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Abstract

We present a new formalism to solve the kinematical constraints due to Weyl
invariance for CFTs in curved backgrounds and/or non-trivial states, and we
apply it to thermal CFTs and to CFTs on squashed spheres. The ambient space
formalism is based on constructing a class of geometric objects that are Weyl
covariant and identifying them as natural building blocks of correlation func-
tions. We construct (scalar) n-point functions and we illustrate the formalism
with a detailed computation of 2-point functions. We compare our results for
thermal 2-point functions with results that follow from thermal OPEs and holo-
graphic computations, finding exact agreement. In our holographic computation
we also obtain the OPE coefficient of the leading double-twist contribution, and
we discuss how the double-twist coefficients may be computed from the multi-
energy-momentum contributions, given knowledge of the analytic structure of
the correlator. The 2-point function for the CFT on squashed spheres is a new
result. We also discuss the relation of our work to flat holography.
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1 Introduction

On flat spacetime, conformal invariance imposes strong restrictions on correlation func-
tions for CFTs in vacuum states. 1-, 2- and 3-point functions are completely determined
up to constants, while 4- and higher-point functions are given in terms of arbitrary func-
tions of cross-ratios of the insertion locations [1–3]. These arise as the general solutions
to Ward identities associated to conformal invariance.

But what happens to the structure of CFT correlation functions if the theory is
on a curved background g(0) or in a non-trivial state? In this situation we no longer
enjoy the constraints of conformal invariance1, but the theory should still be invariant
under Weyl transformations2 and we can obtain useful kinematic constraints from
Weyl covariance. In particular, we consider correlation functions of conformal primary
operators Oi which transform homogeneously under Weyl transformations3,

〈O1(x1) . . . On(xn)〉Ω2g(0)
= Ω(x1)−∆1 . . .Ω(xn)−∆n 〈O1(x1) . . . On(xn)〉g(0)

. (1.1)

The aim of this work (a companion to [10]) is to present a universal solution to the
constraints (1.1) (we will explain shortly what we mean by “universal”).

The simplest case of (1.1) is that of 1-point functions. On the vacuum and in flat
space these are always zero (unless the operator is the unit operator). On a curved
background and/or non-trivial states 1-point functions are generically non-vanishing,
and they transform as in (1.1). The classification of local Weyl 4 invariants constructed

1If the CFT is in a non-trivial state, it should still satisfy spontaneously broken conformal Ward
identities, see [4] for recent work, and CFT n-point functions in non-trivial states are equivalent to
(n + 2)-point functions in vacuum, with the additional operators representing the initial and final
states. Moreover, if the background is weakly curved one can use conformal perturbation theory to
connect the correlators to higher-point functions in flat space involving insertions of energy-momentum
tensors. More generally, we expect n-point functions on non-trivial backgrounds to serve as generating
functions of higher-point functions with additional energy-momentum tensor insertions. In any given
example, such considerations may provide a way to go beyond the universal terms we determine in this
paper. Here we aim to solve the generic kinematical constraints due to Weyl covariance. We expect the
constraints we derive to be wholly compatible with those coming from known constraints on vacuum
n-point functions on flat space.

2This is true for unitary CFTs in d ≤ 10 [5]. There are counterexamples based on non-unitary
CFTs, see [6], [7], [8] for mathematics literature and [9] for a physics discussion. The converse is
always true, i.e. a Weyl invariant theory on a curved background is always a CFT when the metric is
set to the flat metric. We would like to thank Kara Farnsworth for a discussion regarding this point.

3The Weyl transformation rule of CFT primary operators of sufficiently high dimension could
acquire additional inhomogeneous terms that depend on the curvature tensor [5]. No such examples
are currently known, but had such cases arise our discussion would need to be suitably amended.

4In the mathematics literature the terminology “conformal” is used instead of “Weyl”. Here we
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from the metric has a long history in mathematics. Fefferman and Graham [11, 12]
mapped this problem to that of a classification of diffeomorphism invariants, using
the the so-called the ambient space, an associated Ricci-flat curved spacetime in d+ 2
dimensions.

In this paper we will use the ambient space to provide solutions of (1.1) for n > 1
with prescribed leading singularity at coincident points, as dictated by physics.5 This
will be done by building a set of Weyl covariant functions of the insertion points xi,
as geometric objects in d + 2 dimensional ambient space. In a sense we generalise
the Fefferman-Graham construction to the multi-local case. In doing so, our solutions
build a bridge between results in conformal geometry and CFTs. We do not claim
that solutions to (1.1) generated in this way are the most general, however they are
universal, applying to all CFTs in curved backgrounds and non-trivial states.

In vacuum and on conformally flat spaces, a convenient way of obtaining solutions
to (1.1) (as well as to the conformal Ward identities) is by using the embedding space
formalism [23–28]. This exploits the realisation of the conformal group in d dimensions
SO(1, d−1) as the action of Lorentz transformations in d+2 dimensions. For example,
consider the square distance between insertions Oi and Oj in the embedding space,

Xij ≡ (Xi −Xj)
2. (1.2)

This object has definite weight 2 under Weyl transformations and appears as the fun-
damental building block in all scalar correlation functions, introduced in appropriate
combinations so as to solve (1.1). In fact, this procedure completely fixes the 2- and
3- point functions. The ambient space departs from the embedding space by having
nonzero Riemann curvature. We propose that this curvature captures the effects of
both the CFT metric g(0) and nontrivial state. On the curved ambient space, (1.2)
ceases to be a Weyl covariant scalar and cannot be used to build solutions to (1.1).

However, we can naturally improve it to X̃ij, the squared geodesic distance between
the insertions,

X̃ij ≡ `(X̃i, X̃j)
2. (1.3)

Indeed, this has definite Weyl weight and is an appropriate building block for corre-
lation functions, reducing back to (1.2) in the flat space limit. The trajectory of this
geodesic explores the geometry of the ambient space, thus encoding the dependence of
correlation functions on the CFT metric g(0) and state.

The fact that the ambient formalism encodes the dependence of the CFT on the
metric g(0) is natural, since by construction the formalism provides a systematic con-
struction of local functions of g(0) that have well-defined Weyl transformation proper-
ties. The dependence on the state requires more explanation. In [11], Fefferman and
Graham presented two (equivalent) constructions: the ambient space in d + 2 dimen-
sion, which involves a Ricci-flat metric, and a construction in d + 1 dimensions that

reserve the terminology “conformal” to refer the combination of a Weyl tranformation and a diffeo-
morphisms that leave a given metric (typically the flat metric) invariant.

5Previous uses of the ambient space and related notions in physics include higher spin theories,
holographic anomalies and Weyl-covariant theories [13–22].
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involves a hyperbolic metric. The latter construction has been instrumental in the set-
ting up of the holographic dictionary in generality [29], and one of the outcomes is that
a specific subleading term in the bulk metric encodes the state of the dual CFT. While
this precise connection to the state of the CFT holds for holographic CFTs, here we
aim to only encode kinematics and our considerations may be sufficient for that (this
will be confirmed in an explicit example).

The scalars (1.2) are the only independent scalar building blocks in the embedding
space. This is a consequence of the embedding space enjoying the full conformal group
as isometries. The ambient space breaks all of these isometries in general, and so
one should expect many more building blocks than just (1.3). More building blocks
means a richer set of allowed solutions to (1.1). The remaining invariants that we
construct are sufficient to assess the curvature corrections at finite ∆ to the geodesic
approximation, and we explain how they contribute according to Weyl-covariance. To
construct the new building blocks, we note (as we review later) that the ambient
space always comes equipped with a homothetic vector, T , a conformal Killing vector
with constant conformal factor [30]. The transformation properties w.r.t. this scaling
symmetry encodes the Weyl weights of local Weyl covariant functions. We determine
a new class of Weyl invariants through contractions of the parallel transport of T and
ambient covariant derivatives with powers of the ambient Riemann tensor. The ambient
geodesic distance in (1.3) is also most naturally expressed in terms of T : it is the
inner product of the parrallel transported T with itself. As natural geometric objects
in the ambient space, we argue that this class of invariants captures the universal
contributions of multi-energy-momentum tensors in correlation functions. Full detail
of the generalisation of the embedding space construction to the ambient space and
the proliferation of new invariants is given in the proceeding sections.

In this work we also present explicit example applications, in order to show how
to find the invariant building blocks and to construct ambient correlators in practice.
One of them involves a CFT in non-trivial state, and the other a CFT in a non-trivial
background. One of the most widely-studied examples where conformal symmetry is
broken are CFTs at finite temperature [31–35]. We start by reviewing the general
features of thermal CFTs. Then we will apply the ambient proposal. We check that
the answer given is compatible with the thermal OPE and with a novel holographic
computation of scalar correlators on the thermal state defined by an AdS black hole. We
also see how the curvature invariants correct the geodesic approximation and account
for finite ∆ effects. Another example we study are CFTs on squashed spheres [36–43],
where there are only a few existing results for correlators.

There are many commonalities between the ambient space formalism presented here
and efforts to construct holographic duals of asymptotically flat spacetimes. Here, we
are employing a d + 2 dimensional, Lorentzian, Ricci-flat spacetime in order to con-
struct Weyl-covariant building blocks of CFT correlators in d dimensions. In celestial
holography [44–48], CFT correlators in d dimensions appear as the duals of scattering
processes in d+ 2 dimensional Minkowski background. The common elements of these
proposals are discussed in section 7 with a view to build better links between them and
generalise flat holography to Ricci-flat backgrounds.
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The layout of the paper is as follows. For orientation we provide a review of the embed-
ding space formalism in section 2, turning to an introduction of the construction and
key properties of the ambient space in section 3. We then use the ambient geometry to
identify Weyl covariant and invariant ingredients for building correlation functions in
section 4 where we make a concrete proposal for scalar 2-point functions organised by
powers of the ambient Riemann tensor. We then apply these results in case studies of
thermal CFTs in section 5 and to CFTs on squashed spheres in section 6. We discuss
the connection between the ambient space approach and flat holography in section 7.
Finally we discuss future prospects and open questions in section 8.

A note on conventions. Lowercase Latin indices i, j . . . are used for d boundary/CFT
directions, lowercase Greek indices µ, ν . . . for d+ 1 bulk/AdS directions while upper-
case Latin letters M,N,A,B . . . for the d+ 2 embedding space or ambient directions.
In d + 2 dimensions, XA are Minkowski coordinates (used for the embedding space)

while X̃A = (t, ρ, xi) refer to a Gaussian null coordinate system (3.1) (which can be
used for either the embedding space or the ambient space).

2 The embedding space

The key idea at the root of the embedding space construction is that conformal trans-
formations on Rd form the group SO(1, d + 1), and hence can be realised as Lorentz
transformations in the embedding space, R1,d+1. The advantage of this perspective is
that conformally-covariant quantities on Rd can be easily represented as Lorentz ten-
sors [23–28]. In this section we review how to embed Rd into R1,d+1 and how this can
be used to efficiently constrain CFT correlation functions.

To find an embedding, we parameterise R1,d+1 with a set of coordinates XM =(
X0, X i, Xd+1

)
and the Minkowski metric, ds2 = ηMNdX

MdXN . A Lorentz invariant
locus of R1,d+1 is given by X2 = const. This gives a d+ 1 dimensional space which we
need to reduce further to d dimensions. This is achieved by restricting to the lightcone,
X2 = 0 and picking a section X+ = F(X i), where X± = X0 ±Xd+1.

The only sectional choice which gives Rd and preserves conformal transformations
X̃A = ΛA

BX
B is given by a constant function, X+ = t, with the embedding map

XM = t

(
1 + x2

2
, xi,

1− x2

2

)
, (2.1)

where xi denote coordinates on Rd with the induced metric g(0)ij = t2δij, and x2 =
δijx

ixj. Here, changing the choice of constant t can be viewed as a gauge transformation.
More precisely, one can define an equivalence of points in embedding space, based on
whether they are connected by a light-ray,

XA ∼ X ′A ⇐⇒ X ′A = tXA, (2.2)

5



for some non-vanishing real t (see Figure 1). This amounts to describing Rd with
projective coordinates,

xi =
X i

X+
, (2.3)

and one can simply work on this projective slice. This is a particularly useful perspective
that will be adopted in the ambient space construction.

X0

Xd+1

XA

X’A

Figure 1: The points XA and X ′A lie on different lightcone sections but on the same
light-ray. Hence they are represented by the same point on the projective slice.

The more general choice of lightcone section X+ = F(X i) = Ω(xi) allows one to
describe manifolds other than Rd. In this case, the embedding map takes the form

XM = Ω(x)

(
1 + x2

2
, xi,

1− x2

2

)
, (2.4)

with a conformally flat induced metric, g(0)ij = Ω(x)2δij. This is the most general class
of d−dimensional spacetimes that can be embedded in the Minkowski lightcone pre-
serving its structure. Thus, global rescalings of the embedding coordinates (generated
by the dilation vector XM∂M) end up describing the same projective slice, while local
rescalings induce Weyl transformations on the CFT background.

The embedding space machinery outlined above allows one to write all kinematic
constraints on conformal correlators in a simple and convenient fashion. In particular,
conformal invariance is realised by Lorentz invariance in the embedding space, while
Weyl covariance is realised by the freedom in the choice of the lightcone section, F(X+).
In what follows, we treat correlators on the embedding space as multi-local conformal
densities depending on the insertion points on the lightcone {Xi} and with dimensions
{∆i}, where i = 1 . . . n labels the insertion.

Invariance under Lorentz transformations, generated by JMN = XM∂N − XN∂M ,
result in the following Ward Identities

n∑
i=1

J
(i)
MN 〈O1(X1) . . . On(Xn)〉 = 0, (2.5)
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where J
(i)
MN acts on Xi. Thus, finding the form of correlators on the embedding space

reduces to enumerating the compatible Lorentz tensor structures. For 2- and 3-point
functions of scalar primaries, the only available invariants consist in the pairwise prod-
ucts of the insertion points,

Xij = −2Xi ·Xj, (2.6)

which are equal to the square distances x2
ij = |xi − xj|2 once reduced onto a d-

dimensional section.
For Weyl transformations, correlators of a CFT on a background g(0) transform as

〈O1(x1) . . . On(xn)〉Ω2g(0)
= Ω(x1)−∆1 . . .Ω(xn)−∆n 〈O1(x1) . . . On(xn)〉g(0)

, (2.7)

regardless of the spin of the operators. In the embedding space, the correlator on the
left hand side is simply the embedding space correlator in a different lightcone section.
Thus the transformation (2.7) is realised by an adjustment to the function F(X i),
giving different embedding maps (2.4). For instance the invariants Xij transform as

Xij → Ω(xi)Ω(xj)Xij (2.8)

and consequently constrain the form of the correlator.
Note that in the above discussion, we had to take into account the whole light-

cone and not just the projective slice so as to make correlators well-defined on every
d−dimensional conformally flat space. Being defined exclusively on the lightcone, cor-
relators in the embedding space are determined up to contributions ∼ X2. This gauge
redundancy will play an interesting role when discussing the ambient space.

Let us consider some simple examples for illustration. For scalar 2-point functions
with embedding insertions X1 and X2, Lorentz invariance implies that it must be a
function of the invariant X12. Furthermore, Weyl covariance fixes this function up to a
multiplicative constant, and makes the 2-point function non-vanishing only for identical
operators,

〈O(X1)O(X2)〉 =
C∆

(X12)∆
, (2.9)

where O is an operator of dimension ∆. Following similar arguments for scalar 3-point
functions, Lorentz invariance and Weyl covariance determine

〈O1O2O3〉 =
C123

(X12)α123(X13)α132(X23)α231
, αijk =

∆i + ∆j −∆k

2
. (2.10)

As is well known, scalar higher-point functions are only fixed by conformal symmetry
up to functions of the cross-ratios. We can conveniently express them on the embedding
space as

〈O1(X1) . . . On(Xn)〉 =

(∏
i<j

(Xij)
αij

)
f (u) , (2.11)
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where αij are defined through ∆i = −∑n
j=1 αij, and u denotes the set of cross-ratios

u[pqrs] =
XprXqs

XpqXrs

. (2.12)

The function f(u) is fixed by the dynamics of the CFT. The expression (2.11) auto-
matically satisfies the requirement of Weyl-covariance (2.7) as a consequence of the
scaling property (2.8).

Without going into details, we point out that the embedding space formalism is
particularly powerful for dealing with spinning correlators, since elaborate conformal
tensor structures can be written as simple tensors on the embedding space, where useful
differential operators can also be constructed [26,27,49].

Finally we note that the embedding space is a useful tool for treating holographic
duals of CFTs. This is because aside from the lightcone X2 = 0 discussed above,
another Lorentz-invariant locus in the embedding space is Euclidean AdSd+1, given by
the upper half-hyperboloid

X2 = −R2 with X0 > 0, (2.13)

and the Poincaré patch ds2 = R2

r2 [dr2 + δijdx
idxj] via the map

XM =
(
X0, X i, Xd+1

)
= R

(
1 + x2 + r2

2r
,
xi

r
,
1− x2 − r2

2r

)
. (2.14)

A key observation is that the embedding space allows one to represent bulk and bound-
ary point covariantly in the same language. Denoting by X and P the bulk and bound-
ary point respectively, the scalar bulk-to-boundary propagator reads

K∆(X,P ) =
C ′∆

(−2P ·X)∆
. (2.15)

Note that modulo the normalization, its form matches that of scalar 2-point functions
(2.9).

3 The ambient space

Our aim is to extend the embedding formalism reviewed in section 2 to more general
settings where conformal invariance may be broken, including non-conformally flat
CFT backgrounds and generic states, so that we may usefully constrain the form of
correlators in such settings. To achieve this aim we adopt the ambient space [11, 12]
as our principal tool, a (d + 2)−dimensional spacetime that replaces the role of the
embedding space.
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3.1 Construction

There are two key defining features of the ambient space. The first is the existence of a
null scaling isometry T (called a homothetic vector in mathematics literature), obeying
LT g̃ = 2g̃ where g̃ is metric of the (d + 2)−dimensional ambient space. Note that T
is a conformal Killing vector of the ambient space and is non-Killing. The existence
of T reflects the fact that CFT correlators on any background and state satisfy Weyl-
covariance constraints, playing a role analogous to the embedding space’s X ·∂X dilation
vector.

The second defining feature is Ricci-flatness. To depart from the embedding space
we must depart from R1,d+1. Riemann-flatness is too restrictive, as this results in a
formalism locally equivalent to the embedding space, leaving Ricci-flatness is the next
most natural class of spacetimes. One may wish to consider further relaxing this by
introducing matter with a energy-momentum-tensor, but we will not do so for the
present discussion; we will comment on the role of such extensions in the concluding
section 8.

Given a d-dimensional conformal manifold with coordinates xi and a representative
g(0)ij(x) of the conformal class of metrics [g(0)ij(x)], one is able to construct a new
d+2-dimensional spacetime with the above two requirements, the ambient space [11,12].

Parameterising the d+2 ambient space directions with the coordinates X̃M = (t, xi, ρ),
the most general ambient space metric is given by

g̃ = 2ρdt2 + 2tdtdρ+ t2gij(x, ρ)dxidxj, (3.1)

where gij(x, 0) = g(0)ij(x) and where gij(x, ρ) is such that R̃MN = 0. In these coordi-
nates the homothetic vector is given by

T = t∂t, (3.2)

and we note the useful property ∇̃ATB = g̃AB.
We shall refer to the coordinates X̃M as ambient coordinates. The meaning t and ρ

is depicted in Figure 2. The coordinate t is related to ambient scale transformations,
generated by the homothety T . Intuitively, the coordinate ρ describes the distance from
the nullcone.6 While t is taken to be strictly positive, ρ is real and we place the nullcone
at ρ = 0. Hence, projecting onto the d-dimensional spacetime of interest amounts to
setting t = 1 and ρ = 0 where one recovers g(0)ij(x). As in the embedding space, the
nullcone is obtained by rescaling g(0)ij and as such it is covered by the coordinates t and
xi, in analogy with (2.1). Choosing a specific t corresponds to restricting to a specific
section of the nullcone.

Knowing the d-dimensional metric together with the presence of the dilations T
completely fixes the geometry on the nullcone. The specific form of (3.1) follows from

6We call it nullcone to keep in mind the relation to the corresponding surface of the embedding
space. As we will see shortly, in the ambient space it is a null submanifold with a degenerate induced
metric, which can be represented as a cone space of the arbitrary d-dimensional manifold with a
conformal class represented by g(0).
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The embedding space

xi

ρ

t

xi

ρ

t

Figure 2: This cartoon illustrates qualitatively the meaning of the ambient coordinates:
t and xi span the nullcone, while ρ describes the distance from it.

a convenient gauge choice such that ρ and t are geodesic coordinates in a vicinity of
the nullcone. By this we mean that starting at a fixed point (t, x, 0) on the nullcone,
the curve γ(ρ) = (t, x, ρ) is a geodesic for the ambient metric g̃. Similarly, any curve
γ(t) = (t, x, ρ) starting at (t0, x, ρ) is a geodesic for the ambient metric g̃. This fixes
the ambient geometry to take the form of a Gaussian null foliation [50, 51] near the
ambient lightcone, resulting in (3.1). Observe that the t-dependence is completely fixed
by the choice of gauge and homogeneity. In particular, at ρ = 0 a dilation generated
by T = t∂t will produce a rescaling of the boundary metric as desired.

Solving the equations R̃MN = 0 determines the components gij(x, ρ), with boundary
conditions given by the d-dimensional metric gij(x, 0) = g(0)ij(x). These are,

R̃ij = ρg′′ij − ρgklg′ikg′lj +
1

2
ρgklg′klg

′
ij −

(
d

2
− 1

)
g′ij −

1

2
gklg′klgij +Rij = 0 , (3.3a)

R̃iρ =
1

2
gkl (∇kg

′
il −∇ig

′
kl) = 0 , (3.3b)

R̃ρρ = −1

2
gklg′′kl +

1

4
glkgpqg′kpg

′
ql = 0 , (3.3c)

where the primes denote derivatives in ρ, while Rij and ∇i indicate the Ricci tensor
and the covariant derivative of gij(x, ρ) evaluated at fixed ρ.

General properties of gij(x, ρ) maybe studied through solutions of (3.3a), (3.3b),
(3.3c) obtained in a perturbative expansion at small ρ, i.e. a near-nullcone expansion.
In terms of the boundary metric g(0)ij(x), one has

gij(x, ρ) = g(0)ij(x) + 2Pij ρ+ · · ·+ ρ
d
2

(
g(d)ij + h(d)ij log ρ

)
+ . . . (3.4)

for even dimensions d, while for odd d one has

gij(x, ρ) = g(0)ij(x) + 2Pij ρ+ · · ·+ ρ
d
2 g(d)ij + . . . , (3.5)
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The embedding space

xi

r
s

Figure 3: This cartoon illustrates qualitatively the meaning of the ambient coordinates:
t and xi span the nullcone, while ρ describes the distance from it.

where the coefficient of the expansion only depend on x, and Pij is the boundary
Schouten tensor

Pij =
1

d− 2

(
Rij −

R

2(d− 1)
g(0)ij

)
. (3.6)

Remarkably, all the coefficients including hij are completely fixed by the boundary met-
ric up to order O

(
ρd/2

)
, while only the trace and divergence of g(d)ij are determined

by g(0)ij. The remaining transverse traceless piece of g(d)ij constitutes the second piece
of boundary data required for general solutions of the set of second order differential
equations (3.3). Note that gij(x, ρ) is in general non-analytic at ρ = 0 since at or-
der O

(
ρd/2

)
logarithmic contributions are present for even d and for non-conformally

Einstein g(0), while half-odd powers of ρ appears for odd d starting at O
(
ρd/2

)
.

