model calibration and validation (point scale)  

Dataset Spatial resolution Period Source 

AquaCrop Meteorology Trial sites 2019–2020 Primary data collection  
Soil properties Trial sites 2019–2020 Primary data collection  
Maize biomass Trial sites 2019–2020 Primary data collection 

Regression model Socio-economic data Household plots 2019–2020 Primary data collection  
Maize biomass Household plots 2019–2020 Primary data collection   

Model simulation (spatially explicit)  

Dataset Spatial resolution Period Source 

AquaCrop OS ERA5-Land 5 × 5 km2 resampled 2010–2020 
Muñoz-Sabater (2019)  

CHIRPS 5 × 5 km2 2010–2020 
Funk et al. (2015)  

SoilGrid 5 × 5 km2 averaged – 
Hengl et al. (2017) 

Empirical model Sentinel-2 (VI) 30 × 30 m2 2019–2020 
Li et al. (2022)  

Official yield statistics EPAs 2019–2020 Malawi Ministry of Agriculture  

2 https://seedcogroup.com/products/sc-649-new 
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3.3.2. Experimental setting for the potential yield simulation in Phalombe 
To facilitate the simulation of the potential yield in our spatial 

domain, i.e., the Phalombe district, we used an open-source version of 
AquaCrop, AquaCrop-OS v6.0 (Foster et al., 2017). The only difference 
between the FAO AquaCrop and AquaCrop-OS models is that AquaCrop- 
OS does not contain a soil fertility/salinity stress module. However, this 
difference does affect our analysis as we calibrated the model parame-
ters accordingly, i.e., considering fertility stress-free conditions. More 
precisely, we adopted the following experimental setting. We simulated 
the water-limited potential yield for the maize hybrid SC649 (the one 
adopted in the controlled trial experiments) across the whole cropland 
in the Phalombe district. By using the crop parameters calibrated as 
described in Section 3.3.1, the simulation considers field management 
practices (as the ones performed at the trial fields) possibly leading to 
the highest production. The meteorological inputs consisted of daily 
time series of minimum and maximum temperature, total precipitation, 
and reference evapotranspiration. As there is no spatially-distributed 
ground data in the study area which would allow us to simulate the 
yield spatial variations, we used the remote sensing datasets CHIRPS and 
ERA5-Land. The Climate Hazards group Infrared Precipitation with 
Stations (CHIRPS) dataset is a quasi-global precipitation dataset which 
combines satellite and ground measurements with a spatial resolution of 
5 × 5 km2 (Funk et al., 2015). With respect to other remote sensing 
precipitation datasets, CHIRPS has shown to be generally the most ac-
curate in Africa (Gebrechorkos et al., 2018; Dinku et al., 2018). We used 
ERA5-Land data downloaded from the Copernicus Climate Change 
Service Climate Data Store (Muñoz-Sabater, 2019) as minimum and 
maximum temperature time series and to compute the reference 
evapotranspiration time series using the Priestly-Taylor equation. We 
acknowledge that the Penman-Monteith equation is considered the 
standard method to compute the reference evapotranspiration and it is 
recommended by the Food and Agriculture Organization (FAO) because 
it is physically based and explicitly incorporates both physiological and 
aerodynamic parameters (Allen et al., 1998; Sentelhas et al., 2010). The 
Priestly-Taylor equation is a simplified method where the aerodynamic 
term is replaced by an empirical coefficient. The impact of methods to 
compute the reference evapotranspiration has been shown to be 
different depending on climate, with drier climates showing usually 
larger differences (see e.g., Amatya et al., 1995; Xiaoying and Erda, 
2005). The outputs of crop models (e.g., actual crop evapotranspiration 
and yield) can, however, show varying sensitivities when inputted with 
different estimates of reference evapotranspiration depending on 
climate, but also on the crop model and other settings used for the 
simulations (e.g., rainfed or irrigated simulation) which in turn deter-
mine the crop water-stress conditions (McAneney and Itier, 1996; Utset 
et al., 2004; Akumaga and Alderman, 2019). Section A.6 shows the 
result sensitivity to the method for computing the reference evapo-
transpiration used as input to our analysis. We resampled the ERA5-Land 
data using the nearest-neighbour resampling technique to downscale the 
time series from the original 10 × 10 km2 to the 5 × 5 km2 resolution of 
the CHIRPS dataset. For both datasets, we considered time series 
covering the period 2010–2020 to assess the yield variability associated 

