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Abstract 

Double Electron-Electron Resonance (DEER) Spectroscopy plays a pivotal role in analysing 
molecular distances at the nanoscale, a crucial factor in understanding the structure and 
dynamics of biological macromolecules. However, the challenge lies in extracting distance 
distributions from DEER data due to the inherently ill-conditioned nature of the inverse 
problem. Traditional solutions, such as regularisation, introduce bias through operator 
selection based on prior assumptions like smoothness. 

Recent applications of neural networks in this field provide a promising, data-driven 
alternative. Nevertheless, concerns regarding the perceived ’black box’ nature of these 
networks raise questions about their trustworthiness. Trust, though often nebulous, can 
be clarified by comparing it to the trust we place in human experts. Human experts are 
considered trustworthy when: 

1. They possess recognised expertise, demonstrated through a history of high-quality 
publications. 

2. They accurately assess and communicate their confidence level in their judgements, 
avoiding unwarranted overconfidence. 

3. They readily admit when a problem or question falls outside their area of expertise, 
avoiding speculation in unfamiliar domains. 

4. They effectively articulate their reasoning and thought process, ensuring transparency 
in their decision-making. 

Translating these criteria to neural networks yields explicit expectations: 

1. Demonstrated high predictive accuracy, validated through rigorous testing and consis-
tent performance. 

2. The ability to quantify uncertainty in predictions. 

3. The capability to detect when a query falls outside its training distribution. 

4. An explainable decision-making process. 

This thesis delves into enhancing predictive accuracy in DEER spectroscopy by addressing 
the “vanishing gradient problem” in neural networks. It explores uncertainty quantification 
through ensemble techniques and out-of-distribution detection via model fitting. Lastly, it 
introduces “descrambling”, an innovative post-hoc explainability method based on equivalence 
transforms, aimed at elucidating the internal processes of the neural network. 
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Chapter 1 

Dipolar Spectroscopy 

1.1 Introduction 
Biological macromolecules, such as proteins, heavily depend on their intricate structure 
and dynamics for proper functioning. The structure of a protein, which is determined by 
the order of its amino acids, governs its binding sites and its ability to selectively interact 
with substrates. Additionally, conformational changes, often triggered by ligand binding or 
environmental cues, play a pivotal role in processes like enzymatic catalysis.1 

Traditionally, scientists have relied on X-ray diffraction (XRD) to study biomolecular 
structures, which reveals atomic arrangements within crystalline samples. However, this 
method requires removing the biomolecule from its natural environment, raising concerns 
about preserving its in vivo conformational state accurately. Furthermore, some biomolecules, 
especially membrane proteins, present challenges in crystallisation, which limits the applica-
bility of XRD.1 

High-resolution nuclear magnetic resonance (NMR) spectroscopy measures transitions 
between spin states of nuclei with non-zero spin. However, the abundance of such nuclei in 
biomacromolecules makes spectral assignment challenging, especially without sophisticated 
isotope labelling techniques. Without these specialised methods, the complexity of the 
spectra and signal overlap make precise atom assignment difficult.1 

Probe-based techniques like fluorescence resonance energy transfer (FRET) and electron 
paramagnetic resonance (EPR) spectroscopy offer viable alternatives. FRET involves at-
taching fluorophores to the biomolecule, capturing electronic energy level transitions, and 
providing insight into the average distance between labels across conformational space. In 
contrast, EPR uses paramagnetic spin labels and can elucidate detailed distance distributions, 
offering a comprehensive understanding of biomolecular structures and interactions. Although 
EPR requires specialised equipment, it is favoured for its ability to provide nuanced distance 
distributions.2 

To attach paramagnetic spin labels to peptides or proteins, researchers often utilise the 
reactivity of cysteine residues. Specific sites on the protein require cysteines, and interfering 
cysteines can be replaced with serines or alanines. A commonly used spin label, (1-oxyl-
2,2,5,5-tetramethylpyrroline-3-methyl)methanethiosulfonate (MTSSL), is preferred for its 
sulfhydryl specificity, compact size, and flexible linker, which allow the protein to maintain 
its native folding in most cases.1 

To fully harness the potential of EPR spectroscopy, pulse techniques are essential. Pulse 
EPR, unlike continuous wave (CW) methods, enables scientists to isolate specific terms in the 
Hamiltonian, providing enhanced spectral and time resolution.3 Pulse dipolar spectroscopy 
(PDS), which includes methods like double electron-electron resonance (DEER), RIDME, 
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1.2. Spin Hamiltonian Approximation 

DQC, and SIFTER, isolates the dipolar interaction, which depends on the reciprocal of 
the cubed distance. Among these methods, DEER, being the oldest and most widely used, 
will be the primary focus of this thesis. Developing a rigorous theory for PDS relies on a 
quantum mechanical understanding of spin dynamics, starting with the derivation of the 
spin Hamiltonian. 

1.2 Spin Hamiltonian Approximation 
To fully characterise a biomacromolecular system, we consider a wavefunction, |Ψi, that 
depends on both the spatial and spin coordinates of all atoms in the system. In electron 
paramagnetic resonance (EPR) experiments, we are primarily interested in observing transi-
tions between spin states. Therefore, for simplicity, we often assume that atoms retain their 
ground state spatial positions for each spin state configuration. This assumption allows us to 
separate the wavefunction into spatial and spin components4: X 

|Ψi = an |ψn(r)i ⊗ |χni (1.1) 
n 

Here, r, signifies spatial coordinates, and |ψn(r)i represents the spatial ground state associated 
with the spin state |χni. Assuming the spin states form a complete orthonormal set, we can 
express the system’s Hamiltonian as a sum of Kronecker products of purely spatial operators, 
Ĥ 

pq, and spin state projectors |χpi hχq|4: X 
ˆ ˆH = Hpq ⊗ |χpi hχq| (1.2) 

pq 

By integrating out the spatial degrees of freedom, we derive the spin Hamiltonian4: X 
ˆ ∗ H = akan |χpi hψk(r)|Ĥ 

pq|ψn(r)i hχq| (1.3) 
knpq 

This spin Hamiltonian simplifies the complex interactions within the biomacromolecular 
system, focusing solely on the spin degrees of freedom and their interactions.4 

1.2.1 Static Spin Hamiltonian 
A charged particle generating angular momentum also produces a magnetic moment. Specifi-
cally for an electron, its spin, denoted as Ŝ, results in a magnetic moment, µ̂, which we can 
express using the equation5: 

e~ 
µ̂ = −γŜ = −gµBŜ = −g Ŝ (1.4)

2me 

Here, γ, known as the gyromagnetic ratio, deviates from classical expectations by a factor, g. 
For a free electron, this g-factor is known precisely6: 

ge = 2.00231930436082(52) (1.5) 

Similarly, many nuclei possess a magnetic moment, µ̂N, stemming from their nuclear 
spins, I7: 

e~ 
µ̂N = γNµNÎ = gN Î (1.6)

2mp 
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Chapter 1. Dipolar Spectroscopy 

Here, the negative sign is dropped due to the positive charge of the nucleus. The nuclear 
g-factor, gN, varies by isotope, typically ranging from 1 to 5. Because the proton’s mass is 
approximately 1836 times larger than that of the electron, the nuclear magnetic moment is 
significantly weaker than the electronic magnetic moment.7 

The complete spin Hamiltonian details these magnetic moments’ interactions and reac-
tions to external magnetic fields. Due to nuclei’s relatively weak magnetic moments, their 
interactions with external fields and each other usually have a minor effect on EPR spectra.3 

Therefore, we focus primarily on three interactions: the electron Zeeman interaction, involving 
electron coupling to external fields; the electron-electron dipole interaction, describing the 
coupling between two electrons; and the hyperfine interaction, detailing the coupling between 
electrons and nuclei. 

1.2.2 Electron Zeeman Interaction 
When we place a magnetic dipole, µ, in a magnetic field, B0, it experiences a torque, µ × B0. 
The energy associated with this torque is −µ>B0. Consequently, the spin Hamiltonian term 
describing the electron Zeeman interaction is given by5: 

ĤEZ = γB> 
0 Ŝ = gµBB0 

>Ŝ (1.7) 

In a material environment, an electron’s angular momentum contains contributions other 
than pure spin, due to the coupling of spin and orbital angular momenta. These spatial 
interactions can be captured in the g-tensor8: 

ĤEZ = µBB
> 
0 gŜ

 (1.8) 

For nitroxide spin probes, the g-tensor exhibits rhombic symmetry. As an example, in the 
principal axis frame, the values for MTSL are9: 

gx ≈ 2.0083 − 2.0091, gy ≈ 2.0061, gz ≈ 2.0022 (1.9) 

Equation (1.8) illustrates the interaction of an effective momentum −µBgŜ with the 
external magnetic field, B0. Alternatively, we can view this as the spin’s interaction with a 
local magnetic field, g>B0/ge. Unlike a free spin, which aligns with the external field, the 
bound spins align along the effective local field.8 

1.2.3 Electron-Electron Dipole Interaction 
The electron-electron coupling is generally expressed as a sum of the exchange coupling and 
dipole-dipole coupling. The exchange interaction between electrons arises from the overlap 
of their orbitals, allowing their unpaired electrons to be exchanged. However, this orbital 
overlap becomes insignificant when the distance exceeds approximately 1 nm. Therefore, the 
exchange interaction can be ignored in many cases, especially when studying interactions 
over long distances. Assuming the spins’ g-tensors are nearly isotropic, we derive the spin 
Hamiltonian term for dipole-dipole interaction from the classical formula for the energy of 
magnetic interaction between two point dipoles separated by a distance vector, r3: � � 

1 µ0 32ĤD = g1g2µ Ŝ>Ŝ2 − (Ŝ> 
1 r)(Ŝ

> 
2 r) (1.10)B 1 r3 4π~ r2 

We can capture the spatial interactions in a dipolar coupling tensor, D10: � � 
µ0 1 3rr2Ĥ D = Ŝ> 

1 DŜ 
2 where D = g1g2µ (1.11)B4π~ r3 r5 
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1.3. Eigenvalues of the Spin Hamiltonian 

When we consider one electron as stationary relative to the other, r is treated as a fixed 
parameter for the pair of spin labels.10 

1.2.4 Hyperfine Interaction 
Like the electron-electron coupling, the electron-nucleus coupling stems from the classical 
energy interaction between two magnetic dipoles11: � � 

µ0 1 3rr ĤA = Ŝ>AÎ, where A = geµBgNµN − (1.12)
4π~ r3 r5 

However, this scenario differs from the electron-electron case because we cannot consider the 
electron as stationary relative to the nucleus. Consequently, we must integrate the vector r 
over the spatial electron probability density distribution in the ground state, resulting in 
matrix elements of the form10: � 

2 � 
µ0 3rirj − δij r 

Aij = geµegNµN ψ0 ψ0 (1.13)
4π~ r5 

Hyperfine couplings, due to the weak magnetic moment of the nucleus, are typically 
observable only between electrons and the specific nucleus they are localised on, where their 
separation is less than 1 nm.11 

In the case of nitroxide probes, the A-tensor exhibits almost axial symmetry. For example, 
the principal components of A for MTSL are approximately9: 

Ax/h ≈ 12 − 13 MHz, Ay/h ≈ 12 − 13 MHz, Az /h ≈ 92 − 103 MHz (1.14) 

1.3 Eigenvalues of the Spin Hamiltonian 
Under the assumptions that (i) both the nuclear Zeeman and inter-nuclear interactions are 
negligible, and (ii) the hyperfine interaction becomes insignificant for distances exceeding 1 
nm, we can define the effective spin Hamiltonian for the spin-label pair as follows: 

Ĥ = B0 
> g1Ŝ 

1 + B> 
0 g2Ŝ 

2 + Ŝ> 
1 DŜ 

2 + Ŝ> 
1 A1 ̂I1 + Ŝ> 

2 A2 ̂I2 (1.15) 

Here, Ŝ 
iAi ̂Ii represents the hyperfine interaction between an electron and its adjacent 

nitrogen nucleus (I = 1). This model effectively treats our system as a pair of nitrogen-centred 
radicals. 

To determine the energy levels of this system, we need to calculate the eigenvalues of 
the spin Hamiltonian. When expressed in matrix form, the spin Hamiltonian is diagonal 
in its eigenbasis, which means its diagonal elements are the eigenvalues. Therefore, solving 
this problem requires diagonalising the Hamiltonian matrix. This is often straightforward 
following a number of justifiable assumptions.12 

1.3.1 Zeeman Product Basis 
In our 4 spin system, there are 36 possible spin configurations, a quantity we refer to as the 
dimension of the reduced Hilbert space, denoted nH

3: 

n mY Y 
nH = (2Sk + 1) (2Ik + 1) (1.16) 

k=1 k=1 

4 
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Chapter 1. Dipolar Spectroscopy 

A general superposition state in our system can therefore be described as a linear 
combination of 36 orthonormal basis states: 

|Xi = c1 |χ1i + c2 |χ2i + · · · + c36 |χ36i (1.17) 

We can represent this state as the column vector12: 

|Xi = 
� 
c1 c2 · · · c36 

�> (1.18) 

In this representation, each ci is complex probability amplitude. These amplitudes must 
satisfy the normalisation condition12: 

36 36X X 
∗ hX|Xi = ci ci = |ci|2 = 1 (1.19) 

i=1 i=1 

If the basis states are provided by the eigenstates of the operator: 

Ŝ 
1z + Ŝ 

2z + Î  
1z + Î  

2z (1.20) 

the basis set is referred to as the Zeeman12 (or Cartesian3) product basis. It is defined by 
the eigenequations: 

Ŝ1z |mS1 ,mS2 ,mI1 ,mI2 i = mS1 |mS1 ,mS2 ,mI1 ,mI2 i (1.21) 

Ŝ 
2z |mS1 ,mS2 ,mI1 ,mI2 i = mS2 |mS1 ,mS2 ,mI1 ,mI2 i (1.22) 

Î1z |mS1 ,mS2 ,mI1 ,mI2 i = mI1 |mS1 ,mS2 ,mI1 ,mI2 i (1.23) 

Î2z |mS1 ,mS2 ,mI1 ,mI2 i = mI2 |mS1 ,mS2 ,mI1 ,mI2 i (1.24) 
(1.25) 

In the notation |m1,m2,m3,m4i, the quantum numbers mi describe the definite values of 
the z-projection for spin i. 

1.3.2 Weak Coupling Approximation 
If both electronic Zeeman terms are much larger than the coupling terms, and the g-tensors 
are only weakly anisotropic, the electron and nuclear spins will be (approximately) quantised 
along the external field direction. This condition, often fulfilled in the high-field limit, is 
commonly referred to as the weak coupling condition12: 

ˆ ˆ ˆ ˆ| − g1B>S1|, | − g2B> 
0 S2| � |Ŝ 

1DŜ 
2|, |Ŝ 

1A1I1|, |Ŝ 
2A2I2| (1.26)0 

Under this condition, the electron spins Ŝ 
i align parallel to B0. If we let the direction of 

B0 define the z-axis of the reference frame, we can simplify our expression for the Zeeman 
interaction term: 

2X �
ĤZ = −gi 0 0 

� � 
B0 0 0 

�>
Ŝiz (1.27) 

i=1 
2X 

= ˆ−giB0Siz (1.28) 
i=1 

Similarly, the dipolar interaction term may be rewritten by expanding the inner products: 
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2ĤD = 
r 
1 
3 
µ0 

g1g2µB(1 − 3 cos2 θ)Ŝ1zŜ2z (1.29)
4π~ 

= DŜ 
1zŜ 

2z (1.30) 

And, again for the hyperfine interaction: 

ĤA = A1Ŝ1z Î1z + A2Ŝ2z Î2z (1.31) 

A direct result of the weak coupling condition is that Zeeman product states become 
eigenstates of the spin Hamiltonian, which we can now express as12: 

2 2X X 
Ĥ = −giB0Ŝ 

iz + AiŜ 
iz + DŜ 

1z Ŝ 
2z (1.32) 

i=1 i=1 

This condition simplifies the derivation of eigenvalues, as the spin Hamiltonian is now diagonal 
in the basis of Zeeman product states.3 

1.4 Continuous Wave Spectroscopy 

In a continuous wave (CW) experiment, we subject the sample to a microwave irradiation 
field, B1 of constant frequency and sweep an external field, B0, across a range of frequencies. 
To observe a transition, the energy level difference must match the frequency of the incoming 
radiation, described by the equation13: 

ΔE = ~ω (1.33) 

NMR transitions occur at much lower frequencies than EPR transitions. This means 
that the field range covered by an EPR spectrometer does not encompass the frequencies at 
which NMR transitions occur. As a result, we typically don’t observe NMR transitions using 
an EPR spectrometer. This concept is often articulated as a selection rule14: 

ΔmI = 0 (1.34) 

For a transition to occur, conservation of both total energy and angular momentum is 
necessary. Since a photon has spin J = 1, a second selection rule for single photon transitions 
arises3: 

ΔmS = 0 (1.35) 

With these selection rules in mind, it is straightforward to simulate the continuous wave 
spectrum for the spin system described by eq. (1.32).15 
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Figure 1.1: Left: Simulated spectrum of a nitroxide spin pair with isotropic g- and hyperfine tensors, 
displaying three distinct doublets corresponding to three nuclear spin states, each split by dipolar 
interaction. Right: Hyperfine anisotropy in the spectrum causes broadening that conceals the dipolar 
coupling. 

In the idealised case shown in the left panel of fig. 1.1, we assume isotropic g-values 
(iso) (iso) (iso) (iso)
g = g , and isotropic hyperfine couplings a = a . The spectrum shows threeA B 1 2 
distinct doublets, associated with the three nuclear spin states MI ∈ {−1, 0, 1}, centred at 
gµBB0 − a, gµBB0, and gµBB0 + a, respectively. The dipolar interaction splits each of these 
doublets. The extent of this splitting depends on the distance r and angle θ. For a single 
crystal oriented such that θ = 0◦ , the doublet will be split by 2ωdd/R

3 . At θ = 54.7◦ , the 
two lines will coalesce. At θ = 90◦ , the splitting is ωdd/R

3 . In a frozen solution or powder 
sample, as we assume here, all orientations of θ are present and the resulting spectrum is the 
so-called Pake pattern. 16 

The limitations of continuous-wave methods are highlighted when we contrast the simpli-
fied, isotropic spectrum shown in the left panel of fig. 1.1 with the spectrum depicted in the 
right panel, where the line broadening caused by g- and A-tensor anisotropy conceals the 
dipolar splitting.17 

1.5 Pulse Dipolar Spectroscopy 
By replacing continuous irradiation with precisely timed microwave pulses, we can isolate the 
dipolar interaction from other confounding terms in the spin Hamiltonian found in continuous 
wave spectra.3 For example, consider a spin system evolving under an unwanted interaction 
term in the spin Hamiltonian for a time interval, t. We can describe the spin configuration 
at time t by the equation: 

−i ˆ|X(t)i = e Ht |X(0)i (1.36) 

ˆ −iĤtHere, we derive the propagator, U(t) = e , by integrating the Schrödinger equation, 
assuming a time-independent Hamiltonian: 

∂ ˆi~ |X(t)i = H |X(t)i (1.37)
∂t 
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By applying a microwave pulse that reverses the sign of the unwanted interaction term, and 
letting the system evolve for another interval, t, we can negate the effect of the unwanted 

3interaction at time 2t. 

+iĤt −i ˆ|X(2t)i = e e Ht |X(0)i = |X(0)i (1.38) 

For notational brevity, I will illustrate this technique in the absence of hyperfine coupling, 
and focus on a system described by the spin Hamiltonian: 

Ĥ = −g1µBB0Ŝ 
1z − g2µBB0Ŝ 

2z + DŜ 
1z Ŝ 

2z (1.39) 

This system’s eigenstates are the Zeeman product states, defined as6: 

1 1ˆ ˆS1z |ααi = + |ααi S2z |ααi = + |ααi (1.40)
2 2 
1 1ˆ ˆS1z |αβi = + |αβi S2z |αβi = − |αβi (1.41)
2 2 
1 1ˆ ˆS1z |βαi = − |βαi S2z |βαi = + |βαi (1.42)
2 2 
1 1ˆ ˆS1z |ββi = − |ββi S2z |ββi = − |ββi (1.43)
2 2 

In the notation |αβi, α signifies that the z-projection of spin S1 is +1/2, and β indicates 
that the z-projection of spin S2 is −1/2. 12 

By the chapter’s end, it will be clear that omitting the hyperfine interaction is a minor 
simplification. It’s one of the elements we can effectively remove with a well-designed 
microwave pulse sequence. 

1.5.1 Density Operator Formalism 
In studying macroscopic systems like powders, we can break down the system into K non-
interacting equivalent spin systems, labelled as k = 1, . . . ,K. Each system has its own 
unique spin Hamiltonian, Ĥk, and follows its own Schrödinger equation. We assume that 
the macroscopic system’s overall physical properties can be understood by averaging the 
properties of these individual systems.6 

Let’s start by representing the spin state |Xk(t)i of each system k with an operator that 
encapsulates our state of knowledge: 

Ĉk(t) = |Xk(t)i hXk(t)| (1.44) 

Then, we define the ensemble-averaged spin density operator, as: 

¯ ρ̂(t) = |Xk(t)i hXk(t)| (1.45) 

Expanding the individual spin states in the Zeeman product basis, we get: 

|X(t)i = cαα(t) |ααi + cαβ (t) |αβi + cβα(t) |βαi + cββ |ββi (1.46) 

Consequently, the spin density operator takes the following matrix form: 

ρ̂(t) 

⎡ ⎢⎢⎣ 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ c c c cααcαα αβ cαα βαcαα ββ cαα 

∗ ∗ ∗ ∗ ∗ ∗ ∗∗ c c c cααcαβ αβ cαβ βαcαβ ββ cαβ 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ c c c cααcβα αβ cβα βαcβα ββ cβα 

⎤ ⎥⎥⎦ (1.47) 
∗ ∗ ∗ ∗ ∗ ∗ ∗∗ c c c cααcββ αβ cββ βαcββ ββ cββ 
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∗In this basis, the diagonal elements, ρii = ci ci = |ci|2 represent the probability of each 
system being in one of the Zeeman product states, and is called the population of the state. 

∗The off-diagonal elements, ρii = ci cj , represent the probabilities of being in the superposition 
12state of |χii and |χj i, and are known as coherences. 

The time evolution of the spin density operator, ρ̂(t), is solely due to the time evolution 
of the wave functions |χki6: 

dρ(t) 
= −i(H |ˆ X(t)i hX(t)| − |X(t)i hX(t)| Ĥ) = −i[Ĥ, ρ̂(t)] (1.48)

dt 
This equation is known as the Liouville-von Neumann (LvN) equation. When Ĥ is time-
independent, formally integrating eq. (1.48) leads to3: 

ρ̂(t) = exp(−iĤt)ρ̂(0) exp(−iĤt) (1.49) 
The operator, Û(t) = exp(−iĤt) is known as a propagator because it “propagates” the 

density operator in time.3 

1.5.2 Product Operator Formalism 
Describing the time evolution using the explicit density operator can be cumbersome. A 
more practical approach is to use the product operator formalism, which decomposes ρ̂(t) 
into a linear combination of orthogonal basis operators.18 

In a two-spin system, the density operator has 16 elements, placing it in a 16-dimensional 
vector space known as Liouville space. Consequently, we can expand the density operator 
using any complete set of 16 basis operators. A commonly used set is the Cartesian product 
operator basis3: 

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ{Ŝ 
1x, 2Ŝ 

1xS2x, . . . } = { 1, S1x, S1y, S1z} ⊗ { 1, S2x, S2y, S2z} (1.50)
2 2 

This set’s advantage is that each basis operator has a very interpretable meaning.12 For 
example, consider the product operator Ŝ1z , with matrix representation: ⎡ ⎢⎢⎣ 

1 
1 
−1 

⎤ ⎥⎥⎦ (1.51)1
Ŝ1z = 

2 
−1 

(omitting zero elements). If ρ̂ contains a (positive) term Ŝ1z , then the population of states 
12|βαi and |ββi are depleted with respect to the populations of states |ααi and |αβi. 

We can categorise the remaining product operators, following Kuprov4: 

• Ŝ1z, Ŝ2z correspond to population differences between Zeeman energy levels that are 
one flip away from each other. They are called longitudinal single-spin orders. 

• Ŝ1zŜ2z, Ŝ2z Ŝ1z correspond to population differences across levels connected by single 
spin flips, but the sign of the difference depends on the state that the other spins have. 
They are called longitudinal multi-spin orders. 

• Ŝ 
1x, Ŝ 

2y , etc. are off-diagonal terms in the density operator corresponding to observable 
transverse magnetisation states. They are called transverse single-spin orders. 