The similarity to the usual holographic expansion for asymptotically locally AdS
spaces is striking, and we can make this relation more precise by performing the fol-
lowing coordinate transformation,

ρ = −r
2

2
, t =

s

r
, (3.7)

with r, s > 0, covering the region ρ < 0. The ambient metric becomes

g̃ = −ds2 + s2

(
dr2 + gij(x, r)dx

idxj

r2

)
, (3.8)

where the piece in parentheses must solve the vacuum Einstein equations with a neg-
ative cosmological constant in d + 1 dimensions, as a consequence of Ricci-flatness in
d + 2. Thus, hypersurfaces at fixed s are asymptotically locally AdS metrics of radius
s in d+ 1 dimensions and we recognise gij(x, r) as the usual near-boundary Fefferman-
Graham expansion. This is a generalization of the AdS slicing of the embedding space
(2.14), as sketched in Figure 3. Note also that the d−dimensional manifold is recovered
in the limit r → 0 and s → 0, keeping fixed t = s

r
= 1. The homothetic vector reads

T = s∂s in these coordinates.
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This hyperbolic slicing illustrates several interesting properties of the ambient space.
First, it tells us that the coefficients in (3.4) and (3.5) contain precisely the same
information as the corresponding ones in the usual holographic expansion7 as in [29,52].
In particular, g(d)ij is related to the vacuum expectation value (VEV) of the boundary
energy-momentum tensor, while the boundary metric g(0)ij(x) plays the role of its
source. Finally, h(d)ij is proportional to the metric variation of the boundary Weyl
anomaly [29, 53]. Therefore the ambient space geometrically encodes both the generic
CFT background as well as its possibly non-trivial state, and includes the information
about conformal anomalies. Importantly, it does so in a Weyl-covariant way as we will
remark later.

Another important consequence of this slicing is that exact ambient solutions can
be found starting from asymptotically locally Anti-de Sitter (ALAdS) geometries in
the Fefferman-Graham gauge by considering the AdS radius as a new coordinate s and
fibering it according to (3.8). This automatically solves the Ricci-flatness equations.

Note that the change of coordinates (3.7) only covers ρ < 0. Alternatively we can
consider the change of coordinates

ρ = +
r2

2
, t =

s

r
, (3.9)

leading to the metric

g̃ = ds2 + s2

(−dr2 + gij(x, r)dx
idxj

r2

)
. (3.10)

As expected from the analogy with Minkowski, here we are covering the ρ > 0 region
of the ambient space with a foliation in terms of (d + 1)−dimensional asymptotically
locally dS (ALdS) spaces. One can move from the positive ρ region to the negative
ρ region by taking the analytic continuation s → is and r → ir of the radius and
Fefferman-Graham coordinate, recovering the well-known map from Euclidean AdS to
dS spaces. Similarly to the negative ρ case, we can find exact ambient geometries in
this patch by plugging ALdS metrics within the parentheses of (3.10).

3.2 Relation to the embedding space

To illustrate the relationship between the embedding space presented in section 2 and
the more general ambient metric (3.1), we start by rewriting the (d+ 2)−dimensional
Minkowski metric ds2 = ηMNdX

MdXN in terms of the Gaussian null coordinates
X̃M = (t, xi, ρ). In view of a comparison with the Poincaré slicing of the embedding
space (2.14) we consider a flat boundary g(0)ij = δij. Defining X± = X0 ± Xd+1, a

7Observe that the ambient coordinate ρ is proportional to the holographic ρHolo as defined e.g. in
[29] according to ρ = − 1

2ρHolo.
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suitable change of coordinates8 is

t = X+, ρ =
ηMNX

MXN

2(X+)2
, xi =

X i

X+
, (3.11)

with inverse map

X0 =
t

2

(
1− 2ρ+ x2

)
, X i = txi, Xd+1 =

t

2

(
1 + 2ρ− x2

)
. (3.12)

The resulting ambient metric is

g̃ = 2ρdt2 + 2tdtdρ+ t2δijdx
idxj, (3.13)

which is simply Minkowski space in Gaussian null coordinates. From the map (3.12) it is
clear that fixing a value of t determines a single slice of the nullcone, where the boundary
directions xi play the role of the projective coordinates (2.3), being independent of the
section one picks. The coordinate ρ tells us how far from the nullcone we are, with
ρ > 0 the region with a timelike separation from the origin, and ρ < 0 spacelike. As
a consistency check, note that the map (3.12) reduces to the embedding (2.1) taking
ρ = 0 and matches the AdS slicing (2.14) using the change of coordinates (3.7).

Comparing the ambient metric (3.13) to the general expansion at small ρ, we im-
mediately recognise in which sense the embedding formalism can be generalised via the
ambient space. The latter can describe non-trivial states at the boundary in case of a
non-vanishing energy-momentum tensor VEV turned on. In addition to this, we remark
that a similar map from the embedding space to the ambient formulation as in (3.11)
can be found for any conformally flat boundary metric, not only for g(0)ij(x) = δij.
Assuming the boundary data g(d)ij vanishes, one can check that the ambient space
is locally Minkowski (i.e. its Riemann tensor vanishes) if and only if the boundary
metric g(0)ij(x) is conformally flat. In the special case of d = 2, where all boundary
metrics are conformally flat, one can show [12] that the 4-dimensional ambient space is
automatically Riemann-flat, even for non-vanishing energy-momentum tensor VEVs.

As an illustration of this fact, let us consider a CFT on a Euclidean AdSd back-
ground, with metric

g(0)ijdx
idxj =

dz2 + dxadx
a

z2
, (3.14)

with a = 2 . . . d. When the boundary metric is an Einstein metric9 the ambient expan-
sion truncates at order O(ρ2). In this case, the ambient metric reads

g̃ = 2ρdt2 + 2tdtdρ+ t2
(

1− ρ

2

)2 dz2 + dxadx
a

z2
, (3.15)

8A similar set of coordinates for Minkowski was used in [54].
9By Einstein metric we mean that the Ricci tensor is proportional to the metric.
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and the change of coordinates mapping this space to Minkowski is

X0 =
t

2
√

2z

(
2 + z2 + x2

) (
1− ρ

2

)
, X1 = t

(
1 +

ρ

2

)
, (3.16)

Xa =
t

z
xa
(

1− ρ

2

)
, Xd+1 =

t

2
√

2z

(
2− z2 − x2

) (
1− ρ

2

)
.

Let us now turn our attention to embedding space correlation functions. Focusing
on scalar 2-point functions on Rd, their extension to the ambient space must also be
a scalar and this entails that one has to find building blocks which are scalars under
ambient diffeomorphisms.10

In embedding space one can simply use insertion coordinates XM
i to construct

scalars as in (2.6), since Minkowski space is in fact locally isomorphic to its tangent
space. In ambient space however, (t, xi, ρ) are merely coordinates on a curved manifold,
and cannot be directly contracted at different insertion points to construct scalars,
as these belong to different tangent spaces. Fortunately, by definition, the ambient
space comes equipped with the homothetic vector T = t∂t. Since T coincides with
X = XM∂M in the flat case, it is natural to replace the positions of the insertions in
the ambient space is the vector field T evaluated at the insertion points.

Consider two ambient insertion points X̃i, X̃j. In order to construct a scalar quantity

under ambient diffeomorphisms, we parallel transport T (X̃i) to X̃j, and contract it with

T (X̃j). Since the two vectors belong to the same tangent space their contraction with
the ambient metric at that point results in a well-defined scalar.

This prescription allowing one to generalise Xij is valid for any ambient space, and
we will discuss it at length in section 4. For now let us check it reproduces the known
embedding space invariant in (2.6) in the case of a flat boundary with ambient metric
(3.13). Given two points not necessarily on the lightcone

X̃0 = (t0, x0, ρ0), X̃1 = (t1, x1, ρ1), (3.17)

as a first step parallel transport requires solving the geodesic equations from X̃0 to X̃1

¨̃
XM(λ) + ΓMAB(λ)

˙̃
XA(λ)

˙̃
XB(λ) = 0, (3.18)

where ΓMAB here refers to the ambient connection. On the flat ambient space (3.13) they

10We will explain in detail this statement in section 3.3, where in particular it will be shown which
class of diffeomorphisms is relevant in this context and why we are requiring full diffeomorphism
invariance.

14



can be easily solved,

t(λ) = Aλ+B, (3.19a)

xm(λ) =
Em

Aλ+B
+ Fm, (3.19b)

ρ(λ) =
EmEm

2(Aλ+B)2
+

G

Aλ+B
+H, (3.19c)

where A,B,Em, G,H are a total of 2(d + 2) integration constants accounting for the
components of the initial and final point (3.17) of the geodesic. We set the endpoints
to correspond to the values of the affine parameter λ = 0 and λ = 1 respectively, fixing
the integration constants to

A = −t0 + t1, B = t0, Em = t0t1
xm1 − xm0
t0 − t1

, (3.20a)

Fm =
t1x

m
1 − t0xm0
t1 − t0

H = −E
mEm + 2Gt0

2t20
, (3.20b)

G = − t0t1
(t0 − t1)2

[
(t0 + t1)(x1 − x0)2 + 2(t0 − t1)(ρ0 − ρ1)

]
. (3.20c)

These geodesics are of course simply straight lines on Minkowski in disguise. We now
have to evolve the initial condition T (λ = 0) = T0 = (t0, 0, 0) at X̃0 to the point X̃1

along these geodesics using the parallel transport equations

˙̃
XM(λ) ∇̃MT

A(λ) = 0. (3.21)

In this case also these equations can be solved exactly and after imposing the boundary
conditions at the endpoints, at λ = 1 one finds

T̂0 ≡ T0(1) =

(
t0,−

t0
2t1

[
(xi0 − xi1)2 − 2(ρ0 − ρ1)

]
,
t0
t1

(xi0 − xi1)

)
. (3.22)

We define the ambient analogue X̃ij of the embedding space invariant Xij as the con-

traction of T1 = (t1, 0, 0) with T̂0 using the ambient metric evaluated at X̃1. This leads
to

X̃01 ≡ −2 T̂0 · T1 = t0t1
(
(xi0 − xi1)2 − 2(ρ0 + ρ1)

)
. (3.23)

Placing the insertions on the lightcone section ρ0,1 = 0, t0,1 = 1, one recovers the
expected value of the embedding space invariant X01. For more general ambient spaces,
we treat the calculation of this invariant in more details in the upcoming sections and
in Appendix B.

As already discussed when constructing the ambient space, and as we will see in
more detail in section 3.3, the conformal dimension under Weyl transformations of an
ambient object coincides with minus its weight in t. This fixes scalar 2-point functions
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of dimension ∆ and bulk-to-boundary propagators to the known forms,

〈O1(X̃1)O2(X̃2)〉 =
C∆

(X̃12)∆

∣∣∣∣∣t1,2→1
ρ1,2→0

=
C∆

(x12)2∆
(3.24)

K∆(r0, x1;x2) =
C ′∆

(X̃12)∆

∣∣∣∣∣t1→1
ρ1→0

=
C ′∆
R∆

(
r0

(x12)2 + r2
0

)∆

, (3.25)

where we set t1 = R
r1

and ρ1 = − r2
1

2
, and R is the AdS radius.

3.3 Weyl invariance and the Weyl connection

The ambient construction reduces to the embedding space for CFTs on conformally
flat d-dimensional backgrounds in the vacuum state. Correlators must be invariant
under conformal transformations, which are conveniently realised as isometries in the
embedding space. As detailed in Appendix A, the same happens in the ambient space.
In particular, conformal Killing vectors on g(0) are lifted to near-lightcone isometries on
the ambient space.11 The corresponding Ward identity in the CFT constrains ambient
correlators in the same way as embedding correlators. For each such near-lightcone
isometry K in d + 2 dimensions, ambient correlators F of quasi-primary operators
must satisfy

n∑
i=1

L(i)
K F (X̃1, X̃2 . . . X̃n) = 0 , (3.26)

where L(i) is the Lie derivative operator acting on the i-th insertion point and where
F is a tensor on the ambient space, in general with different tensorial transformation
properties for each insertion.

Since we are interested in CFT backgrounds and states that may break all near-
lightcone isometries K that so usefully constrain correlators through (3.26), how then is
the ambient space formalism useful? The answer is Weyl covariance, which represents
the universal kinematical constraint on correlators. For a CFT on a generic background
g(0) it reads as in (2.7).12

Assume we have an ambient space g̃ of the form (3.1) constructed from the CFT
background metric g(0)ij; we wish to construct another one compatible with the metric
ĝ(0)ij = e2Ω(x)g(0)ij. It turns out these two ambient spaces are locally diffeomorphic, so

11Such a feature is already present in standard holography as one relates asymptotic symmetries in
the bulk to conformal transformations on the boundary [55]. This property of the ambient space can
be thought of as inherited from the ALAdS realization (3.8), where asymptotic symmetries on the
ALAdS slices are to be understood as near-nullcone isometries on the ambient space.

12We are considering all insertions at separated points, so local contributions from Weyl anomalies
do not contribute.
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that in a new set of coordinates (t̂, x̂i, ρ̂) the ambient metric g̃ reads

g̃ = 2ρ̂dt̂2 + 2t̂dt̂dρ̂+ t̂2ĝij(x̂, ρ̂)dx̂idx̂j , (3.27)

which induces the metric ĝ(0)ij(x̂) when taking ρ̂ = 0, t̂ = 1. Formally (3.27) is an
ambient space constructed from the metric ĝ(0)ij. One can interpret this fact as the
statement that an ambient space is canonically related not only to g(0)ij but to the whole
conformal class of metrics [g(0)], all equivalent to g(0) modulo a Weyl transformation.13

The coordinate transformation from (t, xi, ρ) to (t̂, x̂i, ρ̂) can be easily found by
working perturbatively in ρ.14 Algorithmically, one imposes order by order that the
background metric induced at ρ̂ = 0, t̂ = 1 is the Weyl-rescaled ĝ(0)ij, as well as that
the ambient gauge is preserved (i.e. t̂ and ρ̂ are Gaussian null coordinates). For what
follows we are interested only in the first few orders,

t̂ = e−Ω(x)t

[
1− 1

2
ΩiΩiρ+O(ρ2)

]
, (3.28a)

x̂i = xi + Ωiρ+O(ρ2) , (3.28b)

ρ̂ = e2Ω(x)ρ+O(ρ2) , (3.28c)

with Ωi = ∂iΩ and where indices are raised and lowered using g(0)ij.
As anticipated on the nullcone ρ = 0 this diffeomorphism reduces to a local rescaling

of the coordinate t. This is the analogue of the local rescaling of the projective section
in the embedding space in (2.4) which leads to a Weyl-rescaled background. This agrees
with the intuition that t measures the engineering dimensions of ambient quantities. In
particular, the scalar invariant X̃ij defined in equation (3.23) for conformally flat back-

grounds is manifestly homogeneous in t in both insertions X̃ij ∝ titj, hence transforms
homogeneously under Weyl transformations with dimension −2. Analogously, X12 is a
dimension −2 invariant in the embedding space.

The fact that Weyl transformations are induced by ambient diffeomorphisms rep-
resents the key property of the ambient space and it has been the main motivation for
its use in conformal geometry, allowing one to find and classify Weyl-invariant objects
on arbitrary d-dimensional manifolds [8, 11, 12, 58–66]. Our goal is to use the ambient
space to study correlators, meant as multi-local tensorial objects living on the ambient
nullcone. To impose their Weyl-covariance, one has to study the precise action of the
diffeomorphisms (3.28) on ambient tensors when restricted to the nullcone [12,58,61].

Let us focus on vector fields on the ambient space for simplicity. It is straightforward
to generalise the discussion to any other ambient tensor. When we restrict an ambient
vector field to the nullcone, its components will only depend on t and xi. There turns
out to be a privileged class of ambient vectors whose components can be written in the

13This parallels the case of (d + 1)-dimensional ALAdS spaces, where Weyl transformations are
induced onto the boundary by a special class of bulk diffeomorphisms (see e.g. [56, 57]).

14We proceed in this way to keep the discussion as general as possible. Given an exact ambient
solution to all orders in ρ, this diffeomorphism may be found in closed form.
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form

V M =

(
v0(x),

vi(x)

t
,
vρ(x)

t

)
(3.29)

once restricted to the CFT background.15 Here t should be thought of as a formal
parameter, which keeps track of the weight under Weyl transformations of each com-
ponent. These expressions should be thought of as evaluated at t = 1. In conformal
geometry, the vector (3.29) is known as a (weight 0) tractor.

More specifically, under the ambient diffeomorphisms (3.28) the components of any
such vector restricted to ρ = 0 transform according to

V̂ M =
∂
̂̃
XM

∂X̃N
V N

∣∣∣∣∣∣
ρ=0

=

e−Ω
[
v0 − Ωiv

i − 1
2
ΩiΩ

ivρ
]

1
t

[vi + Ωivρ]
e2Ω

t
vρ

 . (3.30)

The resulting components V̂ M have the same weight in t as the initial vector (3.29)
and thus this transformation preserves the class of tractor fields. We can rewrite this
action in terms of a linear transformation on the (d + 2)-dimensional space of such
vector fields,

U(Ω)MN =

e−Ω −Ωne
−Ω −1

2
ΩiΩ

ie−Ω

0 δmn Ωm

0 0 e2Ω

 , (3.31)

parametrised by a function Ω(x) on the CFT background, and where we set t = 1.
One can analogously define weight w tractors as the restriction to a d-dimensional

nullcone section of ambient vectors with an additional overall homogeneity of tw with
respect to (3.29). Weighted tractors can be simply thought of as the restriction of
ambient vectors V = V M∂M with homogeneity w − 1 in t to the section t = 1 of the
nullcone. They transform as

V̂ M = ewΩ U(Ω)MNV
N (3.32)

under a Weyl transformation, where U(Ω)MN is the same matrix as in (3.31).
If we further inspect the components of the ambient connection, the action of

the ambient covariant derivative along the xi directions (once restricted to the d-

dimensional section) Dk ≡ ∇̃
∣∣∣
ρ=0
t=1

can be split as

Dk = ∇k +Ak, with (Ak)MN =

 0 −Pkn 0
P m
k 0 δmk
0 −gkn 0

 , (3.33)

where the first piece is simply the covariant derivative compatible with the background
metric g(0), under which v0 and vρ are scalars. Thus the ambient connection acts on a

15By doing this we are effectively constructing a (d + 2)-dimensional vector bundle on the d-
dimensional background.
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tractor (of any weight) as

DkV M = ∂kV
M + δMm Γmknv

n + (Ak)MN V N . (3.34)

The additional pieceAk that the ambient connection induces onto the CFT background
is what makes Dk covariant under Weyl transformations when acting on tractors. This
type of connection was originally constructed in [67] and independently studied in
physics in the context of conformal supergravity [68–70]. In particular one can check
that Dk commutes with Weyl transformations, i.e. DkV M transforms in the same way
as V M ,

(D̂kV̂ )M = ewΩ U(Ω)MN (DkV )N , (3.35)

where D̂k indicates the covariant derivative compatible with the ambient metric (3.27).
This shows that the ambient connection canonically induces a Weyl connection on the
boundary. Finding Weyl covariant objects in d dimensions (such as CFT correlators)
boils down to the study of multiplets under Weyl transformations given by the matrix
U(Ω). It is in this sense that Weyl transformations are linearly realised on the ambient
nullcone, similarly to what happens for conformal symmetries in the embedding space.
This is the perspective adopted in the so-called tractor calculus [17, 61, 71]. In section
4.5 we discuss the implications for the computation of spinning correlators in general
backgrounds and states.

4 Ambient correlators

Given a CFT in a state defined by the VEVs {〈Oi〉} and on the metric background g(0),
we must find a prescription to associate a specific ambient space to it. As discussed
in section 3.1 the data g(0) are not enough to specify the ambient metric, since one
must also provide additional near-nullcone data g(d)ij. Once this data is specified the
construction proceeds by fulfilling the Ricci-flatness condition.

It is natural to associate g(d)ij with the VEV of the energy-momentum tensor. Recall
that according to AdS/CFT any hyperbolic slice of an ambient space in the form (3.8)
encodes the dynamics of a CFT on the background g(0) and in a precise state. We
propose to associate a CFT in the state {〈Oi〉} and background g(0) to the ambient
space constructed with the corresponding ALAdS slices according to AdS/CFT. Other
states where additional VEVs are turned on would require an extension of the ambient
space to accommodate for such additional data. In such case one should include other
matter fields and a modification of the Ricci-flatness condition.

While we use holography to justify the connection with a non-trivial state, our re-
sults do not necessarily apply only to holographic CFTs. Recall that the embedding
space solves the kinematics of CFTs in the vacuum state on conformally flat back-
grounds, and its hyperbolic slices are pure (A)dS spaces. Nonetheless, we know that
using the embedding space we can solve the symmetry constraints on correlators not
only for theories which are strictly-speaking holographically dual to pure AdS, but also
for free or weakly coupled CFTs in the vacuum state. The ambient space will be treated

19



in a similar way: although we use the AdS/CFT dictionary to construct it, we expect
it to allow one to solve the kinematical constraints of any CFT in that background and
state, also non-holographic ones. We will explicitly see this in the example of thermal
CFTs discussed in section 5.

In this section we construct Weyl-covariant building blocks that can appear in
correlators of a CFT on the metric background g(0) with a given energy-momentum
tensor VEV 〈Tij〉, using the corresponding ambient space as prescribed. The focus will
be on scalar n-point functions as a first test of the formalism. The case of flat ambient
space correlators described in section 3.2 will guide our steps. There, for scalar n-point
functions the only available building block is Xij. Since the ambient space accounts
for setups with less symmetry, we expect a larger number of independent invariants
than in the embedding space. After assembling these Weyl-covariant building blocks
into correlators on the ambient space, the CFT correlators are obtained by taking the
projection onto a section of the nullcone. We take the section to be at t = 1; through a
Weyl transformation one can move to a conformally-related section. In section 4.5 we
describe how to generalise this discussion to spinning correlators.

4.1 The ingredients

The objects at hand are the ambient space metric and covariant derivative. Whilst in
some sense these objects survive in the embedding space limit as the Minkowski metric
and partial derivative, the ambient Riemann tensor R̃ABCD does not. Thus, R̃ABCD

and its ambient covariant derivatives form natural ingredients that embody departures
from embedding space results.

