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There have been increasing efforts to develop prediction models supporting personalised detection, prediction, or treatment of
ADHD. We overviewed the current status of prediction science in ADHD by: (1) systematically reviewing and appraising available
prediction models; (2) quantitatively assessing factors impacting the performance of published models. We did a PRISMA/CHARMS/
TRIPOD-compliant systematic review (PROSPERO: CRD42023387502), searching, until 20/12/2023, studies reporting internally and/
or externally validated diagnostic/prognostic/treatment-response prediction models in ADHD. Using meta-regressions, we explored
the impact of factors affecting the area under the curve (AUC) of the models. We assessed the study risk of bias with the Prediction
Model Risk of Bias Assessment Tool (PROBAST). From 7764 identified records, 100 prediction models were included (88% diagnostic,
5% prognostic, and 7% treatment-response). Of these, 96% and 7% were internally and externally validated, respectively. None was
implemented in clinical practice. Only 8% of the models were deemed at low risk of bias; 67% were considered at high risk of bias.
Clinical, neuroimaging, and cognitive predictors were used in 35%, 31%, and 27% of the studies, respectively. The performance of
ADHD prediction models was increased in those models including, compared to those models not including, clinical predictors
(β= 6.54, p= 0.007). Type of validation, age range, type of model, number of predictors, study quality, and other type of predictors
did not alter the AUC. Several prediction models have been developed to support the diagnosis of ADHD. However, efforts to
predict outcomes or treatment response have been limited, and none of the available models is ready for implementation into
clinical practice. The use of clinical predictors, which may be combined with other type of predictors, seems to improve the
performance of the models. A new generation of research should address these gaps by conducting high quality, replicable, and
externally validated models, followed by implementation research.
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INTRODUCTION
Attention-Deficit/Hyperactivity Disorder (ADHD) [1] is a neurode-
velopmental condition which is characterized by age-
inappropriate and impairing inattention and/or hyperactivity/
impulsivity. Over the past decades, neurobiological research has
resulted in a shift in the understanding of the pathophysiology of
ADHD, from theoretical views of isolated brain dysfunctions to
more complex models reflecting the heterogeneity of the clinical
manifestations of ADHD [2]. However, neurobiological findings
have not yet impacted clinical practice and, currently, the
diagnosis of ADHD is exclusively based on a clinical assessment,
with no established objective tests being available as standalone
tools to diagnose ADHD [3]. The exact factors that predict the
persistence of ADHD beyond adolescence are currently unclear.
Furthermore, while effective (at least in the short-term) treatments
are available [4], there are no established evidence-based
prediction models to inform individualized treatment strategies
based on the patient’s clinical, environmental, cognitive, genetic,
or biological characteristics.

In the last decade, the new field of precision psychiatry has
emerged, with the development of multivariable prediction
models aimed at predicting the diagnosis, prognosis, or treatment
response in relation to several mental health conditions [5, 6],
considering individual variability in clinical characteristics, genes,
environment, and lifestyle [7]. Advances in the field of prediction
modelling have allowed the consolidation of an evidence-based
science of precision medicine [8]. Prediction modelling studies
investigate the development of such models, as well as their
validation [9]. External validity is the extent to which predictions
can be generalized to the data from other settings, while internal
validity is the extent to which the predictions fit the derivation
data [10].
Previous systematic reviews have identified a large number of

prediction models across mental health conditions [10, 11].
Notably, in the last few years there has been a rapidly increasing
interest in this field, and an emerging number of prediction
models on ADHD have been rapidly published, making an
updated evaluation of the status of the field essential.
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Furthermore, to our knowledge, no study has comprehensively
and specifically reviewed the status of validated prediction models
in ADHD, systematically assessing factors that can affect their
predictive performance. Therefore, our primary aim was to
systematically review and critically appraise available prediction
models that might be considered for clinical use in the
identification or management of ADHD. Our secondary aim was
to test potential moderating factors that could affect the
performance of available models as measured by their area under
the curve (AUC), the most reliable and most reported metric across
studies.

METHODS
This study (pre-registered protocol: PROSPERO:CRD42023387502)
was conducted and reported in accordance with the “Preferred
Reporting Items for Systematic Reviews and Meta-analyses”
(PRISMA) 2020 and the “Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis” (TRIPOD)
statements and checklists (Tables S1–4, available online).