• Ŝ1xŜ2y , etc. are off-diagonal terms in the density operator that correspond to correlated 
patterns of transverse magnetisation of different spins. Such correlations do not directly 
correspond to observable magnetisation, but they may evolve into states that do. They 
are called transverse multi-spin orders. 
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All spin Hamiltonians can be represented in this Cartesian product basis. Therefore, 
for a product operator, Â, evolving under another product operator, B̂, the evolution is 
expressed3: 

−iφB̂ ˆ B e Ae+iφ ˆ 
= Ĉ (1.52) 

Here, the rotation angle, φ, either denotes a pulse flip angle, or is defined by φ = ωt, 
where ω is an interaction’s amplitude in the Hamiltonian. To solve eq. (1.52), we use the 
Baker-Hausdorff formula, which expands the expression as3: 

−iφB̂ 
Aeˆ +iφB̂ ˆ φ2 

[ ˆ iφ3 
[ ˆe = A − iφ[B,ˆ Â] − B, [B,ˆ Â]] + B, [B,ˆ [B,ˆ Â]]] + . . . (1.53)

2! 3! 

For Cartesian product operators, B̂ 6= Â, the relation [B,ˆ [B,ˆ Â]] = Â always holds, so we 
can simplify eq. (1.53) as3: 

� � � � 
φ2 φ4 φ3 φ5 

−iφB̂ ˆ B ˆe Ae+iφ ˆ 
= A 1 − + − . . . − i[B,ˆ Â] φ − + − . . . (1.54)

2! 4! 3! 5! 

This can be further simplified to3: 

−iφB̂ 
Aeˆ +iφB̂ ˆ ˆ ˆe = A cos φ − i[B,ˆ Â] sin φ for B =6 A (1.55) 

However, if [B,ˆ Â] = 0, as in the case where B̂ = Â, substition into the Baker-Hausdorff 
formula yields3: 

−iφB̂ 
Aeˆ +iφB̂ ˆ ˆ ˆe = A for B = A (1.56) 

The commutators [B,ˆ Â] can easily be calculated. I will provide some useful identities 
here. The commutators of single-spin operators are determined by fundamental commutation 
relations5: 

[Ŝ 
x, Ŝ 

y] = iŜ 
z (1.57) 

ˆ[Ŝ 
y, Sz ] = iŜ 

x (1.58) 

[Ŝ 
z, Ŝ 

x] = iŜ 
y (1.59) 

(1.60) 

Commutators involving a single-spin and a two-spin operator follow: 

[Ŝ 
k, 2Ŝ 

lÎ  
i] = [Ŝ 

k, Ŝ 
l]Î  

i (1.61) 

[Îk, 2ŜiÎl] = Ŝi[Îk, Îl] (1.62) 

And, among the commutators between two-spin operators, those that are non-zero can be 
represented by: 

[2Ŝk Îi, 2Ŝk Îl] = [Îi, Îl] (1.63) 

[2ŜiÎk, 2ŜiÎk] = [Ŝi, Ŝl] (1.64) 

Usually, a spin Hamiltonian consists of a sum of several product operator terms. Equa-
tion (1.53) can then be applied consecutively as long as all the terms of the Hamiltonian 

ˆcommute with each other. This condition is always fulfilled if H is diagonal.3 
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1.5.3 Thermal Equilibrium 
When a spin ensemble remains undisturbed for an adequate period, it reaches thermal 
equilibrium with its molecular environment. Representing the complex number probability 
amplitudes in phase form, we get the equation19: 

∗ ∗ −i(φm−φn)c c − |cm||cn|e (1.65)m n 

In statistical mechanics, it’s common practice to assume that the phases, φn, are statistically 
independent from the amplitudes |cn|, and that φn and φm occur with equal probability 
across all values. This assumption, known as the hypothesis of random phases, leads to the 
elimination of all off-diagonal elements in ρ(t). 19 

Thermodynamic principles also apply to population discussion. The equilibrium popula-
tions of a multi-level system’s states should follow a Boltzmann distribution, expressible in 
terms of the density matrix as3: 

−iĤ 
e ~/kBT 

ρeq = 
−i ˆ (1.66)

Tr{e H~/kBT } 
In the static Hamiltonian, typically one interaction dominates. In the high-field limit, this 

dominant interaction is the electron Zeeman interaction, ĤZ = ω1Ŝ 
1z + ω2Ŝ 

2z . Furthermore, 
in most experimental situations, the high-temperature approximation ~ω1, ~ω2 � kBT is 
applicable. In this case, a first order series expansion of the exponential yields3: 

ρeq = 1 − 
~B0 

(γ1Ŝ1z + γ2Ŝ2z ) (1.67)
kBT 

Typically, the identity operator is omitted as it remains invariant during the experiment. Also, 
unless the absolute number of spins is relevant, constant factors are considered irrelevant. 
For practical purposes, we simplify the expression to3: 

ˆρeq = S1z + Ŝ2z (1.68) 

1.6 Rotating Frame & Experimental Observables 
When we apply a microwave (MW) irradiation field, B1 along the x-axis, perpendicular to 
the external magnetic field, B0, that defines the z-axis, with a frequency ωMW, phase φMW, 
and amplitude, 2ω1 = geµB~−1B1, the two-spin Hamiltonian becomes time-dependent.6 

Under the weak coupling approximation, we can ignore the dipolar coupling’s effect during 
the pulse12: 

Ĥ = ωAŜ1z + ωBŜ2z + 2ω1(Ŝ1z + Ŝ2z) cos(ωMWt + φMW) (1.69) 

To solve the L-vN equation for this time-dependent Hamiltonian and obtain Û(t), we need 
to perform a stepwise integration. A common way to overcome the stepwise integration is to 
transfer the spin density operator to a rotating frame in which the Hamiltonian can be made 
time independent.6 

Introducing the MW rotating frame transformation operator6: 

−iωMWt(Ŝ1z +Ŝ2z )ÛRoF(t) = e (1.70) 

we define the rotating frame spin density operator by the transformation ρ̂6: 

ˆ Û −1ρ̃(t) = RoF(t)ρ̂(t)ÛRoF (1.71) 

11 
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and derive the rotating-frame L-vN equation for ρ̂̃(t) by calculating the time derivative of 
ρ̂̃(t) and using the static frame L-vN equation, resulting in6: 

ˆd
ρ̂̃(t) = −i[H̃, ρ̂̃(t)] (1.72)

dt 
where 

˜ Û −1Ĥ = RoF(t)Ĥ(t)ÛRoF − ωMW(Ŝ1z + Ŝ2z) (1.73) 

is the rotating-frame spin Hamiltonian. 
Generally, we ignore the time-dependent terms oscillating a frequency of 2ωMW based on 

the rotating wave approximation. This approach assumes that terms with 2ωMW � ω1 do 
not significantly affect ρ̂̃(t). However, these terms do cause a minor shift in the transition 
frequencies ωA and ωB called the Bloch-Siegert shift. Overlooking this minor shift, the 
Hamiltonian in the rotating frame takes the form6: 

ˆ̃ ˆ ˆH(t) = ΔωAS1z +ΔωBS2z + ω1(Ŝ1x + Ŝ2z) cos φMW + ω1(Ŝ1y + Ŝ2y) sin φMW (1.74) 

We can express the rotating frame spin density operator as a linear combination of 
orthogonal product operators, with the coefficients now dictating the spin evolution in 
the rotating frame. During pulse EPR experiments we typically measure the transverse 
magnetisation of the electron ensemble. The heterodyne detection scheme of the spectrometer 
produces signals proportional to these magnetisation components, as if observed in the MW 
rotating frame6: 

mx(t) = −geµB Tr(ρ̃̂(t)(Ŝ 
1x + Ŝ 

2x)) (1.75) 
ˆ̃

ˆmy (t) = −geµB Tr(S1y + Ŝ2y) (1.76) 

By combining these two signals into a single complex signal, we define: 

m(t) = mx(t) + imy (t) (1.77) 

We can calculate the impact of a short microwave pulse on a two-electron spin system by 
solving the Liouville-von Neumann (L-vN) equation in the rotating frame. During the pulse, 
we neglect all relaxation effects. We assume the pulse duration (pulse width) is short enough 
that resonance offsets cause negligible evolution during the pulse. Under these conditions, 
the rotating frame spin Hamiltonian during the pulse is12: 

Ĥ̃ 
p = ω1{(Ŝ 

1x + Ŝ 
2x) cos φMW + (Ŝ 

1y + Ŝ 
2y) sin φMW} (1.78) 

The pulse propagator in the same frame is: 

ˆ −iω1{(Ŝ1x+Ŝ2x) cos φMW+(Ŝ1y +Ŝ2y ) sin φMW}Ũ p = e (1.79) 

The phase, φMW defines the axis of rotation in the rotating frame. A pulse with φMW = 0 
is called an x-pulse, and a second pulse with φMW is called a y-pulse. The flip angle ωMWt 
describes the angle of rotation around this axis.6 

Depending on the values of ΔωA and ΔωB, this Hamiltonian affects either all linear 
operators of both electrons or only those of SA or SB. When ω1 � ΔωA the pulse is 
non-selective, while if |ΔωA| ≤ ω1 and |ΔωB| � ω1, or vice versa, it is semi-selective, because 
we ignored in eq. (1.78) all interaction terms causing possible frequency shifts.6 
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1.7 Double Electron-Electron Resonance 
We can distinguish electron-electron couplings from other interactions using a pulse sequence 
called double electron-electron resonance (DEER). In this experiment, we employ a two-pulse 
echo sub-sequence with a fixed inter-pulse delay, denoted as τ , at the observer frequency ωA. 
Additionally, we apply a pump pulse with a flip angle of π at a different frequency ωB. The 
timing of this pump pulse relative to the first pulse of the observer sequence is variable and 
represented by a delay time t. 3 

Let us consider a two-electron spin system {eA − eB} where the difference ΔωAB = 
|ωA − ωB| is much larger than the dipolar frequency ωAB. Furthermore, we assume that the 
MW pulses are semi-selective with amplitudes satisfying the condition ωAB � ω1 � ΔωAB. 
In this case, we can excite the pairs of the transitions corresponding to eA or eB selectively.6 

We start our calculations by choosing the rotating frame of the MW irradiation at 
ωMW = ωA. The Hamiltonian in this frame takes the form: 

˜ ˆ ˆ ˆĤ = ΔωB S2z +
1 
ωABS1z S2z (1.80)

2 
At the start of the experiment, the rotating frame spin density operator is assumed to have 
reached thermal equilibrium, such that 

ρ̂̃(0−) = Ŝ 
1z + Ŝ 

2z (1.81) 

A semi-selective y-pulse with flip angle π/2 is then applied to the A spins. Since 
ˆ[Ŝ 

1y, S2z ] = 0, the B spin polarisation is unaffected by this pulse and we can write: 

−i π ˆ +i π Ŝ1y2ρ̃̂(0+) = e 2 S1y (Ŝ 
1z + Ŝ 

2z )e (1.82) 
−i π ˆ +i π ˆ 

= e 2 S1y Ŝ1z e 2 S1y + Ŝ2z (1.83) 

Applying the Baker-Hausdorff formula, we get 

i ̂S1x0 1 z }| { z }| { z }| { 
ρ̂̃(0+) = Ŝ 

1z cos(π/2) −i [Ŝ 
1y , Ŝ 

1z ] sin(π/2) +Ŝ 
2z (1.84) 

= Ŝ 
1x + Ŝ 

2z (1.85) 

The system is then allowed to evolve for a period t under the static Hamiltonian of 
eq. (1.80). The density operator term Ŝ 

2z commutes with all terms of the Hamiltonian and 
therefore remains invariant under free evolution. Furthermore, since the product operators 
of different spins commute, the term Ŝ 

1x does not evolve under the offset of spin B: 

−i 1 ˆ +i 1 ˆˆ ωABtŜ1z S2z ˆ 2 ωABtŜ1z S2zρ̃(t−) = e 2 S1xe + Ŝ2z (1.86) 

Again, applying the Baker-Hausdorff formula: 

S1y S2z z i ̂  }| ˆ { 
ρ̂̃(t−) = Ŝ1x cos 1 ωABt − i [Ŝ1zŜ2z , Ŝ1x] sin 1 ωABt + Ŝ2z (1.87)2 2 

ˆ 1 ˆ= S1x cos ωABt + Ŝ1yS2z sin 1 ωABt + Ŝ2z (1.88)2 2 

At this point, a semi-selective x-pulse with a flip angle of π is applied on spins B. Since 
[Ŝ2x, Ŝ1x] = 0, the first term in ρ̂̃(t−) is unaffected by the pulse: 
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1ρ̂̃(t+) = Ŝ1x cos 2 ωABt + . . . 
−iπ ˆ +iπ ˆ 

= (sin 1 ωABt)e S2x Ŝ1y Ŝ2z e S2x + . . . (1.89)
2 

−iπŜ2x ˆ +iπŜ2x= (cos 1 ωABt)e S2ze2 

Applying the Baker-Hausdorff formula, and pre-empting that the terms in sin π = 0, and 
the terms in cos π = −1 change sign, we get: 

1ρ̂̃(t−) = Ŝ1x cos ωABt − Ŝ1y Ŝ2z sin( 1 ωABt) − Ŝ2z (1.90)2 2 

The system is then allowed to evolve for a further period (τ − t). Since all the terms of 
the product operator commute with the offset frequency ΔωBŜ 

2z we need only consider the 
evolution under the coupling: 

1 1ˆ ˆ−i ωAB(τ−t)Ŝ1z S2z ( ˆ 1 +i ωAB(τ−t)Ŝ1z S2zρ̂̃(τ −) =e 2 S1x cos ωABt)e 2 − . . .2 
1 1ˆ ˆ−i ωAB(τ−t)Ŝ1z +i ωAB(τ −t)Ŝ1z S2z (1.91)e 2 S2z (Ŝ1yŜ2z sin 1 ωABt)e 2 − . . .2 

Ŝ2z 

Applying the Baker-Hausdorff formula: 

iŜ1y Ŝ2z z }| { 
1 1ρ̂̃(τ−) =Ŝ1x cos ωABt cos ωAB(τ − t) − i [Ŝ1z Ŝ2z, Ŝ1x] cos 1 ωABt sin 1 ωAB(τ − t) − . . .2 2 2 2 

ˆ ˆ 1 ˆ ˆ ˆS1yS2z sin 1 ωABt cos ωAB(τ − t) − i [Ŝ1zS2z, S1yS2z] sin 1 ωABt sin 1 ωAB(τ − t) − . . .2 2 2 2| {z } 
i ̂S1x 

Ŝ2z 

(1.92) 

Applying the trigonometric identities cos(A) cos(B) + sin(A) sin(B) = cos(A − B), and 
cos(A) sin(B) − sin(A) cos(B) = sin(A − B), this equation simplifies to: 

ˆ ˆ 1 ˆρ̃ = S1x cos ωAB(τ − 2t) + Ŝ1y S2z sin 1 ωAB(τ − 2t) − Ŝ2z (1.93)2 2 

A semi-selective y-pulse with flip angle π is then applied on spins A, which simply flips 
the sign of the first term: 

1ρ̂̃(τ+) = −Ŝ 
1x cos ωAB(τ − 2t) + Ŝ 

1y Ŝ 
2z sin 1 ωAB(τ − 2t) − Ŝ 

2z (1.94)2 2 

Finally, the system is allowed to evolve for another interval τ . Since all the terms of the 
density operator commute with the offset frequency ΔωBŜ 

2z, we need only consider evolution 
under the coupling: 

1 1ˆ ˆˆ −i ωABτŜ1z S2z ( ˆ +i ωABτŜ1z S2z 1ρ̃(2τ ) =e 2 S1x)e 2 cos ωAB(τ − 2t) + . . .2 
1 1ˆ ˆ−i ωABτŜ1z S2z ( ˆ ˆ +i ωAB τŜ1z S2z (1.95)e 2 S1yS2z )e 2 sin 2

1 ωAB(τ − 2t) − . . . 

Ŝ2z 

Applying the Baker-Hausdorff formula: 
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ρ̂̃(2τ) = 
S1y S2z z i ̂  }| ˆ { 

− Ŝ1x cos 1 ωAB(τ − 2t) cos 1 [Ŝ1zŜ2z, Ŝ1x] cos 1 (τ − 2t) sin 1 
2 2 ωABτ − i 2 2 ωABτ + . . . 

Ŝ 
1yŜ 

2z sin 1 ωAB(τ − 2t) cos 1 ωABτ + i [Ŝ 
1z Ŝ 

2z , Ŝ 
1yŜ 

2z] sin 1 (τ − 2t) sin 1 ωABτ − . . .2 2 2 2| {z } 
i ̂S1x 

Ŝ2z 

(1.96) 

Finally, by applying the trigonometric identities cos(A) cos(B) + sin(A) sin(B) = cos(A − 
B), and cos(A) sin(B) − sin(A) cos(B) = sin(A − B), this equation simplifies to: 

ρ̂̃(2τ) = −Ŝ 
1x cos ωABt + Ŝ 

1yŜ 
2z sin ωAB(τ − t) − Ŝ 

2z (1.97) 

Recall from our classification of the product operators that that Ŝ 
1x is the only term 

in eq. (1.97) linked to observable transverse magnetisation. Consequently, the DEER time 
trace, as a function of the pump pulse position, is given by: 

v(t) = v0 cos ωABt (1.98) 

Generally, however, only a fraction of the B spins are affected by the pump pulse. Then 
the measured signal is a weighted sum of eq. (1.98), and the conventional spin echo signal 
v0 ≡ mx(0

+). 20 

When the spins in each interacting pair are equidistant, with constant r, but the orientation 
of pairs with respect to B0 is random, the DEER time trace is the average of eq. (1.98) over 
the angle θ20: 

v(t) = v0(1 − λ(1 − k(t, r))) (1.99) r r ! r !! 
π 6Dt 6Dt 

k(t, r) = cos Dt · FrC + sin Dt · FrS (1.100)
6Dt π π 

Here, FrS and FrC are Fresnel’s sine and cosine functions. 
Most molecular systems exhibit an amount of conformational flexibility. Then the DEER 

time trace is an average over the distance distribution function, p(r)20: 

v(t) = v0 h1 − λ(1 − cos(D(r, θ)t))i (1.101)r,θ 

When the pairs have random orientations relative to B0, the time trace can be written 
as a Fredholm integral equation of the first kinds20: Z rmax 

v(t) = v0 k(r, t)p(r)dr (1.102) 
rmin 

In reality, the interaction between spins extends beyond individual pairs. Each A spin 
interacts with all B spins in the sample, including those in other pairs. The time trace 
becomes a product of two contributions20: 

v(t) = vinter(t) · vintra(t) (1.103) 

The intermolecular background factor, vinter(t), averages eq. (1.98) considering the dis-
tribution of all spin pairs relative to each other. In inhomogeneous media like micelles and 
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membranes, distributions characterised by a fractal dimension are significant. For such fractal 
dimensions, the average of eq. (1.98) is: 

vinter(t) = v0 exp(−ktd/3) (1.104) 

where d is the fractal dimension (space d = 3, plane d = 2, line d = 1), and k is a decay rate 
that depends on a variety of empirical factors.21 
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Chapter 2 

Linear Inverse Problems 

2.1 Introduction 
In pulse dipolar spectroscopy, the strength of the echo signal undergoes modulation due 
to the dipolar interaction between two spins, labelled as A and B within the system. This 
modulation is directly influenced by the distance r between these spins. However, in the 
presence of various conformers within the sample, this modulation is not contingent on a 
single distance value. Instead, it is contingent on a distribution of distances denoted as 
p(r). This distribution gives rise to a specific signal known as the dipolar evolution function 
d(t), which encompasses the dipolar modulations. The connection between the distance 
distribution and the dipolar evolution function is elucidated by the kernel K(r, t). This 
kernel incorporates a powder average that spans all relative orientations θ of the inter-spin 
vector with respect to the external magnetic field. The dipolar kernel is defined as1 

Z � �π/2 µ0 ~γAγB
K(t, r) = cos (3 cos2 θ − 1) t sin θdθ (2.1) 

0 4πr3 Z π/2 � � 
= cos (3 cos2 θ − 1)ωdd(r)t sin θdθ (2.2) 

0 

where ωdd(t) is the dipolar modulation frequency, µ0 is the permittivity of vacuum, ~ the 
reduced Planck constant, and γA/B are gyromagnetic ratios of spin A and B, respectively. 
The dipolar evolution function can then be computed via a Fredholm integral equation of 
the first kind1: Z ∞ 

d(t) = K(t, r)p(r)dr (2.3) 
0 

Experimentally, the echo amplitude d(t) is recorded at a discrete set of m time points ti, 
leading to a discretised dipolar signal vector d = (d(t1), . . . , d(tm))> . In the analysis, p(r) 
is also represented as a vector p = (p(r1), . . . , p(rn))

> over a discrete set of n equidistant 
distances rj . With this, eq. (2.3) reads2: 

d = Kp (2.4) 

where K is the m × n kernel matrix with elements Kij = K(ti, rj )Δr, and Δr is the distance 
domain increment. 
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Inferring the distance distribution p from the measured dipolar evolution function d, 
therefore, necessitates solving the system of equations defined by eq. (2.4). If no exact 
solution exists, an approximate least-squares solution may be derived.3 

Unfortunately, it is well known that for regression models obtained by discretising first-kind 
integral equations, the elements of the (least-squares) solution estimate p̂ are pathologically 
sensitive to errors in the data d. Noise in d, arising as a result of measurement errors or 
just numerical rounding errors, will often lead to totally nonphysical estimates that typically 
oscillate wildly between extreme positive and negative values.4 Such problems are said to be 

3ill-conditioned. 
To address this issue, approaches to the analysis of DEER data impose some degree 

of smoothness on p̂, either by adding an adjustable smoothness factor to fit criteria via 
Tikhonov regularisation or by assuming some smooth functional form, such as a sum of 
Gaussian components to model p̂. 5 

2.2 Inverse Problems 

The forward problem of computing d from a known p is a straightforward matrix-vector 
multiplication. The matrix K acts on the vector p, and the output d is a linear combination 
of the columns of K. 6 Denoting the ith column of K as the vector ki: 

Kp = p1k1 + p2k2 + · · · + pmkm = d (2.5) 

The set of all vectors that can be written as K multiplied by some vector p form the 
column space of K, denoted C(K). We will assume that the matrix K is full rank (i.e. that 
the columns of K are linearly independent), then the columns of K form a basis for C(K). 6 

Given a data vector d ∈ C(K), the inverse problem describes the task of finding the unique 
3linear combination of the columns of K that recreate the data vector d. 

We assume the reader is familiar with solving such problems via Gaussian elimination. A 
tutorial on the topic can be found in any introductory linear algebra text. 

We will never talk in terms of solving the inverse problem by finding the matrix K−1 , 
such that K−1K = I, as this “simplification” is only possible for square kernels.6 

2.3 Least-Squares Solutions 

A full-rank rectangular (m 6= n) system of equations must be overdetermined. Then, even 
under the assumption of full column rank (r 6= n), the matrix K will have fewer linearly 
independent columns than the ambient space dimension m. In other words, the column space 
of the overdetermined matrix K will be a proper subspace of the ambient space Rm . 6 

To illustrate this point, I ask that you consider the overdetermined 2×1 “matrix” equation 
given below: 

� � � � 
1 � 

x 
� 
=

3 (2.6)
2 6 

The data vector is consistent with the left-hand side because it lies on the line y = 2x 
defining the column space (fig. 2.1, left). 
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Figure 2.1: A data point in alignment with the generating linear model (left). An inconsistent 
measured data point that has deviated into the broader ambient space (right). 

When the right-hand side of eq. (2.6) is measured empirically, subject to measurement 
noise, it is extremely likely that the measured vector d will fall outside of the column space 
and into the ambient space R2 (fig. 2.1, right). Then eq. (2.6) will have no exact solution. 

A useful approximation may still be found by finding a particular model p that minimises 
some measure of misfit between the actual data, d, and the model prediction, Kp. The 
residual vector is the vector of differences between the observed vector and the corresponding 
model predictions7 , 

r = d − Kp (2.7) 

and the elements of r are are frequently referred to simply as residuals. One commonly 
used measure of misfit is the 2-norm of the residual vector, and a model that minimises this 
2-norm is called a least-squares solution. The least-squares or 2-norm solution is of special 
interest because it is readily amenable to analysis and geometric intuition and is statistically 
the most likely solution if data errors are normally distributed.7 

The least-squares solution is, from the normal equations7: 

p̂ = (K>K)−1K>d (2.8) 

It can be shown that if K is of full column rank, then (K>K)−1 exists.7 

The least-squares solution naturally reduces to the exact solution if d ∈ C(K). Therefore, 
from now on, we can talk only about the least-squares solution without loss of generality. 