For correlation functions the other important ingredient is the homothetic vector,
T . As discussed in section 3.2, T provides the ambient space generalisation of the
embedding space insertion points Xi for correlation functions. For n-point functions
we have multiple distinct insertion points and need to parallel transport all relevant
quantities to the same point, so that everything lives in the same tangent space and
contractions can be made. Typically the geodesics along which we transport leave the
ambient nullcone and explore the bulk of ambient space. This means that transported
quantities get affected by the non-trivial (d + 1)-dimensional ALAdS geometry. The
ambient curvature itself contains information about the state. Explicitly,

even d: (∇̃ρ)
d
2
−2R̃ρijρ =

t2

2

(
d

2

)
! g(d)ij + F [g(0)] +O(ρ) , (4.1)

odd d: (∇̃ρ)
d+1

2
−2R̃ρijρ =

t2

2
√
π

Γ

(
d

2
+ 1

)
g(d)ij√
ρ

+O(ρ0) , (4.2)

where F [g(0)] is a local functional of g(0), while g(d)ij is related to the state in the
prescription outlined above. This is one of the main ways the CFT state enters the
building blocks that we are constructing.

Note that in more general settings where other operators take non-vanishing VEVs
these must be added to the legitimate ingredients. If residual conformal Killing vectors
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are present, the corresponding ambient isometries and their parallel transport may also
enter the list of ingredients necessary to construct a complete set of invariants.

Finally, we close this subsection by listing some useful properties of the ambient
Riemann tensor, R̃ABCD. The Weyl, Cotton and Bach tensors can be obtained as the
restriction of the ambient curvature to the d-dimensional background [12]16,

R̃ijkl

∣∣∣
ρ=0,t=1

= Wijkl , R̃ρjkl

∣∣∣
ρ=0,t=1

= Cjkl , R̃ρjkρ

∣∣∣
ρ=0,t=1

= − Bij

d− 4
. (4.3)

Working perturbatively at small ρ one can obtain expressions in closed form for the
components of the ambient Riemann tensor. For conformally flat g(0),

R̃ρjkρ =
d

4

(
d

2
− 1

)
g(d)jk ρ

d
2
−2t2 +O(ρ

d
2
−1) , (4.4)

R̃ρjkl =
d

4

[
∇lg(d)jk −∇kg(d)jl

]
ρ
d
2
−1t2 +O(ρ

d
2 ) , (4.5)

R̃ijkl =
d

4

(
g(0)ilg(d)jk + g(0)jkg(d)il − g(0)ikg(d)jl − g(0)jlg(d)ik

)
ρ
d
2
−1t2 +O(ρ

d
2 ) , (4.6)

while for generic g(0) in d = 3 the components take the same form as above except for

R̃ρjkl = [∇lPjk −∇kPjl] t
2 +

d

4

[
∇lg(d)jk −∇kg(d)jl

]
ρ
d
2
−1t2 +O(ρ) . (4.7)

where Pij is the boundary Schouten tensor, (3.6). We will make use of these expressions
later when studying CFTs at finite temperature and on squashed sphere backgrounds.

4.2 The building blocks

We now construct building blocks on the ambient space that can enter CFT correlators
based on Weyl covariance. Following the previous discussion, using parallel transport
we must combine the local quantities

T, g̃, (∇̃)kR̃iem (k = 0, 1 . . . ), (4.8)

evaluated at the different insertion points.17 We first focus on scalar invariants, turning
to invariants with spin in section 4.5.

The simplest scalar invariant is X̃ij, the ambient space analogue of the square-
distance between insertions. We construct it as prescribed in the flat case in section
3.2: we parallel transport Ti = T (X̃i) to X̃j yielding T̂i, which we then contract with

16Here we are assuming that d 6= 4. If d = 4, as we will remark later, the energy-momentum tensor

VEV contained in g(d)ij enters the R̃ρjkρ

∣∣∣
ρ=0,t=1

components, and thus these cannot be written only

in terms of the boundary metric g(0). As a consequence, the expression in (4.3) is no longer valid in
d = 4.

17Note that gradients of T do not need to be considered since ∇̃ATB = g̃AB .
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Tj = T (X̃j) at X̃j. In Appendix B we discuss in detail how to find geodesics between
two points lying on a section of the ambient nullcone, how to perform the parallel
transport and finally obtain T̂i. The key result is that

X̃ij = −2 T̂i · Tj = `(X̃i, X̃j)
2, (4.9)

where `(X̃i, X̃j) is the geodesic distance between the two insertion points on the ambient
space. This generalises the result we found earlier for the flat background, (3.23). Note
that it does not matter which insertion we parallel transport, the result is symmetric
under i↔ j.

Note that the invariant (4.9) relies on the existence of an ambient geodesic between
the two insertions. It is conceivable that in some cases no such geodesic exists, in
which case this building block doesn’t exist. It is also possible that there is more than
one geodesic, in which case there will be an enhancement in the number of invariants
available to build correlators.18 However, under mild assumptions given any two points
on the ambient nullcone there is one and only one geodesic connecting them [72,73].

In addition to X̃ij we can construct new bi-local scalar invariants by directly using
the ambient curvature and its covariant derivatives. Assembling these ingredients one
immediately discovers that not all such invariants are independent, due to a number
of identities: the contractions of T with Riemann are trivial [12],

TDj R̃ABCD = 0, (4.10)

and contractions with gradients of Riemann are redundant since,

TDj R̃ABCD;M1...Mr = −
r∑
s=1

R̃ABCMs;M1...M̂s...Mr
, (4.11a)

T Pj R̃ABCD;M1...MsPMs+1...Mr = −(s+ 2)R̃ABCD;M1...Mr

−
r∑

t=s+1

R̃ABCD;M1...MsMtMs+1...M̂t...Mr
,

(4.11b)

where semicolons denote covariant derivatives and hatted indices are understood as
removed. These properties, along with Ricci-flatness R̃AB = 0, reduce the number of
independent scalar invariants.

Based on these observations, in what follows we restrict our attention to the fol-
lowing set of scalar invariants constructed at Xj, the weighted curvature invariants :

W
(k,n)
ij ∼ contr

[
T̂i ⊗ · · · ⊗ (∇̃)r1Riem⊗ · · · ⊗ (∇̃)rkRiem

]
, (4.12)

18This latter possibility occurs for states described by thermal AdS spaces, where there is an infinite
number of geodesics connecting any two nullcone points, enumerated by the number of windings around
the thermal circle. Indeed, a sum over such contributions is required to reproduce the corresponding
thermal correlator, as we show later in section 5.4.3.
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where contr indicates the full contraction of all the indices using the ambient metric at
Xj. They are diffeomorphism invariants in d+ 2 dimensions, while displaying a precise

weight under Weyl transformations (hence being Weyl covariant quantities). Since T̂i
are obtained by parallel transport, one can build a distinct set of invariants for each
corresponding geodesic.

We have labelled the W
(k,n)
ij by the number of Riemann’s they contain, k. This

is a good label once we fix some redundancies. The first redundancy is associated to
use of the identity ∇̃DR̃ABCD = 0 which follows from the second Bianchi identity
and Ricci-flatness. Because of this, we require that none of the covariant derivatives
within each factor (∇̃)rRiem in (4.12) are contracted with the Riemann tensor itself,
regardless of the ordering. This is because by repeated commutation of the covariant
derivatives one can eventually reach a form where ∇̃DR̃ABCD = 0 can be applied to one
term; all remaining terms then take the form of other terms appearing in (4.12) with
higher k. The second redundancy is the remaining ordering ambiguity of the covariant
derivatives within each factor (∇̃)rRiem, which we fix by symmetrisation, as a matter
of convention. The remaining label n enumerates all possible invariants with that k.

As a note of caution, the weighted curvature invariants (4.12) do not necessarily
include all possible invariants. For example, we have not considered covariant deriva-
tives of T̂i at X̃j, nor do we consider parallel transport of the ambient curvature and its

covariant derivatives from X̃i to X̃j. In what follows we assume that (4.12) constitute
a basis without including such contributions. Evidence in support of these assumptions
is brought by the results presented in the explicit examples in sections 5 and 6 where
we show that the invariants of the form (4.12) under these assumptions constitute a
basis.

Let us discuss invariants with k = 0, 1, 2. There are no non-trivial k = 0 weighted
curvature invariants, since without Riemanns in (4.12) there are only contractions of
T̂i which are zero; there is just the identity. There are also no k = 1 weighted curvature
invariants, and a proof of this result proceeds as follows. At most two of the indices
of Riemann can be contracted with T̂i due to the antisymmetry of Riemann indices.
Thus at least two of the four indices of the ambient Riemann are to be contracted
with either the inverse metric or covariant derivatives. Any contraction with an inverse
metric yields zero by Ricci-flatness. Any contraction with covariant derivatives is a term
that is not a member of the k = 1 set of invariants, according to the definition given
above. Later, in the examples discussed in sections 5 and 6 we provide explicit examples
of k = 2 building blocks, which play an important role in constructing ambient 2-point
functions.

As explained in section 3.3 the engineering dimension, ∆, of an ambient scalar is
minus its overall weight in t. It can be easily computed with the same rules used in the
embedding space19, by viewing TM and ∇M as dimension −1 and 1 quantities respec-

19For ease of comparison with the mathematical literature, we observe this is not the perspective
typically adopted in conformal geometry. There the metric g̃ and the Riemann (meant as tensors) both

have dimensions –2 following from their homogeneity in t, while T and the ambient derivative ∇̃M
have dimension zero. Their components have of course different weight, and this is what one considers
in the embedding formalism instead. For example, the vector T = t∂t has weight zero in t, while its

23



tively. The Riemann tensor contains two derivatives of the metric and we conclude it
has dimension 2. For weighted curvature invariant (4.12) with k Riemann tensors, r
covariant derivatives and ` T̂i vectors,

∆ = 2k + r − `. (4.13)

Note that r + ` must be even in order to be able to build a scalar with an integral
number of inverse metrics. From (4.13) this entails that all such invariants have even
dimensions.

If an invariant of the form (4.12) has ∆ 6= 0 we can easily construct a ∆ = 0

invariant from it by multiplying by an appropriate power of X̃ij. However, a useful
class of ∆ = 0 invariants are those of the form (4.12) with 2k + r = `. Due to the
symmetries of the Riemann tensor their structure is completely fixed and one can list
them in full generality. If we define the partial contraction

R(r̂)
AC = T̂M1

i . . . T̂Mr̂
i T̂Ui T̂

V
i ∇̃M1 . . . ∇̃Mr̂

R̃AUCV , (4.14)

any ∆ = 0 curvature scalar constructed out of k Riemann’s and r derivatives can be
written as a linear combination of chains of the form

R(r1) M2

M1
R(r2) M3

M2
. . .R(rk) M1

Mk
, (4.15)

where each such chain is constrained to have
∑

i ri = r. We will utilise invariants from
this class in sections 5 and 6.

A caveat to be aware of concerns the limit of expressions of the form (4.12) to a
section of the nullcone ρ = 0, t = 1. In particular this involves the behaviour of the
ambient Riemann tensor when approaching the nullcone, some examples of which are
given in (4.1)-(4.2) and (4.4)-(4.7). From the metric expansion one can show that in
even d only non-negative integer powers of ρ appear in components of the ambient
Riemann tensor, while in odd d fractional powers of ρ appear when a non-vanishing
g(d) is present. For odd d the RHS of equation (4.2) diverges for ρ→ 0. By taking more
derivatives such divergences become stronger. For the purpose of constructing ambient
invariants this means that scalars constructed using curvature terms (∇̃)rR̃ with high
enough r may be singular in odd d when restricted to the boundary. Such terms must
either be discarded, or combined into linear combinations to cancel such infinities.
Despite these apparent complications for odd d, we were able to find a complete basis
of curvature invariants for the d = 3 example of a CFT on a squashed 3-sphere in
section 6.

Analogously to the embedding formalism, correlators in d + 2 dimensions must be
invariant under the (near-nullcone) isometries encoding d-dimensional conformal sym-
metries. Geodesics and geodesic transport preserve the symmetries of the geometry

components TM = tδM0 clearly have dimension –1. In practice either perspectives lead to the same
answer (4.13), hence in the main discussion we stick to the component-based picture, which is rather
unnatural from the perspective of conformal geometry but very common in the QFT literature.
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and hence ambient building blocks constructed out of the ambient metric and covari-
ant derivatives of the curvature automatically satisfy the constraints imposed by the
near-nullcone symmetries. One can explicitly see this for instance in the invariants
constructed in section 5.2 in the case of thermal CFTs – they are invariant under the
residual symmetries of the CFT. To conclude, the prescription for the ambient building
blocks discussed here automatically implements the residual conformal Ward identities,
leaving Weyl covariance as the only non-trivial kinematic constraint to be imposed.

4.3 Scalar 2-point functions

In the previous subsections we constructed a class of ambient invariants – namely, X̃ij

(4.9) and W
(k,n)
ij (4.12) – that enter CFT correlators on general backgrounds and states

based on Weyl covariance. We now propose a general form of ambient scalar 2-point
functions that arranges those invariants so as to exhibit the required properties,

〈O(X̃1)O(X̃2)〉 =
C∆

(X̃12)∆
lim
ρ→0
t→1

[
1 +

∞∑
k=2

I(k)
2

]
, (4.16)

where
I(k)

2 =
∑
n

cnX̃
∆n/2
12 W

(k,n)
12 , (4.17)

and ∆n denotes the dimension of W
(k,n)
ij given by (4.13). The constant coefficients cn

are determined by the dynamics of the CFT. The sum over k in (4.16) starts from terms

of order O(R̃iem)2 since in section 4.2 we proved that I(1)
2 = 0, while I(0)

2 is just the
identity, already accounted for as the first term in (4.16). The overall scaling dimension
is −2∆, as required by Weyl covariance. The correlator is analytic in curvatures and
continuously connected to the flat space limit in which X̃12 → X12 and I(k)

2 → 0, where
we recover the embedding space 2-point function (3.24) with the same constant C∆.

As discussed in section 4.2 there may be more than one geodesic path connecting the
two insertion points. Parallel transporting along each of them can generate independent
invariants and thus an implicit sum over all the ambient geodesics connecting X̃1 and
X̃2 is understood in the RHS of (4.16).

Let us now discuss which states we expect to be able to describe using (4.16). For
a CFT in any background g(0) and state, at short distances the background becomes
approximately flat and as such we should have a convergent OPE (see for example
[74–77] for a general discussion). We can use it to reduce a 2-point function of a scalar
operator O of scaling dimension ∆ to a sum of 1-point functions of exchanged operators,

〈O(x1)O(x2)〉 ' 1

|x12|2∆

∑
φ∈O×O

hφ(xi, ∂i) 〈φ(x2)〉 , (4.18)

where the ' is understood as an equality modulo contact terms. Since R̃iem ∼ 〈T 〉 (see

(4.1) and (4.2)) schematically we have that I(k)
2 ∼ 〈T 〉k. Therefore we expect (4.16)

25



to account for the multi-energy-momentum tensor contributions in (4.18), at least
for large-N theories where multi-energy-momentum tensor 1-point functions factorise.
However, we conjecture that our curvature invariants provide a basis for multi-energy-
momentum tensor contributions also for theories which are not at large-N . Operators
other than the multi-energy-momentum tensors contributing to the RHS of (4.18)
must be captured using other classes of ambient invariants, and we comment on this
issue in section 8. We stress that the multi-energy-momentum tensors are universal
contributions in any CFT correlator, and this is what the ambient geometry captures
through (4.16).

For holographic CFTs the ambient 2-point function (4.16) has an additional in-
terpretation, providing multi-energy-momentum tensor corrections to the well-known
geodesic approximation of 2-point functions in the context of AdS/CFT [78–80]. In
Appendix B we discuss how the presence of the homothetic vector T on the ambient
space fully fixes the component of a particle trajectory along that direction. As we show
in Appendix C if we focus on geodesics connecting points on the ambient nullcone, the
remaining d+ 1 equations for the unknown components of the geodesic path turn out
to be the geodesic equations on the ALAdSd+1 section associated to that ambient space
in a non-affine parametrisation. In this picture, the endpoints of the geodesic are points
on the conformal boundary of ALAdSd+1. In Appendix C we further prove that the
square-geodesic distance on the ambient space X̃12 is related to the (renormalised)
geodesic distance on the associated ALAdSd+1 space. Through (4.9) we can write their
relation as

1

(X̃12)∆
=

r−2∆

(t1t2)∆
e−∆LAdS

∣∣∣∣
r=0

. (4.19)

for an arbitrary real ∆, where r is the Fefferman-Graham coordinate on the ALAdS
space as in the metric (3.7), while t1 and t2 are the t-components of X̃1 and X̃2 respec-
tively. Here LAdS indicates the (divergent) length of the corresponding geodesic on the
ALAdSd+1 section. The RHS of (4.19) coincides with the geodesic approximation for a
scalar 2-point function of an operator of dimension ∆ in the context of AdS/CFT. It
can be argued to follow from the saddle-point approximation of the first-quantised path
integral for a massive particle and consequently its validity is restricted to the large-∆
regime. We can thus interpret the ambient curvature invariants in (4.16) as encoding
the quantum corrections due to multi-energy-momentum tensor contributions at finite
∆ beyond the semi-classical approximation provided by (X̃12)−∆.

Given that I(1) = 0, the coefficient in the ambient expansion at order O(R̃iem)
predicted by the geodesic approximation is exact. Therefore a universal prediction
from the ambient formalism is that correlators in the geodesic approximation are exact
up to order O(R̃iem)2 corrections if no other operator with scaling dimension ∆ < 2d
acquires a VEV.

As mentioned in the introduction, one may consider 2-point functions on a non-
trivial background/state as a flat-space higher-point function in vacuum. For example
for a non-trivial state, the 2-point function is equivalent to a 4-point function, whose
form is fixed up to a function of cross-ratios, and with the in-state represented by an
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operator inserted at the origin, and the out-state at infinity. We thus expect that 2-
point functions on a non-trivial state are fixed by Weyl-invariance up to a function of
one variable (the two cross-ratios are degenerate in this limit). Indeed, one can think
of the free coefficients appearing in our proposal (4.16) as being related to the Taylor
series coefficients of the function of cross-ratios in the single remaining variable.20

4.4 Scalar higher-point functions

Similar expressions to (4.16) can be written for scalar higher-point functions. In the
ambient formalism scalar 3-point functions read

〈O1O2O3〉 =
C123

(X̃12)α123(X̃13)α132(X̃23)α231

lim
ρ→0
t→1

[
1 +

∞∑
k=2

I(k)
3

]
, (4.20)

where the αijk coefficients are the same as those defined in (2.10) to ensure the correct
scaling properties. To recover the expression on the embedding space in the flat limit,
C123 must be the same as in (2.10). Here I(k)

3 denote linear combinations of weight-0
curvature invariants containing k ambient Riemanns and constructed with the pairwise
parallel transport of tensors from the three insertions X̃1, X̃2, X̃3. The fact that bi-
local invariants provide a basis for 3- and higher-point functions (with no need to
resort to n-local invariants) is justified by the following remarks. First, this is what
happens in embedding space correlators with arbitrary spin and with an arbitrary
number of insertions. Second and more fundamental, as stressed above the OPE is
expected to converge at short enough distances in general backgrounds and states, and
OPE contractions are pairwise.

The linear combinations I(k)
3 are thus products of bi-local invariants from the three

insertion points and as such they can be decomposed in terms of the 2-point linear
combinations I(m)

2 with generic coefficients. From I(1)
2 = 0 it follows that I(1)

3 = 0;
furthermore one can check explicitly that

I(2)
3 (X̃1, X̃2, X̃3) = P

(2)
3 (X̃1, X̃2, X̃3) , (4.21)

I(3)
3 (X̃1, X̃2, X̃3) = P

(3)
3 (X̃1, X̃2, X̃3) , (4.22)

where we defined

P
(k)
3 (X̃1, X̃2, X̃3) = I(k)

2 (X̃1, X̃2) + I(k)
2 (X̃1, X̃3) + I(k)

2 (X̃2, X̃3), (4.23)

and where each I(k)
2 is thought of as containing generic different constant coefficients.

Turning to fourth order invariants, the most general linear combination is of the form

I(4)
3 (123) = P

(4)
3 (123) + I(2)

2 (12) I(2)
2 (13) + I(2)

2 (12) I(2)
2 (23) + I(2)

2 (13) I(2)
2 (23) , (4.24)

where we adopted a convention where one denotes X` by `. The last three terms can be

20We thank the anonymous referee for raising this point.
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rewritten as [P
(2)
3 (123)]2. The latter also includes [I(2)

2 (12)]2, [I(2)
2 (13)]2 and [I(2)

2 (23)]2.

Note that these three terms are already contained in P
(4)
3 (123) and their appearance

in [P
(2)
3 (123)]2 can be reabsorbed by shifting the corresponding arbitrary coefficients

in P
(4)
3 (123). All in all we can rewrite the linear combination of fourth order 3-point

invariants as

I(4)
3 (123) = P

(4)
3 (123) +

(
P

(2)
3 (123)

)2

. (4.25)

Studying higher orders one finds the following recursive relation between order k and
order k − 2 invariants,

I(k)
3 (123) = P

(k)
3 (123) + P

(2)
3 (123)P

(k−2)
3 (123) . (4.26)

Using these recursion relations one finds the expression for the general linear combina-
tion of curvature invariants of order k in terms of the bi-locals I(k)

2 (X̃i, X̃j) involved in
2-point functions,

k even: I(k)
3 (X̃1, X̃2, X̃3) =

k/2∑
`=1

(
P

(2)
3

) k
2
−`
P

(2`)
3 , (4.27)

k odd: I(k)
3 (X̃1, X̃2, X̃3) =

k/2∑
`=3/2

(
P

(2)
3

) k
2
−`
P

(2`)
3 , (4.28)

where the sum in the odd case is over half-odd `. These expressions are manifestly
symmetric (modulo the different coefficients in the linear combinations) under per-

mutations of the insertion points X̃i and are of the appropriate order in the ambient
Riemann. The full 3-point function is not invariant under permutations of the three
insertion points for different scaling dimensions ∆i. However this different behaviour
under Weyl transformations is accounted for by the overall factor in front of (4.20).

Let us now turn to scalar n-point functions. Based on our assumptions and on a
consistent reduction to (2.11) in the flat limit, their form on the ambient space is fixed
to

〈O1(X̃1) . . . On(X̃n)〉 =

(∏
i<j

X̃
αij
ij

)
lim
ρ→0
t→1

[
f (u) +

∞∑
k=2

I(k)
n

]
, (4.29)

where the cross-ratios u are now in terms of the ambient geodesic distances

u[pqrs] =
X̃prX̃qs

X̃pqX̃rs

, (4.30)

and f is the same function of the cross-ratios present in the corresponding correlator
for the same CFT in vacuum on flat space.