Search strategy and selection criteria
PubMed and Web of Science database including Web of Science
Core Collection, BIOSIS Citation Index, KCI-Korean Journal Data-
base, MEDLINE, Russian Science Citation Index, and SciELO
Citation Index, Cochrane Central Register of Reviews, Embase
and Ovid/PsycINFO databases, were searched from inception until
20/12/2023 with no language restrictions (search terms/syntax in
Supplementary 1, available online). The references of the included
articles and those in previous relevant reviews were manually
searched to identify any possible additional relevant studies. Titles
and abstracts were screened, and, after the exclusion of those not
relevant, the full texts were assessed against the inclusion and
exclusion criteria by a group of researchers who worked
independently in pairs on one third of the hits each (GSdP, AB,
AC, MD, AC, HS, VP).
The inclusion criteria were: (a) original individual studies; (b)

conducted in children and/or adults with ADHD according to
established diagnostic criteria (DSM or ICD—any version); (c)
reporting on multivariable internally and/or externally [12]
validated prediction models; (d) providing diagnostic, prognostic,
or treatment-response estimates at the individual subject level or
in subgroups; (e) providing at least discrimination as per the AUC
(i.e., the ability of the model to separate individuals who develop
events from those who do not), accuracy (i.e., the degree of
closeness of the measured value), or classification measures
(sensitivity, specificity, or predictive values) (definitions in Table 1).
The exclusion criteria were: (a) abstracts, conference proceedings,
reviews, or meta-analyses; (b) prediction model studies that did

not evaluate or report their internal or external validation; (c)
predictor-finding studies that included one predictor only.

Descriptive measures and data extraction
Data extraction items (Supplementary 2, available online) were
based on the “Checklist for critical Appraisal and data extraction
for systematic Reviews of prediction Modelling Studies” (CHARMS)
and the “Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis” (TRIPOD) statements.
The model’s ability to separate individuals with and without the
outcome, e.g., AUC, was selected as the main outcome.
Discriminative validity is usually considered ‘acceptable’ when
AUC scores are between 0.7–0.8, ‘good’ between 0.8–0.9, and
‘excellent’ when >0.9 [13]. We extracted information on the
performance of each model assessed by other measures when
reported. When more than one outcome per study was found in
the same category, we extracted the information for the primary
outcome, as defined in each article, unless the study reported
multiple primary co-outcomes. We relied on what the individual
authors reported as their primary outcome.

Quality assessment
Risk of bias was assessed for each of the included studies with a
validated version - previously used in mental health research-
of the Prediction Model Risk of Bias Assessment Tool (PROBAST
v5/05/2019) [9] (Supplementary 3, available online).

Strategy for data synthesis
Data from the included studies were first summarized in
descriptive tables. The top 10% of the most commonly employed
predictor types were shown in a bar chart. We then conducted
meta-regressions to estimate the association, when data were
available, between AUC and: (i) the type of validation (internal vs
external); (ii) the age range (children and adolescents vs adults vs
combined/not reported); (iii) the type of model (diagnostic vs
prognostic vs treatment-response model); (iv) the number of
predictors; (v) the type of predictors [clinical/sociodemographic
vs any biomarker (neuroimaging, electroencephalography, mag-
netoencephalography, proteomic, genetic, cognitive, or a combi-
nation of modalities)] [10]; (vi) the modality of predictors
[unimodal, using only one type of predictor (e.g., clinical only)
vs multimodal, using more than one type of predictor (e.g.,
clinical and biomarker)] and (vii) the quality of the studies (low
risk vs unclear risk vs high risk). We used a random-effects model
to allow for heterogeneity in underlying associations across
studies. Number of studies permitting, we also planned sensitivity
analyses to assess the impact of studies being at low risk of bias
and without suboptimal validation. Suboptimal validation was
appraised by two statisticians (RI and MHI) with a focus on: (1)

Table 1. Definitions of key terms in prediction science.