with the weather variability in the last decade as well as to compute the 
yield gap in the season 2019–2020 when we conducted the household 
primary data collection. We considered variable maize planting and 
harvesting dates across the spatial domain to guarantee the maximum 
potential yield in each location. More specifically, we ran the model six 
times in each location setting the planting date at the beginning of each 
dekad in November and December (corresponding to the maximum time 
span recorded among the surveyed households, see Section 4.1) and we 
computed the final potential yield a posteriori as the maximum yield 
among the six experiments. In so doing, we accounted for the best 
rainfed-growing conditions as the planting and harvesting date were 
determined by the weather conditions at each location. Finally, we 
derived the soil properties from the SoilGrids dataset (Hengl et al., 2017) 
by considering the percentage of sand, clay and organic matter for six 
depth layers (i.e., 5, 10, 15, 30, 40, 100 cm). In this case, we resampled 
the data from the original spatial resolution, i.e., 250× 250 m2, to 5 ×

5 km2 using the mean. 

3.4. Yield-gap drivers’ identification 

Data entry and cleaning occurred in Microsoft Excel, whilst we 
conducted the analysis in STATA 17. We computed descriptive statistics 
before the formal statistic analysis when we used multivariate linear 
regression to analyse the association between the relative observed 
actual yield, defined as observed actual yield normalised per water- 
limited potential yield (YObs

a /Yw and equal to 1 − YObs
g ), which we used 

as dependent variable, and socio-economic household factors and agri-
cultural management practises, which we used as independent vari-
ables. The relative yield represents a measure of the household farming 
performance with respect to what could be potentially achieved given 
the environment (i.e., weather and physical soil characteristics). This 
allowed us to discount the spatial variability of the bio-physical factors 
thus allowing us to compare low, medium, and high potential environ-
ments and isolate which socio-economic factors and farming practices 
significantly affected maize yields across them. 

Although the household survey allowed us to understand many as-
pects of the households and their agricultural management practices 
(see Section 4.1), we selected a subset of information to analyse their 
relationship to relative yield. As the inclusion of too many independent 
variables compared to the sample size can result in a poorly predicting 
model (Austin and Steyerberg, 2015), we selected a subset of 7 inde-
pendent variables to ensure a robust regression analysis and avoid 
overfitting (Table 3). The selection of the independent variables was 
informed by the literature review on grain yield limiting factors in SSA 
(Table 1 and Fig. 1) and exploring bivariate associations between the 
dependent and independent variables using correlation analysis and 
one-way ANOVA. We tested multicollinearity by computing the vari-
ance inflation factor (VIF) and excluding variables with VIF higher than 
5 (Praveen and Sharma, 2020; Vittinghoff et al., 2005). The normality 
assumption of the independent variables was also tested and logarithmic 
transformation was adopted whenever needed (Table 3). 

Table 3 
Dependent and independent variables used in the regression analysis. Logarithmic transformation was performed as detailed in the last column.  

Variable Description Base Transf. 

SeedType Type of maize seed planted Local – 
PestHerbUse Use of pesticide and/or herbicide No – 
TotalFert Total fertiliser used for growing maize [kg/ha] – Log 
Income Household total income (from farm and off-farm activities) [MWK] – Log 
FarmingExper Experience in farming [year] – Log 
HhSize Household size (adults and children) – Log 
Gender Gender household head Male – 
YObs

a /Yw Relative observed actual yield [− ] – Log  
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Fig. 4. Comparison between the actual yield estimated 
(
YObs

a
)

at the farmer’s fields in the three EPAs during the season 2019–2020 and the actual yield estimated 
using the remote sensing data 

(
YRS

a
)
. The model error is defined as YObs

a − YRS
a and the relative error as 

(
YObs

a − YRS
a
)
/YObs

a . 

Fig. 5. Comparison of total maize cumulative biomass simulated by AquaCrop and observed in the trial experiment in Zimbabwe (left) and Malawi (right) corre-
sponding to model calibration and validation respectively. 