Using combinatorial arguments similar to those for 3-point functions one can straight-
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forwardly generalise (4.27)-(4.28) to any n,

k even: I(k)
n (X̃1 . . . X̃n) =

k/2∑
`=1

(
P (2)
n

) k
2
−`
P (2`)
n , (4.31)

k odd: I(k)
n (X̃1 . . . X̃n) =

k/2∑
`=3/2

(
P (2)
n

) k
2
−`
P (2`)
n . (4.32)

Here we defined

P (k)
n (X̃1 . . . X̃n) =

∑
(Y,Z)∈Cn2 (X̃1...X̃n)

I(k)
2 (Y, Z) , (4.33)

where the sum is over the
(
n
2

)
pairwise combinations (Y, Z) of the points (X̃1 . . . X̃n).

This definition reduces to (4.23) for n = 3.
These combinatorial relations show that knowing the ambient curvature invariants

that enter the scalar 2-point function up to a certain order k allows one to straightfor-
wardly write the form of generic ambient scalar n-point functions to the same order k.
In particular, I(1)

2 = 0 implies I(1)
n = 0 for any n. This entails that the universal validity

of the geodesic approximation up to O(R̃iem2) corrections extends to any scalar n-point
function in any CFT on generic backgrounds and states, as long as no operator with
scaling dimension lower or equal than 2d has a non-vanishing VEV. Here by geodesic

approximation of a generic n-point function we mean the first term
(∏

X̃
αij
ij

)
f(u) in

(4.29).

4.5 Correlators with spin

In this section we provide some comments on how to generalise the scalar correlators
discussed above to those with spin. As before, embedding space is generalised to am-
bient by adopting the homothetic vector TM in lieu of the position on Minkowski XM ,
and the ambient metric g̃MN instead of ηMN . On top of this, one considers corrections
that depend on ambient curvature invariants which vanish in the flat limit.

The building blocks to be used in this case must have free indices on the ambient
space, meaning that curvature invariants will be of the same form as (4.12), where
contractions are understood as partial contractions so as to end up with the appropriate
spin. Such free ambient indices transform as generic ambient tensors (i.e. weighted
tractor tensors when restricted to the nullcone) under Weyl transformations through
the matrix UM

N(Ω) defined in equation (3.31). It is natural to expect that a set of
ambient curvature invariants with such partial contractions would form a basis for
multi-energy-momentum tensor contributions to n-point functions of general spin.

Following corresponding discussions in the embedding space [26], it is convenient to
reduce the problem of classifying ambient spinning structures to finding scalar struc-
tures by considering ambient polarisation vectors ZM

(i), one at each insertion point, and
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treating them as additional local ingredients to be used to construct scalar bi-local
invariants besides (4.8). The number of Z(i)’s that such invariants must contain is fixed
by the spin of the inserted operators. To retrieve the spinning expression on the ambient
space one would then use appropriate differential operators acting on the Z(i)’s.

There also exists an alternative path for spinning ambient building blocks. The
relationship described in section 3.3 between tractor and ambient connections allows
one to generalise the so-called weight- and spin-shifting operators on the embedding
space introduced in [49] to the ambient space. These differential operators act on tensor
structures modifying their scaling dimension and spin, and by leveraging the many
results of tractor calculus one may be able to generalise them to the ambient space.

More precisely, given such operators on the embedding space one would perform
the map

XM → TM , ∂M → ∇̃M , ηMN → g̃MN , (4.34)

giving local weight- and spin-shifting operators on the ambient space. Operators ob-
tained in this way satisfy all the required properties of a weight- or spin-shifting opera-
tor as put forward in the flat space case [49]. Note that to use these operators requires
pairwise contractions to obtain bi-local differential operators acting on two distinct in-
sertions, and on the ambient space this would involve parallel transport of differential
operators. It would be interesting to work out the details and we leave this to future
work.

5 Finite temperature CFTs

In this section we apply the ambient space formalism to the case of finite temperature
CFTs. This example allows for explicit checks of the ambient predictions on correlators
by matching them with results from thermal OPEs and holography. The agreement we
find represents a non-trivial test of the formalism.

Euclidean thermal CFTs in d dimensions on flat space live on the thermal cylinder
S1
β × Rd−1, where β is the inverse temperature. We parametrise this background with

coordinates xi = (τ, xa) where 0 ≤ τ < β. This geometry breaks conformal invariance
because of the length scale β; the only global symmetries remaining are translations
along the τ and xa directions, as well as rotations on Rd−1. We restrict our analysis
to states which respect these spacetime symmetries and do not spontaneously break
them further.

These residual symmetries constrain 1-point functions. By translational invariance
they are non-vanishing only for primary operators, and rotational symmetry implies
they must be constant tensors of the form

〈Oi1...iJ 〉(β)

∆ =
bO
β∆

(
ei1 . . . eiJ − traces

)
, (5.1)

where bO is a theory-specific constant (which may be zero) and ei is the unit vector
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along τ [35]. In particular, for the energy-momentum tensor VEV we have

〈Tij〉(β) =
c(d)

βd
diag (1− d, 1, . . . , 1) , (5.2)

which is traceless, as expected on the thermal cylinder. From now on (and unless
stated otherwise) we restrict our attention to d = 4; we will comment later on the
generalisation to any d. Given the state specified by (5.2), the ambient space to be
used has the AdS planar black hole as ALAdS5 slices. The 6-dimensional ambient
geometry relevant for this problem then reads

g̃ = −ds2 +
s2

z2

[
dz2

1− z4

z4
H

+

(
1− z4

z4
H

)
dτ 2 + δabdx

adxb

]
, (5.3)

with a, b = 1, 2, 3, horizon scale zH = π/β and compact time direction 0 ≤ τ < β. This
choice of AdS bulk metric corresponds to c(4) = 2π4 in (5.2). Finally note that (5.3)
is not in the usual Fefferman-Graham ambient gauge (3.8), which can be reached with

the transformation z = r/
√

1 + r4

4z4
H

.

Our aim is to find the expression for scalar 2-point functions in such a CFT using
the ambient space formalism. This translates into finding the ambient building blocks
that account for the multi-energy-momentum tensor contributions. Following the pre-
scription in (4.16) we set up the problem so as to identify these invariants order by
order in the ambient Riemann. In this specific case, since β is the only scale in the
CFT, we have that

R̃iem ∼ β−4. (5.4)

Thus the Riemann expansion in (4.16) can be viewed either as an expansion in small
temperature, or as an expansion in small distance between insertions. The former allows
us to use β power-counting to organise the number of Riemann tensors in (4.16). The
latter allows us to make contact with the thermal OPE, presented in section 5.2.

As a first step we find the relevant ambient invariants up to second order in the
Riemann tensor.

5.1 Ambient geodesics and geodesic transport

The first step is to identify the geodesics between the two insertion points and com-
pute the corresponding geodesic distance. As we showed in section 4.2 this yields the
invariant X̃12. Adopting the ambient parametrisation X̃M = (t, z, τ, xa) and using the
residual rotational and translational symmetries of the problem, we can move the two
insertions to lie at X̃1 = (t1, 0, 0, 0, 0, 0) and X̃2 = (t2, 0, τf , xf , 0, 0).

The strategy to solve the geodesic equations is the following. Because of the presence
of the homothetic vector T = s∂s, the expression for the trajectory along s = r t is
automatically fixed up to an integration constant, which is the square geodesic length
C, as derived in appendix B, see (B.10). The second order geodesic equation for s then
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becomes a first order equation involving z, τ and x1 and their derivatives. One can get
rid of τ̇ and ẋ1 using the equations for the integrals of motion related to translations
along τ and x1,

τ̇ =
A1z

2

λ(1− λ)
(

1− z4

z4
H

) , ẋ1 =
A2z

2

λ(1− λ)
, (5.5)

with A1,2 constants of motion. The geodesic equation for s thus becomes a non-linear
first order equation in z only,

4λ2(1− λ)2ż2 − 4A2
2z

8

z4
H

+
z6

z4
H

+ 4
(
A2

1 + A2
2

)
z4 − z2 = 0. (5.6)

The three equations (5.5) and (5.6) are the only independent equations left.
We are interested in computing ambient correlators, which are expressed as expan-

sions in terms of the ambient Riemann. Given (5.4), it is sufficient to solve the geodesic
equations perturbatively, considering the distance between the insertions as small com-
pared to the inverse temperature. Denoting the distance between the insertions on the

thermal cylinder by |x| =
√
τ 2
f + x2

f , this corresponds to the regime |x|/β � 1. We

solve the equations by expanding the trajectory z, τ, x1 and the integration constants
C,A1, A2 as,

z(λ) =
∞∑
k=0

z(k)(λ)

z4k
H

, Ai =
∞∑
k=0

A
(k)
i

z4k
H

, (5.7)

and analogously for τ, x1 and C. This is a consistent expansion since in this perturba-
tive scheme we intend to capture the corrections to geodesics on (d + 2)-dimensional
Minkowski provided by the non-trivial geometry on the ALAdS slices, where only
powers of z4

H appear. We start by solving equation (5.6) in z(λ) order by order. By
subsequently feeding the z(k)(λ)’s into (5.5) one finds the coefficients in the expansion
of τ and x1.

At each perturbative order, the solution just obtained contains six integration con-
stants, that is A

(k)
1 , A

(k)
2 , C(k) as well as the three following from the integration of

the first order equations (5.5)-(5.6). These can be fixed order by order imposing the
boundary conditions21

τ(0) = 0 , τ(1) = τf , (5.8a)

x1(0) = 0 , x1(1) = xf , (5.8b)

lim
λ→0

s(λ)

z(λ)
= t1 , lim

λ→1

s(λ)

z(λ)
= t2 . (5.8c)

The leading order of both the trajectory and the integration constants coincide with

21Note that z differs from the Fefferman-Graham coordinate r by O
(
z−4
H

)
corrections. However,

close to the boundary λ → 0, 1 the behaviour in λ of z(λ) and r(λ) is the same and this ensures we
can use (5.8c) as boundary conditions.
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the corresponding Minkowski expressions shown in section 3.2. Following this integra-
tion scheme and renaming τf → τ and xf → x, to second order in the perturbative

parameter the invariant X̃12 reads,

X̃12 = t1t2|x|2
[
1 +
|x|2 (x2 − 3τ 2)

120z4
H

− |x|
4 (91τ 4 − 98τ 2x2 + 19x4)

201600z8
H

+O

( |x|12

z12
H

)]
.

(5.9)
One can straightforwardly proceed to arbitrarily high order. Through the relation be-
tween the ambient and AdS geodesic lengths (4.19) this result matches the geodesic
distance on the AdS planar black hole found in [81,82].

5.2 The ambient 2-point function

After finding the geodesic trajectories and X̃12 we turn to the curvature invariants. As
a first step we are interested in writing the ambient 2-point function (4.16) up to second
order in the ambient Riemann. The homothetic vector T can be parallel transported
along the perturbative geodesics we are considering order by order in z−4

H taking the
form

T̂ = T̂ (0) +
∞∑
n=1

T̂ (n)

z4n
H

, (5.10)

where T̂ (0) is the homothetic vector (3.22) transported on the flat ambient space. Since

I(1)
2 = 0, it is sufficient to use T̂ (0) for invariants up to second order in the Riemann

since higher T̂ (n)’s contribute at order O(R̃iem)3 in contractions of the form (4.12).
We now turn to determining a basis of ambient invariants quadratic in the curvature.

In principle one could pick them to be of any scaling dimension and then multiply
them by the appropriate power of X̃12. As we discussed in section 4.2 invariants with
vanishing scaling dimension are particularly rigid in their structure and thus easy to
completely classify. Their general form is given in equation (4.15) and if we restrict to
k = 2 curvature tensors, one can show that in the present setup there are only three
independent such invariants of order O(z−8

H ). One possible choice is

e0 = R(0)
AC R(0)AC =

3

4

|x|8
z8
H

+O

( |x|
zH

)12

, (5.11a)

e1 = R(1)
AC R(0)AC = −|x|

6

z8
H

(3τ 2 + 7x2) +O

( |x|
zH

)12

, (5.11b)

e2 = R(1)
AC R(1)AC = 4

|x|4
z8
H

(3τ 4 + 16τ 2x2 + 17x4) +O

( |x|
zH

)12

, (5.11c)

where the superscripts refer to the number of covariant derivatives required to construct
them, with the tensorsR(r) defined in (4.14). In these expressions we have already taken
the limit from generic ambient points to the CFT background on the nullcone. As we
detail in Appendix D any curvature invariant quadratic in the ambient Riemann can
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be obtained as a linear combination of the form

I(2)
2 = c0e0 + c1e1 + c2e2 . (5.12)

Putting all together, we assemble the ambient scalar 2-point function for operators
of scaling dimension ∆ as prescribed by equation (4.16),

〈O(τ, x)O(0)〉(β)
d=4,∆ =

C∆

|x|2∆

[
1− ∆ (x2 − 3τ 2)|x|2

120π−4β4
+
|x|4
π−8β8

[
3

4

(
c0 +

∆(63∆ + 170)

30240

)
|x|4

−
(
c1 +

∆(14∆ + 39)

25200

)
|x|2(3τ 2+7x2) + 4

(
c2 +

∆(7∆ + 20)

201600

)
(3τ 4+16τ 2x2+17x4)

]
+O

( |x|
β

)12
]
. (5.13)

Here the constants ci are to be fixed by the dynamics of the specific thermal CFT, and
they quantify the quantum corrections to the semi-classical geodesic approximation as
discussed in section 4.3.

5.3 Matching with the thermal OPE

As reviewed in section 4.3, the OPE is expected to converge for CFTs on generic
backgrounds and states for short enough distances. It can thus be used to reduce 2-point
functions to a sum over 1-point functions as in equation (4.18). Specialising to thermal
CFTs on flat space it has been argued in [34, 35, 83] (see also [4, 84–87] for related
discussions) that for a distance between insertions shorter than the thermal radius
|x| < β one can expand a scalar correlation function of two operators of dimension ∆
as

〈O(τ, x)O(0)〉(β)
d,∆ =

∑
φ∈O×O

aφ
β∆φ

C
(ν)
J (q)|x|∆φ−2∆ , (5.14)

where J and ∆φ are the spin and scaling dimension of the exchanged operator φ, and

we defined ν = d
2
− 1 and aφ =

fOOφbφ
cφ

J
2J (ν)J

. Here cφ and fOφφ are the 2- and 3-point

function coefficients on flat space, while C
(ν)
J (q) are Gegenbauer polynomials of the

dimensionless ratio q = τ/|x|.
The products C

(ν)
J (q)|x|∆φ−2∆ can be thought of as thermal conformal blocks. The

fact that in thermal CFTs 1- and 2-point functions contain non-trivial dynamical data
through the coefficients aφ mirrors the freedom in the coefficients ci appearing in the
ambient 2-point function (5.13). In this subsection we would like to make this connec-
tion more precise by relating the coefficients aφ with the ci.

As anticipated in section 4.3 we expect the ambient curvature invariants to account
for the multi-energy-momentum tensor contributions :T n: . These operators are defined
as the n+ 1 symmetrised traceless partial contractions of tensor products of n energy-
momentum tensors, with scaling dimensions nd in d dimensions and even spins ranging
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from J = 0 to J = 2n. Their contribution takes the form

〈O(τ, x)O(0)〉(β)
d,∆ ⊃

∞∑
n=0

2n∑
J=0
J even

a
(T )
n,J C

(ν)
J (q)

|x|nd−2∆

βnd
. (5.15)

Comparing (5.13) with (5.15) to second order in the energy-momentum tensor yields
the following dictionary re-expressing the thermal OPE coefficients in terms of the
ambient free coefficients for any ∆ in d = 4,

a
(T )
0,0 = C∆, a

(T )
1,0 = 0, a

(T )
1,2 =

∆

120
C∆, (5.16)

a
(T )
2,0 =

(
3c0

4
− 6c1 + 52c2 +

∆(7∆ + 18)

201600

)
C∆, (5.17)

a
(T )
2,2 =

(
c1 − 15c2 +

∆(7∆ + 12)

201600

)
C∆, (5.18)

a
(T )
2,4 =

(
c2 +

∆(7∆ + 20)

201600

)
C∆. (5.19)

Note once more that the ambient prediction at first order in the energy-momentum
tensor is fully fixed by the geodesic distance factor (X̃12)−∆ as a consequence of I(1)

2 = 0.
The relations (5.16)-(5.19) entail that to this order, ambient curvature invari-

ants and thermal conformal blocks are two equivalent bases to describe multi-energy-
momentum tensor contributions. This can be made more precise by mapping the
thermal conformal blocks to the basis of curvature invariants {e0, e1, e2}. After tak-
ing the large-N limit in the CFT the multi-energy-momentum tensor VEVs factorise,
〈:T n :〉 ∼ 〈T 〉n. Denoting the energy-momentum tensor VEV (5.2) by Tij to avoid clut-
tering, in terms of Tij the double-energy-momentum tensor VEVs with J = 0, 2, 4 read,

〈T 2〉 = T klTkl, (5.20a)

〈T 2〉ij = TikT
k
j −

1

4
T klTklδij, (5.20b)

〈T 2〉ijkl = Σijkl −
3

4
δ(ijΣ

m
kl)m +

1

16
Σm n

m n δ(ijδkl), (5.20c)

where we defined Σijkl = T(ijTkl). In terms of these the second order curvature invariants
can be written as

64 e0 = 〈T 2〉 |x|8, (5.21a)

8 e1 = 〈T 2〉ij xixj|x|6 − 〈T 2〉 |x|8, (5.21b)

4 e2 = 〈T 2〉ijkl xixjxkxl|x|4 −
15

2
〈T 2〉ij xixj|x|6 +

13

3
〈T 2〉 |x|8. (5.21c)

Thus the thermal conformal blocks at order n = 2 in the large-N limit are simply
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proportional to trace modifications of the ambient invariants ei. In Appendix D we
describe how to extend these conclusions to any order in the ambient Riemann and
to other dimensions d. In particular we argue that the dimensionless invariants (4.15)
constructed as chains of tensors R(r) form a basis for the contribution of generic multi-
energy-momentum tensor operators :T n: for thermal CFTs in even dimensions d.22

At finite N , typically more operators take non-trivial VEVs and contribute in cor-
relators, meaning that usually additional ambient invariants are required. However
conformal blocks retain their form independently of the regime the theory is in, since
they follow from kinematics and not from dynamics. In the thermal case this means
that the thermal conformal blocks describing the multi-energy-momentum tensor con-
tributions in (5.15) are the same Gegenbauer polynomials at any N . We have shown
that multi-energy-momentum tensor conformal blocks are equivalent to the basis of
ambient curvature invariants of the form (4.15) at large N . We now conclude that this
equivalence extends trivially to finite N : the ambient curvature invariants provide a
basis for multi-energy-momentum tensor contributions in any thermal CFT.

This represents evidence for the conjectured validity of the ambient formalism as a
tool to solve the kinematics of generic CFTs. In this case it was possible to compare the
ambient prediction with OPE computations and we found perfect agreement even for
non-holographic CFTs. In section 6 we consider CFTs on squashed spheres, where no
OPE result is available and the ambient formalism produces genuinely new predictions.

5.4 Matching with a holographic correlator

In the previous subsection we showed that ambient 2-point functions account for the
multi-energy-momentum tensor contributions to correlators in thermal CFTs (holo-
graphic or otherwise). We did this by comparing with the thermal OPE. In this section
we check this statement through a holographic computation, without relying on the
thermal OPE.

To this aim we will study holographic correlators in the state dual to the Euclidean
AdSd+1 planar black hole with metric

ds2 =
1

z2

 dz2

1− zd

zdH

+

(
1− zd

zdH

)
dτ 2 + δabdx

adxb

 . (5.22)

The dual CFT is in the same background and state as the previous subsections, with
inverse temperature β = 4πzH/d and energy-momentum tensor expectation value (5.2).
This problem involves solving the free scalar equation

[−�d+1 + ∆(∆− d)] Φ(z, τ,x) = 0 (5.23)

22As we discussed in section 4.2, in odd d divergences appear in the ambient Riemann in the limit
ρ → 0. This implies that some of the weight-0 scalars (4.15) may diverge and other invariants must
be used in addition to them. We will see this explicitly in section 6.
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on the fixed background (5.22), subject to Dirichlet conditions at the boundary z → 0
and regularity conditions in the bulk interior z →∞. Here ∆ is the scaling dimension
of the operator whose 2-point function we wish to compute. Given a regular solution
of (5.23) we can extract the 2-point function from its asymptotic expansion:

Φ(z, τ,x) = zd−∆φ(0)(τ,x)

(
1 + · · ·+ z2∆−d

(2∆− d)
〈O(τ,x)O(0)〉+ · · ·

)
(5.24)

where φ(0)(τ,x) is the boundary function that specifies the Dirichlet boundary condition
(and by AdS/CFT the CFT source that couples to the operator O).

In practice, it is easier to solve (5.23) after Fourier transforming to momentum
space. Translational invariance along the boundary directions and periodicity along τ
allow one to expand the scalar fields in terms of Fourier modes,

Φ(z, τ,x) =
∑
m∈Z

∫
dd−1k ei(ωmτ+k·x)B(z, ωm,k), (5.25)

where ωm = 2πm/β are the Matsubara frequencies. The momentum space correlator
is defined similarly as

〈O(τ,x)O(0)〉 =
∑
m,n

∫
dk1

∫
dk2 〈O(ωm,k1)O(ωn,k2)〉 eiωmτ+ik1·x , (5.26)

and translational invariance and orthogonality of Fourier coefficients imply that

〈O(ωm,k1)O(ωn,k2)〉 = δm,−nδ(k1 + k2) 〈OO〉 (ωm,k) , (5.27)

where 〈OO〉 (ωm,k) is defined by this equation 23.

Defining k =
√
ω2
m + k2 and after rescaling the radial coordinate as r = kz, rH =

kzH and redefining rH = ε−
1
d , equation (5.23) reads

r
(
εrd − 1

) (
rB′′(r)

(
εrd − 1

)
+B′(r)

(
εrd + d− 1

))
+B(r)

((
∆(∆− d) + r2

) (
εrd − 1

)
− ω2

m

k2
εrd+2

)
= 0.

(5.28)

where prime indicates derivative w.r.t. r, and we left the dependence of B on ωm and k
implicit. This equation is of Heun type. We will first solve it perturbatively in the limit
of short boundary distance between the insertions (or equivalently at high momenta)
with respect to the thermal radius, ε = (kzH)−d � 1. In this regime we are able to
compare with the expansion in the curvature of ambient correlators (and also double-
check results from the thermal OPE). We will then turn to a fully non-perturbative
numerical computation to further check the ambient correlator, as well as to study

23When τ is non-compact, we can Fourier transform also along this direction and the result is the
same as in (5.26) and (5.27) with ωm, ωn replaced by continuous variables ω1, ω2, the sum over m,n
replaced by integrals over ω1, ω2 and δm,−n by δ(ω1 + ω2).

37



effects that may elude the perturbative analysis.