Term Definition

Accuracy The degree of closeness of the measured value

Area under the curve (AUC) The area enclosed by the curve of a mathematical function and a reference axis

Calibration The degree of adjustment of a measurement to account for the sources of variation

Classification The degree of assignment of an outcome to the correct category

Discrimination The ability of the model to separate individuals who develop events from those who do not

External validation Process of evaluating the extent to which the predictions can be generalized to the data from other settings

Internal validation Process of evaluating the extent to which the predictions fit the derivation data after controlling for overfitting
and optimism

Optimism Increase in the assigned performance values due to methodological bias

Overfitting A modelling error consisting on a measure being too closely aligned to a previous set of data points

Performance The degree of execution of a model in regards to discrimination and calibration aspects

Prediction modelling studies Studies that use statistical procedures to predict the appearance of a condition or outcome.
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double dipping (i.e., performing feature selection or selection of
tuning -or penalty- parameters on data samples from both the
training and the test set) [14]; (2) reporting apparent/non-
validated predictive performance instead of the validated
predictive performance; (3) reporting the size and significance
of apparent regression coefficients rather than the cross-validated
performance measure, and (4) re-estimating regression coeffi-
cients in the test set, instead of applying the apparently validated
model. The meta-regression was performed with Comprehensive
Meta-Analysis Version 3. Statistical significance was set at
p < 0.05.

RESULTS
After removing duplicates, from an initial pool of 7764 references,
we retained 100 eligible studies (Fig. 1). None of the models
reported in the included studies was implemented into clinical
practice. 96 (96.0%) and seven (7.0%) models were internally and
externally validated, respectively. Among the eligible studies,
88.0% reported on diagnostic prediction models, 5.0% on
prognostic models (with outcomes such as symptom change or
development of substance use disorders), and 7.0% on treatment-
response models. The retained studies most frequently used
clinical (35.0%), neuroimaging (31.0%) and cognitive (27.0%),
predictors (Fig. 2). The total sample size was 323,554 individuals,
ranging from 10 to 238,696 individuals per study. The average age

was 15.7 years. The source of data encompassed case-control
studies (73 studies, 73.0%), cohort studies (23 studies, 23.0%), and
clinical trials (4 studies, 4.0%). AUC was the most commonly
reported measure of model performance (61.0%), followed by
accuracy (36.0%). Eight studies (8.0%) only reported the sensitivity
and specificity of the models.

Predictors in prediction models
In the 88 diagnostic prediction models, studies used cognitive
(K= 5 studies) [15–19], clinical (K= 13) [20–31]287, neuroimaging
(K= 19) [32–50], EEG (K= 15) [51–65], genetic (K= 2) [66, 67], ECG
(K= 2) [68, 69], physical health (K= 1) [70], EEG and cognitive
(K= 4) [71–74], sociodemographic and neuroimaging (K= 4)
[75–77]294, clinical and cognitive (K= 4) [78–81], sociodemo-
graphic and cognitive (K= 2) [82, 83], cognitive and physical
health (K= 2) [84, 85], genetic and neuroimaging (K= 2) [86, 87],
sociodemographic and genetic (K= 1) [88], clinical and socio-
demographic (K= 1) [89] EEG and EMG (K= 1) [90], socio-
demographic and neuroimaging (K= 2) [91, 92],
sociodemographic, clinical and cognitive (K= 3) [93–95], cogni-
tive, sociodemographic and neuroimaging (K= 1) [96], clinical,
sociodemographic and neuroimaging (k= 1) [97], clinical, cogni-
tive and neuroimaging (k= 1) [98] and sociodemographic, clinical,
cognitive and physical health (K= 2) [99, 100] predictors.
In the 5 prognostic prediction models, studies employed

sociodemographic and clinical (K= 2) [101, 102], physical health
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Fig. 1 PRISMA flowchart. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart outlining study selection
process.
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and clinical (K= 1) [103], neuroimaging and genetic (K= 1) [104],
and clinical and genetic (K= 1) [105] predictors.
In the 7 treatment-response prediction models, studies relied on

neuroimaging (K= 1) [106], genetic (k= 1) [107], sociodemographic,
clinical, cognitive, and physical health (K= 1) [108], genetic, cognitive
and physical health (K= 1) [109], clinical, sociodemographic, service
use and physical health (K= 1) [110], sociodemographic and clinical
predictors (K= 1) [111], and sociodemographic, clinical and physical
health (K= 1) predictors [112].

Performance of prediction models
The performance of ADHD prediction models was highly variable,
with AUC ranging from 0.50 to 0.99. AUC ranged from 0.50 to 0.96
in diagnostic models, from 0.73 to 0.87 in prognostic models, and
from 0.72 to 0.99 in models for predicting treatment-response.
Accuracy ranged from 0.53 to 1.0 (0.53 to 1.0 for diagnostic
models, 0.73 to 0.87 for prognostic models, and 0.72 to 0.88 for
treatment-response models) (Tables S5–7, available online). Model
calibration was assessed in 6.0% of the studies.