Fig. 6. Spatial map of (AquaCropOS-simulated) water-limited potential yield (Yw) across Phalombe at 5× 5 km2: a) mean, b) standard deviation, and c) coefficient 
of variation computed over the period 2010–2020. Results are shown over cropland only. 
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4. Results 

4.1. Household characteristics and farming practices 

Table 5 summarises the main characteristics of the surveyed house-
holds. The average household size was 5.4 people including adults and 
children, the gender of the household head was almost equally split into 
male (54.3%) and female (45.7%). The household head was on average 
41.5 years old with 19 years farming experience. The farm activity was 
the only source of income for 55.7% of the households. Of the remain-
ing, farm activity still represented at least half of the income in 48.4% of 
the households. The average farm size was 1.72 ha, but with high 
variability (coefficient of variation equal to 1.07). The main form of land 
tenure was “Customary” (72.6%) of which 86.3% of farmers inherited. 
Maize was the main cultivated crop although 57% of the farmers prac-
tised intercropping with pigeon peas, sorghum, millet, soya, sunflower 
and groundnut (see also Li et al., 2023; Mdee et al., 2019, for more 
details on intercropping practices in the area). Approximately 48% of 
the households planted hybrid maize seeds, while the remaining 51.4% 
planted local varieties. All the households employed family manual 

labour for the land preparation, planting and harvesting and only 15.7% 
employed additional paid casual labour. The growing season showed a 
large spatial variability within the period October–May because of the 
combination of different personal choices and weather variability. In 
particular, farmers decided to plant after the first rain (63.9%) or when 
the soil was considered to be wet enough (20.5%) and to harvest when 
maize dried fully (55.7%) or because they experience theft (28.5%). 
About 81% of total harvest was kept for consumption within the 
household and the remaining was sold. Farming practices included 
application of fertiliser in 93% of the cases (among which almost 60% 
purchased the fertiliser with personal finances and 30% via subsidies), 
pesticide or herbicide in 50% of the cases. Almost 93% of the maize 
fields experienced pest attack (fall army worm, locust and termite) 
mainly between 2 and 4 weeks after planting. 

4.2. Observed and RS-simulated actual yield 

The observed actual yield 
(
YObs

a
)

at the 70 households in the season 
2019–2020 varied from 0.8 to 10.9 t/ha with lower yields observed in 

Fig. 7. Spatial maps of: a) AquaCropOS-simulated water-limited potential yield Yw, b) RS-simulated actual yield YRS
a , and c) relative yield gap YRS

g for the cropland 
cultivated with maize in the season 2019–2020 across the Phalombe district. 

Fig. 8. Empirical probability distribution function (pdf) of the water-limited yield gap 
(
Yg

)
estimated across the Phalombe district (top panel). Boxplot of the water- 

limited yield gap 
(
Yg

)
estimated for the sampled household plots in the three EPAs (bottom panel). 
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Tamani and higher yields observed in Waruma. Fig. 4 compares the 
observed and RS-simulated actual yield 

(
YRS

a
)
. Although the model fairly 

reproduced the observed actual yield, it showed a tendency towards 
overestimating the lowest yields and underestimating the highest yields. 
The absolute model error was generally within ±2 t/ha which however 
corresponded to large relative errors (between − 60% and 40%) espe-
cially in low-yield EPAs, i.e., Tamanai and parts of Naminjiwa. We used 
the 2020 official EPA yield data, accessed through the Ministry of 
Agriculture in Malawi, for the validation of the model outside the cali-
bration spatial domain, i.e., the sampled households. As detailed in Li 
et al. (2022), the RS-simulated yield was comparable to the official data, 
although with a tendency towards overestimation between 24% for 
Naminjiwa and Waruma and 54% for Tamani. Because the relative er-
rors computed at the household level and EPA level were comparable, 
we could assume that the model estimated on the household plots could 
be applied to the neighbouring areas with a similar precision (i.e., the 
extrapolation error was negligible). 

4.3. Water-limited potential yield simulated via AquaCrop 

Fig. 5 shows the results of the calibration of the AquaCrop model 
using the data collected at the field trial in Zimbabwe and Malawi, 
which were used for the calibration and validation of the model 
respectively. The cumulative biomass was well reproduced by the model 
both in calibration (coefficient of determination - R2 = 0.98, root mean 
squared error - RMSE = 1.58 t/ha, mean absolute relative error - MARE 
= 0.22) and validation (R2 = 0.92, RMSE = 3 t/ha, MARE = 0.5). 