5.4.1 Perturbative 2-point function

We set up the perturbative problem by expanding at ε � 1 corresponding to large
momenta k � (zH)−1,

B(r) =
∞∑
n=0

bn(r)εn . (5.29)

The equations for the first few orders read

D b0(r) = 0, (5.30a)

D b1(r) = rd−2
[
b0(r)

(
∆(∆− d) +

(
η2 + 1

)
r2
)

+ drb′0(r)
]
, (5.30b)

D b2(r) = rd−2
[
b0(r)rd

(
∆(∆− d) +

(
2η2 + 1

)
r2
)

+ b1(r)
(
∆(∆− d) +

(
η2 + 1

)
r2
)

+dr
(
rdb′0(r) + b′1(r)

)]
, (5.30c)

where we defined η = ωm/k and the differential operator

D = ∂2
r +

1− d
r

∂r −
∆(∆− d) + k2

r2
. (5.31)

The perturbative equations at a generic order n reads

D bn(r) =
n∑
`=1

r`d−1
[
db′n−`(r) + r

(
∆(∆− d) + (1 + `η2)r2

)
bn−`(r)

]
. (5.32)

The solution to the leading order equation (5.30a) corresponds to a free scalar on
Euclidean AdSd+1. Defining κ = ∆− d/2, if we assume κ is not an integer24, a possible
choice for the basis of the solutions space is in terms of modified Bessel functions of
the first kind,

u1(r) =

√
π

2
r
d
2 I−κ(r) , u2(r) =

√
π

2
r
d
2 Iκ(r) . (5.33)

Imposing regularity in the interior r →∞ fixes the leading order solution to a modified
Bessel function of the second kind,

b0 = u2 − u1 = −
√

2

π
cos

(
2κ− 1

2
π

)
Kκ(r), (5.34)

recovering the expected solution on pure AdS (see e.g. [52]).

24When κ is an integer, the CFT correlator has short-distance singularities leading to conformal
anomalies [88]. On the bulk side, a different choice of basis for the solution space must be made because
u1 = u2 when κ is an integer. Furthermore, logarithmic terms appear in the Fefferman-Graham near-
boundary expansion [29] and the present analysis must be modified.
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Solving the first order equation (5.30b) is more involved, and we refer the reader to
Appendix E for the details. The holographic correlator to first order in ε in momentum
space results in25

〈OO〉(β)
d,∆ (ωm,k) = −2d−2∆Γ

(
d
2
−∆ + 1

)
Γ
(
−d

2
+ ∆ + 1

) k2∆−d

[
1 + (5.36)

π3/2+d(−1)d+1 cot
(
πd
2

)
Γ
(
−d

2
− 1

2

)
csc2(π∆) sin

(
1
2
π(d− 2∆)

)
(k2 − dω2

m)

4Γ
(
1− d

2

)
Γ(−∆)Γ(∆− d) kd+2βd

+O(ε2)

]
.

〈OO〉 (ωm,k) is defined in (5.26), (5.27), the supercript β indicates that this is a fi-
nite temperature correlator and the subscripts are the spacetime dimension d and the
dimension of the operator, ∆.

Solving the second order equation (5.30c) and higher is particularly involved for
general d and ∆. A simplification happens when 2∆ + d is integer (i.e. κ is half-
odd). In this case the homogeneous solutions can be written in terms of products of
polynomials and exponentials since

Iκ(r) =

√
2

π
iκ−

3
2 rκ
(

1

r

d

dr

)κ− 1
2 sinh r

r
,

I−κ(r) =

√
2

π
iκ−

3
2 rκ+1

(
1

r

d

dr

)κ+ 1
2 cosh r

r
.

(5.37)

This observation allows one to find a case-by-case solution to arbitrarily high order in
the inverse temperature. Considering for simplicity d

2
≤ ∆ ≤ d, the generic form of

such momentum space correlators is

〈OO〉(β)
d,∆ (ωn,k) =

1

kd−2∆

∞∑
q=0

πqd

kq(d+2)βqd

q∑
j=0

α
(q)
j k2q−2jω2j

n , (5.38)

where the coefficients α
(q)
j are given in terms of d and ∆. Up to second order it reads

25When κ is an integer, the correlators develop poles and need renormalization. For example when
d = 4 and ∆ = 3, so κ = 1, the leading terms are

〈OO〉(β)
d=4,∆=3 =

k2

4(∆− 3)
+
k2

4

(
log

k2

4
+ 2γ − 1 +

4

5

(
1− 4ω2

m

)
ε

)
+O (∆− 3) +O(ε2). (5.35)

The divergent term in analytic in k2, and thus a contact term in position space and it should be re-
moved them using holographic renormalization [52]. As mentioned above, to simplify our presentation
we restrict ourselves to cases where κ is not an integer and such renormalization is not needed.
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explicitly

〈OO〉(β)
d,∆ (ωm,k) =

α
(0)
0

kd−2∆
+
α

(1)
0 k2 + α

(1)
1 ω2

m

π−d k2d−2∆+2βd
+
α

(2)
0 k4 + α

(2)
1 k2ω2

m + α
(2)
2 ω4

m

π−2d k3d−2∆+4β2d
+O (kβ)−3d .

(5.39)

The coefficients α
(0)
0 , α

(1)
0 and α

(1)
1 for generic d and ∆ can be extracted from (5.36);

in particular, α
(1)
1 = (1 − d)α

(1)
0 . As an example, for d = 4 and ∆ = 3

2
the first few

coefficients take the values

α
(0)
0 = −1, α

(1)
0 = − 3

16
, α

(1)
1 =

9

16
, (5.40)

α
(2)
0 = −2637

512
, α

(2)
1 =

11511

256
, α

(2)
2 = −10773

512
. (5.41)

Transforming momentum space correlators of the form (5.39) back to position space
is subtle since the Fourier transform should be performed over all real momenta and
all Matsubara frequencies, while the expression for the correlators we have found is
only valid at large frequencies ωm � 1/β. To explicitly perform the Fourier transform
one should thus resum the perturbative expansion to assess the full dependence on k
and ωm. It is particularly hard to directly compute the Fourier series in (5.25) for a
correlator of the form (5.38).

To bypass this difficulty we will use the fact that a periodic function F (τ) may be
viewed as the sum of images of an aperiodic function f(τ), F (τ) =

∑
m∈Z f(τ + mβ),

where β is the period. Then the Fourier series of F (τ) may be expressed as a sum of
images of the Fourier transform of f(τ) 26. In our context,

〈O(τ, x)O(0)〉(β)
d,∆ =

∑
m∈Z

〈O(τ +mβ, x)O(0)〉(nc)d,∆ , (5.42)

where the thermal correlator 〈O(τ, x)O(0)〉(β)
d,∆ is the periodic function, and the aperi-

odic function is the holographic 2-point function, 〈O(τ, x)O(0)〉(nc)d,∆ , obtained by start-
ing from (5.22) but with the τ coordinate non-compact (the superscript nc stands for
“non-compact”). This geometry with τ non-compact is singular at z = zH (because
of lack of periodicity of τ) so the corresponding holographic correlators are not physi-
cal. Also note that they are not the zero temperature CFT correlators. The correlator
〈O(τ, x)O(0)〉(nc)d,∆ is useful however because it is computable and as we argue in sec-
tion 5.4.3 it captures the multi-energy-momentum contributions. More precisely, the
sum over images does not affect the multi-energy-momentum tensor contributions in
position space as long as κ is not an integer. Thus knowing the non-compact corre-
lator is sufficient to match the multi-energy-momentum tensor contributions with the
predictions from the ambient space.27

26Manipulations of this type are used in the proof of the Poisson summation formula, see for example
[89].

27In section 5.4.3 we discuss the mixing between the multi-energy-momentum tensor and the so-
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We therefore proceed to compute the Fourier transform of the momentum space
correlator (5.39) (with ωm replaced by the continuous variable ω) order by order in the

perturbative expansion to obtain the non-compact correlator 〈O(τ, x)O(0)〉(nc)d,∆ . Recall
that the Fourier transform of a spherically symmetric distribution in momentum space
reduces to a Hankel transform,

F (x) =

∫
ddpf(|p|)eip·x =

(2π)
d
2

|x| d2−1

∫ ∞
0

dpf(p)J d
2
−1(|x|p)p d2

=
(2π)

d
2

|x| d2−1
H d

2
−1

[
p
d
2
−1f(p)

]
(x) .

(5.43)

The Fourier transform of each order in (5.39) can thus be rewritten as a linear combi-
nation of derivatives of Hankel transforms. Defining the integral

Iγ(τ, x) ≡
∫
ddp|p|γeip·x =

(2π)
d
2

|x| d2−1
H d

2
−1

[
pγ+ d

2
−1
]

(x) =
πd/22γ+dΓ

(
d+γ

2

)
Γ
(
−γ

2

) 1

|x|γ+d
,

(5.44)
one can rewrite the first few orders of the correlator in position space as

〈O(τ, x)O(0)〉(nc)[0]
d,∆ = α

(0)
0 I2∆−d , (5.45)

〈O(τ, x)O(0)〉(nc)[d]
d,∆ = α

(1)
0

[
I2∆−2d − d

(
∂τ
i

)2

I2∆−2d−2

]
, (5.46)

〈O(τ, x)O(0)〉(nc)[2d]
d,∆ = α

(2)
0 I2∆−3d + (α

(2)
1 − 2α

(2)
0 )

(
∂τ
i

)2

I2∆−3d−2

+ (α
(2)
2 − α(2)

1 + α
(2)
0 )

(
∂τ
i

)4

I2∆−3d−4, (5.47)

where the superscripts in square brackets indicate the order. These relations can be
straightforwardly obtained to arbitrarily high order.

Using these expressions on (5.36) one finds the position space correlator at general
d and ∆ to first order. Normalising the operators so that the leading order constant is
normalised to 1, it reads

〈O(τ, x)O(0)〉(nc)d,∆ =
1

|x|2∆

[
1 + λ̃1

(
x2−(d− 1)τ 2

) |x|d−2

βd

]
+O

( |x|
β

)2d

, (5.48)

with

λ̃1 =

(
4π

d

)d √π(−1)d+1∆ Γ
(
−d

2
− 1

2

)
sin(π(d−∆))

2d+2Γ
(
1− d

2

)
tan
(
πd
2

)
sin(π∆)

. (5.49)

One can check that this expression matches both the geodesic approximation and the

called double-twist spectra for integer κ.
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ambient correlator (5.13) to first order in β−d for d = 4. This result hence substanti-
ates the universality of the geodesic approximation for the energy-momentum tensor
contribution as predicted by the ambient space formalism.

Furthermore, using (5.45)-(5.47) on (5.39) one is able to check for odd 2∆ + d that
the higher orders in |x|/β of such position space correlators can be decomposed in terms
of the ambient curvature invariants. For instance, for d = 4 and ∆ = 3

2
the correlator

up to second order reads

〈O(τ, x)O(0)〉(nc)
d=4,∆= 3

2

=
1

|x|3
[
1− π4 |x|2 (x2 − 3τ 2)

80 β4
(5.50)

−π8 |x|4 (479τ 4 − 1162τ 2x2 + 199x4)

268800 β8
+O

( |x|12

β12

)]
,

which fixes the coefficients in (5.13) to

c0 = − 53

1575
, c1 = − 11

1120
, c2 = − 11

16800
. (5.51)

This brings further evidence that the ambient curvature invariants form a basis for
the multi-energy-momentum tensor spectrum and it confirms the ambient prediction
(5.13). Via the relations between ambient and thermal OPE coefficients (5.16)-(5.19),
this also represents a non-trivial check of the expansion in terms of thermal conformal
blocks (5.15) in a non-trivial thermal state, in particular beyond the large-∆ regime
studied in [81,82] and to arbitrarily high order in |x|/β.

5.4.2 Non-perturbative 2-point function

In this subsection we discuss possible non-perturbative effects in |x|/β → 0 entering
the thermal holographic correlator on the planar black hole background. In momentum
space such contributions can be studied along the lines of [90,91], at least perturbatively
in the instanton number. We are however interested in the correlator in position space
and for this purpose we resort to a numerical calculation, fully non-perturbative in the
boundary temperature.

Since we are not working perturbatively in |x|/β, to compute the position space
two-point function we must solve (5.23) on the Euclidean cigar geometry with period
β. The boundary conditions are a delta-function source at τ = |~x| = 0 and we demand
regularity in the interior. With the Euclidean time circle τ , the holographic radial
direction z, and noting a rotational symmetry in the spatial boundary directions xi,
this leaves a 3d PDE problem. Without loss of generality we set zH = 1 so that β = π.
Next, we make the following coordinate changes,

z = 1− ρ2, τ =
1

2
φ, |~x| = R

1−R2
. (5.52)

In these coordinates we have ρ ∈ [0, 1] where ρ = 0 is the tip of the Euclidean cigar
geometry and ρ = 1 is the conformal boundary, φ = (0, 2π] is the angle around the
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thermal circle, and R ∈ [0, 1) where R = 0 is the origin of spatial coordinates on the
boundary and R = 1 is the compactification of spatial infinity.

The principal numerical challenge is handling the delta function source at the origin
on the boundary. We subtract a function from Φ with the correct singularity structure,
i.e. we define a new field Ψ via,

Φ = Ψ + G̃AdS (5.53)

where G̃AdS is an analytically known function containing the correct source behaviour.
A candidate function is the vacuum AdS bulk-boundary propagator,

z∆

(τ 2 + r2 + z2)∆
=

(1− ρ2)∆(
φ2

4
+ (1− ρ2)2 + R2

(1−R2)2

)∆
. (5.54)

however this is not periodic in φ. To address this we make the replacement

φ2 → 2

3
(7− cos(φ)) sin

(
φ

2

)2

. (5.55)

The resulting function G̃AdS is then periodic φ ∼ φ+ 2π, contains no additional singu-
larities, and is regular in the interior. Hence to find the 2-point function we now need
to solve,

(�−∆(∆− d)) Ψ = − (�−∆(∆− d)) G̃AdS. (5.56)

where Ψ obeys a Dirichlet zero boundary condition at the conformal boundary, and is
also regular in the interior.

We work with ∆ = 5/2, so that the near boundary behaviour of Ψ is,

Ψ = a(τ, r)z
3
2 + b(τ, r)z

5
2 + . . . = a(τ, r)(1− ρ2)

3
2 + b(τ, r)(1− ρ2)

5
2 + . . . (5.57)

To this order the z expansion is equivalent to the Fefferman-Graham expansion. Note
that

Φ = a(τ, r)z
3
2 +

(
b(τ, r) +

1152
√

6

(15 + 24r2 − 16 cos(2τ) + cos(4τ))
5
2

)
z

5
2 + . . . (5.58)

We define
Ψ = (1− ρ2)

3
2H (5.59)

enforce a = 0 through a Dirichlet boundary condition Hρ=1 = 0, and read off b from the
solution as b = ∂ρH

∣∣
ρ=1

. The two point function is then given by the data b, corrected

by the subtracted function,

〈O(τ, r)O(0, 0)〉(β)
4,5/2 = b(τ, r) +

1152
√

6

(15 + 24r2 − 16 cos(2τ) + cos(4τ))
5
2

. (5.60)
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Figure 4: Non-perturbative thermal 2-point function for d = 4, ∆ = 5/2 from hologra-
phy. Left:. Contour plot of the 2-point function over the full range of the thermal circle.

The colour scale is logarithmic, corresponding to log
(
β5 〈O(τ, r)O(0, 0)〉(β)

4,5/2

)
. Right:

Showing a log-log plot to illustrate the leading behaviour at xi = 0 near τ = 0 (black
dots). The power-law behaviour is consistent with the analytically derived energy-
momentum tensor contribution (red line).

For the rest of the problem we enforce tip of the cigar regularity with ∂ρH
∣∣
ρ=0

= 0,

origin regularity on the boundary with ∂RH
∣∣
R=0

= 0, and at spatial infinity on the

boundary the response to the delta should vanish, so we also set H
∣∣
R=1

= 0.
The PDE is discretised using a grid of Nρ, Nφ, NR points in the ρ, φ,R directions

respectively. We utilize Chebyschev collocation in ρ with second-order finite difference
methods for φ and R. This discretisation of (5.56) give rise to a linear problem

MH = S (5.61)

where M is a matrix of size (NρNφNR)2 and S is a vector of size NρNφNR. We then
solve for H, read off b = ∂ρH

∣∣
ρ=1

and compute 〈O(τ, r)O(0, 0)〉 using (5.60).

The results at d = 4, ∆ = 5/2 are shown in figure 4. In particular, the behaviour of
the 2-point function in the limit x→ 0 is consistent with the prediction of the ambient
formalism (5.13) and with the perturbative holographic value (5.48).

In Figure 5 we show the results for d = 4, ∆ = 3/2. The behaviour of the first
subleading term in τ → 0 differs from that expected for the single energy-momentum
tensor block, and it is compatible with the exchange of an operator of dimension ∆ = 3.
This suggests the appearance of the operator :OO: belonging to the so-called double-
twist spectrum. These are operators of the schematic form :O�n∂i1 . . . ∂iJO:, symmetric
and traceless in the J indices. They are primaries with scaling dimensions ∆p,J =
2∆ + 2p+ J and even spin J . Given their dimensions and tensorial properties, double-

44



10−2 10−1 100

τ/β

10−8

10−6

10−4

10−2

100

102

104

106

τ
3
〈O

(τ
)O

(0
)〉(β

)
4
,3
/
2
−

1

3π4

80
τ4

β4

1.1 τ
3

β3

10−2 10−1 100

τ/β

10−8

10−6

10−4

10−2

100

102

104

106

τ
3
〈O

(τ
)O

(0
)〉(β

)
4
,3
/
2
−

1
−

1.
1(
τ
/β

)3

3π4

80
τ4

β4

1.1 τ
3

β3

Figure 5: Non-perturbative thermal 2-point function for d = 4, ∆ = 3/2 from holog-
raphy. Showing a log-log plot to illustrate the leading behaviour at xi = 0 near τ = 0
(black dots). Left: With the leading conformal behaviour subtracted, the remaining
power-law at short distances is consistent with the leading term in the double-twist
spectrum, a

(OO)
0,0 (red line). Right: Making a further subtraction to remove the lead-

ing double-twist contribution reveals the analytically derived energy-momentum tensor
contribution (grey line).

twist operators appear in the thermal OPE (5.14) with blocks of the form,

〈O(τ, x)O(0)〉βd,∆ ⊃
1

β2∆

∞∑
p=0

∞∑
J=0
Jeven

a
(OO)
p,J C

(ν)
J (q)

( |x|
β

)2p+J

. (5.62)

In the limit x → 0 the n = 0, J = 0 block precisely reproduces the scaling in τ
displayed in Figure 5, and our non-perturbative computation thus makes a prediction
for the dynamical OPE coefficient

a
(OO)
0,0 ' 1.1 . (5.63)

We discuss the appearance of the double-twist spectrum and its non-perturbative na-
ture at length in section 5.4.3.

In Figure 5 we also show the second-subleading behaviour which we recognise as
the energy-momentum tensor block. Also in this case the value of its coefficient is
compatible with the ambient prediction (5.48), thus confirming the ambient prediction
about the exactness of the energy-momentum tensor coefficient at the non-perturbative
level. The numerical value of the coefficient also matches the perturbative analytic
correlator (5.48), supporting the claim that multi-energy-momentum tensors do not
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receive non-perturbative corrections (as long as κ is not integer).

5.4.3 On the double-twist spectrum

In section 5.4.2 we saw that the exact thermal scalar 2-point function in position
space contained terms consistent with double-twist operators in the thermal OPE,
(5.62). Such contributions were previously argued to arise in [35,84–87,92]. However in
perturbation theory in β−1 double-twist contributions are not seen, for example (5.48),
(5.50) and the ambient space result, (5.13). In this section we discuss this shortcoming
of the perturbative approach.

In Euclidean signature there is a claim that double-twist contributions cannot ap-
pear as perturbative terms in an expansion of a momentum space 2-point function
of the form (5.38) [93]. That discussion however is based on Fourier transforming the
thermal conformal blocks in (5.14) to momentum space, and this is subtle on at least
two grounds. First, the Fourier transform is performed over the full thermal cylinder
S1 × Rd−1, while the thermal OPE is convergent only for |x| < β. Second, OPEs do
not capture contact terms and as the Fourier transform involves an integation over all
space, the momentum space behavior of the correlators even at short-distances may
not be captured by the Fourier transform of the position space OPE, see [94]. One
should thus view with caution the result in [93]. For Lorentzian thermal CFTs it has
been argued in [91] that the double twist spectrum arises by Fourier transforming
non-perturbative contributions present in the momentum space 2-point function [95].

To gain some intuition, consider the simple case of thermal AdSd+1 in the bulk.
The scalar 2-point function takes the form of a sum over images (5.42) of the correlator
computed on Euclidean AdS (which consists solely of the identity block),

〈O(τ, x)O(0)〉(β)
∆ =

∑
m∈Z

1

[(τ +mβ)2 + x2]∆
. (5.64)

Note that this sum over images is intrinsically non-perturbative in |x|/β → 0, as
β is kept finite while the correlator on the non-compact bulk must be evaluated at
parametrically large Euclidean time τ + mβ. In this case the sum over images can be
carried out explicitly and gives rise to the double-twist spectrum.

Following this observation we now show how the double-twist spectrum arises by
a sum over images of the non-compact correlator containing multi-energy-momentum
tensor contributions as prescribed by (5.42). Let us assume that the two insertions
are separated along τ only. Following the discussion in section 5.4.1, the non-compact
correlator contains only multi-energy-momentum tensor blocks, taking the form,28

〈O(τ)O(0)〉(nc)d,∆ =
∞∑
n=0

a
(T )
n

β2∆

∣∣∣∣ τβ
∣∣∣∣nd−2∆

, (5.65)

28We comment later on how this discussion generalises when additional operators enter the OPE
limit of the non-compact correlator.
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since in the limit x → 0 the sum of the multi-energy-momentum tensor contributions
of different spin at a given order d reduces to a power of τ times a collective constant
a

(T )
n . As an OPE this expression is valid in some interval 0 < |τ | < τ?.

In order to perform the image sum of (5.65) it is convenient to analytically continue
to the complex τ plane. Because of the absolute value in (5.65), we first focus on the
case τ > 0 where,

〈O(τ)O(0)〉(+)
d,∆ =

∞∑
n=0

a
(T )
n

β2∆

(
τ

β

)nd−2∆

. (5.66)

We then subsequently continue to τ ∈ C so that (5.66) is valid in an annulus 0 < |τ | <
τ?, with τ? corresponding to the smallest radius at which there will be singularities in
the complex τ plane. We then attempt to analytically continue beyond τ?, to a function
which we denote G+(τ). We assume that there are no singularities of G+(τ) lying on
the positive real axis, that is, the only singularity of the non-compact correlator is the
one at coincident points.