Meta-regression results
The performance of ADHD prediction models was increased in
those models including (K= 26), as compared to those not
including, clinical predictors (K= 36) (β= 6.540, p= 0.007). No
significant findings emerged when considering type of validation
(internal K= 58 vs external K= 4), age range (children and
adolescents K= 33 vs adults K= 11 vs combined/not reported
K= 18), type of prediction model (diagnostic K= 52 vs prognostic
K= 3 vs treatment-response K= 7) (p > 0.05), number of pre-
dictors (K= 34), other types of predictors comparisons (clinical/
service use/sociodemographic K= 13 vs biomarkers K= 33 vs
combination K= 17) or quality of the studies (low risk K= 7 vs
unclear risk K= 11 vs high risk K= 44) (all p > 0.05) (Table 2),
according to our meta-regression analyses.

Quality of prediction models
Sixty-seven (67.0%) of the included studies were deemed to be at
high risk of bias according to the PROBAST tool. The results from
the different domains were heterogeneous: 9 (9.0%) were at high
risk of bias in the participants domain, 11 (11.0%) in the
predictors domain, 19 (19.0%) in the outcomes domain, and 61
(61.0%) in the analysis domain. Only 8 (8.0%) of the included
studies (seven diagnostic and one prognostic) were considered to
be at overall low risk of bias; 86 (86.0%) of the studies were
deemed at low risk of bias in the participants domain, 60 (60.0%)
in the predictors domain, 57 (57.0%) in the outcomes domain,
and 18 (18.0%) in the analysis domain (Table S8, available online;
Fig. 3). In 13 studies (13.0%) the performance was evaluated in
development dataset only, resulting in suboptimal validation
(Table S9, available online).

DISCUSSION
This is the first systematic review to quantitatively summarize the
evidence regarding internally or externally validated diagnostic,
prognostic, or treatment-response prediction models specifically
in the field of ADHD, appraising the quality of the models and
assessing possible factors affecting their performance in terms of
AUC. Among the 100 prediction modelling studies included, 88%
reported on diagnostic, 5% on prognostic, and 7% on treatment-
response models. Furthermore, 35% of studies used clinical, 31.0%
neuroimaging, and 27.0% cognitive predictors. Notably, only 7.0%
of models were externally validated. The performance of ADHD
prediction models was increased in those models including,
compared to those models not including, clinical predictors. Meta-
regressions did not detect any significant changes in the AUC
according to other evaluated variables. Also, 67.0% of included
studies were found to be at high risk of bias according to
PROBAST quality assessment.
Our review shows that the number of prediction models in the

field of ADHD is increasing exponentially over the years, with a
wide range of predictors that might potentially support the
diagnosis of ADHD, and, to a lesser extent, the understanding of
the clinical progression of the disorder or the factor influencing
the response to interventions.
However, the discrimination and accuracy of the models,

although good, may not be enough for implementation into
clinical practice. This emerging body of research is limited by not
only a small number of externally validated models, but also, and
crucially, by lack of implementation research in real-world clinical
practice. Our findings align with previous evidence related to
other mental health conditions suggesting that external validation
of prediction models is still infrequent in psychiatry/mental health
[113]. A similar review exploring prediction models across any
mental health condition found that only 20.1% of all prediction
models were externally validated [11]. Another review found that
30.3% of all models were externally validated following strict
validation criteria (4.6% of the total models) [10]. This is in contrast
with the status of prediction science in other areas of medicine.
For instance, several models have been externally validated
between five to seventeen times in the field of chronic obstructive
pulmonary disease [114]. Similar approaches may move the field
of ADHD forward, ensuring generalizability of the model to clinical
populations not used to develop the model.
Within the internally and externally validated models, there was