We thus used the model parameters (Table 7 in Section A.5) to 
simulate the water-limited potential yield (Yw) over the period 
2010–2020 using AquaCrop-OS across Phalombe. The mean potential 
yield varied between 6.7 t/ha in the northern cells and 15.6 t/ha in the 
southern cells (Fig. 6a). Figs. 6b and c show that the cells with higher 
mean yield had generally higher yield variability, which ranged between 
1 and 1.4 t/ha. This analysis shows that the Phalombe district comprises 
diverse environments for the maize hybrid SC649 from medium-low to 
high potential environments. These are due to the combinations of soil 
characteristics and meteorological variability within the district (as all 
the other simulation settings were constant across both the spatial and 
temporal domain) as detailed in Section A.2. 

4.4. Yield gap quantification in the season 2019–2020 

Fig. 7 shows the spatial maps of (AquaCropOS-simulated) water- 
limited potential yield Yw, RS-simulated actual yield YRS

a , and the rela-
tive water-limited yield gap, defined as YRS

g =
(
Yw − YRS

a
)
/Yw, computed 

across the cropland cultivated with maize in the season 2019–2020 in 
Phalombe. The water-limited potential yield Yw ranged between 5 and 
13 t/ha with the highest yields located in the southern part of the district 

which received higher precipitation volumes in the 2019–2020 season 
with respect to other parts of the district. The RS-simulated actual yield 
YRS

a ranged between 1.5 and 7 t/ha. The spatial variability of YRS
a was 

higher than the spatial variability of Yw because the model had a finer 
spatial resolution (i.e, 30 × 30 m2 versus 5× 5 km2) and represented 
more diverse combinations of productivity factors (see Section 4.1). 
Still, some spatial clusters of (relatively) low and high YRS

a appeared 
throughout the spatial domain. The relative yield gap YRS

g ranged from 
10 to 90% and shows spatial patterns very similar to YRS

a (which was 
expected because of the large difference in spatial resolution between 
the models adopted to estimate the potential and actual yield). Fig. 8 
shows the empirical probability distribution function of the relative 
yield gap YRS

g and, as a reference, the relative yield gap YObs
g estimated 

for the sampled fields in the three EPAs. The distribution was slightly left 
skewed and had a median value of 51.8%. 

4.5. Socio-economic and biophysical factors driving yield gap 

The 7 independent variables selected to ensure a robust regression 
analysis and avoid overfitting (Table 3) included 3 categorical variables 
(type of maize seed planted, use of pesticide and/or herbicide, and 
gender of the household head) and 4 continuous variables (amount of 
total fertiliser used, household total income, experience in farming, and 
household size). All the selected variables had a VIF below 5, thus, the 
data was free of multicollinearity (Table 6). Table 4 shows the result of 
the regression analysis and includes the standardised beta for easier 
interpretation. The linear regression had a significant F-test (0.0013) 
meaning that the linear regression provided a better fit to the data than a 
model that contained no independent variables. The model adjusted R2 
was equal to 0.229 meaning that 23% of the variance in the relative 
observed actual yield could be explained by the independent variables 
included in the model. The overall regression model was also significant. 

Of the 7 independent variables, two had a significant association 
with the relative observed actual yield: the total amount of fertiliser and 
the household income. Both were positively associated with relative 
maize yield. A unit increase in total fertiliser was associated with a 0.31 
unit increase in the relative observed actual yield, holding other inde-
pendent variables at constant. Meanwhile, an increase in income by one 
unit was associated with a 0.24 unit increase in the relative observed 
actual yield. Although the associations of the remaining independent 
variables were not significant, the results would suggest larger house-
hold sizes, more years of farming experience and using a hybrid seed 
were associated with higher relative yields. Similarly, female headed 
households and using pesticides was associated with lower relative 
yields. 

Table 4 
Regression results. Legend ***: p<0.01; **: p<0.05; *: p<0.1.  