To extend the range of validity of the sum (5.66) we take G+ to be composed of
singular and non-singular parts,

G+(τ) =
∑
`

W`(τ) +
∞∑
n=0

ã
(T )
n

β2∆

(
τ

β

)nd−2∆

, (5.67)

where the first sum includes all poles and branch points whose positions are governed
by the parameters y`,

W`(τ) =
1

τ 2∆

A(`)(
(τ/β)d − y`

)µ(`)
, (5.68)

with non-negative real µ(`). The second sum in (5.67) has an infinite radius of conver-
gence.

With G+(τ) known, and the τ → −τ ∗ symmetry of the correlator, the sum over
images (5.42) is given by

〈O(τ)O(0)〉(β)
d,∆ =

∑
m∈Z

〈O(τ +mβ)O(0)〉(nc)d,∆ , (5.69)

= G+(τ) +
∞∑
m=1

[G+(τ +mβ) +G+(−τ +mβ)] . (5.70)

In Appendix F we give a detailed account of how to perform this sum over images.
The resulting thermal correlator arising from the non-compact correlator (5.67) reads
for real τ in 0 < |τ | < τ?,

〈O(τ)O(0)〉(β)
d,∆ =

∞∑
n=0

a
(T )
n

β2∆

∣∣∣∣ τβ
∣∣∣∣nd−2∆

+
1

β2∆

∞∑
p=0

[
a(OO)

reg, p +
∑
`

a
(OO)
(`) p

]
τ 2p

β2p
, (5.71)
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where we defined the coefficients

a(OO)
reg, p = 2

∞∑
n=0

Γ(2p+ 2∆− nd)

(2p)! Γ(2∆− nd)
ζ(2p+ 2∆− nd) ã(T )

n , (5.72)

a
(OO)
(`) p = (5.73)

2A(`)

(2p)!

∞∑
j=0

(
µ(`) + j − 1

j

)[
(y`)

j
(
d(µ(`) + j) + 2∆

)
2p
ζ
(
2p+ d(µ(`) + j) + 2∆, n∗`

)
+ (−1)j(−y`)−µ(`)−j (2∆− dj)2p

(
ζ
(
2p+ 2∆− dj

)
− ζ
(
2p+ 2∆− dj, n∗`

))]
,

as well as n∗` =
⌈
|y`|1/d/β

⌉
, the least integer greater than or equal to |y`|1/d/β. Note

that for non-integer κ = ∆ − d/2 there is no possible mixing between double-twist
operators and the multi-energy-momentum tensors in the ambient expansion. The first
sum in (5.71) contains the multi-energy-momentum tensor spectrum (5.65), left un-
touched by the sum over images. This result justifies our earlier claim that that the
non-compact 2-point function 〈O(τ, x)O(0)〉(nc)d,∆ captures the multi-energy-momentum
contributions. The absence of mixing also shows that the first-order exactness of the
ambient geodesic term is robust in this case. Furthermore, through the second sum
this expression (5.71) provides a prediction for the double-twist coefficients, taking as

an input the multi-energy-momentum tensor coefficients a
(T )
n and the singularities of

the analytically continued non-compact correlator (in particular, their positions, orders
and the factors A(`)). Although this computation was carried out in the limit x → 0,
these same techniques can be applied in the case of non-vanishing x, as well as for
theories where space-like directions are compact.

Non-perturbative effects in momentum space ∼ e−βω may yield additional regu-
lar and singular contributions besides the multi-energy-momentum tensor operators
in the non-compact correlator (5.65). In that case this computation can be repeated
without obstructions. The form of the double-twist coefficients changes accordingly,
while the structure of (5.71) is preserved. This suggests that under sum over images
any operator entering the OPE limit of the non-compact correlator contributes to
the double-twist coefficients in an analogous way to multi-energy-momentum tensors.
We can conclude that the double-twist spectrum in the holographic Euclidean ther-
mal 2-point function on the planar black hole arises from the sum over images of the
non-compact position space correlator, and it may receive further contributions from
possible non-perturbative pieces in momentum space, whose existence was not probed
in our perturbative computation.

Let us consider how these results apply to the holographic thermal 2-point function
on the planar black hole. Using the techniques of section 5.4.1, for ∆ = 3/2 and d = 4
we computed the momentum space correlator (5.38) up to order O (kβ)−360, from which

we extracted the first 91 coefficients a
(T )
n in (5.65). The asymptotic growth at large n
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is captured by a
(T )
n ≈ (−1)n4n, indicating that the leading singularities in the complex

τ plane are simple poles at 1 + 4(τ/β)4 = 0 giving an OPE radius of convergence
τ? = β/

√
2. Whilst this asymptotic growth is robustly identified, we have not deter-

mined the contributions of subleading singularities upon subtraction, so as to attain an
infinite radius of convergence for the remainder as in equation (5.67), and subsequently
use (5.71) to make predictions on the double-twist coefficients. The four singularities
appearing at |τ | = τ? can be related to singularities of holographic Lorentzian thermal
2-point functions, which originate in the existence of a bulk null geodesic connect-
ing two boundaries via the singularity [95, 96]. For more recent developments on such
singularities see also [91,97,98].

An interesting question is how to account for these double-twist contributions using
ambient invariants. For CFTs in thermal states dual to thermal AdS and BTZ, the am-
bient space is a quotient of (d+2)-dimensional Minkowski space (being each ALAdSd+1

slice simply a quotient of Euclidean AdS). One can check that the double-twist spec-
trum arises automatically from the sum over the distinct geodesics that connect the
same two nullcone points, which is implicit in the prescription (4.16). In particular, the

ambient correlator is equal to a sum of terms X̃−∆
12 , each evaluated on one among the

infinite distinct ambient geodesics that wrap the thermal circle, each characterised by
a different winding.

However, as we detail in Appendix G there is a unique geodesic on the AdS planar
black hole that connects two given boundary points, and hence there is only one ambient
geodesic that connects a given pair of points on the nullcone. This entails that there are
no periodic ambient geodesics to sum over, suggesting that double-twist contributions
must be described by a novel class of invariants on the ambient space. We leave this
interesting question to future work.

5.5 The d = 2 case and the BTZ black hole

As a final example of the ambient formalism for thermal correlators, we consider the
simplified case of d = 2. We parametrise the thermal cylinder with coordinates xi =
(τ, φ) with 0 ≤ τ < β and consider for now a non-compact φ. The states we are
interested in are characterised by a energy-momentum tensor VEV of the form (5.2),
which for d = 2 is

〈Tij〉 dxidxj =
π

4Gβ2

(
dτ 2 + dφ2

)
. (5.74)

The appropriate ambient space can be written as a foliation of the Euclidean BTZ
black hole [99, 100],

g̃ = −ds2 + s2

[
dr2

r2 − r2
H

+
(
r2 − r2

H

)
dτ 2 + r2dφ2

]
, (5.75)
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with rH = 2π/β and r > rH . The radial r coordinate is related to the usual ambient ρ
coordinate by

r =
1− 2ρ2

2
√−2ρ

rH . (5.76)

Through the coordinate transformation

X0 =
s r

rH
cosh(rHφ), X1 =

s r

rH
sinh(rHφ) , (5.77)

X2 = s

√
r2

r2
H

− 1 cos(rHτ) X3 = s

√
r2

r2
H

− 1 sin(rHτ) , (5.78)

one can show the ambient metric (5.75) describes the geometry of (d+ 2)-dimensional
Minkowski space in the causal future of the origin XM = 0, with line element ds2 =
ηMNdX

MdXN . As we mentioned in section 3.2, any 4-dimensional ambient space is
locally diffeomorphic to Minkowski space. This entails that all ambient curvature in-
variants are identically vanishing, and the only non-trivial scalar building block is the
geodesic distance square X̃12.

Let us now study scalar 2-point functions. Leveraging translational symmetries and
turning to the ambient gauge X̃ = (t, ρ, τ, φ) as in (3.1), we place the insertions at

X̃1 = (t1, 0, 0, 0) , X̃2 = (t2, 0, τ, φ) . (5.79)

Ambient geodesics are simply straight lines on Minkowski. The boundary conditions
(5.79) fix the integration constants, yielding, in Minkowski coordinates (5.77)-(5.78),

X0(λ) =
1

2

[
t0 − t0λ+ t1λ cosh(rHφ)

]
, X1(λ) =

1

2
t1λ sinh(rHφ) , (5.80)

X2(λ) =
1

2

[
t0 − t0λ+ t1λ cos(rHτ)

]
, X3(λ) =

1

2
t1λ sin(rHτ) . (5.81)

Assembling the above results we obtain the invariant

X̃12 =
t0t1
2

[
cosh(rHφ)− cos(rHτ)

]
. (5.82)

Contrary to thermal AdS, there is only one geodesic connecting any pair of insertion
points on the thermal cylinder for non-compact φ, regardless of the periodicity in τ .
This is analogous to what happens with the higher dimensional black brane as discussed
in section 5.4.3 and Appendix G. The resulting ambient 2-point function is therefore

〈O(τ, φ)O(0)〉(β)
d=2,∆ =

1

β2∆

C∆[
cosh 2πφ

β
− cos 2πτ

β

]∆ . (5.83)

Expanding this correlator in the OPE limit, only negative even powers of β appear,
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describing the multi-energy-momentum tensor spectrum.
The BTZ black hole geometry is however periodic in φ with period 2π, and on the

corresponding ambient space one has an infinite number of geodesics. Their form is
the same as in equations (5.80)-(5.81) with φ → φ + 2πm, where m ∈ Z parametrises
the winding around the φ circle. There is an invariant analogue to (5.82) for each such
geodesic, yielding a correlator of the form,

〈O(τ, φ)O(0)〉(β)
d=2,∆ =

1

β2∆

∑
m∈Z

C∆[
cosh 2π(φ+2πm)

β
− cos 2πτ

β

]∆ . (5.84)

The expression (5.84) matches the corresponding holographic result [101–103].

6 CFTs on squashed spheres

Squashed spheres are a class of non-conformally flat and non-Einstein manifolds and
represent an interesting case of study to make predictions using the ambient space
formalism. Previous work on CFTs on squashed spheres includes [36–43]. Fixing to
d = 3 for concreteness, the geometry reads

ds2 = dθ2 + sin2 θdϕ2 +
1

1 + α
(dψ + cos θdϕ)2 , (6.1)

where 0 ≤ θ < π, 0 ≤ ϕ < 2π, 0 ≤ ψ < 4π are the Euler angles. The real parameter
α defines the squashing. For α = 0 we recover the round sphere, while in the limiting
case α→∞ we obtain the cylinder R× S2. 29

As anticipated, these spaces are not Einstein but they are close to being Einstein
in the sense that one can recast their Ricci tensor as

Rij(θ) =
R

3
gij(θ) +Hij(θ), (6.2)

where Hij is traceless, so that they have constant curvature R = 3+4α
2(1+α)

. Their Cotton
tensor is non-vanishing, hence they are not conformally flat. This means that regardless
of the CFT state, their ambient space is not flat space.

For generic α, the squashing breaks SO(4) ' SU(2)L× SU(2)R down to SU(2)L×
U(1)R. Thus d = 3 squashed spheres are endowed with only four out of the six isometries

29Performing this limit on the metric (6.1) yields a degenerate geometry. We can attain a non-
degenerate metric by first unwrapping the fibred S1 so that 0 ≤ ψ < ∞, and subsequently rescaling
it as ψ̃ = ψ√

1+α
.
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of round spheres. These isometries can be written as

K1 = − sinϕ∂θ +
cosϕ

sin θ
∂ψ − cot θ cosϕ∂ϕ, (6.3)

K2 = cosϕ∂θ +
sinϕ

sin θ
∂ψ − cot θ sinϕ∂ϕ, (6.4)

K3 = ∂ϕ, (6.5)

K4 = ∂ψ, (6.6)

where K4 generates the residual U(1)R symmetry. No additional conformal Killing
vector is present for a generic squashing α.

The Ward Identities associated to the vectors K1, . . . , K4 fix scalar 1-point functions
of quasi-primary operators to be equal to constants, while operators with spin may have
dependence on θ. Defining the invariant 1-form

ζ = dψ + cos θdϕ, LKiζ = 0 , (6.7)

a generic spin-1 1-point function can be written as

〈Oi(θ)〉α = u1 ζi , (6.8)

and a generic spin-2 1-point function can be written as

〈Oij(θ)〉α = u2 ζi ζj + u
(tr)
2 g(0)ij , (6.9)

where the constants u2 and u
(tr)
2 are fixed by dynamics. Note that no antisymmetric

part is allowed. 〈Oij(θ)〉α has a non-trivial dependence on θ, which entails that an infi-
nite tower of descendants can be constructed acting with three-dimensional covariant
derivatives on the squashed sphere.

The form of scalar 2-point functions of quasi-primary operators is partially fixed by
the Ward Identities

[LKi(θ1, ϕ1, ψ1) + LKi(θ2, ϕ2, ψ2)] 〈O1O2〉α = 0 . (6.10)

Leveraging rotational symmetry along ψ and ϕ, we can move the first insertion to lie
at ψ1 = ϕ1 = 0 and the second insertion to be at ψ2 = ψ, ϕ2 = ϕ. Adopting the basis
of cross-ratios from [37], scalar 2-point correlators must be of the form

〈O1(θ1, 0, 0)O2(θ2, ψ, ϕ)〉α = F (v1, v2), (6.11)

where

v1 = cos
θ1

2
cos

θ2

2
cos

ψ + ϕ

2
+ sin

θ1

2
sin

θ2

2
cos

ψ − ϕ
2

, (6.12a)

v2 =
1

2
(1 + cos θ1 cos θ2 + sin θ1 sin θ2 cosϕ) . (6.12b)
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6.1 The ambient setup

We intend to study CFTs on squashed spheres in states with a non-vanishing energy-
momentum tensor VEV. To describe the multi-energy-momentum tensor contributions
of their correlators using the ambient formalism we should identify suitable bulk solu-
tions with a squashed 3-sphere as a boundary and a non-vanishing holographic energy-
momentum tensor VEV. Four-dimensional AdS Taub-NUT and -bolt spaces allow one
to study a wide class of such states. Their metric reads [104]

ds2 =
dr2

V (r)
+ (r2 − n2)(dθ2 + sin2 θdϕ2) + 4n2V (r) (dψ + cos θdϕ)2 , (6.13)

where we defined

V (r) =
r2 + n2 − 2mr + (r4 − 6n2r2 − 3n4)

r2 − n2
. (6.14)

The NUT parameter is related to the squashing of the boundary by n = (2
√
α + 1)−1,

and the boundary is reached for r → ∞. The holographic energy-momentum tensor
1-point function in such geometries is parametrised by the mass parameter m as

u2 = − 3

8π

m

1 + α
, u

(tr)
2 =

m

8π
, (6.15)

and as such these geometries can be used to describe states where

u2

u
(tr)
2

= − 3

1 + α
. (6.16)

As an illustrative example, the CFT state that we consider is characterised by the
energy-momentum tensor VEV associated to the self-dual AdS Taub-NUT geometry
with no conical singularities. The ambient space we need is then (3.8) with metric (6.13)
as (d + 1)−dimensional hyperbolic slices, and with the choice of the mass parameter
m = α

2(1+α)3/2 . For later convenience, we write explicitly the energy-momentum tensor

VEV, 〈Tij〉α = 3
16π
g(3)ij, with

g(3)ijdx
idxj =

α

3(α + 1)3/2

[
dθ2 − 2dψ2

1 + α
− 4 cos θ

1 + α
dψdϕ− (α + 3) cos 2θ − α + 1

2(α + 1)
dϕ2

]
=
α

3

[
dθ2 − 2dψ2 − 4 cos θ dψdϕ− 3 cos 2θ + 1

2
dϕ2

]
+O(α2).

(6.17)

In what follows we work perturbatively in small α for simplicity. To avoid cluttering
in the expressions below we fix θ1 = 0, rename θ2 = θ and define χ = (ϕ + ψ)/2.

The two insertion points on the ambient space are thus X̃1 = (s1, r1, 0, 0, 0) and X̃2 =
(s2, r2, θ, ψ, ϕ), where the limit to the lightcone si, ri →∞ with fixed si/ri = ti = 1 is
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understood.

6.2 Geodesics

Let us first solve the geodesic equations on this geometry between X̃1 and X̃2 so as
to obtain the invariant X̃12. In this case it is convenient to compute the (divergent)
geodesic length LAdS on a fixed hyperbolic slice and then use the relation (4.19) to find

the finite ambient invariant X̃12.
We hence consider the 4-dimensional self-dual AdS Taub-NUT metric (6.13) with

m = α

2(1+α)3/2 . We would like to study geodesics on this background with endpoints

on the boundary r → ∞ at the generic points x1 = (θ1, 0, 0) and x2 = (θ2, ψ, ϕ)
corresponding to the values of the affine parameter λ = 0 and λ = 1 respectively. For
simplicity we restrict to θ1 = θ2 = 0.

The boundary isometries (6.3)-(6.6) are also bulk isometries and one can use them to
partially integrate the bulk geodesic equations. From the integrals of motion related to
translational symmetries (6.5)-(6.6) along ϕ and ψ one obtains the first-order equations

ϕ̇ =
Aϕ

n2 − r2
, (6.18)

ψ̇ = − Aψ(n+ r)

4n2(n− r) (−3n2 + 2nr + r2 + 1)
− Aϕ
n2 − r2

, (6.19)

where Aψ and Aϕ are the constants of motion. Using equations (6.18)-(6.19) the 4-
velocity constraint in the bulk ẋµẋ

µ = L2
AdS can be written as

4n2(n+ r(λ))ṙ(λ)2 + nA2
ψ + 4

(
1− 3n2

)
n3L2

AdS+

r(λ)
(
A2
ψ − 4n2L2

AdSr(λ)(n+ r(λ)) + 4n2
(
5n2 − 1

)
L2

AdS

)
= 0 .

(6.20)

We use (6.20) to eliminate ṙ terms from the geodesic equation governing r̈, which then
reads

(n+ r(λ))2r̈(λ)− L2
AdS

(
n− 4n3 + r(λ)(n+ r(λ))2

)
= 0 . (6.21)

We first solve (6.21). To regulate the divergence in the geodesic distance as one
approaches the boundary we use boundary conditions r(0) = r(1) = R with a radial
regulator R to be eventually set to infinity. We then plug the solution r(λ) into the
angular equations, which are solved subject to the Dirichlet boundary conditions at
x1 and x2. This fully determines the trajectory. Finally, substituting r(λ) and Aψ into
(6.20) allows one to find the value of LAdS in terms of the boundary points x1 and x2.
Note that Aϕ does not appear in (6.20), meaning that to obtain the geodesic distance
LAdS it is sufficient to solve the reduced ODE

χ̇(λ) +
Aψ(n+ r(λ))

8n2(n− r(λ)) (−3n2 + 2nr(λ) + r(λ)2 + 1)
= 0 , (6.22)

in terms of χ(λ) = ψ(λ)+ϕ(λ)
2

with boundary conditions χ(0) = 0 and χ(1) = χ.
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The explicit solution to (6.21) can be found in terms of inverse elliptic functions.
However we are interested in an α → 0 expansion of the geodesic distance, which
corresponds to an n → 1

2
expansion in the current parametrisation. We thus expand

the unknown functions and integration constants as

r(λ) =
∞∑
k=0

(
n− 1

2

)k
rk(λ) , χ(λ) =

∞∑
k=0

(
n− 1

2

)k
χk(λ) , (6.23)

Aψ =
∞∑
k=0

(
n− 1

2

)k
A

(k)
ψ , LAdS =

∞∑
k=0

(
n− 1

2

)k
L

(k)
AdS . (6.24)

At leading order k = 0 the bulk is simply global Euclidean AdS4 and the boundary is
a round sphere. Following this integration scheme, one finds

r0(λ) =
(8− 8 cosχ)−λ

[
64λR2λ+1(1− cosχ)2λ + 8R3−2λ(1− cosχ)

]
1 + 8R2(1− cosχ)

, (6.25)

χ0(λ) = −
χ arctan

[
8 sinχ(cosχ−1)(R4λ(8−8 cosχ)2λ−1)

R4λ−2(8−8 cosχ)2λ(8R2(cosχ−1) cosχ−1)−8(cosχ−1)((8R2−1) cosχ−8R2)

]
arctan

[
sinχ(−32R4(cos 2χ−4 cosχ)−96R4+1)

cosχ(32R4(−4 cosχ+cos 2χ+1)+(1−8R2)2)+16R2

] ,

(6.26)

L
(0)
AdS = log

[
8R2(1− cosχ)

]
, (6.27)

A
(0)
ψ = −

√
32R4 cos 2χ− 16R2 cosχ− 32R4 + 16R2 + 1

4 (8R2 cosχ− 8R2 − 1)
× (6.28)

arctanh

[
(−8R2 cosχ+ 8R2 − 1)

√
32R4 cos 2χ− 16R2 cosχ− 32R4 + 16R2 + 1

64R4(cosχ− 1) cosχ+ 1

]−1

.

The solution at first order is lengthy and we avoid displaying it here. The first order
geodesic distance at leading order in R → ∞ takes however a particularly compact
form,

L
(1)
AdS =

[
4(π − χ) sin3 χ

2
+ cos

χ

2
+ 3 cos

3χ

2

]
sec3 χ

2
. (6.29)

Knowing L
(0)
AdS and L

(1)
AdS, one can compute the invariant X̃12 to first order in α through

(4.19) setting R→∞. It reads

X̃12 = 8(1− v1)

[
1 + α

(
1− 3v1

1 + v1

+ (arccos v1 − π)

(
1− v1

1 + v1

) 3
2

)
+O(α)2

]
. (6.30)

In the limit θ1 → θ2 we are considering here the cross ratios reduce to v1 = cosχ
and v2 = 1. The fact that v2 trivialises means that only v1 can appear in invariants
contributing to correlators such as (6.30) in this limit.
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6.3 Invariants and ambient 2-point functions

Using the techniques developed in Appendix B one can straightforwardly compute
the parallel transported vector T̂1 from X̃1 to X̃2. In particular, to order O(α0) the
(d+2)−dimensional background geometry is simply Minkowski space. Thus, to find T̂1

to this order in α it is sufficient to take the Euler vector in Minkowski XM∂M evaluated
at the point X̃1, and make a transformation XM → X̃M = (s, r, θ, ψ, ϕ) to the ambient
coordinates. This change of coordinates reads

X0 = t
(

1− ρ

2

)
, (6.31a)

X1 = t
(

1 +
ρ

2

)
sin

(
θ

2

)
cos

(
φ− ψ

2

)
, (6.31b)

X2 = t
(

1 +
ρ

2

)
sin

(
θ

2

)
sin

(
φ− ψ

2

)
, (6.31c)

X3 = t
(

1 +
ρ

2

)
cos

(
θ

2

)
cos

(
ψ + φ

2

)
, (6.31d)

X4 = t
(

1 +
ρ

2

)
cos

(
θ

2

)
sin

(
ψ + φ

2

)
, (6.31e)

where the ambient t and ρ are related to the AdS Taub-NUT radial coordinate (at
zero-th order in α) by

t =
s

4
(√

r2 − 1
4

+ r
) , (6.32)

ρ = −8

(√
r2 − 1

4
+ r

)2

. (6.33)

The resulting transported T̂1 is consequently

T̂1 =
cos θ

2
cosχ+ 1

2r
∂s +

cos θ
2

cosχ− 1

64r
∂r (6.34)

− 2 sin
θ

2
cosχ∂θ − sec

θ

2
sinχ∂ψ − sec

θ

2
sinχ∂ϕ +O(α).