2.4 Ill-Conditioning 
We say that a problem is well-conditioned if small changes in the data cause only small 
changes in the solution. If small changes in the data may potentially cause large changes in 
the solution, the problem is said to be ill-conditioned. 8 

In two dimensions, it is easy to show that ill-conditioning is a direct consequence of 
“nearly” degenerate columns in the matrix K (i.e. the matrix is nearly rank-deficient). 
Examine the following 2 × 2 matrix equation, written in a deliberately suggestive format: � �� � � � 

−m1 1 x b1 = (2.9)−m2 1 y b2 
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As long as m1 6= m2, the matrix is full rank. But the closer m1 comes to m2, the closer to 
rank deficiency we get. The solution to this system of equations is given by the point: � � �� 

b2 − b1 b2 − b1
(x, y) = ,m1 + b1 (2.10) 

m1 − m2 m1 − m2 

If the elements of bi of the data vector are perturbed by some finite amounts Δbi, the 
solution point moves to the coordinates: 

� � � � 
(b2 − b1) + (Δb2 − Δb1) (b2 − b1) + (Δb2 − Δb1)0(x , y 0) = ,m1 + b1 (2.11) 

m1 − m2 m1 − m2 

By subtracting eq. (2.10) from eq. (2.11), we can derive an expression for the changes Δx, Δy 
in the coordinates x, y observed as a result of the changes in the data vector Δb1, Δb2: � � �� 

Δb2 − Δb1 Δb2 − Δb1
(Δx, Δy) = ,m1 + b1 (2.12) 

m1 − m2 m1 − m2 

Clearly, as the matrix approaches rank deficiency (m1 − m2 → 0), the perturbation of the 
solution approaches infinity (Δx, Δy →∞). 
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Figure 2.2: Comparison of solutions for a 2D Hilbert matrix with different conditioning: On the left, 
solutions for two slightly different data points are depicted, illustrating significant movement with a 
minor perturbation. On the right, the solution for a better-conditioned 2D matrix demonstrates 
reduced sensitivity to the same magnitude perturbation. 

The Hilbert matrices, with elements defined by: 

(H)ij =
1 (2.13)

i + j + 1 
are canonical examples of ill-conditioned matrices.9 The left panel of fig. 2.2 depicts the 
solutions to the following pair of systems: 

� �� � � � 
11 x 1.552 = (2.14)1 1 y 0.90 � 2 3� � � � �
1 01 x 1.602 = (2.15)1 1 0y 1.002 3 
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and the right panel depicts the solutions to the following better-conditioned pair of systems 
for comparison. 

� �� � � �
1−1 x 1.552 = (2.16)1 1 y 0.90 � 2 3� � � � � 
1 0−1 x 1.602 = (2.17)1 1 0y 1.002 3 

2.5 Singular Value Decomposition 
A method of particular interest in ill-conditioned systems of higher dimensions is the 
singular value decomposition (SVD). It can be shown that every matrix has a singular value 
decomposition. If we assume that the matrix is full rank, then for any matrix K ∈ Rm×n , 
the SVD takes the form3: 

nX 
>K = USV> = uisiv (2.18)i 

i=1 

where (i) the columns of Um×m are called the left singular vectors, and form an orthonormal 
basis for Rm , (ii) the columns of Vn×n are called the right singular vectors, and form an 
orthonormal basis for Rn , (iii) Sn×m is a (rectangularly) diagonal matrix of singular values. 3 

The SVD of a full rank matrix K breaks the matrix into a sum of rank-1 pieces.10 Under 
this interpretation, the singular values are coefficients of the sum that convey how vital the 
piece is to the accurate reconstruction of K. A natural consequence of this interpretation is 
that if the singular values are arranged in descending order: 

s1 ≥ s2 ≥ · · · ≥ sn ≥ 0 (2.19) 

then the matrix defined by: 

k<nX 
> >Kk = u siv (2.20)i i 

i=1 

is the best rank-k approximation to K. 11 The approximation error can be quantified exactly 
in terms of the singular values, stated here without proof12: 

kK − Kkk = sk+1 (2.21) 

The smallest singular values are naturally associated with the nearly degenerate columns 
of K that contain the least information on the span of the column space. This can be seen 
by substituting the definition of the SVD (eq. (2.18)) into the definition of the least-squares 
solution (eq. (2.8)). Then, in terms of the singular values, the least-squares solution is3: 

nX > 
i p̂ = 

u d
vi (2.22) 

sii=1 

If the data vector d is perturbed by uncorrelated noise such that d + e, then the 
least-squares approximation is given by13: 

n n nX > X > X >u d u e u ei i i p̂ = vi + vi = p + vi (2.23) 
si si sii=1 i=1 i=1 
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where p is the exact solution. It is easy to see that small singular values amplify the 
contribution to the least-squares solution from the noise.3 

Thus, for p̂ not to be dominated by noise, the singular values need, on average, to decay 
i d|. >faster than the Fourier coefficients |u 

meet this condition is indicative of an ill-conditioned problem.14 
This is the discrete Picard condition. Failure to 

2.6 Picard Plots 

We will finally turn our attention to the ill-conditioning of eq. (2.4). Figure 2.3 depicts an 
artificial unimodal distance distribution p, alongside the noiseless dipolar evolution function 
d ∈ C(K), and the same dipolar evolution function afflicted by additive Gaussian white noise 
d + e 6= C(K). 
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Figure 2.3: An artificially generated Gaussian distance distribution (left) and the (noisy) form factor 
generated from it (right). 

> 
i d|, along with the solution 

3 The upper panel of fig. 2.4 shows coefficients |ui 
> 

A plot of the singular values si, and the Fourier coefficients |u 
d|/si is often referred to as a Picard plot. 

such a plot for the noiseless data vector d depicted in fig. 2.3. The Fourier coefficients decay 

> 

faster than the singular values until they level off for i ≥ 125, at a plateau determined by 
the machine precision. The solution coefficients also decay for i < 125, but for i > 125, they 

i d|.start to increase due to the inaccurate values of |u 
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Figure 2.4: Comparison of Picard plots for noiseless data (top) and noisy data (bottom). In the 
noisy case, the coefficients fail to meet the discrete Picard condition throughout. 

To illustrate how dramatically a few small singular values can spoil the estimated solution, 
two solution estimates, obtained by truncating the singular values at 155 and 165, are shown 
in fig. 2.5. The estimated solution obtained with the first 155 singular values is acceptable, 
whereas the solution obtained with the first 165 singular values is entirely garbled due to just 
a few very small singular values. This indicates that after ca. s155 the decreasing singular 
values become dominant in the solution so that by s165, the solution has been dramatically 
distorted just by computer round-off error.15 
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2.7. Regularisation Methods 

Figure 2.5: Comparison of the estimates obtained by truncating the singular values at the 155th 
(left) and the 165th (right). 

The lower panel of fig. 2.4 shows the Picard plot for the noisy vector d + e. The Fourier 
coefficients plateau at the noise level and fail throughout to meet the discrete Picard condition. 
This indicates that the problem is severely ill-posed at this noise level.15 

Practically, this plot also illustrates why the truncated SVD is not a sufficient general-
purpose solution method. When the singular values fail to meet the discrete Picard condition 
throughout, there is no obvious place to truncate the singular values to make a solution 
estimate. 

2.7 Regularisation Methods 
Regularisation methods attempt to stabilise the ill-conditioned problem by introducing prior 
knowledge of the solution p. 16 Consider the case where we have a data vector afflicted with 
Gaussian white noise of constant variance: 

d + N (0, σ2I) (2.24) 

The infinite set of points that may be sampled from this distribution form an �-neighbourhood 
around d. Each point is associated with its own least-squares solution. When the matrix is 
ill-conditioned, these solutions may vary wildly, and most will be nonphysical. 

Regularisation aims to select one of the infinite number of solution estimates best fitting 
our assumptions on p. There are many ways to achieve this trade-off, but only three of them 
are commonly applied in dipolar spectroscopy. 

2.7.1 Parametric Modelling 
If a good parametric model exists for the shape of p(r), the data can be fit to the parametric 
model by minimising the usual least-squares error function. As there are usually very few 
free parameters, fits of an appropriate model are much less susceptible to noise artefacts.17 

However, the selection of a parametric model must be made judiciously and always comes at 
the cost of putting restrictions on the shape and complexity of p(r). 2 Typically, the distance 
distributions are modelled as a sum of n ≥ 1 Gaussian components.18 

2.7.2 Tikhonov Regularisation 
The Tikhonov regularisation method is based on a modification linear regression problem that 
intends to stabilise its solution15 by penalising solutions for traits that could be attributed to 
amplified noise in the data.16 Specifically, the Tikhonov solution pα is defined as the solution 
to the problem3: n o 

2 2 
pα = arg min kKp − dk + α2 kLpk (2.25)2 2 

This is a form of penalised least-squares fitting. The first term is the least-squares term 
capturing the misfit between the model Kp and the data d. The second term penalises for 
unwanted properties of the solution p and depends on a specific form for the regularisation 
operator L, and a specific value for the regularisation parameter α. 19 

For an appropriate value of α, the first term on the right-hand side of eq. (2.25) forces the 
result to become compatible with the data. The second term leads to a “regular” estimate of 
the solution, in a sense determined by the regularisation operator. The quality of the result 
depends strongly on the regularisation parameter. If α is too small, the solution estimate 

24 

https://components.18
https://artefacts.17
https://level.15






 








 





Chapter 2. Linear Inverse Problems 

will inherit much of the noise of the unpenalised least-squares problem; if α is too large, the 
result will be over-regularised. 

While it may not be immediately clear from the formulation in eq. (2.25), this is a linear 
least-squares problem in p. If we use the fact that, for arbitrary vectors a, b3: �� 2 � �> �� 

a a a > 2 2 
= = a a + b>b = kak + kbk (2.26)2 2b b b 

2 

then it follows immediately that the Tikhonov problem can be reformulated as3: ( � ��� 2
) 

pα = arg min K
p − d (2.27)

αL 0 
2 

or simply 

(K>K + α2L>L)−1K>d (2.28) 

The goal is to find a good balance between these two terms, via a suitable value of α, 
such that the regularised solution pα is sufficiently regular and, at the same time, fits the 
data well enough. The hope is then that we achieve a regularised solution that approximates 
the exact solution.3 

Regularisation Matrix Selection 

The regularisation operator, L, defines the criterion by which p should be penalised. Physically 
reasonable distance distributions between spin labels on proteins are smooth on a tenths-of-
nanometre scale. Three L choices can all encourage smoothness and penalise roughness in p, 
in one sense or another.19 The second derivative, represented by the second-order difference 
matrix: 

L2 ∝ 

⎡ ⎢⎢⎢⎣ 
1 −2 1 0 

1 −2 1 
. . .. . .. . . 

0 1 −2 1 

⎤ ⎥⎥⎥⎦ (2.29) 

penalises sharp turns in the distribution, which arise from sharp peaks. The first derivative, 
represented by the first-order difference matrix: 

L1 ∝ 

⎡ ⎢⎢⎢⎣ 
−1 1 0 

−1 1 
. .. .. . 

0 −1 1 

⎤ ⎥⎥⎥⎦ (2.30) 

penalises steep slopes, which are also associated with sharp peaks. Lastly, the identity 
matrix L0 = I can be used. It penalises tall peaks, which tend to be narrow due the overall 
normalisation of p. 19 

Regularisation Parameter Selection 

Once an appropriate regularisation matrix has been selected, the optimal regularisation 
parameter, α, needs to be sought.15 Several numerical methods for determining the regulari-
sation parameter were critically discussed in the literature.19 

Perhaps the most convenient graphical tool for analysis of discrete ill-posed problems 
is the so-called L-curve which is a plot, for all valid regularisation parameters, of the 
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semi-norm η = kLpαk of the regularised solution, versus the corresponding residual norm2 
ρ = kKp − dk2. 20 

For discrete ill-posed problems, it turns out that the L-curve, when plotted in a log-log 
scale, almost always has a characteristic L-shaped appearance (hence its name) with a distinct 
corner separating the vertical and horizontal parts of the curve.20 The optimal value for α is 
considered to correspond to this corner since it intuitively represents a reasonable balance 
between the fitting error and the regularisation error. The corner is not a mathematically 
defined quantity, therefore, different operational definitions of locating such a corner exist.19 

One possible definition of the corner is the point closest to the lower left corner of the 
L-curve plot. DeerAnalysis17 uses one implementation of this idea. The two coordinates ρ 
and η are evaluated over a range of α values and then rescaled to the interval [0, 1]. The 
corner is determined as the location on the L-curve that is closest to the origin of these 
rescaled coordinates19: (� �2 � �2

) 
ρ̂ − ρ̂min η̂  − η̂min

α̂ = argmin + (2.31)
ρ̂max − ρ̂min η̂max − η̂min 

Figure 2.6 illustrates the L-curve of the noisy data vector depicted in fig. 2.3. The “optimal” 
regularisation parameter in the sense just defined is highlighted, and the corresponding 
solution estimate is shown. 
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Figure 2.6: Tikhonov regularised solution estimate (right) for a regularisation parameter selected 
from the L-curve (left). 

It is worth noting that α cannot be optimal simultaneously for narrow and broad 
peaks. This situation is frequently encountered with protein preparations, where the narrow 
peak corresponds to the properly folded and solubilised molecule, whereas the broad peak 
corresponds to unfolded or aggregated material. One should resist the temptation to interpret 
artificially ragged broad peaks as minor, well-defined conformations.21 

2.7.3 Non-Negative Least-Squares 
The final assumption commonly used to regularise dipolar evolution functions is that p 
should be non-negative across its entire domain. This is not so much an assumption as a 
defining feature of all probability density functions. It is commonly used alongside Tikhonov 
regularisation to yield an approximate solution that is both smooth and non-negative. The 
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Chapter 2. Linear Inverse Problems 

drawback of implementing this assumption is that non-negative least squares problems do 
not have analytical solutions, so the optimisation must proceed numerically, requiring more 
time and computational resources.1 

2.8 Background Correction 

So far, we have limited our analysis to the dipolar evolution function, which is strictly correct 
only for an isolated spin pair. In a macroscopic sample, where only a fraction of the spins, λ, 
are excited by the microwave pump pulse, the recorded time-domain signal is a sum of the 
contributions from the modulated and unmodulated echoes – the so-called form factor1: 

f = 1 − λ + λd (2.32) 

Furthermore, intermolecular interactions contribute to a background factor, b, which has 
been modelled for DEER as a stretched exponential function1: 

−(kt)d/3 
bi = b(ti) = e (2.33) 

where k is the decay rate, and d is the so-called fractal dimension. 1 

The experimental signal consists of the form factor multiplied by the background. However, 
the set of electronics that enables its detection introduces random fluctuations. These 
fluctuations result in noise e detected in the signal which can be modelled as1: 

v = f b + e (2.34) 

Experiments found that the noise distribution in DEER signals is well approximated by 
an uncorrelated Gaussian distribution with zero mean and constant variance.22 

To invert eq. (2.34) via the Tikhonov regularisation approach given in eq. (2.25), the most 
common approach in dipolar spectroscopy data processing is to remove the background in the 
experimental signal v prior to regularisation.1 This requires an estimate of the background 
factor be made a priori by fitting the latter portion of the time domain signal.5 Then, the 
(fitted) background factor is divided from the experimental signal: 

0 v = v b (2.35) 

where represents the Hadamard (element-wise) division. Hence, the correct signal has the 
form: 

0 v = f + e b (2.36) 

where the form factor is obtained as desired, but the term e b represents noise, with 
an amplitude that increases exponentially with time. For strongly decaying backgrounds, 
this term leads to the so-called noise explosion (fig. 2.7). This can be devastating for 
measurements containing short distances (ca. < 5 nm) whose oscillations decay fast but is 
less of an issue for longer distances, where the oscillations are more pronounced at longer 
times. A common workaround is to truncate the signal subjectively at the point where the 
noise seems to drown the oscillation. Not only is there no optimal criterion for selecting this 
truncation time, but the approach also sacrifices measured data that may still contain some 
information.1 
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Figure 2.7: Illustrative example of a noise explosion. The fitted background (left) is divided from 
the noisy trace, leading to an exponentially increasing noise (right). 

Recently, Ibáñez et al. demonstrated that the simultaneous fitting of a non-parametric 
distance distribution and a parametric background model could be formulated as a separable 
non-linear least-squares problem, thus sidestepping the need for a priori background correction 
and expelling the artefacts associated with a noise explosion.23 
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Chapter 3 

Artificial Neural Networks 

3.1 Introduction 
Effective regularisation methods rely on subjective assumptions about the solution vector’s 
characteristics. For instance, Tikhonov regularisation penalises traits believed to be absent 
in the solution using a regularisation matrix1: n o 

2 2 
p̂ = arg min kKp − dk + α2 kLpk (3.1)2 2 

Due to their availability in software tools, finite difference matrices are commonly employed 
to penalise roughness in the solution. However, the presumption of a globally smooth solution 
is often a poor reflection of reality, leading to an oversmoothed solution, and a loss of fine 
structural detail, even in the case of an optimally chosen regularisation parameter.2 

The “ideal” Tikhonov regularisation operator, L, which may be nonlinear, is the one 
that for a representative training set of input-output pairs, T = {(di, pi)}N minimises the i=1 
following bilevel optimisation problem over a sufficiently large function space L3: ( )

NX n o 
2 2

L̂ = arg min kpi − p̂ik2 s.t. p̂i ∈ arg min kKp − dk + L(p) (3.2)2 
L∈L i=1 

However, employing the Tikhonov functional form within the context of dipolar spec-
troscopy presents a significant limitation. It necessitates that a parametric model for the 
background factor be assumed a priori, and corrected for, either by background division or 
suitable modification of the kernel.4 

An alternative approach to the problem is to assume the existence of a well-regularised 
inverse function that can be estimated by an unknown model. This problem is fundamentally 
one of function approximation. In the absence of the background factor, and under the 
assumption of a linearly regularised solution, a linear model suffices. It estimates the linearly 
regularised solution: 

(K>K − α2L>L)−1K> : d → p (3.3) 

It is then reasonable to expect that any model function capable of mapping the experimentally 
measured signal, including the background factor, to a non-linearly regularised solution 
estimate should be more flexible. 

Artificial neural networks (ANNs) are highly effective tools for function approximation.5 

Inspired by the structure of the brain, these networks comprise interconnected nodes that 
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3.2. Node Character 

x2 

1 

collaborate to approximate intricate functions.6 Their effectiveness has captured the atten-
tion of academics and laymen alike, fuelled by science fiction’s depiction of their versatile 
capabilities. Despite their perceived complexity, constructing an artificial neural network 
model involves surprisingly straightforward algebraic procedures.7 

The three essential features of an artificial neural network are (i) the basic computing 
elements, referred to as neurons, nodes, or computational units; (ii) the network architecture 
describing the connections between computing units; and (iii) the training algorithm used to 
find values of the network parameters for performing a particular task.8 

3.2 Node Character 
The neuron is the basic computational unit of the brain. A human brain has approximately 
1011 neurons acting in parallel. The neurons are highly interconnected, with a typical neuron 
being connected to several thousand others.9 The points where neurons connect are known as 
synapses, facilitating communication between them. Electrochemical signals are transmitted 
across synapses, and when a neuron receives a total signal surpassing a specific threshold, it 
fires, sending a signal to nearby neurons. It is believed that the modification of synaptic 
connections underlies the process of memory formation.10 

x1 

P 
a ( i wixi) 

Figure 3.1: Graph-based representation of an artificial neuron. The inputs flow in from the left, and 
an activation function is applied to their weighted sum to produce the node output. 

ANNs are designed based on the structure of biological neural networks. Similar to their 
biological counterparts, ANNs consist of interconnected nodes, mimicking neurons. Although 
the biochemical processes in biological neurons are intricate, the logical operations they 
perform are relatively simple. One of the initial models in this field was the binary threshold 
unit. 11 In this model, a neuron receives a weighted sum of inputs from connected units and 
outputs a value of one (fires) if the sum exceeds a specific threshold; otherwise, it outputs 
zero. Mathematically, this model can be expressed as10: ! 

NX 
y = a wixi − b (3.4) 

i=1 

where y is the output of node, wi is the connection weight on input xi, b is the threshold, 
and a(·) is the activation function, defined as9: ( 

1 if z ≥ 0 
a(z) = (3.5)

0 if z < 0 

The connection weights are the model’s learnable parameters. During training, these 
weights are fine-tuned to adapt the network’s behaviour, enabling it to learn complex patterns 
and relationships effectively.6 

The weighted sum in eq. (3.4) can be easily understood as the inner product between a 
12:vector of inputs, (x)i = xi, and a vector of connection weights, denoted as (w)i = wi 
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> y = (w x − b) (3.6) 

The threshold value can be incorporated into this inner product by prepending a constant 
input value of -1 to x. Then, the first element of the weight vector, usually denoted w0 ≡ b, 
becomes the learnable threshold value13: �� � � �> 

� 
y = a w0 w −1 x (3.7) 

While the binary threshold unit resembles a biological neuron in concept, it falls short in 
one key aspect: it merely signals whether the input crosses a threshold without indicating 
by how much. This limitation restricts its effectiveness for complex tasks. More favourable 
activation functions produce output signals that uniquely reflect the size of the input. One 
such widely used function is the logistic sigmoid, which serves as a smooth and continuous 
approximation to the step function14: 

z 
s(z) = 

1 
= 

e (3.8)−z1 + e ez + 1 
From any real input, this function provides a unique output in the range [0, 1]. 

The hyperbolic tangent function: 

−zez − e ez(1 − e−2z)
t(z) = = = 2s(2z) − 1 (3.9)−z −2z)ez + e ez(1 + e 

has a similar shape, but an output that covers the range [−1, 1]. The differentiability of 
these two functions confers a speed advantage during training.14 

3.3 Network Architecture 
Network architecture refers to the arrangement and connections of nodes. In the brain, 
connections between neurons may seem random, at least locally, but creating entirely random 
artificial neural networks presents difficulties such as unclear data input points and the risk 
of endless data loops during training. The most common type of artificial neural network is 
therefore neither entirely random nor completely uniform; the nodes are arranged in layers 
(fig. 3.2). This structured network is easier to train than networks with utterly random 
connections, while remaining capable of addressing complex problems.14 

x1 ŷ  

x2 

hidden output 
layer layer 

1 
1 

input 
layer 

Figure 3.2: Graph-based representation of a 2 layer feed-forward, fully-connected network. Every 
node is connected to every node in the next layer, and inputs flows in one direction, from left to 
right. 
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3.3. Network Architecture 

In this structured network, one layer comprises input nodes, another contains output 
nodes, and one or more layers consist of hidden nodes in between. Signals flow from the 
input layer to the hidden layer(s) for processing and then proceed to the output layer, which 
provides the network’s response to the user. Notably, this network lacks recursive links, 
preventing signals from moving backwards or returning to the same node. This unidirectional 
flow during input data processing characterises it as a feed-forward network. Moreover, since 
every node in a layer is connected to every node in the subsequent layer, it is additionally 
termed a fully-connected network.14 

The feed-forward fully-connected network can feature any number of hidden layers with 
a variable number of hidden nodes per layer. In practice, experimenting with networks of 
different architectures and using cross-validation or test set performance helps identify simple 
yet effective networks. When counting layers, it is customary to exclude the input layer, as it 
merely passes data to the next layer without transforming it. Thus, a network with an input 
layer, one hidden layer, and an output layer is termed a two-layer network. A network with 
more than one hidden layer is termed a deep neural network, leading to the expression deep 
learning.14 

Suppose that the network has L layers, with layers 0 and L being the input and output 
layers, respectively. A layer has nl nodes. Overall, the network is a mapping from Rnl to 
Rnl−1 . The output of layer l is a vector a(l) called the post-activation vector15: 

(l) (l)(z(l))a = s (3.10) 

where the activation function, s(l)(·), is applied element-wise to the pre-activation vector 
(l)15:z 

(l) (l−1)z = W(l)a (3.11) 
(l)Here, W(l) is the nl × nl−1 matrix of connection weights. More precisely, (W(l))ij = wij is 

the weight that node j at layer l applies to the output from node i at layer l − 1. 15 

Thus, given an input vector x, we can succinctly summarise the network’s action as16: 

(L)(W(L) (L−1)(W(L−1) (1)(W(1)y = s s · · · s x) · · · )) (3.12) 

By organising nodes into layers, artificial neural networks can effectively replicate the 
parallelism of the brain by leveraging parallelised matrix multiplication techniques embedded 
in high-performance libraries such as LAPACK and BLAS.17 

Parameter Sharing 

Fully-connected architectures with sigmoidal activation functions are potent tools, capable 
of reproducing any continuous function with just one hidden layer containing a sufficient 
number of nodes. Introducing a second hidden layer extends this capability to modelling 
non-continuous functions.14 

However, for tasks like image recognition, the efficiency of fully-connected architectures 
is notably lacking. A child can learn to recognise an object with minimal exposure, while a 
fully-connected neural network often requires thousands of examples to generalise effectively.18 

The challenge lies in the excessive parameterisation of the fully-connected architecture 
for such tasks. For instance, if an image has dimensions of 200x300 pixels, the first layer 
alone would have 60,000 columns. Due to the fully-connected nature, the output depends on 
every pixel simultaneously, even though the feature of interest is typically localised.7 

Moreover, the search for structure in the image is essentially uniform across all regions. 
There’s usually no need to process one part of an image differently from another. By sharing 
weights across all parts, we can construct a neural network that is shift-invariant. 7 
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Chapter 3. Artificial Neural Networks 

If each neuron is connected to only E neurons in the next layer, with the connections 
being the same for all neurons, the weight matrix has only E independent parameters, 
and optimising these parameters becomes considerably faster. A shift-invariant matrix is 
a banded Toeplitz matrix or a filter. Multiplying a vector by this matrix equates to a 
discrete convolution operation. A network with weight matrices of type is therefore called a 
convolutional neural network (CNN).19 

3.4 Training Algorithm 
Given a training set of input-output pairs, T = {(xi, yi)}Ni=1, the objective is to train the 
network to approximate the functional relationship between inputs and outputs. This is akin 
to solving a regression problem, where the objective is to discern the relationship between 
independent variables (inputs) and dependent variables (outputs).9 

From an optimisation point of view, training a neural network is equivalent to minimising 
a scalar function of w called a loss function20: 

∗ w = arg min ̀ (w) (3.13) 

The loss function should provide a metric of disparity between the network’s predictions 
and the target values. A high value indicates a choice of parameters that would give poor 
performance, while the opposite holds for a set of parameters providing a low value.21 

A common loss function used in neural networks (although not the only one) is the 
mean-squared error function21: 

NX 
2

`(w) = 
1 kyi − f(xi, w)k (3.14)22 

i=1 

The inclusion of the factor 1/2 is a matter of convenience, simplifying things when we come 
to differentiate `(·). In principle, rescaling the objective function does not alter the minimiser, 
so the factor 1/2 should not impact the outcome.15 

While the objective in eq. (3.14) appears straightforward, its non-convex nature precludes 
analytical solutions.22 Consequently, local optimisation methods are employed to iteratively 
refine a point in weight space, guiding it towards an approximate minimum.21 Most of these 
methods are based on a common strategy, illustrated by the pseudo-algorithm below20: 

1. Choose the initial weight vector w0 and set k = 0. 

2. Determine a search direction Δwk and a step size ηk so that `(wk + ηkΔwk) < `(wk). 

3. Update the weight vector wk+1 ← wk + ηΔwk. 

4. If r`(wk+1) =6 0 then set k ← k + 1 and go to 2, else return wk+1 as the desired 
minimum. 

Hence, every local optimisation algorithm comprises three essential components: (i) 
selecting an initial guess, (ii) determining a search direction in weight space, and (iii) deciding 
the step length, i.e. how far to advance in the chosen direction.20 

3.4.1 Steepest Descent Method 
Given an initial estimate w0, the aim is to find a perturbation Δw0 such that the next vector 
w0 +Δw0 decreases the loss function `(·). In the absence of a global view of the function’s 
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geometry, we must determine this pertubration based solely on the local information provided 
by the function evaluation `(w). 