no significant correlation seen between the internal and external
performance measures. However, the number of models internally
and externally validated (six studies) was low. Our findings may
also reflect a suboptimal quality during the internal validation of
the models, potentially leading to optimism in the reported
performance measures and high risk of bias. In fact, 67.0% of the
included studies were found to be at high risk of bias. The
“analysis” domain, where 61.0% of the included studies were
found to be at high risk of bias seems particularly problematic.
Also, calibration was assessed in 6.0% of the studies only. Future
prediction models need to make sure that: (1) the sample size is
appropriate and there is an appropriate number of participants
developing the outcome (which may vary depending on the
population and outcome of interest); (2) the number of predictors
is appropriate, (3) the missing data is handled appropriately (of
note, >80% studies did not report how they handled missing data,
7.0% deleted missing data and only 4.0% carried out multiple
imputation techniques, being low adherence to ADHD treatment
frequent); (4) complexities in the data (e.g. competing risks,
sampling of controls) are accounted for appropriately, and (5)
model overfitting and optimism in model performance are
accounted for, among other key criteria to develop and validate
prediction models [9]. We note that risk of bias was hetero-
geneous across the different PROBAST domains: only 9.0% of
models were at high risk of bias in the participants domain and
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only 11.0% were at high risk of bias in the predictors domain.
Given the strictness of PROBAST scoring thresholds, this highlights
some strengths among published ADHD prediction models in the
selection of participants and predictors.
In terms of the aim of the models, most of them were intended

to support the prediction of ADHD diagnosis (88/100), reflecting
an increasing interest in developing diagnostic prediction models
in the ADHD field, alongside other mental health conditions such
as depression [115], first episode psychosis [116], or bipolar
disorder [117], following a similar route, likely due to the
perception of the suboptimal nature of a “subjective” diagnosis.
Notably, unlike other mental health conditions, where perfor-
mance in diagnostic models has been found to be superior to that

in prognostic and treatment-response models [10], we did not find
this to be the case in the field of ADHD. The limited number of
available treatment-response models points to a critical need for
carefully designed experimentally controlled trials (or high quality
observational studies) to identify biomarkers that index inter-
individual variability and predict treatment response [118]. While
studies on treatment-response models are complex to perform,
mostly due to the intervention-related components (particularly
randomized clinical trials), as well as to ethical issues [10],
observational studies relying on electronic health-care records
on the long-term effectiveness and safety of the interventions
could provide a meaningful alternative [119].
In terms of predictor types, a significant proportion of the

reviewed prediction models included clinical predictors, followed
closely by neuroimaging predictors and cognitive predictors. The
performance of ADHD prediction models was higher in those
models including clinical predictors, compared to those models
not including clinical predictors. Thus, the use of clinical
predictors, which may be combined with other type of predictors,
may improve the performance of the models and their inclusion
should be considered in prediction models [81]. However, it is
important to note that further research is needed to validate these
results across different populations, and including additional
predictors [99]. While clinical predictors seem to be clearly
predominant in other fields [10], in the ADHD field different
biomarkers have commonly been used to aid the detection and
correct characterization of ADHD. However, there is currently no
biomarker in any neurodevelopmental condition, including ADHD,
for which there is evidence from two or more studies from
independent research groups, with results going into the same

Table 2. Meta-regressions exploring the possible moderating factors impacting the area under the curve (AUC).

Moderating factors Number of
studies

Meta-regression
Coefficient

SE Z value P 95%CI

(i) Type of validation

External vs Internal validation 62 (58;4) 2.319 –3.79 0.75 0.454 –3.790; 8.474

(ii) Age range

Children&adolescents vs adults 44 (33;11) –1.612 2.976 –0.54 0.588 –7.444; 4.221

Children&adolescents vs combined/not
reported

51 (33;18) 0.482 2.696 0.18 0.858 –4.802; 5.766

Adults vs combined/not reported 29 (11;18) 2.093 3.344 0.63 0.531 –4.460; 8.647

(iii) Type of model

Diagnostic vs prognostic 55 (52;3) –2.073 5.786 –0.36 0.720 –13.413; 9.268

Diagnostic vs treatment-response 59 (52;7) 1.045 3.538 0.30 0.7677 –5.889; 7.979

Prognostic vs treatment-response 10 (3;7) 3.118 6.514 0.48 0.632 –9.649; 15.885

(iv) Number of predictors

Number of predictors 34 –0.0047 0.003 –1.39 0.166 –0.011; 0.002

(v) Type of predictors

Clinical or service use or sociodemographic vs
biomarkers

46 (13; 33) –1.249 4.337 –0.29 0.773 –9.750; 7.252

Clinical or service use or sociodemographic vs
combination

30 (13;17) –2.749 2.935 –0.94 0.349 –8.502; 3.003

Biomarkers vs combination 50 (33;17) –0.404 3.786 –0.11 0.915 –7.825; 7.017

Including clinical vs not including clinical 62 (26;36) –6.540 2.410 –2.72 0.007 –11.264;
–1.824