Variable Coefficient Std. err. t P > ∣t∣ Beta 

SeedType      
Local 0 (base)    
Hybrid 0.025 0.05 0.50 0.62 0.054 
PestHerbUse      
No 0 (base)    
Yes − 0.082 0.053 − 1.55 0.127 − 0.175 
Gender      
Male 0 (base)    
Female − 0.014 0.051 − 0.28 0.782 − 0.030 
TotalFert 0.123 0.045 2.72 0.008 *** 0.305 
Income 0.071 0.033 2.14 0.036 ** 0.238 
FarmingExper 0.093 0.078 1.19 0.239 0.135 
HhSize 0.214 0.160 1.33 0.187 0.154 
constant − 1.171 0.196 − 5.95 0.000 ***   
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5. Discussion 

5.1. Bio-physical analysis 

The water-limited potential yield we obtained for the season 
2019–2020 in the Malawian trial site was on average 9.5 t/ha. The 
potential yield attainable locally by the farmers, computed as the 95th 
percentile of the observed actual yield was 7.9 t/ha when computed on 
the entire dataset and 8.1 t/ha when considering data collected in 
Naminjiwa and Waruma only, which are closer to the trial site (see 
Fig. 2). The water-limited potential yield we simulated in the decade 
2010–2020 across the entire Phalombe district was quite variable and 
ranged between approximately 5 and 13 t/ha. At the trial site in the 
season 2019–2020, the simulated yield was 8.7 t/ha which slightly 
underestimated the observed yield. This small difference is probably due 
to the uncertainty of the remote sensing weather. In fact, CHIRPS pre-
cipitation is slightly smaller than the precipitation recorded at the sta-
tion in the trial site, i.e., 675 and 870 mm respectively. 

The relative yield gap is strictly dependent on the reference used to 
compute it, i.e., the water-limited potential yield. We refer the reader to 
Appendix A.3 for a comparison of the yield-gap values obtained when 
using different definitions of potential yield. We also refer the reader to 
Appendix A.6 for the results obtained when computing the reference 
evapotranspiration using the Penman-Monteith method. There we 
acknowledge that the choice of the method for computing the reference 
evapotranspiration has an impact on the results of our analysis, partic-
ularly in some areas (e.g., in Naminjiwa), but we also show that the main 
conclusions and policy implications are not impacted. In this work, we 
decided to use the spatially-distributed yield we simulated using 
AquaCrop-OS to account for the biophysical differences related to soil 
composition and weather across the domain. In so doing, we could as-
sume that the differences in yield gap across the Phalombe district were 
due to socio-economic and agricultural practices only. The relative 
water-limited yield gap was extremely varying across the domain 
ranging between approximately 15% and 85% (Fig. 7c and Fig. 8). This 
range is generally wider than in other works in SSA. Water limited yield 
gaps in smallholder farmers of Ghana ranged between 3.8 and 13.6 t/ha 
(67 to 84%) (van Loon et al., 2019). In central Malawi, attainable yields 
considered as 95th percentile were 8.4 t/ha while average farmer yields 
were 4.1 t/ha suggesting yield gaps of approximately 5.3 t/ha (<50%) 
(Tamene et al., 2016). In five districts of Ethiopia, water limited yield 
gaps ranged from 1.6 t/ha (15%) to 7.8 t/ha (73%) depending on the 
farming system (Assefa et al., 2020). Comparable yield gap ranges (28 to 
65%) were also observed in the central Rift Valley of Ethiopia, but with 
high interannual variability (CV = 36%) (Kassie et al., 2014). The wider 
variability simulated in our work is a combination of the fine spatial 
resolution (i.e., 30× 30 m2) and the spatially-variable potential yield 
used as the reference to compute the relative yield gap. Indeed, 
considering a spatially-distributed estimate of the water-limited poten-
tial yield allows for a better characterization of the extremes of the yield 
gap distribution (see Fig. 8) which may be important to identify the best 
and worst performing areas. This result suggests that it is important 
whenever possible to consider spatially-distributed and high-resolution 
distribution of the yield. In this respect, it would be interesting to 
explore in future works the effect of the intra-cell distribution of the soil 
characteristics on yield. 

Explaining yield gaps in a quantitative manner using the theoretical 
framework presented in Fig. 3 is particularly complex due to the number 
of interacting and confounding factors embedded in the estimate of the 
(potential and actual) yield and requires the application of a combina-
tion of approaches. A first limitation of our study is that our data 
collection spanned one growing season only. This did not allow us to 
capture any time variability associated with maize yield that may affect 
management decisions, pest and disease outbreaks, etc. This should be 
taken into account when interpreting the results and calls for more long- 

term studies to better understand the dynamic relationships between 
maize yield gap and its drivers. We acknowledge that, although the 
performance of the AquaCrop model is very accurate, the simulation of 
the potential yield Yw assumes that the maize hybrid SC649 is cultivated 
everywhere in the Phalombe district, while, in reality, smallholder 
farmers plant a variety of seeds. We also highlight that we observed 
large relative errors (between − 60% and 40%) in the empirical model 
we used to estimate the spatially-distributed actual yield YRS

a . We un-
derscore that further analysis would be needed to test whether the 
model accuracy in reproducing actual yield still holds outside from the 
calibration range both spatially (i.e., outside of the range observed in the 
sampled plots) and temporally (i.e., outside of the range observed during 
the season 2019/2020). 