For a small perturbation Δw0, the loss function `(·) can be approximated around w0 by 
a Taylor series expansion17: 

2`(w0 +Δw0) ≈ `(w0) + r`(w0)
>Δw0 + O(Δw0) (3.15) 

Given the immense number of parameters in a typical neural network, it becomes prohibitively 
expensive to extend this approximation beyond the first order.21 

To minimise the cost function to the greatest extent, we should therefore choose the 
direction Δw0 in a way that maximises the negativity of r`(w0)

>Δw0. 17 Obviously some 
normalisation must be imposed on Δw0, otherwise for any Δw0 such that r`(w0)

>Δw0 < 0, 
one could simply multiply Δw0 by an arbitrarily large number.23 

The unit direction of most rapid decrease, then, is the solution to the problem24: � � 
Δw0

Δw0 = arg min r`(w0)
> (3.16)
kΔw0k2 

Since r`(w0)
>Δw0 = kr`(w0)k2 cos θ, it is easy to see that the minimiser is attained 

when cos θ = −1, and Δw0 is the unit step in the opposite direction of the loss function’s 
gradient24: 

r`(w0)
Δw0 = − (3.17)

kr`(w0)k2 

The steepest descent method is the optimisation algorithm that moves along Δw at every 
step.24 

Step Size Selection 

When determining the step length, often referred to as the learning rate in the context of 
artificial intelligence, we encounter a trade-off. The goal is to select η to achieve a substantial 
reduction in `(·), while simultaneously avoiding excessive time spent on the selection process. 
The ideal choice would be the global solution to the line search problem24: 

η ∗ = arg min ̀ (w + ηΔw) (3.18) 

However, in practice, identifying this value is often too computationally expensive. Instead, 
a common approach is to use a fixed step length, often taking the form of 10η . 21 However, a 
constant learning rate poses a dilemma to the analyst. If a lower learning rate is used early 
on, the algorithm takes too long to approach an optimal solution. Conversely, a large initial 
learning rate allows the algorithm to get reasonably close to a good solution initially, but 
then it may oscillate around that point for an extended period or diverge in an unstable 
manner if the high learning rate is maintained.25 

An alternative to fixed step length rules is the use of diminishing step length rules, 
where the step length is reduced at each iteration of local optimisation. A straightforward 
way to implement a diminishing step length rule is to set η = 1/k at the kth iteration. 
This approach gradually reduces the distance between subsequent steps as the optimisation 
progresses, enabling the exploration of smaller details and intricacies in the loss landscape 
where potential minima might be located.21 
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Parameter Initialisation 

The starting values of the weights can have a significant effect on the training process. 
Weights should be chosen randomly but in such a way that the sigmoid is primarily activated 
in its linear region. Initialising weights over the linear region of the sigmoid offers two 
advantages26: 

1. Starting with excessively large weights can lead to sigmoid saturation, resulting in 
small gradients and slow learning. Activating weights in the linear region addresses 
this by ensuring sufficiently large gradients for effective learning. 

2. If all layers’ sigmoids are activated linearly, the neural network initially functions as 
a composition of linear functions. This means that in the early stages, the network 
behaves as a linear approximation, and non-linearity is introduced gradually as needed 
during training. 

One common approach to weight initialisation is generating random values from a 
Gaussian distribution with a small standard deviation, such as 10−2 . However, a drawback 
is the insensitivity to the number of inputs to a specific neuron. This insensitivity arises 
because the same standard deviation is uniformly applied to all neurons during initialisation. 
Consequently, there can be a significant difference in the impact of individual weights on the 
neuron’s output, especially in the early stages of training. Neurons with more inputs may 
exert a disproportionately larger influence on the overall output due to the additive effect of 
these inputs, potentially resulting in larger gradients during backpropagation.25 

To address this, it can be shown that the variance of outputs linearly scales with thep
number of inputs. Therefore, the standard deviation is adjusted to 1/nl−1, where nl−1 is 
the number of inputs to that neuron. This adjustment aims to balance the impact of weighs 
on neurons with varying input counts. More sophisticated rules for initialisation, such as 
the Glorot initialiser, consider the inter-layer interactions among nodes, acknowledging their 
contribution to to output sensitivity.25 

3.5 Backpropagation 
In the early days of neural network development, calculating derivatives was a tough nut 
to crack. Finite difference methods involve perturbing individual parameters and observing 
the resulting changes in the network’s output to estimate derivatives. However, they are 
computationally infeasible for neural networks due to the sheer number of parameters, 
requiring multiple forward passes for each parameter perturbation. This approach becomes 
impractical as network size increases, resulting in a prohibitively high computational cost. 

The breakthrough in neural network training came with the development of backprop-
agation, a technique that leverages the chain rule of calculus. This technique is tailored 
specifically for efficiently computing the gradients needed to update the weights in a neural 
network during training. The following equations describe the partial derivative of the loss 
function for the weight matrix of any layer l13: 

� �
(l) (l)∂` ∂` ∂a ∂z 

= · (3.19)
∂W(l) ∂a(l) ∂z(l) ∂W(l) � �

(l)∂` ∂a (l−1))> = · (a (3.20)
∂a(l) ∂z(l) 
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3.6. Application to Inverse Problems 

The simplification in eq. (3.20) follows from the definition of z and highlights that by caching 
a(l−1) during the forward pass, we can expedite the calculation of the derivatives during the 
backward pass for layer l. 

Now consider the derivative of the loss function with respect to the weight matrix of the 
preceding layer: � �

(l−1) (l)∂` ∂` ∂a ∂z 
= · (3.21)

∂W(l−1) ∂a(l−1) ∂z(l−1) ∂W(l−1) 

This expression echoes the previous form, and we can circumvent the explicit calculation 
of ∂a(l−1)/∂z(l−1) by applying the chain rule again, expressing it in terms of previously 
computed products that can be cached for efficiency: 

� �
(l) (l)∂` ∂` ∂a ∂z 

= · (3.22)
∂a(l−1) ∂a(l) ∂z(l) ∂a(l−1) � �

(l)∂` ∂a 
= · (W(l))> (3.23)

∂a(l) ∂z(l) 

The exact form of the derivatives in a and ` will depend on the loss function and the 
activation function used at the layer. For instance, for the last layer with a logistic sigmoid 
activation function, and a quadratic loss function: 

∂` (L) − y) (L) (L−1))> = (a (a (1 − a(L))) · (a (3.24)
∂W(L) 

This recursive process can be applied to earlier layers by continuing to differentiate the 
expressions backward through the layers, using the chain rule and utilizing the values cached 
during both the forward and backward passes. The derivatives for the weights of each layer 
can be expressed in terms of the gradients of the subsequent layer, facilitating the efficient 
computation of gradients for the entire neural network during training. 

3.6 Application to Inverse Problems 
Since the 1980s, researchers have explored the application of artificial neural networks for 
solving linear problems. Initially, their focus was on addressing simple, low-dimensional ”toy 
problems” that lacked a specific physical model or context. In some of these early attempts, 
researchers trained the networks using noiseless data, which resulted in what is known as 
”inverse crimes” and produced unregularized solution estimates.27 

In recent years, the academic literature has shifted its attention towards using con-
volutional neural networks to address inverse problems in imaging applications. These 
applications encompass a range of tasks, including fundamental restoration tasks like deblur-
ring, super-resolution, and image inpainting, as well as various tomographic imaging tasks 
like magnetic resonance imaging, X-ray computed tomography, and radar imaging. 

One notable application of artificial neural networks to the inverse problem is the work by 
Worswick et al.16 They developed a network called DEERnet to predict distance distributions 
from measured DEER traces. DEERnet is a fully-connected 5-layer feed-forward model with 
256 nodes in each layer. Mathematically, it can be represented as: 

p̂ = logsig(W(5) tanh(W(4) . . . tanh(W(1)v) . . . )) (3.25) 

They included a logistic function at the output layer to ensure that DEERnet’s predicted 
distance distributions remained strictly positive, and this improved accuracy on a test set. 
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Due to the ill-conditioned nature of the inverse problem, real distance distributions are 
rarely known exactly. Therefore, they generated a training set of 200,000 artificial DEER 
traces through simulation. This was feasible because the forward problem is well-posed. They 
assumed that a combination of up to three skew-Gaussian peaks would cover a representative 
range of distance distributions. The mean and standard deviation of each peak were randomly 
selected from specified range. These peaks were then integrated with the kernel to generate 
form factors. Modulation depth and background model parameters were also randomly 
selected for each trace, and Gaussian white noise imposed. 

0 0.5 1
Time / μs

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
m

pl
tiu

de

Input Data

20 30 40 50
Distance / Å

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

P
ro

ba
bi

lit
y

Prediction

Tikhonov
DEERnet

Figure 3.3: DEERnet performance on pairs of nitroxide radicals tethered to the surface of gold 
nanoparticles, with the thiol tether attachment points diffusing on the surface of the nanoparticle. 

In fig. 3.3 DEERnet successfully predicted a distance distribution that included a narrow 
peak sitting atop a broad pedestal. This type of distribution poses a challenge for Tikhonov 
regularisation, because the Tikhonov regularisation parameter cannot be simultaneously 
optimised for narrow and broad features. 
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Chapter 4 

Tricks of the Trade 

4.1 Introduction 
Historically, neural network models were confined to small, shallow networks. Training deeper 
networks often resulted in non-convergence.1 This issue stemmed from two main challenges: 

1. The use of sigmoidal activation functions can lead to very small gradients. When these 
derivatives are multiplied together during backpropagation, the gradient can diminish 
exponentially with depth, leading to stalled or slow learning. 

2. More parameters necessitate more training data, following the statistical rule of 10. 
However, traditional gradient descent training becomes unfeasible if the dataset size 
exceeds the available system memory. 

In response to these challenges: 

1. Piecewise constant activation functions were introduced. These functions have segments 
where the gradient is constant and not less than 1. This prevents the gradient from 
vanishing when multiplied across layers. 

2. Stochastic training algorithms were developed, eliminating the need to compute the 
gradients of the entire batch during training. 

These techniques revolutionised deep learning, leading to a significant increase in the size 
of state-of-the-art networks. For example, GPT-3, one of the largest language models trained 
to date, has 175 billion parameters and was trained with 300 billion tokens.2 

Even in shallow networks, the application of non-saturating activation functions can 
accelerate the training process. While the vanishing gradient problem might not completely 
impede learning in these networks, it has the potential to decelerate it. Furthermore, 
irrespective of the training database’s size, using stochastic optimisation algorithms can 
enhance efficiency and generalisation. 

4.2 Stochastic Optimisation 
The simplest learning (minimisation) procedure is the gradient descent algorithm where w is 
iteratively adjusted as follows3: 

NX 
k k−1 − η k−1)w = w r`(xi, w (4.1) 

i=1 

39 



4.2. Stochastic Optimisation 

At each iteration, eq. (4.1) requires a complete pass through the entire dataset to compute 
the average or “true” gradient. This is called batch learning because it requires processing a 
whole “batch” of data before updating the weights.3 As we need to calculate the gradients 
for the whole dataset to perform just one update, batch gradient descent can be very slow 
and is intractable for datasets that do not fit in memory.4 

Alternatively, in stochastic learning, we randomly select a single example, xi, from the 
training set at each iteration k. Then, we calculate an estimate of the true gradient based 
on the error, `, of this example. Following this, we update the weights according to the 
formula3: 

k k−1)w = w k−1 − ηr`(xi, w (4.2) 

We repeat this for every example in the training set. One complete pass through the 
training set is called an epoch. 5 

Stochastic learning typically outperforms batch learning in terms of speed, especially on 
large datasets with redundant data. This can be easily demonstrated. For example, imagine 
a training set of 1,000 samples that contains 10 identical copies of a smaller set with 100 
samples. Averaging the gradient over all 1,000 patterns yields the same result as computing 
the gradient using just the first 100. Therefore, batch gradient descent is inefficient as it 
recalculates the same quantity 10 times before updating a single parameter. In contrast, 
stochastic gradient descent views a full epoch as 10 iterations through a training set of 100 
samples. In real-world scenarios, it’s rare for examples to repeat in a dataset. However, 
datasets often have clusters of patterns that are quite similar, and are therefore effectively 
redundant.3 

Stochastic learning often also leads to better solutions. Our objective function typically 
features multiple local minima of varying depths. Training aims to find one of these minima. 
In batch learning, the algorithm locates the minimum within the basin where the initial 
weights are placed. However, in stochastic learning, the “noise” in the updates can cause the 
weights to jump into the basin of a different, potentially deeper local minimum.3 

However, the same noise that enables stochastic gradient descent (SGD) to escape local 
minima also impedes its full convergence to the minimum. The gradient from a single example, 
being only an estimate of the true gradient, often leads SGD to overshoot the minimum in 
each iteration. Overshooting happens when SGD, following this noisy or imperfect gradient, 
surpasses the optimal minimum point. Instead of a smooth convergence to the loss function’s 
minimum, the algorithm frequently moves past it. This occurs because the gradient estimated 
from a single example, or a small batch, may indicate a steeper descent direction than the 
true gradient from the entire dataset. Consequently, the step size in each iteration might be 
excessively large, causing the algorithm to bypass the minimum point.3 

Mini-batch gradient descent combines the advantages of both batch and stochastic 
approaches. It updates the parameters after processing a subset of training examples, known 
as a mini-batch3: 

B<NX 
k k−1)w = w k−1 − η r`(xi, w (4.3) 

i=1 

This approach actively reduces the variability in parameter updates for more consistent 
convergence and efficiently calculates gradients for mini-batches using sophisticated matrix 
optimisation techniques found in state-of-the-art deep learning libraries.4 

Starting with a small mini-batch size allows us to use the noise in the updates to identify 
basins with more favourable local minima. Later, by increasing the mini-batch size in 
subsequent iterations, we improve the accuracy of gradient approximations, leading to a 
more precise convergence to the lowest point in that basin.3 
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4.2.1 Momentum-Based Methods 
A significant weakness of gradient descent, also affecting its stochastic variants, is its struggle 
to navigate ravines efficiently. Ravines in the optimisation landscape are characterised by 
a much steeper slope in one direction compared to others, creating nearly parallel contour 
lines.4 

As the negative gradient direction is always perpendicular to these contour lines, steps in 
gradient descent tend to oscillate or “zig-zag” across the ravine’s sloped sides. Each step 
moves the algorithm across the ravine, but the subsequent step often undoes some of this 
progress to correct the path. This back-and-forth movement results in minimal progress 
over many steps, delaying the algorithm’s convergence to the minimum, if it reaches it at 
all. This topographical feature is widespread in high-dimensional, non-convex optimisation 
landscapes, like those encountered in neural network training, where it poses a significant 
challenge to effective learning.6 
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Figure 4.1: Zig-zagging behaviour of gradient descent. n gradient descent, the algorithm moves in a 
direction perpendicular to the contour lines during each iteration. However, in regions resembling a 
“ravine” where these contour lines are nearly parallel, the progress achieved in one iteration may be 
partially reversed in the next. This results in a slower optimisation process. The rightmost panel in 
the figure illustrates a more extreme example of this behaviour, with steeper contours, compared to 
the left panel. 

Figure 4.1 demonstrates the zig-zagging behaviour of gradient descent using two two-
dimensional quadratic functions of the form `(w) = w>Cw. In the left panel, we see the 
contour plot for the matrix: � � 

C = 0.50 
0 

0 
12 (4.4) 

This matrix has a global minimum at the origin. On the right panel, we have the contour 
plot for the matrix: � � 

0.05 0 
C = (4.5)

0 12 

Although this matrix has the same global minimum at the origin, we have adjusted the 
upper left value to elongate its contours along the horizontal axis. This adjustment makes 
the contours closer to parallel near our point of initialisation.6 
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We then perform 25 gradient descent steps to minimise each function, using the same� �>0initial point w = 10 1 and a step-length α = 10−1 . We plot the weights found at each 
step on the contour plots for both cases. The algorithm makes slower progress towards the 
minimum in this elongated case because the zig-zagging behaviour is more severe. 
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Figure 4.2: Comparison of gradient descent with (right) and without momentum (left). Gradient 
descent tends to progress slowly in regions with nearly parallel contour lines. Momentum, addresses 
this issue by utilising an exponentially averaged step direction, which helps smooth out the optimi-
sation process. 

To counter the common zig-zagging behaviour in gradient descent, incorporating mo-
mentum terms proves beneficial. Momentum, a modification of the basic gradient descent 
algorithm, enhances optimisation by using an exponential average of previous gradients. This 
exponential averaging smooths the optimisation path, guiding the algorithm in a consistent 
direction influenced by these past gradients. As a result, it reduces abrupt directional changes 
and minimises the zig-zagging typically associated with gradient descent.6 

To implement this we first initialise d0 = −r`(w0). For k > 1, the exponentially average 
descent direction dk−1 takes the form: 

dk−1 k−1)= βdk−2 + (1 − β)(−r`(w (4.6) 

We can then use this descent direction in our generic local optimisation framework to take a 
step as: 

k k−1 w = w + ηdk−1 (4.7) 

As with any exponential average, the choice of β ∈ [0, 1] is a trade-off. A smaller β makes the 
exponential average more closely resemble the actual sequence of negative descent directions, 
as it incorporates more of each negative gradient in the update. However, it summarises the 
previously seen negative gradients less effectively. Conversely, a larger β value diverges more 
from the individual negative gradient directions in each update but better summarises them 
over time. In practice, larger values of [0.7, 1], are often used.6 

4.2.2 Normalisation-Based Methods 
The second weakness of gradient descent lies in how its step size depends directly on the 
gradient’s magnitude at each point: 

42 





 

 

 





 

 

 



Chapter 4. Tricks of the Trade 

k−1 w k − w = η r`(w k−1) (4.8)
2 2 

In regions far from stationary points, where gradients are substantial, gradient descent takes 
large steps, accelerating progress towards minimisation. However, the step size decreases 
when it approaches stationary points with smaller gradients. This reduction in step size 
significantly decelerates the algorithm’s progress to a “slow crawl”. Consequently, gradient 
descent typically stops short of reaching the true minimum.6 

To address the issue of varying step sizes in gradient descent, one common approach is to 
normalise the gradient vector: 

k−1)r`(wk w = w k−1 − η (4.9)2kr`(wk−1)k 
However, normalising the entire gradient vector has its limitations. In certain regions of the 
parameter space, such as ravines, the gradient can be small in some directions but large 
in others. Normalising by the entire gradient magnitude essentially divides each gradient 
component by the same constant, which may not adequately address the imbalance in 
gradient magnitudes across dimensions.6 

We should, therefore, normalise the gradient element-wise: 

k w = w k−1 − η sign(r`(w k−1)) (4.10) 

Here, the sign function acts on the gradient vector, resulting in a vector where each element 
is either -1 or +1, indicating the direction of the corresponding gradient component. The 
length of a single step of this element-wise normalised gradient descent step, assuming all 
partial derivatives of the gradient are non-zero, can be calculated as6: 

√ 
k − w k−1 w = −η sign(r`(w k−1)) = η P (4.11)

2 2 

where P is the number of model parameters. 
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Figure 4.3: Comparison of gradient descent (left) and signed gradient descent (right). Gradient 
Descent tends to progress slowly in directions with small partial derivatives, which can lead to 
slow convergence. On the other hand, sign gradient descent normalises the gradients element-wise, 
resulting in step directions that are determined by the signs of the derivatives rather than their 
magnitudes. 
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Figure 4.3 illustrates the contour plot for the quadratic function: 

2 2f(w1, w2) = w1/100 + w (4.12)2 

which has a minimum at the origin. The left panel depicts 25 iterations of vanilla gradient � �>0descent from an initial guess of w = 8 8 . Since the slope in the w2 direction, 

∂f 
= 2w2 (4.13)

∂w2 

is 100 times larger than the slope in the w1 direction, 

∂f w1 
= (4.14)

∂w1 50 

the optimisation steps quickly descent along the vertical axis but make negligible progress 
along the horizontal axis. 

In the right panel, we have employed sign gradient descent, which moves diagonally across 
the surface by taking uniform steps in both directions, efficiently approaching the minimum. 

4.2.3 Adaptive Step Sizes 

Adaptive Moment Estimation (Adam) is an element-wise normalised gradient step employing 
independently calculated exponential averages for both the descent direction, dk−1 , and its 
magnitude, hk−16: 

dk−1 k−1)= β1dk−2 + (1 − β1)r`(w (4.15) 

hk−1 = β2hk−2 + (1 − β2)(r`(w k−1))2 (4.16) 

These moving averages estimate the gradient’s first moment (the mean) and the second raw 
moment (the uncentered variance). The exponential average parameters, βi ∈ [0, 1], typically 
chosen are β1 = 0.9 and β2 = 0.999. The square is applied element-wise.7 

The Adam update step is then8: s 
k w = w k−1 − η 

1 
sign(dk−1) (4.17)

hk−1−(dk−1)2 
1 + 

(dk−1)2 

where division, roots, and squares are interpreted element-wise. 
Here, the coefficient under the square root is an adaptive learning rate. If the variance of 

the gradients is much larger than the square of the mean gradient, then the ratio will be 
large, and the overall learning rate will be small. This means that if the gradients are very 
noisy (high variance), the learning rate will be reduced to prevent the optimiser from taking 
steps that are too large and potentially overshooting the minimum.8 

Conversely, if the variance of the gradients is much smaller than the square of the mean 
gradient, then the ratio will be small and the overall learning rate will be close to 1. This 
means that if the gradients are consistent (low variance), the optimiser will take larger steps 
and converge faster.8 

Adam has become the most popular algorithm for training in deep learning due to its 
effectiveness and efficiency in handling large datasets and complex models.9 
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4.3 Vanishing Gradient Problem 
Traditional activation functions like the logistic sigmoid and hyperbolic tangent, known for 
their “s”-shaped curves, saturate as input magnitudes approach ±∞. This saturation causes 
their gradients to shrink towards zero for inputs far from the origins. During backpropagation 
in neural networks, this leads to extremely small weight updates, especially in the early layers, 
a phenomenon known as the vanishing gradient problem. This issue becomes more pronounced 
in deeper networks, where gradients, already small, are multiplied across successive layers.10 
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Figure 4.4: Comparison of activation functions. On the left, we have the logistic sigmoid activation 
function, and on the right, the softplus activation function. The corresponding derivatives are shown 
as dashed lines. Notably, the derivative of the logistic sigmoid activation function approaches zero 
for large positive inputs, which can cause the vanishing gradient problem. In contrast, the derivative 
of the softplus activation function levels off at 1 for large positive inputs, effectively addressing the 
vanishing gradient issue. 

