The University of Southampton
University of Southampton Institutional Repository

Coalgebraic CTL: fixpoint characterization and polynomial-time model checking

Coalgebraic CTL: fixpoint characterization and polynomial-time model checking
Coalgebraic CTL: fixpoint characterization and polynomial-time model checking
We introduce a path-based coalgebraic temporal logic, Coalgebraic
CTL (CCTL), as a categorical abstraction of standard Computation
Tree Logic (CTL). Our logic can be used to formalize properties
of systems modeled as coalgebras with branching. We present the syntax
and path-based semantics of CCTL, and show how to encode this logic
into a coalgebraic fixpoint logic with a step-wise semantics. Our main
result shows that this encoding is semantics-preserving. We also present
a polynomial-time model-checking algorithm for CCTL, inspired by the
standard model-checking algorithm for CTL but described in categorical
terms. A key contribution of our paper is to identify the categorical
essence of the standard encoding of CTL into the modal mu-calculus.
This categorical perspective also explains the absence of a similar encoding
of PCTL (Probabilistic CTL) into the probabilistic mu-calculus.
Springer
Kojima, Ryota
d01773fa-38d6-4233-8ad2-bba48100e4dc
Cirstea, Corina
ce5b1cf1-5329-444f-9a76-0abcc47a54ea
Muroya, Koko
24a22926-ece4-4492-a0ad-22d144d85dde
Hasuo, Ichiro
4a4c712f-1d59-4caf-9dbd-aff060defd90
Urbat, Henning
Konig, Barbara
Kojima, Ryota
d01773fa-38d6-4233-8ad2-bba48100e4dc
Cirstea, Corina
ce5b1cf1-5329-444f-9a76-0abcc47a54ea
Muroya, Koko
24a22926-ece4-4492-a0ad-22d144d85dde
Hasuo, Ichiro
4a4c712f-1d59-4caf-9dbd-aff060defd90
Urbat, Henning
Konig, Barbara

Kojima, Ryota, Cirstea, Corina, Muroya, Koko and Hasuo, Ichiro (2024) Coalgebraic CTL: fixpoint characterization and polynomial-time model checking. Urbat, Henning and Konig, Barbara (eds.) In Coalgebraic Methods in Computer Science -- 17th IFIP WG 1.3 International Workshop, CMCS 2024. Springer. 23 pp . (In Press)

Record type: Conference or Workshop Item (Paper)

Abstract

We introduce a path-based coalgebraic temporal logic, Coalgebraic
CTL (CCTL), as a categorical abstraction of standard Computation
Tree Logic (CTL). Our logic can be used to formalize properties
of systems modeled as coalgebras with branching. We present the syntax
and path-based semantics of CCTL, and show how to encode this logic
into a coalgebraic fixpoint logic with a step-wise semantics. Our main
result shows that this encoding is semantics-preserving. We also present
a polynomial-time model-checking algorithm for CCTL, inspired by the
standard model-checking algorithm for CTL but described in categorical
terms. A key contribution of our paper is to identify the categorical
essence of the standard encoding of CTL into the modal mu-calculus.
This categorical perspective also explains the absence of a similar encoding
of PCTL (Probabilistic CTL) into the probabilistic mu-calculus.

Text
main - Accepted Manuscript
Restricted to Repository staff only
Request a copy

More information

Accepted/In Press date: 1 May 2024

Identifiers

Local EPrints ID: 490674
URI: http://eprints.soton.ac.uk/id/eprint/490674
PURE UUID: c8342f32-a7e5-4423-81b4-def7c3f876a0
ORCID for Corina Cirstea: ORCID iD orcid.org/0000-0003-3165-5678

Catalogue record

Date deposited: 03 Jun 2024 17:04
Last modified: 04 Jun 2024 01:38

Export record

Contributors

Author: Ryota Kojima
Author: Corina Cirstea ORCID iD
Author: Koko Muroya
Author: Ichiro Hasuo
Editor: Henning Urbat
Editor: Barbara Konig

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×