From equations (4.4), (4.6) and (4.7) the non-vanishing components of the ambient
Riemann read

R̃rirj = − 3t2

2r5
g(3)ij +O(α)2,

R̃rijk =
t2

r3

(
∇kg(3)ij −∇jg(3)ik

)
+O(α)2, (6.35)

R̃ijkl =
3t2

2r

[
g(0)ikg(3)jl + g(0)jlg(3)ik − (l↔ k)

]
+O(α)2.
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These ingredients can be assembled to form the ambient curvature invariants that
enter scalar correlators. As we showed in section 4.2 the ambient formalism predicts that
the single-energy-momentum tensor contributions to scalar correlators are fully fixed
by the leading geodesic distance (X̃12)−∆. Since 〈Tij〉α = O(α), the leading curvature
invariants are of order O(α)2. As expected due to the infinite tower of non-trivial de-
scendants of :T 2:, one can construct an infinite number of ambient curvature invariants
at this order. However, in a short distance expansion the dominant contributions can
be identified as the three invariants accounting for the three independent ∼ 〈:T 2 :〉 con-
tributions, while the others include a higher and higher number of covariant derivatives
and are thus subleading. Focusing on the dominant ones, a suitable basis is provided
by the three curvature invariants

(∇R̃iem)2 =
42α2

t6
+O(α)3, (6.36)

R̃(1)
AC R̃(1)AC = 18α2 sin2 θ

2

[
3− cos θ − 2 cos2 θ

2
cos 2χ

]2

+O(α)3, (6.37)

R̃(0)
AC R̃(2)AC =

3

2
α2

[
−3 + 5 cos θ − 2 cos2 θ

2
cos 2χ

][
3− cos θ − 2 cos2 θ

2
cos 2χ

]2

+O(α)3,

(6.38)

where the tensors R(r) are defined in (4.14). Using the expressions for the ambient
Riemann components in (6.35) one can explicitly check that these invariants do not
contain derivatives of the energy-momentum tensor VEV, ensuring they describe the
independent : T 2 : blocks.

Note that weight-0 invariants of the form (4.14) constructed as chains of tensors
R(r) are not sufficient to account for all the three :T 2: blocks, as opposed to the finite
temperature example in section 5 where they can be used as a basis for any multi-
energy-momentum tensor contribution :T n: as we showed. This difference resides in
the fact that in the present case the dimension of the CFT background is odd. As
discussed in the end of section 4.2 this causes a number of ambient invariants to be
either divergent or vanishing in the limit to the nullcone, as it is the case for instance
for R̃(0)

AC R̃(0)AC here.
Assembling the above ingredients following the prescription in section 4.3 we arrive

at our main result for this example, the scalar 2-point function on this background and
state,

〈O(X1)O(X2)〉α =
C∆

(X̃12)∆

[
1 +

3

2
α2

[
28c1 −

(
2 cos2 θ

2
cos 2χ+ cos θ − 3

)2

×
(

6c2(cos θ − 1) + c3

(
2 cos2 θ

2
cos 2χ− 5 cos θ + 3

))
+ . . .

]
+O(α)3

]
, (6.39)

where c1, c2 and c3 are theory-dependent constants, while the dots denote subleading
terms in the short distance limit. These contributions can be constructed in a similar
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way using invariants containing more ambient covariant derivatives, while multi-energy-
momentum-energy tensor blocks can be accounted for with invariants of higher order
in the ambient Riemann.

Given the form (6.30) of the invariant X̃12, in the case of θ = 0 we are able to
explicitly write the form of the scalar 2-point function to first order in α,

〈O(X̃1)O(X̃2)〉α =
C∆8−∆

(1− v1)∆

[
1−∆

(
1− 3v1

1 + v1

+ (arccos v1 − π)

(
1− v1

1 + v1

) 3
2

)
α+

+O(α)2

]
. (6.40)

A holographic computation for the 2-point function of the operator of dimension ∆ = 1
was reported in [37]. The computation relied on assumptions on the bulk propagator
and in the limit θ1 = θ2 = 0, the result of [37] reduces to the correlator on the round
sphere

〈O(X̃1)O(X̃2)〉 [37]

α =
2

1− v1

, (6.41)

to all orders in α, which is at odds with our results. The result (6.41) also appears at
odds with conformal perturbation theory, which suggests that the order α correction
of the 2-point function should be given by an integral of a CFT 3-point function, and
it is thus expected to be non-zero. One should be able to explicitly check (6.40) via
such computation, and we leave this to future work.

7 Relations with flat holography

The ambient space is a (d + 2)-dimensional Ricci-flat spacetime and its geometry en-
codes observables of a Euclidean CFTd, as we have shown in the previous sections. Such
setup has a manifest holographic flavour and in this section we illustrate the connec-
tions of the ambient space construction with proposals of flat holography in d+ 2 = 4
dimensions.

Several proposals of flat holography on Minkowski spacetime has adopted the em-
bedding space as a useful framework, in particular to address questions related to the
matching of symmetries in the putative dual theories. In celestial holography [44–48]
the embedding space provides a convenient language to relate bulk scattering ampli-
tudes to CFT correlators. The hyperbolic slicing of Minkowski space is also at the
basis of the idea of flat holography as an uplifting AdS/CFT. First put on paper by de
Boer and Solodukhin [105,106], more recently it has been leveraged in several different
contexts including [107–109]. In [110] an embedding space formalism on R4,2 was also
developed to find the form of Carrollian 2- and 3-point functions up to spin 1.

The ambient space generalises the embedding space allowing for generic AL(A)dS
slices and non-conformally flat celestial manifolds. We thus expect to be able to im-
plement similar approaches with the ambient space as a way to extend the current un-

58



derstanding of flat holography beyond spacetimes perturbatively close to Minkowski.
In such more general spacetimes, we expect non-trivial sources and VEVs to appear in
the dual QFT description. Some instances have been recently discussed in [111–114].

The first question to address is which class of physical Ricci-flat spacetimes the
ambient space can describe. To help us answer this question, let us briefly present
the Beig-Schmidt gauge [115, 116], a suitable set of coordinates to describe the neig-
bourhood of past, future and spatial infinity. This gauge has been used to analyse the
well-posedness of the variational principle at spatial infinity, and to define the scatter-
ing problem on general asymptotically flat spacetimes by studying BMS charges and
their antipodal matching [117–125]. The geometry of a 4-dimensional Ricci-flat space-
time in a neighbourhood of spatial infinity can be written in Beig-Schmidt gauge as30

g̃ = ds2 + s2

[
g+
αβ(x) +

fαβ(x)

s
+
f̃αβ(x)

s
log s+O(s)−2

]
dxαdxβ , (7.1)

where s describes the geodesic distance from spatial infinity, reached for s → ∞. The
Ricci-flatness condition can be solved order by order at large s, from which it follows
that g+

αβ must be the metric of a three-dimensional ALdS spacetime.
Importantly, if one imposes s∂s to be a dilational symmetry of this four-dimensional

spacetime, one restricts to spacetimes where fαβ, f̃αβ as well as the higher order terms
in the expansion vanish. What one finds in this case is simply the ALdS slicing (3.10)
covering part of the ambient space. A completely analogous Beig-Schmidt expansion
can be made near future or past infinity, leading to higher order corrections in 1/s to the
ambient ALAdS slicing (3.8). Henceforth the ambient space represents a generalisation
of Minkowski spacetime which maintains an analogue of the Euler vector, while a metric
in Beig-Schmidt gauge allows one to describe more general Ricci-flat spacetimes where
this dilational symmetry is absent.

As we mentioned in section 3.2, all four-dimensional ambient spaces are locally
flat. It is well known that the Goldstone mode of (Virasoro) superrotations is encoded
in the g(d)ij term related to the holographic energy-momentum tensor appearing in
the near-boundary expansion of the hyperbolic metric g+

αβ in (7.1) [108, 126]. Thus
four-dimensional ambient spaces describe superrotated Minkowski spacetimes. In di-
mensions higher than four, no analysis of the asymptotic charges of ambient or Beig-
Schmidt geometries has been carried out, and it is not currently known what subset of
Beig-Schmidt geometries is described by ambient space geometries.

Returning to four-dimensional ambient spaces, in the Beig-Schmidt expansion (7.1)
the supertranslation Goldstone mode is encoded in fαβ. Enforcing the presence of the
homothety T = s∂s requires fαβ to vanish and fully fixes the supertranslation mode.
If we then consider asymptotically flat spacetimes which can be represented as am-
bient spaces, we expect to be able to describe the soft physics related to Poincaré
transformations and superrotations, while this is less clearly so for supertranslations.

30Usually, metrics in Beig-Schmidt gauge are written with a non-trivial lapse function. One can
however use a so-called log supertranslation to move to the form in normal coordinates that we
discuss here.
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Furthermore, Poincaré transformations together with Virasoro superrotations do not
form a closed subalgebra of the extended BMS transformations. This entails that if
one fixes supertranslations, the maximal consistent algebra of near-lightcone transfor-
mations is simply ISO(1, 3). This hence seems to indicate that one has to give up the
global homothety s∂s and resort to the more general geometries of the Beig-Schmidt
class in order to describe the soft physics of gravity in flat spacetimes.

We note however that the family of conformal structures at infinity that are cap-
tured by ambient spaces is much richer than that of asymptotically flat spacetimes,
since they allow for sections of null infinity which are not conformally flat. We stud-
ied an explicit example of this in section 6, where the sections of null infinity are
non-Einstein manifolds. These are spacetimes whose analysis in gravity is limited in
the literature (although exceptions exist [127]), while they have not been studied in a
holographic perspective at all.

8 Outlook

The embedding space formalism is a mainstay of computations for CFTs in vacuum on
conformally flat spaces. In this paper we have proposed the ambient space formalism
for CFTs, which extends the embedding space to non-vacuum states and arbitrary
curved manifolds. All the ideas and techniques usefully employed in embedding space
may enjoy an analogous construction in ambient space. Even when all symmetries are
broken, the ambient formalism encodes Weyl covariance and gives building blocks that
appear universally in correlation functions. In this section we look at the prospects and
remaining open questions.

In the ambient formalism, the natural Weyl invariant building blocks of correlation
functions are geometric objects in the ambient space. In this work we constructed a
class of these and – through applications to thermal CFTs – concluded that they only
capture the contributions from multi-energy-momentum tensors in an OPE expansion.
Thus an important open direction is to try to make the ambient approach complete by
constructing invariants for other operator contributions. A family of contributions of
this type we encountered in section 5.4 are the double-twist contributions which arise
when summing over thermal images of the multi-energy-momentum tensors.

Another important generalisation is the treatment of states with VEVs of operators
other than the energy-momentum tensor. The natural way to proceed is to introduce
matter fields in the ambient space itself, and relax the d+ 2 dimensional Ricci flatness
condition to Einstein’s equations with a non-zero energy-momentum tensor for the
matter fields. In this case the additional fields provide additional ways to build Weyl
invariants and thus additional independent kinematic contributions in correlators.

One of the main technical conveniences of the embedding formalism is construct-
ing correlation functions of operators with spin. We expect the ambient space to be
similarly useful and we provided a brief discussion in section 4.5. The first step down
this road is to construct worldlines of spinning particles connecting the two insertion
points, i.e. gyroscopes falling through ambient space. Unlike embedding space, ambient
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space has non-trivial Riemann curvature and this may lead to interesting new physical
contributions in correlation functions with spin, or provide natural geometric interpre-
tations for known expressions. Another tool available to move in this direction are the
ambient generalisations of weight- and spin-shifting operators discussed in section 4.5.

For thermal CFTs, we placed particular emphasis on computing the 2-point function
of scalar operators. The invariants we employed (section 5.2) can also be assembled to
build scalar n-point functions (section 4.4) and it would be interesting to carry this out
explicitly in some examples. We also performed a holographic computation of the 2-
point function order by order in small temperature β−1 which raised several questions.
Firstly, are there non-perturbative contributions in β−1, and how do they affect the
construction of an OPE in momentum space? Secondly, what is the analytic structure
of the 2-point function for generic d,∆: in our computation we identified singularities at
complex τ at a radius less than β. These singularities appear to match those appearing
in an asymptotic frequency-space analysis in [95] which originate in the existence of a
null singularity that connects the two points [96] signalling the presence of the black
hole singularity. This suggests that the radius of convergence of the thermal OPE be
less than β.

In this work we also constructed the exact (non-perturbative) thermal holographic
2-point function with numerical methods in section 5.4.2. As far as we are aware, this
constitutes the first computation of double-twist OPE coefficients for the black hole
state, confirming that they are non-zero. It would be interesting to explore these cor-
relators more systematically, which may benefit from developing a numerical method
more naturally adapted to the delta-function sources such as finite-element methods
or defect-adapted coordinate systems analogous to those used for extended sources
in [128]. We have also shown that the sum of images relates the double-twist OPE co-
efficients to those of the multi-energy-momentum tensor. The exact relation depends on
the analytic structure of the 2-point function, and it would be interesting to investigate
this further and see if it is possible to reproduce the value of the leading double-twist
OPE coefficient obtained non-perturbatively.

For CFTs on squashed spheres our exploration of Weyl invariant contributions to
correlation functions focussed on those associated to multi-energy-momentum tensors,
just as in the thermal case. However, the squashed sphere example is distinguished by
the inhomogeneity of the space that the CFT lives on. Thus one should also seek to
include ambient space building blocks that capture the contributions of descendants of
the energy-momentum tensor. Aside from the ambient space formalism it would also be
interesting to extend computations for squashed spheres using other techniques such
as conformal perturbation theory in α in CFT, perturbation theory in α in holography
using the AdS Taub-NUT metric, non-perturbative numerical computations, and to
construct 1-point functions with generic spin in order to obtain OPE expansions of
2-point functions.

Finally, in section 7 we discussed the relationship between the ambient space for-
malism and holography for asymptotically flat spacetimes. It may be fruitful to further
develop this connection.
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A The ambient near-nullcone isometries

As mentioned in section 3.3, one can show that any conformal Killing vector of the CFT
background can be lifted to a near-nullcone isometry on the ambient space. Consider
a conformal transformation generated in d dimensions by E

(0)
j (x) satisfying

∇iE
(0)
j +∇jE

(0)
i = 2ψ g(0)ij(x), (A.1)

with conformal factor ψ(x) = 1
d
∇lE

l
(0). One can extend it to the ambient space, at

least close enough to the nullcone, as an isometry K with components

K(t, ρ, x) = −tψ(x) ∂t + 2ρψ(x) ∂ρ + Ei(ρ, x) ∂i. (A.2)

Here we denote

Ej(ρ, x) = Ej
(0)(x) + (∂iψ)

∫ ρ

0

dρ′gij(x, ρ′), (A.3)

where the integral of the inverse metric expansion yields for the first few orders

Ej(ρ, x) = Ej
(0)(x) + (∂iψ)

[
gij(0) ρ− P ijρ2 + o

(
ρ2
)]
. (A.4)

In the context of the ALAdS realization it is well known that conformal symmetries
are mapped to asymptotic symmetries in the bulk and a statement analogous to (A.2)
can be found for instance in [55].

Consider for example the case of a flat ambient metric (3.13). For such a flat CFT
background the most general conformal transformation is generated by elements of
SO(1, d+ 1) of the form

E(0) =
[
ai + ωijx

j + λxi + bix2 − 2bkxkx
i
]
∂i, (A.5)

with conformal factor ψ(x) = λ− 2b · x. The corresponding ambient isometries read

K(t, ρ, x) = −t (λ− 2b · x) ∂t + 2ρ (λ− 2b · x) ∂ρ +
(
Ei

(0) − 2ρbi
)
∂i . (A.6)

These are Lorentz transformations on Minkowski as they appear in the ambient coor-
dinates.
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Besides those inducing conformal transformations on the d dimensional background
according to (A.2), there is an additional class of ambient isometries that are the ana-
logue of translations on the embedding space. In particular, when solving the ambient
Killing equations in full generality,

∇̃MKN + ∇̃NKM = 0, (A.7)

another class of near-nullcone isometries turns out to be present if the CFT background
has a constant scalar curvature ∇iR = 0. These symmetries are parametrised by a
scalar function B(x) that must satisfy the equations[

∇i∂j −
1

d
g(0)ij � +

1

d− 2

(
Rij −

R

d
g(0)ij

)]
B(x) = 0. (A.8)

As usual each integration constant appearing when solving (A.8) corresponds to an
additional ambient isometry. In terms of the function B(x) the components of their
generators KM(t, ρ, x) read

K0(x) = −1

d

[
� +

R

2(d− 1)

]
B, (A.9a)

Kρ(t, ρ, x) =
1

td

[
ρ� +

R

2(d− 1)
ρ+ d

]
B, (A.9b)

Ki(t, ρ, x) =
gij(x, ρ)

t

[
δmj + ρPm

j

]
∂mB. (A.9c)

For a conformally flat g(0) one can check that they are simply the d+ 2 translations
of the embedding space in disguise. More generally, the fact that the d-dimensional
manifold must have constant curvature means that locally it is either a sphere, Eu-
clidean space or a hyperboloid if we assume it to be a complete manifold. In all these
cases the ambient space near the nullcone is locally Minkowski and hence there we
expect translations to be isometries. In less trivial cases fewer such isometries may
exist but nevertheless one can prove in full generality that they form a commutative
subalgebra. In practice these additional symmetries are useful to find an adapted set
of coordinates to rewrite the ambient space as Minkowski if d+ 2 such isometries exist.

We now wish to make few comment about the utility of the ambient isometries
(A.2) and (A.9). As mentioned, they help find adapted coordinates to describe the
ambient geometry. They also play a relevant role when solving the geodesic equations
on an ambient space since they provide first integrals of motion that allow one to au-
tomatically reduce part of the geodesic equations to first order ODEs (see Appendix B
for more details). Finally, these ambient isometries may constrain further the form of
ambient correlators when considering more general states requiring additional ingre-
dients other than the ambient metric and covariant derivatives of the curvature, and
may enter themselves as ingredients for ambient building blocks.
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B Ambient geodesics and parallel transport of T

In this appendix we provide more details and results concerning the solution of the
ambient geodesic equations and the parallel transport of the homothety T along such
geodesics between two arbitrary points X̃0 and X̃1 on the ambient nullcone, that is
X̃0 = (t0, 0, x

i
0) and X̃1 = (t1, 0, x

i
1).

Let us first focus on the geodesic problem. We indicate the geodesic trajectories with
X̃M(λ), where 0 ≤ λ ≤ 1. The boundary conditions are X̃(0) = X̃0 and X̃(1) = X̃1.

In this affine parametrisation the velocity is normalised according to
˙̃
XM ˙̃

XN g̃MN = C.
Here C is a constant fixed by the boundary conditions and its sign is related to the
causal nature of the ambient trajectory. Its norm is the square of the geodesic length
between the two points,

`(X̃0, X̃1) =

∫ 1

0

dλ

√∣∣∣g̃MN
˙̃
XM ˙̃

XN

∣∣∣ =
√
|C|. (B.1)

The ambient geodesic equations

˙̃
XA(λ) ∇̃A

˙̃
XM(λ) = 0 ⇒ ¨̃

XM(λ) + Γ̃MAB(λ)
˙̃
XA(λ)

˙̃
XB(λ) = 0, (B.2)

lead to

ẗ− 1

2
tg′ijẋ

iẋj = 0, (B.3)

ρ̈+
2

t
ṫρ̇−

(
gij − ρg′ij

)
ẋiẋj = 0, (B.4)

ẍk +
2

t
ẋk ṫ+ Γkijẋ

iẋj + gklg′ilρ̇ẋ
i = 0, (B.5)

where the Christoffel symbols in (B.5) are computed using gij(x, ρ) at fixed ρ. Here the
prime denotes a derivative in ρ, while the dot stands for a derivative in λ. The velocity
normalization condition reads

2ρ ṫ2 + 2 t ṫ ρ̇+ t2 gij(x, ρ)ẋiẋj = C. (B.6)

These equations cannot be integrated in full generality. As customary some of them
can be reduced to first order ODEs using the ambient isometries K

(i)
M described in

Appendix A, if any is present. They lead to integrals of motion whose value is fixed by
the boundary conditions of the problem,

Qi = K
(i)
M (λ)

˙̃
XM(λ) . (B.7)

The geodesic equations can however be partially solved on general grounds. From
(B.3) and (B.6) we can extract gijẋ

iẋj and g′ijẋ
iẋj as functions of ρ and t. Plugging
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them into (B.4) one finds

ρ̈+ 4
ṫ

t
ρ̇− C

t2
+ 2ρ

ṫ2

t2
+ 2ρ

ẗ

t
= 0 , (B.8)

which can be easily integrated. Imposing the boundary conditions specified above, the
solution reads

ρ(λ) = −C λ(1− λ)

2t(λ)2
. (B.9)

Observe that the sign of C determines the sign of ρ, and this in turn determines the
region of the ambient space where the geodesic is moving through – either the region
with ALAdS foliation or the one with ALdS slices. With C > 0 the geodesic explores
the ALAdS foliation and this region the equation (B.9) can be rewritten in terms of
the coordinates (3.7) as

s(λ) = t
√
−2ρ =

√
Cλ(1− λ), (B.10)

so that the trajectory along s is completely specified once we fix C. This relation turns
out to be sufficient to find the explicit expression of the ambient invariant X̃ij.

Let us now move to the parallel transport of the homothetic vector T from X̃0 to
X̃1, defined by the equations

˙̃
XM(λ) ∇̃MT

A(λ) = 0 , (B.11)

which lead to

∂λT
0 − t

2
g′ijẋ

iT j = 0, (B.12)

∂λT
ρ +

ṫ

t
T ρ +

ρ̇

t
T 0 + (−gij + ρg′ij)ẋ

iT j = 0, (B.13)

∂λT
l +

1

t
ẋlT 0 +

1

t
ṫT l +

1

2
glmg′jm

(
ẋjT ρ + ρ̇T j

)
+ Γlijẋ

iT j = 0. (B.14)

One of them can be automatically integrated in view of the fact that the norm of T
must stay constant along a geodesic, and in this case the constant is zero (as its norm

at X̃0 vanishes). Therefore TM(λ)TM(λ) = 0 entails

2ρT 0(λ)2 + 2tT 0(λ)T ρ(λ) + t2gij(x, ρ)T i(λ)T j(λ) = 0. (B.15)

Equations (B.2) and (B.11) imply that
˙̃
XMTN g̃MN stays constant along the geodesic.