The backpropagation algorithm calculates the derivatives of the loss function with respect 
to the weights in each layer by applying the chain rule of calculus. For a network with L 
layers, the derivative of the weight matrix in the first layer is proportional to the product11: 

(1) (L−1) (L)∂` ∂a ∂a ∂a ∝ · · · (4.18)
∂W(1) ∂z(1) ∂z(L−1) ∂z(L) 

Here, ∂a(l)/∂z(l) is the derivative of the activation function at layer l. The choice of activation 
function significantly impacts training by affecting the magnitudes of these partial derivatives. 
For instance, the logistic sigmoid function’s gradient: 

σ0(z) = σ(z) (1 − σ(z)) (4.19) 
attains its maximum value at the inflection point σ0(0) = 0.25 and asymptotically approaches 
zero as z → ±∞. As a result, the magnitude of the gradient update step in is significantly 
diminished for earlier layers due to the multiplicatively decaying sequence in eq. (4.18). 

4.3.1 Non-Saturating Activation Functions 
Several unbounded activation functions have been proposed to preserve sufficient gradients. 
The rectified linear unit (ReLU) or ramp function is the most commonly used activation 
function today, and may be formulated as12: 
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ReLU(z) = max(0, z) (4.20) 

The ReLU activation function has two notable advantages over traditional, sigmoidal 
functions12: 

1. ReLU maintains constant gradients for positive inputs, preventing exponential dimin-
ishment as they propagate through multiple neural network layers. 

2. For input values less than zero, ReLU assigns gradients of zero. This promotes sparsity 
within the network, allowing it to focus computational resources on relevant and active 
features for more efficient and effective learning. 

However, it also has two disadvantages13: 

1. ReLU exhibits a discontinuous derivative at zero, introducing challenges during gradient-
based optimisation. 

2. Continuous production of negative inputs to the ReLU function can lead to oversparsity. 
In such cases, neurons consistently output zero, resulting in zero gradients. This renders 
these “dying” neurons ineffective for learning, diminishing the network’s capacity and 
overall performance. 

To address the limitations of the ReLU activation function, a smooth approximation to it 
known as the softplus function, was introduced13: 

softplus(z) = ln(1 + e z ) (4.21) 

Unlike ReLU, the softplus function ensures a smooth and continuous derivative across all 
points, including zero, enabling the propagation of gradients through all real inputs. The 
derivative of the softplus unit takes the form of a sigmoid function. However, a drawback 
of the softplus function is its computational cost due to its definition’s inclusion of an 
exponential and a logarithm. This computational expense is generally not substantial.13 

4.3.2 Batch Normalisation 
Batch normalisation is a relatively recent technique designed to solve the vanishing gradient 
problem in deep neural networks by standardising the pre-activation vectors. For a layer with 
d-dimensional pre-activation vector z(l) = (z1, z2, . . . , zd)

> , batch normalisation standardises 
every dimension of z across the mini-batch: 

zi − µi 
z̄  i = p (4.22)

σ2 
i 

Here, µi and σi are the sample mean and standard deviations computed over the mini-batch: 

BX 
µi =

1 
zi (4.23)

B 
i=1 
BX 

σ2 =
1 

(zi − µi)
2 (4.24)i B 

i=1 

This approach ensures that values are confined to the linear region of the sigmoid function, 
thereby mitigating the vanishing gradient problem, which is more pronounced in the flatter 
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regions of the function. However, incorporating batch normalisation at every layer could limit 
the network to making only linear approximations. To counter this, it’s crucial to ensure 
that the transformations within the network can represent the identity transformation. For 
this purpose, we introduce a pair of parameters, γi and βi, for each pre-activation value, zi. 
These parameters scale and shift the normalised value as follows14: 

z̃i = γiz̄  i + βi (4.25) 

These parameters are learned along with the original model parameters and restore the 
representational capacity of the network.14 

4.4 Application to DEERnet 
In the previous chapter, we reviewed DEERnet 1.0, an artificial neural network developed by 
Worswick et al. to estimate distance distributions from noisy DEER spectroscopy data.15 

DEERnet 1.0 had five fully-connected layers, each consisting of 256 nodes. This version faced 
two major challenges due to its limited dimensionality: 

1. Experimental data needed downsampling to fit the network’s fixed input dimension, 
introducing uncertainty and potentially affecting the accuracy of the predicted distance. 

2. The network’s fixed output dimension limited the resolution of these predicted distri-
butions. 

A straightforward solution would have been to train a network with larger input and 
output dimensions. A larger input would reduce the extent of downsampling, while a larger 
output would enhance resolution. However, the network’s size was practically limited by 
the memory requirements of the batch training algorithm, as expanding the network would 
require more data and more RAM.15 

DEERnet 2.0 overcomes these limitations by switching to mini-batch training with the 
Adam algorithm, which enabled the point count to be increased to 512 nodes in each layer. 
The architecture was also updated to support healthier gradients during training. This update 
included replacing the sigmoidal activation functions with non-saturating softplus functions 
and adding batch normalisation between every linear and nonlinear layer to minimise internal 
covariate shift. 

In DEERnet 1.0, a logistic sigmoid function was used at the output layer to ensure 
positive predictions, aligning with the physical interpretation of distance distributions. In 
contrast, DEERnet 2.0 consistently uses the strictly positive softplus function across all 
layers. However, since the distance distributions in the training set are not only positive but 
also normalised to 1, DEERnet 2.0 includes an output renormalisation layer : 

Pŷi ȳ  i = 512 · (4.26) 
ŷii 

This additional layer normalises the output to the updated point count of 512, in line with 
the training set normalisation, a change hypothesised to bring efficiency gains by integrating 
this specific domain knowledge.16 

The architecture of DEERnet 2.0 can therefore be described by the equation: 

p̂ = on(sp(bn(W(L) . . . sp(bn(W(1)v) . . . )))) (4.27) 

In this expression, bn denotes the batch normalisation layer, sp represents the softplus 
function, and on is the output normalisation layer. 
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4.4.1 Online Learning 
The conventional method of neural network training, which we’ll refer to as offline learning, 
involves a three-step process: (i) generating the training set, (ii) storing this set on a disk, 
and then (iii) reading it back for training, one mini-batch at a time. A significant limitation 
of offline learning is that the I/O operations needed to retrieve each mini-batch from the 
disk or network can become a performance bottleneck.17 

However, it’s important to note that the mini-batch algorithm only requires a small subset 
of examples for each iteration. If the training data is simulated, we have the opportunity to 
generate these examples dynamically, or “on-the-fly”, during each iteration. This approach 
eliminates the delays associated with waiting for data to be fetched.18 

Moreover, under this online learning paradigm, there’s no need to predefine the size of 
the training set. Effectively, this creates an endless stream of training data, meaning the 
network is unlikely to encounter the same training example more than once. This aspect of 
online learning significantly enhances the network’s ability to generalise, as it is constantly 
exposed to new data throughout the training process.19 

The online training process can be made more efficient using asynchronous operations 
that overlap data generation with gradient computations. In this setup, two threads run 
in parallel: the prefetch and training threads. The prefetch thread generates mini-batches 
of data, while the training thread waits for these mini-batches and processes them as soon 
as they become available. The optimal scenario is when the time taken to simulate the 
data is shorter than the time needed for gradient computation. This ensures a smooth and 
uninterrupted training process, eliminating any delays caused by waiting for data.18 

4.4.2 Identifiability of Exchange 
To optimise the online training process for DEERnet 2.0, a minor change is needed in how we 
generate the training database compared to the approach used in DEERnet 1.0. The original 
method led to considerable data waiting times due to the inclusion of isotropic exchange 
coupling in the training data. In DEERnet 1.0, the exchange coupling parameter, J , was 
randomly chosen from a predefined distribution. This continuous variable forced the kernel 
to be recomputed at every iteration, accommodating the changes in exchange coupling. 

However, in DEER experiments, where the frequency of oscillation measured is the sum 
of dipolar and exchange coupling, these parameters are statistically indistinguishable. This 
means that the inclusion of exchange coupling extends the data generation time unnecessarily 
without adding meaningful information. In fact, it introduces an irreducible error in the 
predicted distance distribution. 

We can eliminate the exchange coupling to streamline the data generation and precompute 
a single kernel matrix for a fixed time and distance grid. The kernel depends not on time 
and distance separately but on their ratio. This approach allows us to use the same kernel 
for different time grids by simply rescaling the distance grid. Whenever we encounter a new 
time grid, we can apply the same kernel and adjust the distance grid to preserve the ratio. 
This modification dramatically enhances the efficiency of the data generation process, better 
suiting the training needs of DEERnet 2.0. 

4.4.3 Performance Evaluation 
Apart from the exclusion of the exchange term, the parameters for generating the training 
database in DEERnet 2.0 closely mirror those used in DEERnet 1.0. The training algorithm 
parameters for DEERnet 2.0 were set to the default values as specified in MATLAB R2021b. 

To evaluate the effectiveness of the network architecture, we trained six groups of 32 
networks each, divided into two sets based on the type of activation functions used. The 
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first three groups utilised sigmoidal activation functions, similar to DEERnet 1.0. Within 
this set, one group employed the logistic sigmoid function without batch normalisation or 
output normalisation. The second group used the logistic sigmoid function along with batch 
normalisation, and the third group combined the logistic sigmoid function with both batch 
normalisation and output renormalisation. The second set of three groups mirrored the first 
but replaced the sigmoidal activation functions with the non-saturating softplus activation 
function. 

Each network had five fully connected layers, consistent with DEERnet 1.0, and was 
trained online until convergence with a mini-batch size of 4096. 
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Figure 4.5: Architecture selection statistics for DEERnet 2.0. Incorporating non-saturating activa-
tion functions, batch normalisation, and output renormalisation layers were all found to improve 
performance over a test set (left). For the optimal architecture configuration, it was determined 
that employing 6-layer blocks strikes the ideal balance between predictive accuracy and training 
time (right). 

We assessed the performance of the six architectural variations using 64,000 previously 
unseen examples. The average prediction from the 32 networks in each set was used for 
statistical analysis. Figure 4.5 reveals that networks using softplus functions generally 
outperformed those using sigmoidal functions. Additionally, within each type of activation 
function, the inclusion of both batch normalisation and output renormalisation was found to 
improve the networks’ generalisation capabilities. 

For the optimal architecture – softplus activations with batch and output normalisation – 
we trained six additional ensembles with varying depths, from 2 to 8 layers. Our findings 
indicated that a six-layer configuration best balanced test performance and training time. 

We evaluated our six-layer network using a test set of six experimentally measured DEER 
traces, covering a broad spectrum of scenarios: 

1. DEER data from site pair 96/143 in the monomeric plant light-harvesting complex II 
(LHCII), representing narrow distance distributions that result in several observable 
oscillations in the time-domain data.20 

2. Site pair 3/34 in LHCII, illustrates cases where intrinsically disordered domains lead 
to very broad distance distributions.20 
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3. A short oligo-phenyleneethynylene, end-labelled with a rigid nitroxide label, showcasing 
the smallest width-to-distance ratio found in polymer science.21 

4. A very broad distribution observed in a [2]catenane spin-labelled on both intertwined 
macrocycles.22 

5. Decorated gold nanoparticles as an example where narrow and broad distance distribu-
tion peaks are simultaneously present.23 

6. A double labelled phenyleneethynylene molecule typical of the distribution encountered 
in large rigid organic molecules.24 

All primary data were pre-processed using DeerAnalysis. 25 The zero time of the dipolar 
oscillation and the signal phase, as automatically determined by DeerAnalysis, were accepted. 
To remove the “2+1” end artefact, which arises due to the overlap of pump and observe 
pulses in the excitation band, the last 400 ns of each trace were cut off. However, for sample 
3, where part of the end artefact was still visible, it was necessary to remove the last 800 ns. 

These processed data were then fed into DEERnet 2.0. We report the average prediction 
from the ensemble of 32 networks. DEERnet 2.0 requires a column vector containing the 
time axis, ranging from 0 to tmax in microseconds, and a corresponding column vector of 
DEER signal amplitudes. Internally, DEERnet 2.0 shifts and scales the signal to align with 
the network’s dynamic range. The signal is then resampled using a piecewise cubic Hermite 
interpolating polynomial, adjusting the number of points to match the number of nodes in 
the input layer. 

For a comparative analysis, the data were also fully processed using DeerAnalysis. This 
involved applying the default background fitting, assuming a homogeneous spatial distribution 
(n = 3). Subsequently, the L-curve was computed in all cases, and the default choice of the 
optimum regularisation parameter was accepted. This provided a baseline against which to 
compare the performance of DEERnet 2.0. 
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Figure 4.6: DEERnet 2.0 performance on sample I: A site pair V96C/I143C in the lumenal loop of 
a double mutant of LHCII. 

The results obtained from DEERnet for sample I are presented in fig. 4.6. A comparison 
with the Tikhonov regularisation method shows essentially no difference. Both approaches 
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successfully identified the major distances, although some degree of uncertainty was observed 
around the baseline in both cases. 
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Figure 4.7: DEERnet 2.0 performance on sample II: A site pair S3C/S34C in the N-terminal domain 
of a double mutant of the LHCII. 

In sample II, one label is positioned in the structured part of the N-terminal domain 
(residue 34), while the other is located near the N-terminus (residue 3), within a disordered 
region that extends to at least residue 12. This arrangement naturally leads to a broad 
distance distribution. Indeed, both the Tikhonov regularisation method and the neural 
networks consistently identified a broad distribution (fig. 4.7). 
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Figure 4.8: DEERnet 2.0 performance on sample III: End-labeled oligo(para-phenyleneethynylene)—a 
rigid linear molecule. 

For sample III, which exhibits a very narrow and skewed distribution, the Tikhonov 
method outperforms the neural networks, as depicted in fig. 4.8. Despite including skewed 
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distributions in the training database, the neural networks tend to predict a symmetric peak, 
albeit at the correct distance. On the other hand, the Tikhonov method accurately captures 
the skewed nature of the distribution. This skewness aligns with expectations for the rigid 
linker between the two labels in sample III, which behaves as a worm-like chain. The neural 
networks’ tendency to lose this skewness is likely due to an under-representation of such 
distributions in the training set. 
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Figure 4.9: DEERnet 2.0 performance on Sample IV: [2]catenane (a pair of large interlocked rings) 
with a nitroxide spin label on each ring 

In discussing broad distance distributions, the [2]catenane example (sample IV), featuring 
two interlocked rings, may represent an extreme case of how wide a distance distribution 
between a pair of nitroxide radicals can get. The original study of this sample provided 
statistical estimates of the distance distribution, but these were based on the approximate 
Pake transformation. This approach was subject to the subjective choice of distance-domain 
smoothing. A more objective comparison can be made with the current Tikhonov results, 
where the L-curve determines the regularisation parameter, as depicted in fig. 4.9. 

Both the Tikhonov method and DEERnet perform well in this case. However, the distance 
distribution predicted by the Tikhonov regularisation exhibits a minor spurious peak at the 
longer distance range, a feature not present in the predictions made by DEERnet. 
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Figure 4.10: DEERnet 2.0 performance on sample V: Pairs of nitroxide radicals tethered to the 
surface of gold nanoparticles, with the thiol tether attachment points diffusing on the surface of the 
nanoparticle. 

DEERnet showcases its most striking performance with sample V, which features a 
relatively narrow peak atop a very broad pedestal, as shown in fig. 4.10. In these complex 
scenarios, Tikhonov regularisation fails to provide effective solutions, with no points on the 
L-curve leading to a correct result. The accurate answer for this case is confirmed by fitting 
a parameterised model that matches the known parameters of the gold nanoparticles.15 

With overlapping broad and narrow peaks, the Tikhonov regularisation method faces 
a limitation: its parameter only alternates the solution between artificially broadening the 
narrow peak and causing an artificial split in the broad peak. DEERnet, on the other hand, 
proficiently manages this intricate situation. 
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Figure 4.11: DEERnet 2.0 performance on sample VI: A rigid molecular triangle labeled with 
nitroxide radicals on two out of three corners 
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4.5. Conclusions & Further Work 

For sample VI, the results obtained from Tikhonov regularisation and DEERnet align 
quite closely, except for a minor peak around 30 Å, which is present only in the distribution 
derived from Tikhonov regularisation. Both methods produce similar width and shape 
for the main peak. The significance of the minor peak near 30 Å remains uncertain, as 
molecular dynamics simulations for an isolated molecule at 298 K did not provide conclusive 
results.15 Consequently, in this case, the quality of the distance distributions generated by 
both Tikhonov regularisation and DEERnet should be considered comparable. 

4.5 Conclusions & Further Work 
In the ever-expanding landscape of deep learning research, where the number of papers being 
published yearly continues to soar into the thousands, it often feels like a race to construct 
the most extensive network. These architectural behemoths are often crafted through a 
combination of trial and error and sheer luck. 

Our focus here was on practical strategies to enhance efficiency and predictive accuracy 
in smaller networks. We aimed to address the input uncertainty introduced in DEERnet 1.0 
by avoiding downsampling through an increase in input dimensionality. By transitioning 
from batch training to a stochastic approach, we made this possible while maintaining 
training feasibility on consumer-grade hardware. Additionally, we carefully considered 
how architectural choices affect gradient dynamics during training, leading to a significant 
improvement in test set performance. 

The changes we’ve made in this chapter provide a solid foundation for building larger 
networks. Future work should aim to eliminate the need for input downsampling entirely by 
exploring recurrent neural network architectures capable of handling sequence inputs. 
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Chapter 5 

Uncertainty Quantification 

5.1 Introduction 
Double electron-electron resonance (DEER) has emerged as a powerful technique for studying 
distance distributions in biomacromolecules and materials at the nanoscale.1 While the 
distance distribution theoretically contains valuable structural information, its practical 
utility is often confined to the primary spin-spin distance. The precision of peak widths 
and shapes, which convey information about structural heterogeneity, is more uncertain 
due to their sensitivity to noise levels, regularisation degree, time-domain truncation, and 
background correction.2 

Several approaches have been proposed for uncertainty estimation, including validation 
of the regularisation model3,4, iterative scanning of the χ2-surface5,6, covariance matrices6,7, 
and Bayesian inference.2,8 . However, until recently9 , the reporting of uncertainty estimates 
in the literature remained scarce.2 

The advent of artificial intelligence and its successful integration into DEER data pro-
cessing has reignited interest in uncertainty quantification due to the inherent black-box 
nature of neural networks. While neural networks have demonstrated remarkable proficiency 
in predicting distance distributions, their opacity in the decision-making process has raised 
valid concerns regarding the reliability and generalisation of their predictions.10 

Throughout the historical evolution of neural networks as tools for function approxima-
tion, the focus has traditionally leaned towards predictive accuracy rather than precision. 
Numerous literature reviews have underscored the absence of uncertainty intervals as a 
notable drawback in the application of neural network methods.11,12 

Neural networks, nonetheless, possess a clear statistical interpretation as non-linear 
regression functions. From a statistical standpoint, the challenges of (i) defining a suitable 
network architecture and (ii) training the network effectively using a training set are directly 
analogous to (i) specifying a regression model and (ii) estimating the model parameters 
based on a dataset. It is within this framework that we can establish frequentist uncertainty 
intervals for a neural network model.13 

5.2 Statistical Learning Theory 
A statistical model is a mathematical representation of a real-world phenomenon.14 The “true” 
model, or data-generating function, is the (hypothetical) statistical model that describes how 
one could generate the target variables from the input variables. For the inverse problem 
in DEER, this is the many-to-one function, f(·), that maps a (noisy) DEER trace, v, to a 
noiseless distance distribution p: 
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5.3. Three Sources of Uncertainty 

f(v) = p (5.1) 

The model is valid for intervals of v where the probability density function (PDF), P (v), 
is non-zero. 

The goal of regression analysis is to approximate the data-generating function with an 
estimated model or regression function, f̂(v, w), where w is the vector of model parameters. A 
sufficiently flexible model should be capable of (approximately) recreating the data-generating 
function for an optimal choice of parameters, wj: 

f(v) ≈ f̂(v, w ∗ ) (5.2) 

After defining the regression function’s parametric form, training aims to select the 
∗parameter set, w , that minimises a loss function, `(·), across the entire data distribution 

P (v, p): Z 
∗ w = arg min `(p, f̂(v, w))dP (v, p) (5.3) 

This objective, known as the expected risk, defines the expected risk minimisation problem. 
Practically, we don’t have direct access to P (v, p), but to a training set of independent 

sample points drawn from this distribution. Thus, we approximate the expected risk 
minimisation by empirical risk minimisation problem: 

NX 
∗ wemp = arg min `(pi, f̂(vi, w)) (5.4) 

i=1 

This approximation approaches eq. (5.3) as the size of the training set, N , increases. 
∗However, the global minimiser of the empirical risk, wemp, may not be reachable from our 

0initial guess, w , or converge within a finite time limit, tmax. Therefore, the actual outcome 
of our optimisation is: (

NX 0w(t = 0) = w 
ŵ emp = arg min `(pi, f̂(vi, w)) s.t. (5.5) 

i=1 t ≤ tmax 

How well our estimated model f̂(v, ŵ emp) approximates the true model f(v) is the concern 
of uncertainty analysis. 

5.3 Three Sources of Uncertainty 
We define the excess error, ε, as the expected difference between the targets, and our model’s 
predictions: 

ε = E[f(v) − f̂(v, ŵ emp)] (5.6) 

This measure quantifies the extent to which the approximations and simplifications made in 
eqs. (5.1) to (5.5) impact the accuracy of our predictions. It may be decomposed as a sum of 
three terms: 

E[f(v) − f̂(v, ŵ emp)] = 
∗ ∗E[f(v) − f̂(v, w ∗ )] + E[f̂(v, w ∗ ) − f̂(v, w )] + E[f̂(v, w ) − f̂(v, ŵ emp)] (5.7)emp emp| {z } | {z } | {z } 

εmodel εsamp εalg 
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Here: 

1. The model misspecification error, εmodel, measures how closely our network architecture 
can approximate the data-generating function. It can be reduced by choosing a larger 
architecture with greater flexibility. 

2. The sampling error, εsamp, measures the effect of minimising the empirical risk instead 
of the expected risk. It can be reduced by choosing a less flexible architecture, or by 
increasing the size of the training set. 

3. The algorithmic error, εalg, measures the impact of the approximate optimisation on 
the empirical risk. It can sometimes be reduced by training for longer periods, or by 
choosing a less flexible architecture. 

I will describe each of these three terms in detail in the subsequent three subsections. 

5.3.1 Model Misspecification Error 
Model misspecification error occurs when the estimated model’s functional form fundamentally 
cannot replicate the true model, no matter the chosen parameter values: 

f̂(v, w) =6 f(v) ∀w (5.8) 

We say the model is underfitting the data when it is too simple to capture the true model’s 
inherent complexity. 

x1 

1 

w0 + w1x 

Figure 5.1: A neural network representation of simple linear regression. It features one input node and 
one output node with a linear (identity) activation function, including a bias term. This architecture 
effectively models the relationship between a single independent variable and a dependent variable 
in a linear manner. 

For example, imagine a neural network with just one input node and one output node 
using a linear (identity) activation function, as shown in fig. 5.1. This setup effectively 
represents a simple linear regression function: � �� � 

ŷ = 1 x
w0 = w0 + w1x (5.9)
w1 

Thus, the learning problem becomes finding the solution to: � �� � 
1 x w0 = y (5.10)

w1 

where x is a column vector of inputs, and y is a column vector of targets. 
If our targets are quadratic in x, then our system of equations is inconsistent, and 

eq. (5.10) has no exact solution: 

2 w0 + w1x =6 c0 + c1x + c2x ∀w0, w1 (5.11)| {z } | {z } y 
ŷ 

In this case, even our best predictions will have an excess error of at least: 

57 



5.3. Three Sources of Uncertainty 

2ε ≥ c2x = c0 + c1x + c2x 2 − c0 − c1x (5.12)| {z } 
∗ y−y 

To reduce this error, we must increase the capacity of the estimated model. 

5.3.2 Sampling Error 
Sampling error describes the variability in estimates or model outcomes due to using different 
subsets of data in training. In stochastic environments with noisy target variables, sampling 
error arises because a particular data sample might not fully represent the population defined 
by P (x, y). In stochastic linear regression, inherent noise in the target variables means 
any two points can define slightly different lines. As a result, regression lines derived from 
different samples can vary, demonstrating sampling error. 