The large scale simulation of yield gap still presents many challenges 
which call for better knowledge of the agricultural systems, and 
improvement in the modelling tools (especially if based on remote 
sensing inputs and empirical relationships). Physically based models 
proved to be more accurate in our case, but it has to be noted that we 
collected in-situ data to calibrate the AquaCrop model. This required 
resources and efforts that are not always affordable. For this reason, we 
believe that sharing primary agronomic data and calibrated models 
within the scientific community is key to improve the yield estimate and 
better understand the yield gap. Our results highlight how the water- 
limited potential simulated by AquaCrop is very sensitive to the pre-
cipitation input (a fact that is well known in the literature, see e.g. van 
Bussel et al. (2015)) and that a good estimate of the precipitation is key 
to precisely assessing the potential yield. This highlights as well a lim-
itation of our study, i.e., the unavailability of accurate spatially- 
distributed ground precipitation data, which is however common 
across SSA. 

5.2. Socio-economic analysis 

Our results are generally aligned with the literature. The significant 
and positive association of income and yield has been recognized in 
other works (e.g. Assefa et al., 2020). Higher income is believed to in-
crease the household budget spent on inputs and hiring extra labour to 
facilitate timely farming management activities (Tamene et al., 2016). 
Many works in the literature highlight, in particular, the role of off-farm 
activities which have been shown to represent an important part of 
livelihoods in systems with high labour (Berre et al., 2017). In our 
analysis, however, only the total income was positively associated with 
relative yield. We did not observe improvement in the model when 
distinguishing between farm and off-farm activities (not shown). The 
significant and positive association of the use of fertiliser with relative 
yield which we found in our dataset is reported in other works as well 
(van Loon et al., 2019; Pasley et al., 2019). 

Although not significant, the relationships we observed between the 
remaining variables and the relative yield are as expected from the 
literature. The effect of maize seed type suggested that the use of hybrid 
seeds was associated with higher relative yield than using local seeds. 
Also Assefa et al. (2020) and van Loon et al. (2019) claim that using 
improved maize seed varieties contributed to increasing the yield in 
Ethiopia and Ghana, respectively. More farming experience and larger 
household sizes were associated with higher relative yields. Female 
farmers were associated with lower relative yields than male farmers. 
The only unexpected result concerned the use of pesticides and herbi-
cides which was associated with a reduction of relative yield. Although 
not significant, this result is in contrast to the literature and may be 
worth exploring further. For example, asking the household head about 
the timing and amount of application or measuring stand density and 
soil fertility may clarify how and why herbicides are used. In fact, low 
fertility or low stand density, leading to low leaf area index (LAI) and 
low rate of radiation interception by the crop, may favour weed infes-
tation and need for herbicide use to avoid a complete failure of the crop, 
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while highly fertile and densely sown plots with high yields may not 
need herbicide at all (see, e.g., Affholder et al. (2003)). 

This study is unique as at each household we collected crop yield 
data and household characteristics data allowing comparisons to be 
made between the two. Nevertheless, the socio-economic analysis has a 
number of limitations that must be acknowledged. Data collection did 
not employ probability sampling so the findings between the relative 
maize yield and the household socioeconomic factors or agricultural 
practices can not be generalised beyond the field sites (Sharma, 2017; 
Groves Jr. et al., 2011). Although of a relative small size, our sample of 
70 did, however, allow us for formal statistical testing, although it 
limited the number of independent variables that could be included in 
the regression model. Explaining yield gaps (quantitatively) is extremely 
complex because of a variety of interacting and confounding factors, 
especially in environments that can not be controlled (such as farmers 
fields in contrast to trials and model-based simulations) (Silva et al., 
2017; Doré et al., 2008). Statistical correlations should thus be taken 
with care as it may result in false identification of crop growth factors 
(see Doré et al. (1997) for some examples). Silva et al. (2017), for 
example, underline that by simulating crop growth models one assumes 
a maximisation of crop yield which may be not aligned with the actual 
farmers’ preferences and habits. For example, farmers hardly perform 
the recommended fertiliser applications because of accessibility issues 
(e.g., capital constraints), preferences in minimising the risk of yield loss 
in case of wrong fertiliser application, and/or social and community 
habits (such as sharing fertilisers and herbicides with neighbours). 