Explicitly,

2ρṫT 0 + tṫT ρ + tρ̇T 0 + t2gij(x, ρ)ẋiT j = −C
2
. (B.16)

where the boundary conditions and equation (B.9) fix the constant on the r.h.s.
Observe that from (B.12) and (B.16) we can obtain g′ijẋ

iT j and gij(x, ρ)ẋiT j in
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terms of T 0 and T ρ. If we plug them into (B.13), the resulting equation can be integrated
in terms of T ρ + 2ρ

t
T 0 to yield

T ρ = −2ρ

t
T 0 − Cλ

2t2
. (B.17)

As anticipated these general features of the solutions are enough to compute the
invariant X̃ij. Since the homothetic vector at X̃1 has components TM(1) = (t1, 0, 0), using

the ambient metric at X̃1 one has

X̃01 = −2 T̂M(0)T
N
(1) g̃

(1)
MN = −2 t21 T̂

ρ
(0). (B.18)

Hence, evaluating (B.17) at λ = 1 we can conclude that X̃ij = C = `(X̃i, X̃j)
2 as

claimed in the main text.
This entails that solving parallel transport is not required to construct the invariant

X̃ij (even though it generally is when constructing other ambient invariants). One
has to simply solve geodesic equations and extract C from the norm of the velocity
˙̃
XM ˙̃

XN g̃MN = C at any point λ.

C Relation between ambient and AdS geodesics

Consider an ambient space of the form (3.8). We intend to relate the geodesic distance

between two nullcone points X̃0 = (t0, 0, x
i
0) and X̃1 = (t1, 0, x

i
1) on the ambient space

with the geodesic distance LAdS between those same points xi0 and xi1 at the boundary
of a single Euclidean ALAdS slice. In particular we wish to show that

1

(X̃01)∆
=

r−2∆

(t0t1)∆
e−∆LAdS

∣∣∣∣
r=0

. (C.1)

We assume t0, t1 > 0 meaning that we are interested in spacelike geodesics on the
ambient space. The same result can be attained with completely analogous computa-
tions in the cases of null and timelike ambient geodesics. We choose a slightly different
parametrization consisting in a rescaling of the one used in Appendix B,

g̃AB
˙̃
XA ˙̃

XB = 1. (C.2)

We take advantage of the parent description

SA =
1

2

∫
γ

dλ

[
1

e
g̃AB

˙̃
XA ˙̃

XB + e

]
, (C.3)

where one can put the einbein onshell compatible with the parametrization above by
setting

e =

√
g̃AB

˙̃
XA ˙̃

XB = 1. (C.4)
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The ambient action is then equal to

SA =

∫ L

0

dλ

√
g̃AB

˙̃
XA ˙̃

XB = L, (C.5)

i.e. SA is simply equal to the ambient geodesic length L, with L2 = C = X̃12.
As shown in Appendix B the presence of the homothetic vector T = s∂s allows one

to automatically integrate the geodesic equation along s. In the current parametrization
this entails s(λ) =

√
λ(L− λ). Regulating the integrals by taking the domain λ ∈

(ε0, L− ε1) (eventually to be set to ε0 ∼ ε1 ∼ ε→ 0) we can set s(λ) onshell in (C.3)
(after setting e = 1) and rewrite SA as,

SA = L+
L

4
log

√
ε0ε1

L
+

1

2

∫ L−ε1

ε0

dλ λ(L− λ)g+
µν ẋ

µẋν , (C.6)

where as customary g+
µν is the metric on an ALAdS slice. By rewriting the integral

using the new parametrization

p(λ) =
1

L
log

λ

L− λ, (C.7)

and using SA = L one obtains the constraint

L

4
log

√
ε0ε1

L
+

1

2

∫ − 1
L

log
ε1
L

1
L

log
ε0
L

dp g+
µν ẋ

µẋν = 0 . (C.8)

Normalizing the velocity on the Euclidean ALAdS slice as

g+
µν ẋ

µẋν = q2, (C.9)

for some constant q, which we will determine shortly, the parent action for a trajectory
on such (d+ 1) dimensional slice reads

LAdS = SEAdS =
1

2q

∫ − 1
L

log
ε1
L

1
L

log
ε0
L

dp g+
µν ẋ

µẋν − q

L
log

√
ε0ε1

L
. (C.10)

One also has

LAdS =

∫ − 1
L

log
ε1
L

1
L

log
ε0
L

dp
√
g+
µν ẋ

µẋν = −2
q

L
log

√
ε0ε1

L
. (C.11)

We can then use the constraint (C.8) from the ambient space to fix q. Indeed, using
(C.10) and (C.11) one finds from (C.8) that q = L/2, entailing

LAdS = − log

√
ε0ε1

L
. (C.12)
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Finally, note that in the current parametrization of geodesics,

r(λ) =
s(λ)

t(λ)
=

1

t(λ)

√
λ(L− λ). (C.13)

From the boundary conditions, close to λ = 0 and λ = L one has respectively

λ→ 0 : t(λ) = t0 +O(λ) , (C.14)

λ→ L : t(λ) = t1 +O(L− λ) . (C.15)

Using equation (C.13), they lead to the following radial positions of the regulation
parameters on an ambient geodesic,

r(ε0) =
1

t0

√
ε0L+O(ε), r(L− ε1) =

1

t1

√
ε1L+O(ε), (C.16)

Thus we can write the geodesic length LAdS in equation (C.12) in terms of the Fefferman-
Graham radial position of the two endpoints as

LAdS = − log
t0t1r

2

L2

∣∣∣∣
r→0

⇒ L2 = t0t1r
2eLAdS

∣∣∣
r→0

, (C.17)

which given L2 = X̃01, precisely reproduces the expected relation (C.1) between the
geodesic approximation on ALAdS and ambient spaces.

D Details on the curvature invariants at finite tem-

perature

Let us now discuss the completeness of the basis for weighted curvature invariants
as provided by the weight-0 scalars (4.15) in the finite temperature case presented in
section 5. Compatibly with equations (4.4)-(4.6), the only non-vanishing components
of the ambient Riemann are

R̃ρjkρ =
d

4

(
d

2
− 1

)
g(d)jk ρ

d
2
−2t2, (D.1a)

R̃ijkl =
d

4

[
δilg(d)jk + δjkg(d)il − δikg(d)jl − δjlg(d)ik

]
ρ
d
2
−1t2. (D.1b)

The subleading orders in ρ in equations (4.4)-(4.6) are proportional to d-dimensional
covariant derivatives acting on g(0) and g(d). In this case g(0)ij is the flat metric and g(d)

is a constant tensor and hence the expansion in ρ of the ambient Riemann truncates
at the leading order.

Because of the homogeneity in t of the Riemann and of the fact that the geometry
does not depend on the boundary directions xi, the action of the ambient covariant
derivative on the Riemann decomposes as a derivative along ρ plus terms which are
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proportional to the Riemann. Schematically,

∇̃M R̃iem = δρM ∂ρR̃iem + R̃iem, (D.2)

and the same holds for higher order derivatives. Focusing on d = 4, this means that the
only independent tensorial structures containing the energy-momentum tensor VEV
g(d)ij are δijg(d)jk (and symmetrisations) and g(d)ij itself, and they can be extracted

from R̃iem|ρ=0 and ∇̃R̃iem|ρ=0. Higher order derivatives of the Riemann simply yield
different linear combinations of those two structures. This entails that R(0) and R(1)

are the only independent objects that one needs to construct the weight-0 invariants
(4.15). As a consequence, any order two weight-0 invariant can be written as a linear
combination of the scalars e0, e1,e2 defined in (5.11).

At a given order β−nd the weight-0 invariants are to be constructed as a chain of n
R’s,

R(r1) M2

M1
R(r2) M3

M2
. . .R(rn) M1

Mn
, (D.3)

where for each of them one has two possible choices, ri = 0, 1. This means that they
provide at most 2n different invariants, modulo cyclic permutations. Our aim is to
reproduce the whole set of multi-energy-momentum tensor blocks entering the thermal
OPE at order β−nd. Each of them is proportional to a Gegenbauer polynomial C

(1)
J ,

with even J = 0 . . . 2n, hence at this order one needs n+ 1 independent invariants.
At order n = 2 this entails that the three independent scalars e0, e1,e2 in (5.11)

form a basis of ambient invariants. At a generic order n, based on the counting above
the weight-0 curvature scalars are in principle able to form an over-complete basis. We
have checked explicitly that they generate a basis of n + 1 invariants in d = 4 up to
n = 6, and one may check it to arbitrarily high order n.

With similar arguments based on the action (D.2) of ambient covariant derivatives,
this discussion can be easily extended to any even d ≥ 4, where now the two indepen-
dent objects are R(d/2−2) and R(d/2−1) and any weight-0 invariant is built as a chain of
them.

E Perturbative thermal holographic correlator for

general d and ∆

In this appendix we solve the inhomogeneous second order differential equation (5.30b)
for the first order correction b1. We will consider here the case of generic d and ∆ with
non-integer κ. Using the leading order solution, the onshell source on the RHS of
(5.30b) reads

S(r) = −
√

2

π
r

3d
2
−2 cos

(
2κ− 1

2
π

)[
Kκ(r)

(
∆2 +

(
η2 + 1

)
r2
)
− drKκ+1(r)

]
, (E.1)
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while the Wronskian of the homogeneous solutions is

W (u1, u2) = cos

(
2κ− 1

2
π

)
rd−1. (E.2)

Using the method of variation of parameter, the first order solution is of the form

b1(r) = (A(r) + a1)u1 + (B(r) + a2)u2 , (E.3)

where a1 and a2 are integration constants while

A(r) = −
∫ r

0

dr′
u2(r′)S(r′)

W (r′)
(E.4a)

= −d I(1)(d, κ, 1) + ∆2 I(1)(d− 1, κ, 0) + (1 + η2) I(1)(d+ 1, κ, 0) ,

B(r) =

∫ r

0

dr′
u1(r′)S(r′)

W (r′)
(E.4b)

= d I(2)(d, κ, 1)−∆2 I(2)(d− 1, κ, 0)− (1 + η2) I(2)(d+ 1, κ, 0) .

Here we defined the following class of integrals involving two Bessel functions,

I(`)(α, κ, δ) =

∫ r

0

dr′ r′α I(−1)`+1(κ)(r
′)Kκ+δ(r

′) . (E.5)

The explicit expressions for these integrals are

I(1)(α, κ, 0) =
rα+1

2κ(α+ 1)
2F3

(
1

2
,
α+ 1

2
; 1− κ, κ+ 1,

α+ 3

2
; r2

)
(E.6a)

+
2−2κ−1Γ (−κ) rα+2κ+1

(α+ 2κ+ 1)Γ (κ+ 1)
2F3

(
κ+

3

2
,
α

2
+ κ+ 1;κ+ 2, 2κ+ 2,

α

2
+ κ+ 2; r2

)
,

I(1)(α, κ, 1) =
rα

2α
+
rα

2α
2F3

(
1

2
,
α

2
;−κ, κ+ 1,

α

2
+ 1; r2

)
(E.6b)

+
π2−2(κ+1) sec

(
2κ−1

2 π
)
rα+2κ+2

(α+ 2κ+ 2)Γ(κ+ 1) Γ(κ+ 2)
2F3

(
κ+

3

2
,
α

2
+ κ+ 1;κ+ 2, 2κ+ 2,

α

2
+ κ+ 2; r2

)
,

I(2)(α, κ, δ) =
π2−δ−1 sec

((
δ + κ− 1

2

)
π
)
rα−δ

Γ (1− κ)

[
− 22δ+2κr−2κ+1

(−α+ δ + 2κ− 1)Γ (1− δ − κ)
×

(E.6c)

3F4

(
−κ+

1− δ
2

,−κ− δ

2
,−κ+

α− δ + 1

2
; 1− κ,−2κ+ 1− δ, 1− δ − κ, 3

2
− κ+

α− δ
2

; r2

)
− r2δ+1

3F4

(
δ+1

2 , δ2 + 1, α+δ+1
2 ; 1− κ, α+δ+3

2 , δ + 1, κ+ δ + 1; r2
)

(α+ δ + 1) Γ (κ+ δ + 1)

]
,

We have fixed the source at the leading O(ε0) order, hence the order corresponding
to the source in the near-boundary Fefferman-Graham expansion of the function b1
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must vanish. Integrating over r′ ∈ (0, r) as in equation (E.4) this is automatically true
for a1 = 0. The remaining integration constant a2 is fixed by imposing regularity in
the bulk interior r →∞. By studying the large–r behaviour of b1 this fixes

a2 =
π3/2 (dη2 − 1) cot

(
πd
2

)
Γ
(
−d

2
− 1

2

)
csc(π∆) sin

(
1
2
π(d− 2∆)

)
csc(π(d−∆))

4Γ
(
1− d

2

)
Γ(−∆)Γ(∆− d)

.

(E.7)
The resulting holographic correlator to first order in ε is in equation (5.36). These
results were first presented in [10]. A similar approach was taken in [129], whose results
match (5.36) and (5.48).

F Computation of the double-twist coefficients from

the multi-energy-momentum tensor spectrum

In this appendix we provide details on how to perform the sum over images (5.70) to
obtain the thermal correlator (5.71).

First we consider the analytic part of G+ in (5.67). Setting for the moment β = 1,
we thus have to evaluate the sum

Sγ(τ) =
∞∑
m=1

|m+ τ |γ , (F.1)

with γ = −2∆+nd. As it is, this sum converges for γ < −1, however we can analytically
continue it using the Hurwitz ζ function, in terms of which it reads

Sγ(τ) = ζ(−γ, 1 + τ) . (F.2)

This expression is finite on the whole complex γ-plane except for a simple pole at
γ = −1. To avoid it, it is sufficient to pick ∆ 6= n d

2
+ 1

2
for all non-negative integer n.

Using the expansion of the Hurwitz ζ for γ 6= −1 and |τ | < 1,

ζ(−γ, 1− τ) =
∞∑
p=0

Γ(p− γ)

p! Γ(−γ)
ζ(p− γ) τ p , (F.3)

the sum over images of the analytic part then reads,

∞∑
m=1

∞∑
n=0

ã
(T )
n

β2∆

(
τ

β
+m

)nd−2∆

=
1

β2∆

∞∑
p=0

Q(OO)
reg, p

τ p

βp
, (F.4)

where we define the coefficients

Q(OO)
reg, p =

∞∑
n=0

(−1)p
Γ(p+ 2∆− nd)

p! Γ(2∆− nd)
ζ(p+ 2∆− nd) ã(T )

n , (F.5)
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Turning to the singular part of G+ in (5.67), for the moment we consider terms
with poles of arbitrary positive integer order µ(`),

W`(τ) =
1

|τ |2∆

A(`)(
|τ/β|d − y`

)µ(`)
. (F.6)

The sum over images that we wish to evaluate is then

∞∑
m=1

W`(τ +m) =
∞∑

m=−∞

1

(τ +m)2∆

A(`)(
(τ +m)d − y`

)µ(`)
, (F.7)

where to simplify the presentation we have set β = 1 – we will reinstate β at the end
of the analysis. Due to the singularities, to ensure convergence we split this sum based
on whether τ + m, for any τ inside the circle of radius |y`|1/d, is inside or outside the
circle of radius |y`|1/d. If n∗− 1 < |y`|1/d < n∗, where n∗ is an integer, then τ +m, with
m ≥ n∗, is outside the circle, and otherwise inside. We thus split the sum as

∞∑
m=1

W`(τ +m) = Z0(τ) + Z+(τ) , (F.8)

with

Z0(τ) =
n∗−1∑
m=1

W`(τ +m) , Z+(τ) =
∞∑

m=n∗

W`(τ +m) . (F.9)

Starting with Z+, the range of m in the sum guarantees that we can expand each
summand as

1[
(τ +m)d − y`

]µ(`)
=
∞∑
j=0

(
µ(`) + j − 1

j

)
(y`)

j (τ +m)−d(µ(`)+j) . (F.10)

We can then rewrite

Z+(τ) = A(`)

∞∑
m=n∗

∞∑
j=0

(
µ(`) + j − 1

j

)
(y`)

j (τ +m)−d(µ(`)+j)−2∆ , (F.11)

= A(`)

∞∑
j=0

(
µ(`) + j − 1

j

)
(y`)

j ζ
(
d(µ(`) + j) + 2∆, τ + n∗

)
, (F.12)

which converges for ∆ 6= nd
2

+ µ(`) with integer n. Using the expansion in τ of the
Hurwitz ζ,

ζ(y, τ + n∗) =
∞∑
p=0

(−1)p

p!
(y)p ζ(p+ y, n∗) τ p , (F.13)

where (a)b indicates the Pochhammer symbol, the sum over images in the region outside
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the singularity takes the form

Z+ = A(`)

∞∑
p=0

[
(−1)p

p!

∞∑
j=0

(
µ(`) + j − 1

j

)
(y`)

j
(
d(µ(`) + j) + 2∆

)
p

(F.14)

× ζ
(
p+ d(µ(`) + j) + 2∆, n∗

)]
τ p .

The finite sum Z0 can be expanded in powers of τ in an analogous way, with the only
difference that given |τ +m| < n∗ one must expand

1[
(τ +m)d − y`

]µ(`)
=
∞∑
j=0

(−1)j
(
µ(`) + j − 1

j

)
(τ +m)dj(−y`)−µ(`)−j , (F.15)

so as to ensure convergence. Reinstating the factors of β, the sum over images of each
singular piece hence takes the form,

∞∑
m=1

W`(τ +mβ) =
1

β2∆

∞∑
p=0

Q
(OO)
(`) p

τ p

βp
, (F.16)

where we defined the coefficients

Q
(OO)
(`) p =

(−1)pA(`)

p!

∞∑
j=0

(
µ(`) + j − 1

j

)[
(F.17)

(y`)
j
(
d(µ(`) + j) + 2∆

)
p
ζ
(
p+ d(µ(`) + j) + 2∆, n∗

)
+ (−1)j(−y`)−µ(`)−j (2∆− dj)p

(
ζ
(
p+ 2∆− dj

)
− ζ
(
p+ 2∆− dj, n∗

))]
.

This expression has been obtained assuming integer order µ(`). However, one may check
that the results hold for all real positive µ(`), thus allowing for branch points in the
complex τ -plane.

Overall, summing these contributions according to (5.70), only even powers of τ
survive and one finds the thermal correlator (5.71).

G Non-perturbative geodesics on the planar black

hole

In section 5.4 we focused on 2-point functions with the insertion points close to each
other, |x|/β � 1. From the ambient perspective, this meant that we considered short
geodesics of length of the same order as |x|/β � 1. Such geodesics can be obtained as
perturbations in |x|d/βd of geodesics on Minkowski spacetime, as shown in section 5.1.
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This implies that we do not expect to account for the double-twist spectrum since, as
discussed in in section 5.4.2, the double-twist spectrum is related to non-perturbative
effects in |x|/β and one has to take into account global properties of the background
(in this case the periodicity of the τ direction) to fully describe them.

As mentioned in section 5.4.2 a possibility to describe the double-twist spectrum in
terms of the ambient formalism is that long geodesics exist on the ambient space (5.3).
By long geodesics here we mean ambient geodesics that connect nullcone points that
are close to each other, and whose length is long compared to |x|/β. More explicitly, the
length of such geodesics would scale like β instead of the short geodesic, which scale like
|x| (see equation (5.9)). For example, this would be the case for geodesics that wrap the
thermal circle. If this class of ambient geodesics existed, the double-twist contributions
in the ambient correlator would likely emerge from the sum over geodesics of the
ambient curvature invariants, paralleling what happens in the holographic correlator
(5.42) where they arise from the sum over images of the multi-energy-momentum tensor
spectrum. This is however not the case and we do not find any such geodesic as we
detail below.

One can study long geodesics on the planar black hole background by finding ex-
act solutions to the geodesic equations (5.5)-(5.6) with boundary conditions (5.8). As
already mentioned in the main discussion, generic solutions to (5.6) are in terms of
inverse elliptic functions and thus not easily tractable. Nonetheless, if one restricts to
trajectories moving only along the τ direction (i.e. setting x(λ) = 0 as an initial condi-
tion, meaning that A2 = 0 in (5.5)), the equation for z(λ) is explicitly solvable for any

A1. Defining the dimensionless parameter A =
√

2
π
βA1, one finds

z(λ) =

√
2

π

√
(1− λ)λ

2A2(1− λ)λ+
√

1 + A4(1− 2(1− λ)λ)
β , (G.1)

where we set the endpoints to lie on the same slice of the ambient nullcone, t0 = tf = 1.
Through (5.5) this leads to

τ(λ) =
τf
2

+
β

2π

(
arctan

[
Y−

(
λ− 1

2

)]
+ arctanh

[
Y+

(
λ− 1

2

)])
, (G.2)

where

Y± =
√

2
1± (A2 −

√
A4 + 1)

A
. (G.3)

In expression (G.2) we still have to impose the condition τ(1) = τf , which fixes the
value of the integration constant A. Renaming τf → τ and considering trajectories
with A > 0, the relation that A must satisfy is,

τ

β
=

1

π

[
arctan

(
Y−
2

)
+ arctanh

(
Y+

2

)]
. (G.4)

This equation is transcendental and cannot be inverted analytically to obtain an ex-
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Figure 6: This plot shows the behaviour of τ
β
(A) for positive A as fixed by the boundary

condition (G.4) at λ = 1.

pression for A(τ). Nonetheless, we can extract interesting information from this class
of orbits.31

For all A > 0 these trajectories represent physical solutions. In particular τ(λ) is
real and 0 < z(λ) < zH for any 0 < λ < 1. We can interpret (G.4) as indicating which
point τ on the thermal circle is reached by the geodesic as a function of the integration
constant A. In Figure 6 we plot τ(A). We see that the furthest τ one is able to reach
is half of the circle, τ = β/2, corresponding to A = 0. An analogous behavior is found
if one repeats the analysis for A < 0. One may also check (analytically) that τ(A) is a
monotonically decreasing function of A.

The ambient geodesic distance square spanned by this class of trajectories is

X̃12(τ) =
2

π2

β2√
1 + A(τ)4

. (G.5)

One can test the small-τ behaviour of this geodesic distance to exclude the presence
of long geodesics, which would correspond to X̃12 ∼ β2 in τ/β → 0, as opposed to

short geodesics whose scaling is X̃12 ∼ τ 2. By inverting the relation (G.4) in a series
at small τ/β one can check that this class of exact ambient geodesics reduces to the
perturbative geodesics of section 5.1 for close insertions, meaning in particular that

X̃12(τ) = τ 2
(
1 +O(τ 2)

)
. (G.6)

Therefore, perturbatively close insertions always correspond to perturbatively short
geodesics, contrary to what happens in thermal AdS. To further confirm this picture
we performed a numerical scan allowing for non-trivial momentum along the x direction
and still, no long geodesics were found. This suggests that the double twist spectrum
arises in ambient correlators in a different way than a sum over long ambient geodesics,

31Note that these geodesics were also found in [81].
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hinting at the existence of a class of ambient invariants not considered in this work.
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