In the deterministic regression setting we are considering, target variables have no noise, 
altering how we perceive sampling error. In this case, it’s not about variability from noise 
in the targets but about the risk of the model overfitting the data. In deterministic linear 
regression, any two points consistently define the same line. The issue arises when the model 
is overly complex or insufficient data is available for fitting. This over-parameterisation can 
result in multiple precise fits to the training data but poor generalisation to new data. 

x1 

x2 

x3 

P3 
i=1 wixi 

Figure 5.2: A neural network designed for linear regression with multiple inputs. It consists of three 
input nodes, representing three independent variables, and one output node equipped with a linear 
(identity) activation function. Notably, this architecture does not include a bias term, focusing solely 
on the linear relationship among the multiple input variables and the single output variable. 

Take, for example, a basic single-layer network with three input nodes and one output 
node using a linear activation function, without bias (fig. 5.2). The target value is always 
double the first feature’s value: 

y = 2x1 (5.13) 
With just two training cases, the task is to solve: ⎡ ⎤� � � �w11 1 0 2⎣w2

⎦ = (5.14)
2 0 1 4 

w3 � �t∗The correct parameters, based on the true model, are w = 2 0 0 op. While this 
incurs zero error on training data, the limited number of training points compared to the 
number of parameters means there are infinitely many solutions with zero error. For example,� �t 
ŵ = 0 2 4 op. also fits the training data perfectly but performs poorly on unseen data, 
as it doesn’t reflect the true model. 

To mitigate overfitting, one can either decrease the estimated model’s complexity or 
increase the training set size. In linear cases, it’s feasible to determine the number of data 
points needed to fit the model uniquely. However, it’s unclear how many data points prevent 
overfitting in non-linear scenarios. Generally, having ten times as many data points as free 
parameters is a good rule of thumb. 
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5.3.3 Algorithmic Error 

Algorithmic error arises when our chosen numerical optimisation algorithm cannot locate the 
minimum of the empirical risk minimisation problem: 

∗ f̂(v, ŵ emp) 6= f̂(v, wemp) (5.15) 

This error may occur simply because we don’t give the algorithm enough time to converge. 
It can also stem from the algorithm’s inherent limitations. 

Take gradient descent as an example. This algorithm progresses toward the minimum of 
0a basin based on the initial parameter guess, w . If this basin doesn’t encompass the global 

minimum, the algorithm will fail to reach it. 
Stochastic algorithms like mini-batch gradient descent offer both challenges and oppor-

tunities here. Their inherent randomness can help escape local minima and possibly move 
toward a basin closer to the true minimum. However, because a mini-batch gradient is just an 
approximation of the true gradient, accurately finding the minimum of any basin necessitates 
a carefully managed learning rate schedule and gradually increasing the mini-batch size to 
enhance gradient estimates. 

The model’s complexity further complicates this scenario. An overly complex or overfitted 
model often has multiple minima that may fit the training data well but do not generalise 
effectively to new data. The presence of numerous minima makes it more challenging for the 
optimisation algorithm to identify the one that offers the best generalisation performance. 

The set of possible hyperparameters (including the initial guess) represents a range of 
distinct, often divergent, paths across the optimisation landscape. These paths lead to 
different stationary points, yielding varied estimates for the parameter vector. 

Reducing algorithmic uncertainty is possible through higher-order optimisation methods, 
though they often have prohibitive computational costs. Alternatively, simplifying the model 
complexity can make the optimisation landscape more navigable. 

5.4 Avoiding Overfitting 

5.4.1 Bias-Variance Trade-Off 

The three sources of error identified in neural network training highlight a fundamental 
statistical dilemma known as the bias-variance trade-off. Increasing the complexity of the 
neural network model can reduce model misspecification error but may lead to higher sampling 
and algorithmic errors. 

If we could train an infinite number of neural networks on randomly selected subsets of 
the training data, each with different algorithmic hyperparameters, the resulting predictions, 
f̂(v, ŵ emp), would be distributed about the mean, E[f̂(v, ŵ emp)], with variance: 

E[{f̂(v, ŵ emp) − E[f̂(v, ŵ )]}2] (5.16) 

However, E[f̂(v, ŵ emp)] is not necessarily equal to f(v), the difference: 

E[f̂(v, ŵ emp)] − f(v) (5.17) 

being the bias. 
The average proximity of f̂(v, ŵ emp) to f(v) is related to the bias and variance by the 

expression: 
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5.4. Avoiding Overfitting 

E[{f̂(v, ŵ emp) − f(v)}2] = 

{E[f̂(v, ŵ emp)] − f(v)}2 + E[{f̂(v, ŵ emp) − E[f̂(v, ŵ emp)]}2] (5.18)| {z } | {z } 
{bias}2 variance 

Testing the model on different data subsets allows us to measure variance. However, 
quantifying bias accurately is philosophically challenging because we don’t have direct access 
to the true model. Luckily, many neural network architectures show little bias due to their 
high flexibility. Therefore, our main objective should be to lower variance by preventing 
overfitting. 

5.4.2 Early Stopping 
In typical optimisation models, gradient-descent-based methods are applied until convergence. 
However, reaching convergence on the training data doesn’t guarantee optimal performance 
on out-of-sample test data. The final iterations of gradient descent often lead to overfitting, 
capturing training data nuances that may not generalise well to the test data.15 

Early stopping is a natural solution. A portion of the training data is set aside as 
the validation set. The training algorithm operates solely on the training set, excluding 
the validation set. Simultaneously, the model’s error on the validation set is continuously 
monitored. When the validation set error starts to increase, signalling a potential overfitting, 
further training is halted.15 
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Figure 5.3: The left panel shows a monotonically decreasing training curve, while the validation 
curve initially decreases but then increases due to overfitting. The right panel depicts a noisy 
validation curve with multiple local minima, highlighting the difficulty in determining the optimal 
stopping point for training. 

In most introductory papers on supervised neural networks, one can find a diagram like 
the one shown in the left panel of fig. 5.3. It is claimed to show the evolution of the error 
over time on the training and validation sets. Given this behaviour, it is clear how to do 
early stopping using validation16: 

1. Divide the training data into a training set and a validation set, e.g. in a 2-to-1 
proportion. 
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2. Train exclusively on the training set, periodically evaluating the error on the validation 
set. 

3. Halt training when the error on the validation set exceeds the previously recorded 
value. 

4. Utilise the weights the network had in the preceding step as the result of the training 
run. 

In practice, validation error curves often exhibit more complexity than the idealised 
case, as shown in the right panel of fig. 5.3. They may feature noise and multiple local 
minima. Stopping training at the first sign of a rise in validation error risks missing deeper 
minima associated with superior generalisation capabilities. Therefore, a more sophisticated 
stopping criterion is necessary to make informed decisions about when to conclude the 
training process.16 

One of the simplest stopping criteria among several plausible options is to halt the training 
process when the validation error increases in s consecutive iterations. This criterion operates 
on the premise that persistent increases in the validation error are likely to signal the onset 
of final overfitting.16 

5.4.3 Weight Decay 
While early stopping provides a quick and intuitive approach to prevent overfitting, challenges 
in selecting the optimal stopping criterion have prompted the exploration of alternative 
strategies. Explicit regularisation methods offer a systematic way to address overfitting by 
augmenting the loss function with a penalty term that discourages the emergence of large 
weights in the model.17 

By penalising large weights, the regularisation term promotes sparsity in the model, 
effectively moderating the risk of overfitting by restraining the growth of parameter values. 
An effective choice for this regularisation term is the L1-norm15: 

BX 
2

`(w) = kyi − ŷik + λ kwk (5.19)2 1 
i=1 

where λ is the user-specified regularisation parameter that alters the strength of the penalty. 
Then, for any given weight in the neural network, wi, the gradient update step is given by15: 

wi ← wi − η 
∂` − λη sign(wi) (5.20)
∂wi 

The additional term in the update step, −λη sign(wi), introduces a regularisation pressure 
that is proportional to the sign of the current weight. The effect of this term is to drive the 
weights towards zero during each iteration of the optimisation process.15 

However, while L1-regularisation is adept at inducing sparsity, it may come at the cost of 
predictive accuracy. To strike a balance, a softer penalty is often applied in the form of the 
L2-norm: 

BX 
2 2

`(w) = kyi − ŷik + λ kwk2 2 (5.21) 
i=1 

with update step15: 

∂` 
wi ← wi − η − ληwi

∂wi 
(5.22) 
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5.5. Confidence Intervals 

Unlike L1-regularisation, the L2-regularisation term is proportional to the magnitude of 
the weight rather than just its sign. This difference results in a gentler regularisation effect 
during the weight update step. The penalty term tends to shrink the weight towards zero, 
but unlike L1-regularisation, it doesn’t encourage the weights to reach precisely zero unless 
the regularisation strength is very high. Consequently, L2-regularisation is often interpreted 
not as reducing the number of parameters but rather as reducing the search space for any 
given parameter.15 

While regularisation is better defined than early stopping, it initially comes with a more 
significant computational cost. The optimal regularisation parameter must be determined 
through cross-validation, where various choices for its value are evaluated based on their 
impact on the model’s performance over a validation set.17 

Regularisation does not necessarily replace early stopping; in fact, they are often employed 
in tandem for a complimentary effect.16 

5.5 Confidence Intervals 
For a desired degree of confidence (namely, for a given probability), a confidence interval is a 
prediction of the range of the output of a model where the actual value exists.18 In other 
words, we have to consider the probability, P (f(v)|f̂(v, ŵ emp), that the true model is f(v) 

19given our estimate is f̂(v, ŵ emp). 
To establish our confidence intervals, we assume that our neural network offers an unbiased 

estimate of the true model, f(v). That is, we assume that the distribution P (f(v)|f̂(v, ŵ) 
is centred around the estimate f̂(v, ŵ emp). While this assumption may not always hold in 
practice, it is generally accepted that the variance component of the excess error dominates 
the bias component, especially if early stopping and regularisation are applied.20 

Next, we need to estimate the variance of the distribution, P (f(v)|f̂(v, ŵ emp). However, 
we do not have direct access to this distribution, nor do we know the true model f(v). We 
can use ensembling to generate an estimate.20 
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Figure 5.4: Scatter plot of the performance metrics for an ensemble of networks trained on independent 
training sets, from different initial parameter guesses. Each circle represents an individual network 
in the ensemble, and the star is the performance of the bagged, or averaged, predictor. 
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We begin by generating B training sets, where each training set contains N input-output 
pairs. This is feasible because simulating DEER data is cost-effective, but if access to training 
data is limited, additional sets can be generated by resampling without replacement from 
the original data (bootstrapping).21 

(b)Using these training sets, we train a set of networks {f̂(v, ŵ emp}B from different random b=1 
initial parameter vectors. The predictions from these ensemble members are then averaged 
to form a bagged prediction20: 

BX 
¯ (b)f(v) = 

1 
f̂(v, ŵ ) (5.23)empB 

i=1 

Bagging high-variance predictors in this way can substantially improve their generalisation 
performance (fig. 5.4).20 

The ensemble outputs give us an empirical estimate of the distribution P (f̂(v|ŵ emp), f(v)), 
which is the “inverse” of the distribution P (f(v)|f̂(v, ŵ emp)). This empirical estimate is 

¯denoted P (f̂(v, ŵ emp)|f̄(v)), with f(v) replacing the inaccessible true model.20 

If we assume that P (f(v)|f̂(v, ŵ emp) is Gaussian, we also assume that its inverse is 
Gaussian. Therefore any estimates of the variance for P (f(v)|f̂(v, ŵ emp) can be used 
as estimates of the variance for P (f̂(v, ŵ emp)|f(v). The variance of this distribution is 
approximated by calculating the variance across the ensemble outputs: 

BX1 (b)σ2
¯(v) = (f̂(v, ŵ emp) − f̄(v)) (5.24)f B − 1 

b=1 

This variance measure is used to construct standard Gaussian confidence intervals for 
bagged ensemble predictions: 

¯ ¯ ¯f(v) − t0.975σf̄ (v) ≤ f(v) ≤ f(v) + t0.975σf̄ (v) (5.25) 
where the t-statistic is computed with the number of degrees of freedom equal to the ensemble 
size, B. 
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Figure 5.5: A protoypical DEER trace (left), and the distance distribution predicted by an bagged 
ensemble of 32 networks (right). The grey area around the mean prediction is the 95% confidence 
interval generated from the estimated variance over the ensemble. 
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5.6. Prediction Intervals 

The variance estimate is likely to exhibit an upward bias in most predictions. This occurs 
because it more accurately reflects the variance of the distribution P (f(v)|f̂(v, ŵ emp) rather 
than P (f(v)|f̄(v)). In simpler terms, it measures the variance for an individual network 
prediction. Most ensemble techniques are designed to reduce prediction variance. Carney 
et al. have proposed a method that employs an ensemble of ensembles to correct this bias, 
but it significantly increases computational costs.20 Since we do not consider conservative 
confidence intervals undesirable, we choose not to use this more expensive technique. 

Figure 5.5 shows the average prediction and 95% confidence intervals for an example trace 
analyzed with DEERnet. Since the true model is deterministic, we anticipated low sampling 
error. Surprisingly, the narrowness of the observed intervals indicates that algorithmic 
uncertainty is also low, suggesting that the loss landscape is likely relatively convex. 

5.6 Prediction Intervals 
The confidence interval indicates how uncertain we are about the model parameters. If the 
estimated model is less robust to measurement noise than what we assume in the true model, 
input uncertainty can also affect the precision of the prediction. Published empirical evidence 
shows that the noise in a DEER trace follows an uncorrelated normal distribution with a 
mean of zero, expressed as2: 

e ∼ N (0, Cv) where Cv = diag(σ1, . . . , σd) (5.26) 
We can estimate this distribution by fitting residuals in the time domain or analysing the 

difference between the raw signal and a filtered version (e.g. by the Savitkzy-Golay method). 
To gain a comprehensive understanding of how input uncertainty affects predictions, we 

must propagate this distribution through the estimated model. However, the model’s non-
linearity may unpredictably alter the shape of the distribution. Since analytical propagation 
is only practical in a few straightforward scenarios, the ISO Guide to the Expression of 
Uncertainty in Measurement recommends using a first-order Taylor (linear) approximation 
to estimate the model22: 

¯ ¯f(v) ≈ f(v − e) + Je (5.27) 
Here, J is the Jacobian matrix. 
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Chapter 5. Uncertainty Quantification 

Figure 5.6: Jacobian of the network prediction in fig. 5.5. Its sparsity indicates that small perturba-
tions to the input will not lead to spurious peaks in the output. 

As a linear function preserves the symmetry of the Gaussian distribution, we only need 
to propagate the variance to be able to define the distribution fully23: 

σ2 = diag(JCvJ
>) (5.28)e 

Since the network is differentiable, it would be feasible to derive an analytical expression for 
the Jacobian from matrix calculus. This is especially convenient if an automatic differentiation 
routine is accessible within the chosen deep learning framework. Alternatively, the Jacobian 
may be computed column-wise through a central difference approximation: 

√ √¯ ¯ ∂p̂ f(v + eps · ui) − f(v − eps · ui) 
= √ (5.29) 

vi 2 · eps 

Here, ui is the unit vector in the ith dimension, and eps represents machine precision. 
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Figure 5.7: A protoypical DEER trace (left), and the distance distribution predicted by an bagged 
ensemble of 32 networks (right). The lighter grey area around the mean prediction is the 95% 
confidence interval generated from the estimated variance over the ensemble. The darker grey 
prediction interval extends it by linear propagation of input uncertainty. 

As weight uncertainty and input uncertainty are statistically independent, we derive a 
prediction interval as: q q

¯ σ2 ¯ ¯ σ2f(v) − t0.975 (v) + σ2(v) ≤ f(v) ≤ f(v) + t0.975 (v) + σ2(v) (5.30)¯ e ¯ ef f 

Figure 5.6 illustrates the finite-difference Jacobian for the input scenario depicted in 
Figure 5. The Jacobian is approximately zero everywhere except around the predicted peak. 
Therefore, we may reasonably infer that the prediction is stable and that small changes in 
the noise line do not cause the emergence of spurious peaks in the predicted distribution. 
This is further illustrated by the narrow prediction intervals present in fig. 5.7. 
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5.7 Conclusions & Further Work 
The intersection of a black box estimator with an ill-posed inverse problem inevitably raises 
questions about the reliability of its predictions, as traditional deep learning methods often 
struggle to adequately capture model uncertainty. In this study, we have undertaken a 
comprehensive examination of the myriad sources of uncertainty within DEERnet. Further-
more, we have explored strategies to effectively confront and quantify these uncertainties, 
exemplified by the derivation of frequentist uncertainty intervals. 

Nevertheless, the computationally intensive nature of the ensemble approach underscores 
the need for future investigations to prioritize the exploration of more scalable alternatives, 
such as dropout. 24 By randomly deactivating a fixed percentage of node activations during 
training, dropout layers create an ensemble of distinct neural network architectures without 
the need for retraining. However, questions persist regarding the statistical robustness of 
this approach. Hence, forthcoming research should rigorously evaluate the accuracy and 
dependability of dropout by comparing it to the ensemble method outlined in this study. If 
dropout proves successful, it may pave the way for more economical and efficient methods of 
estimating uncertainty. 
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Chapter 6 

Out-of-Distribution Detection 

6.1 Introduction 
Neural networks approximate the conditional probability distribution P (y|x) using a parame-
terised model P (y|x, w), where x and y are the inputs and output vectors, respectively. The 
network determines the optimal parameters ŵ by maximising the likelihood of the observed 
data1: 

ŵ = arg max P (y1, . . . , yN |x1, . . . , xN , w) (6.1) 

When faced with a new test example, the network outputs the expected value of the model 
based on the optimised parameters ŵ 2: 

∗ ˆŷ = E[P (y|x = x , w)] (6.2) 
∗Extrapolation error occurs when a network is provided with a test input x outside the 

support of the true distribution P (y|x). In such cases, the network deals with data types 
not seen during training. For example, a neural network trained on images of cats and dogs 
will experience an extrapolation error if it receives an image of a car, as cars fall outside its 
trained animal image distribution.3 

∗Generalisation error occurs when the test input x resides within the support of the true 
distribution P (y|x), but the learned model fails to make accurate predictions. Assuming 
the network architecture is well specified, this usually points to an under-representation of 
certain example types in the training set and can, therefore, be considered as occurring when 

∗the example x falls outside of the support of P (y|x, ŵ). An example is the misclassification 
of a rare dog breed by the animal classification network; though dogs are within the training 
distribution, the model doesn’t adequately represent this particular variation. 

Since examples beyond the support of P (y|x) are also beyond the support of P (y|x, ŵ), 
we categorise both types of data as out-of-distribution (OOD). Identifying such test examples 

4is the task of out-of-distribution detection. 
OOD detection is crucial for ensuring the reliability of machine learning models. This 

becomes especially important in safety-critical systems like autonomous driving, where the 
system must recognise and appropriately respond to scenes or objects outside its training 
experience, such as by alerting a human operator. Even in less critical applications, OOD 
detection significantly enhances the reliability and trustworthiness of model predictions.4 

Most existing OOD detection methods cater to classification tasks5 , where classifiers 
assign softmax probability scores to each predefined class. These scores reflect the probability 
of an input belonging to each class. When all softmax probabilities are low, it often indicates 
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that the data is out-of-distribution, signalling the model’s uncertainty in classifying it into 
any known category.6 

However, machine learning models often misclassify test samples from unknown classes, 
assigning them to familiar categories with high confidence. This overconfidence, known as 
“arrogance”, is a significant hurdle for effective OOD detection.7 

Arrogance also affects regression tasks. Traditional OOD detection methods in regression 
use ensemble techniques to create confidence intervals, assuming that out-of-distribution 
examples will result in wider intervals. Yet, the model’s arrogance can lead to deceptively 
narrow confidence intervals for out-of-distribution data.5 

To tackle these challenges, developers have created reconstruction-based methods. In this 
approach, an encoder compresses the input data into a compact representation, and then a 
decoder works to reconstruct the original input from this compressed format. When trained 
on in-distribution (ID) data, this system tends to reconstruct ID samples accurately while 
struggling to do the same for OOD samples. By evaluating how well the model reconstructs 
new data, these methods effectively pinpoint out-of-distribution examples.8 

When an accurate model for the training data is already established, using an encoder-
decoder for out-of-distribution detection becomes unnecessary. In this scenario, a more 
pragmatic approach involves fitting the test example to the existing model and assessing the 
goodness of fit. This evaluation serves as a basis for classifying the data as in-distribution or 
out-of-distribution. This chapter will describe how we applied this methodology to DEERnet. 

6.2 Retrofitting the Input 
In an earlier chapter, we developed a model for the time-domain DEER trace, which we 
revisit here briefly: 

v = (1 − λ + λKp) b + e (6.3) 

In this model, p represents the distance distribution, and we derive the trace, v, by 
applying the dipolar kernel matrix, K. We denote the scalar modulation depth parameter 
as λ, and the Gaussian measurement noise as e ∼ N (0, σ2I). The background factor, b, is 
modelled as the exponential decay: 

(b)i = b(ti) = exp(−(kt)d/3) (6.4) 

where k is the decay rate ,and d represents the fractal dimension. DEERnet extracts p from 
v. 

∗For a given test input v , we aim to reconstruct the deterministic component of eq. (6.3) 
using the network’s prediction p̂. Since the forward problem is stable, fitting this model is 
feasible and can be expressed as a numerical optimisation problem: 

2ˆ{v̂0, λ, k,ˆ d̂} = arg min kv ∗ − v0(1 − λ + λKp) bk (6.5)2 

∗If v closely resembles the input examples seen during training and the network has 
effectively generalised to such inputs, the reconstruction error: 

2
� = kv ∗ − v0(1 − λ + λKp) bk (6.6)2 

will be low, indicating that the example is in-distribution. Conversely, a high reconstruction 
error suggests that the data does not conform to the input model or that the network’s 
prediction is poor due to a failure in generalising to this type of input. In such cases, the 
example should be labelled as out-of-distribution. 
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Figure 6.1: An example showcasing the retrofitting procedure for an in-distribution DEER trace. 
The neural network generates a prediction (right) for the DEER trace (left), and subsequently, the 
well-posed and known forward model is applied to this predicted distance distribution. Through 
a least squares fit of background parameters and modulation depth, the input data is accurately 
recovered. 

Figure 6.1 shows the outcome of this fitting procedure for an input taken from the training 
set. The network confidently predicts the result, and the time-domain model fits the data 
well. Therefore, we can classify this input as in-distribution. 
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Figure 6.2: Residual plot for the retrofit data in fig. 6.1. The residuals are normally distributed 
around zero, indicating that the estimate of the noiseless trace is unbiased. 

We do not attempt to fit the input data’s stochastic component; therefore, a level of misfit 
is to be expected. However, the residuals are approximately normally distributed about a 
zero mean (fig. 6.2). This is consistent with the noise model, e, used to generate the trace. 
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6.3 Extrapolation Error 

Figure 6.3 shows an example of an out-of-distribution test case: an arbitrary sine wave. This 
instance demonstrates DEERnet’s arrogance. The network confidently predicts a peak at 
the longer edge, and the confidence intervals suggest that the prediction should be trusted. 

0 0.5 1 1.5 2
Time / μs

-1

-0.5

0

0.5

1

1.5

2

2.5

A
m

pl
tiu

de

Input Data

Experimental
7 Fit
'2< Interval

10 20 30 40 50
Distance / Å

0

5

10

15

20

25

30

35

40

45

P
ro

ba
bi

lit
y

Prediction

7 Prediction
'2< Interval

Figure 6.3: An illustrative example of the retrofitting procedure using an out-of-distribution input, 
represented by a sine wave (left). While the network generates a prediction (right), applying the 
known forward model fails to accurately reconstruct the input data 

However, this confidence is misleading, as an accurate reconstruction of the wave from 
the network’s prediction is impossible. A visual inspection of the retrofitted time-domain 
signal clearly shows that this test case is out-of-distribution. 

6.4 Near Extrapolation Error 

The difficulty of the OOD detection tasks depends on how semantically close the outliers 
are to the inliers.9 Winkens et al. differentiate between near-OOD tasks, which are more 
challenging, and far-OOD tasks, which are comparatively more straightforward.10 

For example, consider a model trained to distinguish between cats and dogs. In this case, 
identifying handwritten digits as outliers represents a far-OOD task, which is relatively easy 
due to the clear distinction from the trained categories. Conversely, for the same model, 
detecting images of wolves poses a near-OOD task. This task is more difficult because wolves 
are semantically similar to the classes (cats and dogs) the model is trained on, making the 
differentiation subtler and more complex. 

For DEERnet, identifying a background factor without dipolar modulations can be seen 
as a near-OOD challenge. DEERnet was not trained to extract distance distributions from 
signals where such distributions are absent. However, since the background factor is a 
component of the overall trace, it inherently shares semantic similarities with the data on 
which DEERnet was trained. 
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Figure 6.4: An example of the retrofitting procedure applied to a background factor with no dipolar 
modulations. As the least squares fit of the modulation depth parameter was unconstrained, the 
background factor was perfectly recovered from the incorrect prediction by setting the modulation 
depth parameter to zero. 