5.3. Policy implications 

Our study suggests several recommendations for policy design and 
emphasis for closing the gap between actual and potential yield gaps. 
The simulated water-limited maize yield suggests the presence of some 
high potential and low potential areas within the Palombe district, 
which are likely the result of climate and soils. Our study shows positive 
correlation between relative yield and use of fertiliser. However, results 
of the survey showed unequal access to fertiliser with some farmers not 
applying fertilisers, some receiving them through subsidies, and some 
purchasing them with their own money. Consultation with Key In-
formants vis-a-vis government extension agents revealed also that, 
despite government subsidy program has enhanced availability of 
inorganic fertiliser to farmers, the actual benefits of fertiliser use may be 
lower than expected due to farmers behaviour. For example, the actual 
amount of fertiliser applied per unit area tends to be lower than the 
suggested amount because households having access to the subsidy 
program tend to share the fertilisers with households not having access 
to it. We refer the reader to Craig et al. (2022) for an overview of 
resource sharing in Southern Malawi and its relationship to farmers’ 
social capital and food security. The current success of the Agricultural 
Input Support Programme has shown varied results (Matita et al., 2022) 
also due to the recent increase in the price of fertilisers which has pre-
vented some of the poorest households from purchasing inputs even if 
subsidized (Craig et al., 2023). In this respect, our spatially-explicit 
approach may become even more valuable in identifying areas where 
fertiliser-subsidy policies may be more efficient. In fact, areas with low 
potential yields and high relative yields (i.e, where actual yields are 
close to potential yields) are not likely to benefit from fertiliser-subsidy 
policies as much as areas with low relative yields. Furthermore, among 
these last ones, areas with low potential yield may indicate low-return- 
to-input hotspots where additional policy interventions (e.g., promotion 
of weather-based crop insurances, see Anghileri et al. (2022)) may be 
needed as the crop-failure risk may become unaffordable to farmers 
even if fertiliser are subsidized. The differentiation of fertiliser appli-
cation by yield potential may also contribute to reducing the detrimental 
effects of over application of fertilisers on soil health and ecosystems 
(John and Babu, 2021; Pingali, 2012). In this study, female farmers were 
associated with lower yields than male farmers. It was not clear whether 

this was due to limited resource access by women or lack of experience 
of women farmers compared to male farmers. There is need for gender 
sensitive policies that empower females also taking into account other 
cultural roles women have. While this study only considered women as a 
minority group, the same policies should seek to include other minority 
groups that may not have been highlighted in this study. Farming 
experience was also associated with higher relative yields which high-
lights the importance of training of farmers and targeted efforts to less 
experienced farmers. Higher relative yields were also associated with 
higher income implying that closing income gap maybe part of the so-
lution to closing yield gap. The focus of various policies has been on 
assisting farmers with inputs but there may be the need to address the 
deep root of low incomes to give farmers financial freedom to acquire 
inputs. 

6. Conclusions 

Improving the productivity of smallholder farmers is thought to be a 
key component of the effort to reduce global poverty and increase food 
security. However, the productivity of most smallholder farmers in Sub- 
Saharan Africa remains poorly measured and understood. Our work 
makes a contribution towards collecting ground-truth data in Southern 
Malawi on household maize yields, socio-economic conditions, and 
agricultural practices and understanding how bio-physical and socio- 
economic variables are connected to potential and actual maize yield. 
Results suggest that with higher income and increased fertiliser appli-
cation there is potential to increase actual yields and that the marginal 
increase is spatially differentiated. Our spatially-explicit approach to 
yield-gap analysis is thus valuable in identifying high-productive areas 
and differentiated policy interventions aimed at closing the yield and 
income gaps for smallholder farmers. Future works should aim at vali-
dating the framework on a larger dataset both spatially and temporally 
(i.e., outside of the range observed during the season 2019/2020 in the 
sampled plots) and at improving the accuracy of the empirical model 
used to estimate the actual yield from remote-sensing data. 
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