(vi) Modality of predictors

Unimodal vs Multimodal 62 (36;26) –3.496 1.873 –1.87 0.062 –7.167; 0.174

(vii) Quality assessment

Low risk vs unclear risk 18 (7;11) 3.629 5.058 0.72 0.473 –6.284; 13.542

Low risk vs high risk 51 (7; 44) 5.549 3.910 1.42 0.156 –6.284; 13.542

Unclear risk vs high risk 55 (11; 44) 1.920 3.999 0.48 0.631 –5.918; 9.759

O V E R A L L  R I S K  O F  B I A S

P A R T I C I P A N T S

P R E D I C T O R S

O U T C O M E S

A N A L Y S I S

RISK OF BIAS
% Low risk of bias % Unclear risk of bias % High risk of bias

Fig. 3 Quality assessment. Risk of bias of the retrieved studies, as
assessed by the PROBAST tool.
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direction and of specificity and sensitivity of at least 80% [3]. This
makes it difficult to recommend the use of any specific individual
predictor in isolation, for future prediction models. Notably, we
also found no evidence that multimodal prediction models
achieved higher accuracy than unimodal models, arguing against
the development of complex models with a wide variety of
biomarkers and predictors (which would also be more difficult to
apply and implement). In other words, we found no evidence that
more complex prediction models encompassing biomarkers or a
large number of predictors (which may be more prone to
overfitting issues) outperformed less complex models. However,
from a quality perspective, five of the six studies assessed at low
risk of bias were multimodal, so caution is recommended in the
interpretation of this finding.
Future studies should consider net benefit approaches for the

evaluation of prediction models for ADHD, which were not used in
any of the studies in this review. Net benefit approaches put the
benefits and harms of using a prediction model on the same scale,
to allow assessment of the relative value associated with using
prediction models to guide clinical decision making, over other
patient management strategies [120] an approach which is
currently lacking in the ADHD prediction literature. 74% of the
studies were case-control studies which tried to differentiate
individuals with ADHD and healthy controls. Future studies should
also try to differentiate ADHD from other relevant syndromes such
as the cognitive disengagement syndrome (CDS) -or sluggish
cognitive tempo-. CDS is an emerging condition -as opposed to a
transdiagnostic phenomenon- in the field of child, adolescent and
adult psychiatry [121, 122]. The presence of CDS is particularly
important as misdiagnosis of this condition may result in a poor
response to first-line treatment with methylphenidate and
unwanted side effects [123]. Furthermore, among children cross-
ing into adolescence with ADHD, CDS can result in poor physical
activity and behaviour [122].
Our study should be considered in the light of its limitations.

Our study has several limitations that must be taken into
consideration, mainly related to issues in the available studies
rather than in our methods. The main limitation rests in the
heterogeneity of the characteristics of prediction models devel-
oped in the included studies. The predictors used to develop the
models varied considerably across studies. Therefore, in line with
previous studies [10], we did not attempt to meta-analyse the
categories of prediction models; rather, we presented only meta-
regression analyses, stratifying the models for methodological
features. We also could not conduct meta-regressions on the
studies at low risk of bias and without suboptimal methodological
strategies in regard to validation. The sample size and the quality
of the studies was highly heterogeneous, with high risk of bias
observed in 67.0% of included studies according to the PROBAST
criteria, including 61.0% in the analysis domain. Final scores of the
PROBAST should be taken with caution as the thresholds are
stringent and an outcome is considered to be at high risk of bias
when one or more of the questions is answered as not
appropriate. We did not analyse the differences among validation
measures, some of them being prone to data leakage and inflated
accuracy or overfitting. We might have missed relevant studies,
particularly if not published. Finally, we could not provide data
about calibration as this was rarely reported.
In conclusion, several validated prediction models have been

proposed to support the diagnosis of ADHD. However, efforts to
predict prognostic outcomes or treatment response to ADHD have
been limited. Advances in the field are limited by lack of
implementation research in real-world clinical practice. A new
generation of research should address these gaps by conducting
high quality, replicable and externally validated models. Once an
evidence-based model is available, efforts to disseminate it and
implement it into clinical practice are recommended.
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