Figure 6.4 shows the outcome of the retrofitting procedure applied to a background factor. 
Since we did not impose any constraints on our model parameters, the optimisation managed 
to achieve a good fit. It accomplished this by setting the modulation depth to zero and 
eliminating the dipolar modulations that the predicted distance distribution would typically 
introduce. 
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Figure 6.5: An example of the retrofitting procedure applied to a background factor with no dipolar 
modulations. In the fitting procedure, a lower limit of 5% was placed on the modulation depth. 

When we set a constraint on the modulation depth to a minimum value of 1% (in line 
with the training set), the optimisation process naturally minimised this value. However, 
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6.5. Generalisation Error 

this constraint led to a marginally worse fit (fig. 6.5). This outcome, though subtle, indicates 
that the background factor is, in fact, out-of-distribution. 

6.5 Generalisation Error 

Detecting when the network fails to generalise is both challenging and essential. The inputs 
involved in such cases are semantically similar to the training data, making this a near OOD 
detection task. 

We create a separate test set distinct from the training inputs to identify such cases. 
Within this test set, we specifically focus on those cases where the network’s predictive 
accuracy is subpar. 
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Figure 6.6: An illustrative instance showcasing the utilisation of the retrofitting procedure to identify 
generalisation errors. The expected outcome was the network accurately recovering the genuine 
trimodal distribution; however, it struggled to generalise effectively to inputs of this nature. The 
observed bias in the retrofit input data serves as a indicator of this limitation. 

An illustrative example of a poor prediction by the network is shown in fig. 6.6. Here, the 
true distribution is trimodal and is accurately captured by Tikhonov regularisation. However, 
the neural network’s prediction tends to over-smooth the data, resulting in a single peak 
instead of the true trimodal form. 

The error in the retrofit time-domain signal is subtle and could easily go unnoticed in 
a production environment. Therefore, we must actively identify such instances and restart 
training with a more representative training set. 

6.6 Transfer Learning 

We use transfer learning to quickly improve DEERnet’s predictive accuracy on examples 
that show generalisation error. This technique updates a model’s parameters starting from a 
previously trained model rather than training from scratch. This method allows for rapid 
enhancements in the model’s performance.11 
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Figure 6.7: Transfer learning was employed to enhance the network’s capacity to generalise when 
presented with inputs akin to those depicted in fig. 6.6. The effectiveness of this strategy is 
demonstrated by the improved accuracy in the reconstructed distance distribution and its subsequent 
alignment with the input data. 

To enhance DEERnet’s accuracy on the trimodal distribution shown in fig. 6.6, we 
modified the data generation function by adding a linear bias. This bias aimed to better 
capture narrow peaks. We then continued training the model until it converged. Figure 6.7 
displays the updated prediction, which shows a marked improvement in resolution. 

Importantly, when we evaluated both the original and the updated models on an unbiased 
test set, their performance remained consistent. This consistency suggests that our update 
did not negatively impact the model’s generalisation ability. As a result, only the updated 
model needs to be maintained, as it successfully incorporates the improvements without 
compromising overall performance. 

6.7 Automating Detection 

Adding an automated system to DEERnet that notifies users of potential out-of-distribution 
(OOD) inputs would benefit the user experience. Under the assumption that in-distribution 
data, on average, exhibits a lower reconstruction error than OOD data, a simple solution 
involves establishing a threshold, λ, on the reconstruction error, �. If � > λ, we classify the 
input as out-of-distribution. Conversely, if � ≤ λ, we categorise it as in-distribution. 
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Figure 6.8: Left: The distribution of reconstruction errors obtained from retrofitting a library 
containing in-distribution DEER traces and out-of-distribution background traces. Right: A 
Receiver Operating Characteristic (ROC) plot illustrating the trade-off between false positives 
and true positives when utilising the reconstruction errors as thresholds to distinguish between 
in-distribution and out-of-distribution data. 

We generate two test sets to set this threshold: one comprising in-distribution (ID) data 
and another containing out-of-distribution (OOD) background factors. Figure 6.8 displays 
the observed distribution of reconstruction errors across these two sets. Identifying the 
background factor as an anomaly falls under the near-OOD detection heading, so these 
distributions overlap. 

Our objective is to determine the dividing line, λ, that most effectively separates these 
distributions. The ideal threshold should simultaneously maximise the number of OOD 
examples correctly identified as OOD (the true positive rate) and minimise the number of ID 
examples incorrectly identified as OOD (the false positive rate). 

We can visualise this by plotting the true positive rate against the false positive rate for 
a range of potential threshold values. This plot is known as a receiver operator characteristic 
(ROC) curve, and the optimal threshold value is found at its top left point (fig. 6.8, right).12 

A significant limitation of this method is that the ideal threshold determined for a specific 
OOD test case, like background factors, may not be suitable for different types of OOD 
data. Given that the range of possible OOD scenarios is virtually limitless, it’s impractical 
to account for every potential OOD instance. Therefore, although the threshold can serve 
as a valuable early warning system, it should be considered context-specific. It offers the 
most effective separation for the particular type of OOD test data being examined, but its 
applicability may be limited beyond that specific context. 

6.8 Training RIDMEnet 
In our final case study on out-of-distribution detection with DEERnet, we examine data from 
the relaxation induced dipolar modulation enhancement (RIDME) experiment.13 

Like DEER, we model the RIDME trace as a discretised Fredholm integral equation. 
Despite RIDME being less extensively studied than DEER, the DEER kernel seems to be a 
suitable approximation for the RIDME kernel. A notable difference, however, is found in the 
background factor. While DEER features a monotonically decaying background, RIDME’s 
background factor is expressed differently14 , and may be non-monotonic15: 
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b(t) = exp(−a1t − a2t2) (6.7) 
In this expression, a1 and a2 are parameters dependent on the various time delays present 

in the RIDME pulse sequence. As long as eq. (6.7) is used for prior background correction, 
RIDME data can be analysed using software packages originally created for DEER data 
analysis. As far as we know, there are no specialised tools exclusively for RIDME data 
analysis. 
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Figure 6.9: The retrofitting procedure applied to RIDME data. In this case, the non-monotonic 
decay of the RIDME background factor made the poor fit easy to spot. 

Considering this, it’s plausible that a user might use DEERnet for RIDME data analysis. 
Figure 6.9 shows how DEERnet performs when applied to a simulated RIDME trace. In this 
case, DEERnet interprets the inherent curvature of the RIDME background factor as a slow 
oscillation, resulting in a misleading peak at the long edge. In a testing scenario where the 
ground truth isn’t known, users might not question the accuracy of this prediction, especially 
when only considering the provided confidence intervals. However, the issue becomes clear 
when we retrofit the time-domain trace, revealing the prediction’s inaccuracy (fig. 6.10). 
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Figure 6.10: The distribution of reconstruction errors obtained from retrofitting a library containing 
in-distribution DEER traces and out-of-distribution RIDME traces. Right: A Receiver Operating 
Characteristic (ROC) plot illustrating the trade-off between false positives and true positives when 
utilising the reconstruction errors as thresholds to distinguish between in-distribution and out-of-
distribution data. 

In a broader range of test cases, the distribution of reconstruction errors for DEER 
and RIDME data shows considerable overlap, reflecting this detection task’s near out-of-
distribution (OOD) nature. Consequently, we cannot expect to consistently and accurately 
identify all OOD instances. 

Furthermore, a diagonal trend is observed when we derive a receiver operating charac-
teristic (ROC) curve for these test cases. This pattern suggests that using reconstruction 
error as a metric to distinguish between DEER and RIDME data is no more effective than a 
random guess. 

Recognising the shortcomings of existing methods and the necessity for a specialised 
tool to analyse RIDME data, we trained a neural network specifically for this purpose. We 
followed the same training database generation and optimisation process as DEERnet, with 
the key modification being the substitution of the background factor with a RIDME-specific 
background. The selection of the parameters a1 and a2 is described below. 

Based on practical experience, we understand that a RIDME background factor, if initially 
steady or increasing, is expected to reach a turning point by tmax/5, where tmax represents 
the signal’s duration. To ensure an initial increase or steadiness, the background must meet 
the criterion b0(t = 0) = 0. The derivative of b(t) is: 

b0(t) = −a1 exp(−a1t − a2t2) − 2a2t exp(a1t − a2t2) (6.8) 

At t = 0, this simplifies to b0(0) = −a1, indicating that a1 must be less than or equal to 
zero for an initially increasing or steady background. To position the turning point we set 
b0(tmax/5) = 0 and solve for t, leading to tmax/5 = −a1/2a2. Thus, a reasonable initially 
increasing background factor is described by: 

a1 ≤ 0 (6.9) 
a2 ≥ −5a1/2tmax (6.10) 

Conversely, if the RIDME background function initially decreases, it should continue to 
decrease for the entire duration of the experiment. Applying similar logic and solving for 
b0(tmax) < 0, an appropriately decreasing background factor is characterised by: 

a1 < 0 (6.11) 
a2 > a1/2tmax (6.12) 

In practice, we draw a1 from a Gaussian distribution with a standard deviation of 3t−1 
max, 

−2and a2 from a half-Gaussian distribution with a standard deviation of 3t These standard max. 
deviations were not derived analytically, but were empirically determined to reproduce 
realistic background factors effectively. 
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Figure 6.11: Scatter plot of the performance metrics for an ensemble of networks trained on 
independent training sets, from different initial parameter guesses. Each circle represents an 
individual network in the ensemble, and the star is the performance of the bagged, or averaged, 
predictor 

We have also made the sampling requirements for RIDME input data more stringent. 
Due to the potential non-monotonic nature of the background factor in eq. (6.7), it becomes 
essential to sample a complete signal period for reliable differentiation of dipolar oscillations 
from the background. Moreover, in high-spin systems, the shorter distance limit of RIDME 
may encompass overtone frequencies, requiring sampling of frequencies roughly twice as high 
as 2ωdd to avoid reflections. The sampling conditions for RIDME are thus defined by: 

r 
γ1γ2µ0 ~ 

rmin = 3 

π2 Δt (6.13) r 
γ1γ2µ0 ~ 3 

rmax = tmax (6.14)
8π2 

Following these changes, we trained an ensemble of 32 networks to extract the distance 
distribution from RIDME input data. Figure 11 illustrates the performance metrics of this 
ensemble over a test set. Figure 6.11 illustrates the performance metrics of this ensemble 
over a test set. 
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Figure 6.12: An illustrative example of the performance of RIDMEnet on a a test example. 

When we analyse the RIDME data from fig. 6.9 using this new network ensemble, the 
spurious peak vanishes, and we accurately recover the distance distribution from the trace 
(fig. 6.12). 

6.9 Conclusions & Further Work 
In this study, we introduced out-of-distribution detection to DEERnet, thereby increasing the 
reliability and trustworthiness of its predictions. Our approach involves fitting the network’s 
predictions back into the physical process model that generated them. This method could 
apply to any inverse problem where the forward problem is known and well-posed, but the 
inverse is not. 

However, our work highlights the complexities of automating out-of-distribution detection, 
especially in near out-of-distribution tasks like RIDME detection. This challenge lies in 
distinguishing between very similar in-distribution and out-of-distribution data. 

We’ve also shown that transfer learning can be effectively applied to improve results when 
a generalisation error is detected. This approach has proven helpful for adapting DEERnet to 
RIDME data, suggesting that it could be similarly adapted to other spectroscopic techniques. 
The success of transfer learning here indicates the potential for DEERnet to become a more 
versatile tool applicable across a broader range of spectroscopic analyses. 

Future work should focus on developing more robust methods for near out-of-distribution 
detection. An area of interest could be exploring whether the separation of in-distribution 
and out-of-distribution data is more feasible in the Fourier domain. Such developments are 
essential for further enhancing the model’s accuracy and expanding its applicability. 
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Chapter 7 

Non-Uniform Sampling 

7.1 Introduction 
Non-uniform sampling (NUS) offers significant potential for time-saving in DEER and 
RIDME signal detection. By reducing sampling requirements, NUS methods have enabled 
the practical implementation of high-resolution 4D NMR experiments, a feat unattainable 
with uniform sampling.1 While NUS has found routine use in NMR experiments, its adoption 
in EPR applications has been hindered by the absence of a straightforward implementation 
on common commercial spectrometers.2 

Recent advancements in spectrometer hardware now permit non-uniform sampling in 
EPR3, particularly advantageous for the widely used HYSCORE experiment, as demonstrated 
by previous simulations.4,5 In this contribution, building on the success of artificial neural 
networks in uniformly sampled DEER spectroscopy6, we introduce an artificial neural network 
tailored for reconstructing distance distributions from non-uniformly sampled DEER data 
with randomly missing data points. 

7.2 Uniform Sampling 
In all dipolar spectroscopy methods, distance determination is based on the dipole-dipole 
interaction between the magnetic moments of two electron spins. If the dipolar coupling is 
significantly smaller than the Zeeman splitting of the electron spins and the g-tensors are 
only weakly anisotropic, we need only consider the secular term7: 

ωdd
D(r, θ) = 

r3 (1 − 3 cos2 θ) + J (7.1) 

3Here, ωdd ≈ 327 rad nm /µs is the dipolar interaction constant, r is the interspin distance, 
θ is the angle between the external magnetic field direction and the vector connecting the 
spins, and J is the exchange integral. 

Among the various dipolar spectroscopy methods, the double electron-electron resonance 
(DEER) experiment is most commonly used to measure the dipolar frequency and determine 
distance between spins. For randomly oriented pairs of spin labels at a fixed distance, 
r, assuming short microwave pulses, the DEER time trace is described by the following 
equation8: 

v(t) = 1 − λ{1 − f(r, t)} (7.2) 

where f(r, t) is the form factor : 
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f(r, t) = hcos(D(r, θ)t)iθ (7.3) 

Here, λ is the probability of a B spin being flipped by the pump pulse, and h. . . iθ denotes 
averaging over the angle θ. 

Fourier analysis of this DEER time trace yields a so-called Pake doublet (fig. 7.1), which 
allows us to determine the distance r and the exchange coupling J , since8: 

ωk = |2ωdd − J | (7.4) 
ω⊥ = |ωdd + J | (7.5) 

The minimum distance accessible to DEER is 1.5-2.0 nm. Above these distances, the 
exchange interaction is weak (with rare exceptions), and we can estimate ωk = 2ωdd and 
ω⊥ = ωdd precisely.9 
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Figure 7.1: DEER signal decay oscillations due to dipole-dipole interactions for randomly oriented 
pairs and constant spin-spin distance (left), and the corresponding dipolar Pake doublet (right). 

The accuracy of the spectrum obtained by this approach depends critically on how the 
data is sampled.1 According to the Nyquist sampling theorem, accurate wave characterisation 
requires sampling at least twice per cycle. The sampling interval, Δt, sets the upper limit for 
the highest frequency, or the shortest distance, that can be determined without ambiguity.10 

This relationship is given by: � �1/3
γ2~ 

rmin = Δt (7.6)
π 

Sampling less frequently than mandated by the Nyquist criterion leads to the appearance 
of signals in the spectrum at incorrect frequencies, referred to as aliasing or folding.1 

The total number of samples recorded plays a crucial role in defining the frequency 
resolution of the spectrum. This resolution, the interval between frequency elements, is 
determined by 1/NΔt where N is the total number of samples collected, and NΔt is the 
overall signal length.11 

Since the duration of the experiment is directly proportional to the number of samples 
recorded, achieving high-resolution spectra often necessitates extended experimental times. 
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Coupled with the requirement to measure at an appropriate sampling rate, a substantial 
number of points are needed. As a result, DEER experiments can vary in length, ranging 
from a few minutes to many hours, depending on the sample concentration, the measured 
distance, and the required resolution.12 

Although digital frequency resolution can be increased through zero filling, this process 
invariably introduces a discontinuity in the time domain data. This discontinuity, in turn, 
leads to the appearance of unwanted signals in the spectrum, commonly referred to as 
truncation artefacts or sinc wiggles. 1 

7.3 Non-Uniform Sampling 

Non-uniform sampling (NUS) refers to any sampling strategy that deviates from uniform 
interval sampling. The specific arrangement of these non-uniformly sampled points is called 
the schedule. In an on-grid schedule, a selection is made from a subset of points that would 
usually be found on the Nyquist grid.11 

Because NUS omits certain measurements, the data it produces contains “gaps” compared 
to traditional, uniformly sampled data. This strategy reduces the total duration of the 
experiment. However, it also means that the DFT is not directly applicable. Therefore, the 
primary objective of most NUS methods is to “fill in the gaps” in the data. By reconstructing 
these missing points, the DFT can be applied effectively.13 

Let’s consider augmenting the NUS data with zeroes at the points where the data is 
missing points. We can express this zero-augmented data vector, ṽ, as the element-wise 
product of the uniformly sampled data vector, v, and a logical sampling mask1: 

� � 
ṽ = v 1 0 0 1 . . . (7.7) 

Clearly, the DFT can be applied to this zero-augmented data vector. However, the 
spectrum derived from this zero-augmented data will exhibit artefacts when compared to the 
“true” spectrum. Like the case of zero-filled data, these artefacts arise due to discontinuities 
in the zero-augmented data. In this context, such artefacts are called sampling artefacts. 1 

The origin of sampling artefacts becomes even more apparent when viewed in the frequency 
domain. According to the convolution theorem, multiplying two vectors in the time domain 
equates to their convolution in the frequency domain. Therefore, the frequency spectrum of 
the zero-augmented data is the true spectrum convolved with the DFT of the sampling mask. 
The DFT of the sampling mask is known as the point spread function (PSF). 10 Figure 7.2 
illustrates this point for a sine wave in which 80% of samples are missing completely at 
random (MCAR). 
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Figure 7.2: The DFT of a decaying sinusoid (A, B) and a sampling schedule (C, D), and their 
multiplication in the time domain (E) resulting in their convolution in the frequency domain (F). 

When the signal has only a single frequency component, as demonstrated in the example, 
the locations and intensities of sampling artifacts can be clearly predicted by examining 
the point spread function (PSF). The artefacts will occur at frequencies corresponding to 
the peaks in the PSF, offset from the original frequency component by the same amount as 
the peaks in the PSF are offset from the zero frequency. However, when the signal includes 
multiple frequency components, the sampling artefacts from one component can overlap and 
interact with those from other components, resulting in either constructive or destructive 
interference.10 

Drawing from the convolution analogy, a sampling schedule that results in a point spread 
function (PSF) with weaker non-zero frequency components will lead to less pronounced 
sampling artefacts. One straightforward method to minimise these artefacts is by increasing 
the number of samples collected, though this extends the experiment’s duration. For a given 
size of a non-uniform sampling (NUS) set, different configurations of sample times produce 
distinct PSFs, and, consequently, varied sampling artefacts.10 

If the sampling density decays rapidly (meaning more data is collected at shorter times), 
the resulting signals will be stronger but broader. In contrast, a slower decay in sampling 
density leads to noisier spectra with sharper lines.10 

The point spread function (PSF) offers valuable insights into sampling artefacts’ position 
and magnitude when uniform sampling data is accessible. However, we lack a theoretical 
framework for predicting the performance of specific NUS schedules in advance. This gap 
makes optimising sampling schemes challenging and necessitates the reconstruction of the 
spectrum from the compromised NUS spectrum.1 

Spectral reconstruction methods aim to reconstruct the true spectrum through a penalised 
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least squares fit. The penalty (or regularisation) term ensures that the estimated spectrum 
is physically reasonable and is often chosen to encourage sparsity in the recovered spectrum. 
For example, iterative soft thresholding employs the L1-norm as a sparsity promoting 
regularisation term2: 

ŝ = arg min{λ kṽ − m F−sk − ksk } (7.8)2 1 

Here, s represents the spectrum, ṽ, is the zero-augmented data, F− is the inverse Fourier 
transform kernel, and m represents the sampling mask. 

Meanwhile, maximum Entropy (MaxEnt) methods strive to reconstruct a spectrum that 
displays minimal statistical information content, or in other words, maximal entropy. MaxEnt 
methods were the first to be applied and studied among all reconstruction methods used 
in NMR. They have also been successfully applied to the hyperfine sub-level correlation 
(HYSCORE) experiment in EPR.2 

There is no universal, one-size-fits-all choice for the reconstruction method in spectral 
analysis, but the decision on which reconstruction method to use appears less critical than 
the selection of the sampling schedule. 

7.4 Tikhonov Regularisation 

While we have shown that spectral reconstruction methods used in NMR are applicable to 
DEER traces involving spin pairs with fixed distances, our main objective in DEER is often 
to extract the distance distribution from a system that exhibits conformational flexibility. In 
this case, the DEER trace can be represented as7: 

v = (1 − λ + λKp) b + e (7.9) 

where p is the distance distribution we wish to extract, K is the dipolar kernel matrix, b is 
the intermolecular background factor, λ is the modulation depth parameter, and e denotes 
(Gaussian) measurement noise. 

The commonly used two-step processing method, popularised by DeerAnalysis, involves 
first fitting a parametric model to b and then performing an inversion of K in the least-
squares sense.14 As the kernel is ill-conditioned, this inversion requires regularisation with a 
matrix, L, which promotes smoothness in the solution estimate15: 

2 2 
p̂ = arg min{kKp − vk + α2 kLpk } (7.10)2 2 

Here, α is the regularisation parameter that balances the fit to the data with the regularity 
of the solution estimate. 
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Figure 7.3: Noisy DEER form factor with 87.5% points missing completely at random (left), and the 
distance distribution reconstructed by Tikhonov regularisation (right). The distance distribution 
can be well approximated when the background factor has been appropriately corrected for. 

When the DEER trace is non-uniformly sampled, the kernel may be under-determined. 
Despite this, we can still seek a solution using the same Tikhonov regularisation approach. 
Figure 7.3 illustrates the efficacy of this method when the background factor has been 
accurately corrected for. 
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Figure 7.4: Noisy DEER trace with 87.5% points missing completely at random (left) and the 
distance distribution reconstructed by Tikhonov regularisation (right). Because there are too few 
points to accurately fit the background factor, the estimated solution is completely garbled by 
incomplete background correction. 

However, fitting the background factor to a non-uniformly sampled DEER trace is 
practically challenging. When the DEER trace is sampled below the Nyquist rate, there 
frequently isn’t enough measured data to obtain a reliable fit. Then, the solution estimate 
will be entirely garbled by incomplete background correction, as illustrated in fig. 7.4. 
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Figure 7.5: Noisy DEER trace with 87.5% of points missing (left). In this case, the sampling 
schedule is dense around the turning points of the trace. Therefore, the distance distribution can be 
accurately reconstructed from the linearly interpolated trace (right). 

In rare instances, general-purpose interpolation schemes, such as linear interpolation, 
can improve background correction in non-uniformly sampled DEER data (fig. 7.5). The 
effectiveness of this approach largely depends on having a sampling schedule that is densely 
populated around the trace’s turning points. However, it is crucial to note that the per-
formance of these interpolation methods generally falls short of what is achievable with 
uniformly sampled data. 

7.5 Artificial Neural Networks 

Previously, we demonstrated the effectiveness of fully connected neural networks in accurately 
extracting the distance distribution from uniformly sampled DEER traces. We called this 
network DEERnet. Figure 7.6 illustrates the performance of DEERnet on a zero-augmented 
data vector where 87.5% of the points are missing completely at random. 

Like other analysis methods, the network correctly extracts the average distance but 
struggles to replicate the distribution’s shape. This is further illustrated by examining the 
misfit between the measured points and the DEER trace derived from the predicted distance 
distribution. 
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Figure 7.6: Application of DEERnet to the zero-augmented data vector of a non-uniformly sampled 
trace with 87.5% points missing completely at random. The network well approximates the average 
distance but struggles to reconstruct the shape of the distance distribution. 

To adapt DEERnet to the NUS case, we will maintain the fully-connected architecture 
but need to generate a training set that comprises NUS input signals. The training set for the 
uniformly sampled DEERnet consisted of N input-output pairs {vi, pi}Ni=1, where pi ∈ R512 

is the distance distributions that we aim to predict from its corresponding trace vi ∈ R512 . 
Each vector in this set contains exactly 512 points, as required by the architecture. 

The most straightforward way to modify the training set for NUS data involves creating 
N logical sampling masks, denoted as {m}N We can then derive the NUS training seti=1. 
from the US training set, forming {ṽi, pi}, where ṽi = vi mi. Training can be framed as 
the optimisation problem: 

N 
2 

ŵ = arg min kpi − f(ṽi, w)k (7.11)2 
i=1 

where w are the learnable parameters of the network, f . 
The optimisation stalled after a few iterations using this input pattern, which led us to 

reevaluate what it is we’re asking the network to learn. Assuming the network approximates 
the US vector v ∈ R512 from a NUS input ṽ ∈ Rm , it could then proceed with inversion as 
in the US case. 

The polynomial interpolation problem is to find a polynomial: 

2 n p(ti) = a0 + a1ti + a2ti + · · · + anti (7.12) 
which satisfies p(ti) = v(ti) for all i = 1, 2, . . . ,m. We can reformulate this problem into a 
matrix equation using a Vandermonde matrix: ⎡ ⎢⎢⎢⎣ 

⎡ ⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎦ 

a1 
a2 
. . . 

⎤ ⎥⎥⎥⎦ = 

⎡ ⎢⎢⎢⎣ 
ṽ(t1) 
ṽ(t2) 

. . . 

⎤ ⎥⎥⎥⎦ (7.13) 

1 t1 t2 · · · tn 
1 1 

1 t2 t2 · · · tn 
2 2 

. . . ... . . . . . . . . . 
1 tm t2 · · · tn an ṽ(tm)m m 

The network’s task is to solve this matrix equation in the least squares sense for the 
coefficient vector: 
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â = (T>T)−1T> ṽ (7.14) 

The coefficients are thus linear functions of the measured values, ṽi, and rational functions 
of the time grid locations, ti. 

Considering the algebraic structure of fully-connected networks, which makes learning 
multiplicative binary functions challenging, we propose that the input vector should be 
structured as: � �> 

x = t t2 ṽ t ṽ t2 ṽ (7.15) 

where the exponents are applied element-wise. 
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Figure 7.7: Application of DEERvet to a non-uniformly sampled trace with 87.5% points missing 
completely at random. The network makes a confident prediction. 

However, the length of t, ṽ, and ultimately x, depends on the number of measured points. 
Since the fully-connected network’s input dimension is fixed, we must enforce a constant 
sparsity level. 

512 Points 128 Points 64 Points

0

0.5

1

1.5

2

2.5

3

P
re

di
ct

io
n 

R
M

S
E

512 Points 128 Points 64 Points

0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 S
TD

87 



7.6. Conclusions & Further Work 

Figure 7.8: Violin plot illustrating the distribution of mean prediction errors (left) and standard 
deviations (right) across ensembles of networks trained at different sparsity levels: 0% (uniform), 
25%, and 12.5%. 

We trained ensembles of neural networks with sparsity levels set at 25% (128/512) and 
12.5% (64/512). Following the approach used for the uniformly sampled DEERnet, we trained 
32 networks with varying initial conditions for each sparsity level and then calculated their 
average predictions. We derived confidence intervals from the standard error across these 
ensembles. Figure 7.7 showcases an example output for a 512-point trace with 64 points, 
and demonstrates a remarkably accurate match. 

The performance of these networks on a test set comprising 100 non-uniformly sampled 
(NUS) DEER traces is illustrated in fig. 7.8. As anticipated, both the prediction error and 
predictive uncertainty increased with higher sparsity, although the increase was slight. 
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Figure 7.9: Jacobian of the network prediction in fig. 7.7. Its sparsity indicates that small perturba-
tions to the input will not lead to spurious peaks in the output. 

Additionally, given that the kernel matrix in the non-uniformly sampled (NUS) case is 
under-determined, an increase in noise sensitivity might be anticipated. However, when 
we calculated the finite difference Jacobian for the ensemble predictor across a set of test 
cases, we observed a remarkable level of stability. This stability was on par with that of the 
uniformly sampled DEERnet. We showcase the network Jacobian for a non-uniform input in 
fig. 7.9. The sparsity of this Jacobian suggests that minor perturbations in the measurement 
are unlikely to result in the formation of spurious peaks in the distance distribution. 

7.6 Conclusions & Further Work 
Unlike in NMR, where non-uniform sampling (NUS) has become standard practice, its 
adoption in EPR has been limited due to the unavailability of commercial spectrometers 
that support this technique. This discrepancy can be attributed to market dynamics: the 
majority of NMR spectrometers are used in industry, which values the time-saving advantages 
of NUS, whereas approximately 90% of EPR spectrometers are directed toward academic 
institutions.16 Nevertheless, NUS with maximum entropy reconstruction has been successfully 
applied to HYSCORE experiments using home-built spectrometers.2 
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In this contribution, we introduced a neural network capable of accurately predicting 
distance distributions from simulated DEER traces, with 87.5% of points missing completely 
at random. 

The accuracy of traditional spectral reconstruction techniques depends heavily on the 
sampling schedule chosen.10 Our next step is to analyse whether a similar dependency 
holds true for neural networks. Additionally, evaluating the network’s performance on real 
experimental data will be crucial to validate its practical applicability. 
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Chapter 8 

Descrambling 

8.1 Introduction 
Machine learning, particularly deep learning, has supplied many scientific and industrial 
applications with powerful predictive models. As deep learning penetrates critical domains 
such as medicine, the criminal justice system, and financial markets, the imperative to 
establish trust in these models has grown.1 

This raises an epistemological question: what is “trust”? One way for users to quantify 
their trust in a model is by how comfortable they are with relinquishing control to it. However, 
translating such subjective assessments into an objective, codified form is challenging.2 

Linear models are often deemed trustworthy because the input and output relationship is 
easily understood. Therefore, intelligibility (i.e. our ability to grasp how the model works) 
might be considered a prerequisite for trust.2 Methods aimed at obtaining intelligible models 
are called interpretations. While simpler models are inherently more intelligible, they may 
sacrifice predictive accuracy. Thus, most practical interpretation methods are applied after 
the model is trained.3 

To date, explainable artificial intelligence (XAI) has primarily focused on explaining the 
decisions of classification models, where finding interpretations reduces to the problem of 
identifying the decision boundaries. However, in regression problems, this simplification 
does not hold, and published interpretations are sparse.4 A considerable portion of the prior 
art has instead been focused on sensitivity analysis. This approach seeks to quantify the 
importance of a specific feature by systematically removing it and observing the resulting 
impact on the model’s output. However, it’s important to note that this method doesn’t 
fully elucidate the learned function; it only measures the strength of the model’s dependency 
on individual input variables.5 

We present here a group-theoretical procedure that attempts to bring the weight matrices 
of regression networks into a human-readable form. We applied the proposed method to 
DEERnet and peeked inside this enigmatic “black box”. 

8.2 Descrambling Transformations 
A feed-forward artificial neural network is recursively defined by the following set of equations6: 

(l) = W(l) (l−1)z a (8.1) 
(l) = σ(l)(z(l))a (8.2) 
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8.2. Descrambling Transformations 

Here, the post-activation vector, a(l), for layer l is obtained by applying the activation 
function, σ(l)(·), element-wise to its pre-activation vector z(l). 

The post-activation vector of the input layer (l = 0) is the model input, and the post-
activation vector of the output layer (l = L) is the corresponding prediction. 

All commonly employed activation functions are invertible in the sense that they establish 
a one-to-one correspondence between the pre-activation vector of a layer and its corresponding 
post-activation vector. This means that each pre-activation vector can be uniquely recon-
structed from its post-activation counterpart. Consequently, while the post-activation vector 
can be viewed as an encoding of the pre-activation vector, it is not inherently unintelligible 
or irreversibly transformed. 

In contrast, the weight matrix, W(l), represents a linear transformation within a specific 
pair of bases. However, because the weight matrix elements are learned during training 
rather than intentionally chosen, the bases of representation remain unknown. 

Consider the matrix: � � 
0.7071 −0.7071 

W = (8.3)
0.7071 0.7071 

It’s challenging to discern its functional form without specifying the bases of representation. 
However, a rotation by 45 degrees would expose it as the identity transformation, taking on 
a more recognisable diagonal form. 

We suggest that each weight matrix has an equivalent matrix that more clearly elucidates 
its functional form. In other words, for each “scrambled” matrix, like the one in eq. (8.3), 
there exists an equivalent “descrambled” matrix: 

LWR> (8.4) 

where L and R are invertible change of basis matrices. 
However, specifying a change of basis matrix demands familiarity with both the old 

and new bases.7 Because the weight matrix elements are learned during training, we lack 
information about the old bases. Consequently, it remains unclear which new basis set would 
result in an equivalent matrix with a more interpretable form. We can, however, attempt 
to conceptualise the characteristics that a more interpretable representation of the matrix 
might exhibit. 

In the context of digital signal processing the most interpretable matrix is expected to 
map a smooth input vector to a smooth output vector. Therefore, the matrix R(l) should 
impart smoothness to a(l) across a broad range of input cases. The smoothness of the 

(l−1)transformed vectors, R(l)aj can be quantified in the familiar Tikhonov sense through the 
squared Euclidean norm of its second derivative.8 This leads to the numerical optimisation 
problem of finding R(l): X 2

(l−1)
R̂ (l) = arg min DR(l)aj (8.5) 

2det R(l) 6=0 j 

Here, D is a second derivative operator, such as a Fourier spectral differentiation matrix.9 

Similarly, the matrix L(l), which smooths the output of W(l), can be found as follows: X 2 X 2
(l) (l−1)

L̂(l) = arg min DL(l)zj = arg min DL(l)W(l)aj (8.6) 
2 2det L(l) 6 det L(l)=0=0 6j j 

Implemented naively, descrambling is an expensive non-linear programming problem. 
Fortunately, the set of invertible matrices forms a mathematical structure known as a matrix 
Lie group; specifically, the general linear group, denoted as GL(n, R). 10 Each matrix Lie 
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Chapter 8. Descrambling 

group is associated with a second set of matrices, its Lie algebra, that can be mapped onto 
the group by exponentiation. The algebra of the general linear group is the set of all real 
n × n matrices. This allows us to reduce eq. (8.5) to the following linear programming 
problem: X 2

(l) (l) (l) (l−1)
R̂ (l) = exp(Q̂ 

R ) s.t. Q̂ = arg min D exp(QR )a (8.7)R j 
j 

To prevent optimisation by arbitrary reductions in scale, we should also impose an 
orthogonality constraint on R(l) (and L(l)). That is, we should restrict our search space to 
the orthogonal subgroup O(n, R) ⊂ GL(n, R). The algebra of the orthogonal group is the set 
of n × n skew-symmetric matrices, so: X 2

(l) (l) (l) (l−1)
R̂ (l) = exp(Q̂ s.t. Q̂ = arg min D exp(Q (8.8)R ) R R )aj 

Q> 2 
R =−QR j 

Although skew-symmetry is a non-linear constraint, it may be implemented linearly by 
reducing the number of free parameters in QR 

(l) to only the upper or lower triangle and 
symmetrising at each iteration. 

It’s also worth highlighting that the exponential map has costly derivatives and can 
cause numerical accuracy problems in finite precision arithmetic.11 Therefore, we focused our 
search on a subset of orthogonal matrices with a determinant of one. This subset, denoted 
SO(n, R) ⊂ O(n, R), is known as the special orthogonal group. It can be reached from the 
set of skew-symmetric matrices by the more economical Cayley transform12: 

(l) (l)
R̂ (l) = (1 + QR )

−1(1 − QR ) s.t. X 2
(l) (l) (l) (l−1)

Q = arg min D(1 + QR )
−1(1 − QR )a (8.9)R j 

Q> 2 
R =−QR j 

The objective function in eq. (8.9) is differentiable in closed form. This allows us to use 
efficient quasi-Newton optimisers such as L-BFGS algorithm.13 A detailed derivation of the 
gradient is provided in the next section but is not required to appreciate the result: if a 
network can be trained on some hardware, it can be descrambled on that same hardware. 

8.3 Gradient Derivation 
The gradient of the functional in eq. (8.9) may be obtained by matrix differentiation rules. 
Let’s start by defining the matrix of observations: � � 

A = a1 a2 . . . aN (8.10) 

where, for brevity, the layer index has been dropped. 
Then, the objective function can be succinctly expressed using the Frobenius norm: X 

η(Q) = kDRak2 
= kDRAk2 (8.11)2 F 

j 

Here, R = (1 − Q)−1(1 + Q). 
Using the chain rule: #"� �> X� � 

∂η ∂η ∂R ∂η ∂Rlk 
= Tr = (8.12)

∂Qij ∂R ∂Qij ∂R ∂Qijlk kl 
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8.3. Gradient Derivation 

The derivative of η with respect to R is obtained using the Frobenius norm differentiation 
rule14: 

∂η 
= 2D>DRAA> (8.13)

∂R 

The derivative of R with respect to an element of Q is another instance of the chain rule: 

� � 
∂Rlk ∂ 

= [(1 + Q)−1(1 − Q)] (8.14)
∂Qij ∂Qij� lk � 

∂(1 + Q)−1 ∂(1 − Q) 
= (1 − Q) + (1 + Q)−1 (8.15)

∂Qij ∂Qij lk X X∂[(1 + Q)−1]lm 
= [1 − Q]mk − [(1 + Q)−1]liδkj (8.16)

∂Qijm n 

The last derivative is ∂Qnk/∂Qij = δniδkj and the derivative of the inverse matrix is: 

∂[(1 + Q)−1]lm 
= −[(1 + Q)−1]li[(1 + Q)−1]jm (8.17)

∂Qij 

This eliminates all derivatives and all explicit sums from the right-hand side: 

X X∂Rjk 
= − [(1 + Q)−1]li[(1 + Q)−1]jm[1 − Q]mk − [(1 + Q)−1]ln∂nl∂kj (8.18)

∂Qij m n 

= −[(1 + Q)−1]li[(1 + Q)−1(1 − Q)]jk − [(1 + Q)−1]liδkj (8.19) 

Using the definitions of R and 1 yields further simplifications: 

∂Rlk 
= −[(1 + Q)−1]li[1 + R]jk (8.20)

∂Qij 

Inserting this into eq. (8.12) produces: � �X∂η ∂η 
= − [(1 + Q)−1]li [1 + R]jk (8.21)

∂Qij ∂R lk kl 

and the explicit sum can now be collapsed: � � 
∂η 

(1 + Q)−> ∂η 
= − (1 + R)> (8.22)

∂Qij ∂R ij 

The final result is: 

∂η 
= −2(1 + Q)−>[D>D]R[AA>](1 + R)> (8.23)

∂Q 

Numerical evaluation of both the function and the gradient may be accelerated by pre-
computing the terms in the square brackets. 
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Chapter 8. Descrambling 

8.4 Application to a Two Layer Network 
We will apply the descrambling routine to a two layer DEERnet with the following architec-
ture15: 

p̂ = logsig(W(2) tanh(W(1)v)) (8.24) 
(0) (L)The input, a = v, is a DEER trace, and the output, a = p̂ is the predicted distance 

distribution. 
As the inputs are (approximately) smooth, the first layer weight matrix need only be 
descrambled from the left: X 2 

L(1) = arg min DLW(1)vj (8.25) 
L∈SO(n,R) 2 

j 

Heat maps of the scrambled matrix, W(1), and the descrambled matrix, L(1)W(1), are 
depicted in the top and bottom rows of fig. 8.1, respectively. The success of the descrambling 
is evident in the smoothing of the output, L(1)W(1)vj . 
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2

3

L(1)W(1)v

Figure 8.1: Upper left: Raw weight matrix of the first hidden layer. Upper right: Result of applying 
the raw weight matrix to the network inputs. Lower left: Descrambled weight matrix of the first 
hidden layer. Lower right: Smoothed output from applying the descrambled weight matrix to the 
network inputs. 

It may not be immediately clear how L(1) has transformed W(1)vj . The interlocking 
wave pattern observed in L(1)W(1) exhibits symmetry features reminiscent of a Toeplitz 
matrix. Toeplitz matrices have constants along the diagonal and are commonly used in filter 
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8.4. Application to a Two Layer Network 

and convolution operations. However, our matrix deviates from this pattern; instead, its 
elements appear to follow a polynomial path, suggesting additional axis rearrangement in 
the frequency domain. 

By introducing forward (F) and backward (F−1) Fourier transforms into the equation: 

(1) = W(1) Fz(1) = FW(1)F−1Fvz v =⇒ (8.26) 

we illustrate the connection between the input signal frequency spectrum Fv and the 
output signal frequency spectrum Fz(1) through the matrix FW(1)F−1 . Computation and 
visualisation of this matrix in fig. 8.2 reveals the function of the first fully connected layer. It 
seems to apply a low-pass filter to eliminate high-frequency noise, a notch filter at the zero 
frequency to eliminate the non-oscillatory baseline and performs frequency rearrangement in 
such a way as to effectively take the cubic root of the frequency axis within the filter band. 
The latter operation appears to reflect the fact that the beating of the dipolar oscillation 
depends on the cube of the distance.16 
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Figure 8.2: Symmetrised absolute value two-dimensional fast Fourier transform of the descrambled 
first layer weight matrix. The layer applies a low-pass filter to remove high-frequency noise; a notch 
filter at zero frequency to remove the non-oscillatory baseline; and also appears to be rearranging 
frequencies in such a way as to effectively take the cubic root of the frequency axis within the filter 
band. 

Because the preceding layer functions as a digital filter, we expect the second fully-
connected layer’s weight matrix to execute a regularised pseudo-inversion. Given the smooth-
ness of the outputs, our descrambling requirement is limited to the right side: 

X 2 
R(2) DR(2)σ(1)(W(1)= arg min vj ) (8.27) 

SO(n,R) 2 
j 

Figure 8.3 portrays the descrambled second-layer weight matrix, which displays an 
approximate similarity to the Moore-Penrose pseudo-inverse of the corresponding kernel 
matrix. 
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Figure 8.3: The descrambled second layer weight matrix (right) bears a resemblance to the Moore-
Penrose pseudo-inverse of the dipolar kernel (left). 

As anticipated, the rows and columns of the descrambled weight matrix demonstrate 
approximate orthogonality, as depicted in fig. 8.4. 

W(2)>W(2)

10

15

20

25

30

35

40

W(2)W(2)>

0

20

40

60

80

100

120

Figure 8.4: The second layer descrambled weight matrix is (approximately) orthogonal, as could be 
expected for an invertible transformation. 

To better comprehend how W(2) transforms its input, a(1), we choose to perform a 
singular value decomposition (SVD). Post-descrambling, SVD proves valuable due to its 
structured representation: 

W = USV> (8.28) 

This decomposition naturally dissects the weight matrix into an orthogonal set of conjugate 
signals it anticipates receiving (columns of V) and an orthogonal set of signals it expects to 
send out (columns of U).17 It’s crucial to note that the SVD yields informative results only 
after descrambling; singular vectors of a scrambled matrix are also scrambled. 
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Right Singular Vectors Left Singular Vectors

Figure 8.5: Descrambling the link dimension reveals an approximately orthogonal conjugate signal 
library that singular value decomposition shows to be distorted sinusoids (left). The output 
signal library also appears to be approximately orthogonal; singular value decomposition reveals 
spontaneous emergence of distorted Chebyshev polynomials as the entries of that library (right). 

The SVD revealed that the conjugate input signals manifest as sinusoids (fig. 8.5). These 
sinusoids are slightly distorted, likely as a result of imperfect training. Likewise, the output 
signals appear to be distorted Chebyshev polynomials. 

Exactly why the network chose Chebyshev polynomials remains unclear, but they offer 
insight into how regularisation is achieved within DEERnet. The ranks of the Chebyshev 
polynomials observed in the output signal library are smaller than those that could, in princi-
ple, be digitised on the 256-point output grid. Consequently, a level of smoothness is imposed 
on the output signal. This procedure resembles that of spectral filtering regularisation. 

To the best of our knowledge, we have now fully descrambled the two-layer DEERnet. As 
far as we can tell, descrambling results do not depend on the initialisation. We found the 
interpretation to be the same for each of the independently initialised and trained nets that 
DEERnet uses for confidence interval estimation. 

Our interpretations, however, are subjective and necessarily rely on our prior knowledge of 
the problem domain. To validate the correctness of the DEERnet functionality interpretation, 
we’ve assembled a combination of digital filters replicating the functionality of the first fully 
connected layer. Additionally, we’ve implemented a time-distance transformation to replicate 
the functionality of the second layer. 
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Figure 8.6: Digital filters used in the recreation of the functionality of the first fully connected 
layer of DEERnet. (Left) Notch filter at zero frequency, implemented as order 256 direct-form FIR 
high-pass filter with pass band edge at 0.008 and stop-band edge at 0.001 normalised frequency units. 
(Right) Order 32 direct-form FIR low-pass filter with pass-band edge at 0.01 and stop-band edge at 
0.3 normalised frequency units. Filters were created and analysed by using the Signal Processing 
Toolbox of MATLAB R2020a. 

To emulate the first fully connected layer, we used standard FIR filters with pass and 
reject bands (fig. 8.6) chosen to correspond approximately to the patterns seen in fig. 8.2. 
The frequency re-scaling transform and the regularised time-distance transform are both 
linear and were therefore combined into one regularised pseudo-inverse: 

K+ = (K>K + α21)−1K> (8.29) 
The regularisation parameter α was obtained using the L-curve method.18 Although 

some parameters (filter orders and bands, pseudo-inverse regularisation factor) were chosen 
empirically, they all now have a clear and rational interpretation. Thus, a physically 
meaningful data processing method was obtained from a descrambler group interpretation of 
a neural network. 
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8.5. Application to Deeper Networks 

Figure 8.7: An example DEER processing run using the rational digital signal processing replica 
of DEERnet. The calculation starts with a realistic randomly generated DEER trace, for which 
the correct answer is known. The low-pass filter eliminates the noise, and the notch filter at zero 
eliminates the baseline. Up to the noise, the result matches the known form factor at this stage. 
The subsequent time-distance transform yields a distance pattern in reasonable agreement with the 
known right answer. 

The performance of the rationally constructed sequence of transformations is illustrated 
in fig. 8.7. When applying the same transformations to different inputs, occasional pass and 
reject band adjustments in the digital filters are needed to match the network’s performance, 
but those adjustments always have physical explanations. 

8.5 Application to Deeper Networks 
The depth of the DEERnet architecture can be increased arbitrarily as: 

p̂ = logsig(W(L) tanh(W(L−1) . . . tanh(W(1)v) . . . )) (8.30) 

The descrambling procedure can be applied to these larger networks, but as both the 
inputs and outputs of the layer may be non-smooth, the matrix will need to be descrambled 
from both the left and the right: 

X 2
(l) (l) (l) (l−1)

R̂(l) = exp(Q̂ 
R ) s.t. Q̂ = arg min DQR a (8.31)R j 

SO(n,R) 2 
j X 2

(l) (l) (l) (l)
L̂(l) = exp(Q̂ 

L ) s.t. Q̂ 
L = arg min DQL zj (8.32) 

SO(n,R) 2 
j 

(8.33) 

We applied this procedure to architectures with 3 to 5 layers. In all cases, we observed 
that the first and last layers perform transformations identical to those of the two-layer 
network. The layers in between consistently took on the form depicted in fig. 8.8. 
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Figure 8.8: The descrambled middle layer is diagonalised by the Fourier transform, possibly indicative 
of a convolution operation. 
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Worswick et al. observed an improvement in test set performance as the number of 
layers increased from 2 to 5.15 Consequently, we cannot conclude that the layers are devoid 
of function. The descrambled weight matrices are diagonalised by a Fourier transform, 
suggestive of a convolutional operation.19 Hence, it seems reasonable to infer that these inner 
layers are engaged in a denoising operation, smoothing the output of the first layer to lighten 
the load on the last layer. 

Input Phase Spectra Output Phase Spectra

Figure 8.9: Phase rotations applied by the descrambled middle layer. They appear to be reversed by 
later layers in deeper networks, and therefore have no clear purpose. 

We additionally observed that each of these inner layers rotates the phase of the input 
spectrum (fig. 8.9), but these shifts seem arbitrary, often reversed by subsequent layers. In 
any case, it is clear that the network’s strategy does not appear to change as its depth 
increases. 

8.6 Conclusions & Further Work 
The descrambler method has enhanced our understanding of the operations of a fully-
connected neural network. After a brief training phase, a two-layer DEERnet seems to have 
developed a bandpass filter, a notch filter, a frequency axis rescaling transformation, and 
spectral filtering regularisation. 

The intelligibility of the descrambled weight matrices is still a matter of debate. Even after 
descrambling, the weight matrices remain indecipherable to non-specialists. However, this is 
still a marked improvement over the scrambled weight matrices, which were unintelligible to 
all. 

The mathematical framework presented is highly flexible and may be applied to networks 
across various domains. For example, when frequency domain data is expected at both the 
input and output of an acoustic filter network, it would be logical to seek an output space 
transformation that maximises the similarity between output and input signals. In this 
context, the descrambled weight matrix is expected to be diagonally dominant, which can be 
achieved by an orthogonal transformation of the output space that maximises the diagonal 
sum of the weight matrix: 

R̂ = arg min Tr(RW) (8.34) 
O(n,R) 
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8.6. Conclusions & Further Work 

A significant advantage of the descrambler group method is its applicability to fully 
connected layers, which are generally more difficult to interpret than convolutional layers. 
Current interpretability methods often focus on convolutional nets due to their importance 
in image processing.20 

So far, our networks have only discovered mathematics already known to humans. However, 
it’s conceivable that previously unknown mathematical concepts might emerge at some point. 
Artificial neural networks could then be mined as a source of new mathematics. 
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