
Copyright Statement

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying
data are retained by the author and/or other copyright owners. A copy can be downloaded
for personal non-commercial research or study, without prior permission or charge. This
thesis and the accompanying data cannot be reproduced or quoted extensively from without
first obtaining permission in writing from the copyright holder/s. The content of the thesis
and accompanying research data (where applicable) must not be changed in any way or
sold commercially in any format or medium without the formal permission of the copyright
holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must
be given, e.g.

• Thesis: Author (Year of Submission) “Full thesis title”, University of Southampton,
name of the University Faculty or School or Department, PhD Thesis, pagination.

• Data: Author (Year) Title. URI [dataset]

1

University of Southampton
Faculty of Engineering & Physical Sciences

School of Chemistry

An Application of Artificial Intelligence
to a Linear Inverse Problem in Dipolar

Spectroscopy

Jake Keeley

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

June, 2024

For Kahlan, my compass in the wilderness of my doubts.

Abstract

Double Electron-Electron Resonance (DEER) Spectroscopy plays a pivotal role in analysing
molecular distances at the nanoscale, a crucial factor in understanding the structure and
dynamics of biological macromolecules. However, the challenge lies in extracting distance
distributions from DEER data due to the inherently ill-conditioned nature of the inverse
problem. Traditional solutions, such as regularisation, introduce bias through operator
selection based on prior assumptions like smoothness.

Recent applications of neural networks in this field provide a promising, data-driven
alternative. Nevertheless, concerns regarding the perceived ’black box’ nature of these
networks raise questions about their trustworthiness. Trust, though often nebulous, can
be clarified by comparing it to the trust we place in human experts. Human experts are
considered trustworthy when:

1. They possess recognised expertise, demonstrated through a history of high-quality
publications.

2. They accurately assess and communicate their confidence level in their judgements,
avoiding unwarranted overconfidence.

3. They readily admit when a problem or question falls outside their area of expertise,
avoiding speculation in unfamiliar domains.

4. They effectively articulate their reasoning and thought process, ensuring transparency
in their decision-making.

Translating these criteria to neural networks yields explicit expectations:

1. Demonstrated high predictive accuracy, validated through rigorous testing and consis-
tent performance.

2. The ability to quantify uncertainty in predictions.

3. The capability to detect when a query falls outside its training distribution.

4. An explainable decision-making process.

This thesis delves into enhancing predictive accuracy in DEER spectroscopy by addressing
the “vanishing gradient problem” in neural networks. It explores uncertainty quantification
through ensemble techniques and out-of-distribution detection via model fitting. Lastly, it
introduces “descrambling”, an innovative post-hoc explainability method based on equivalence
transforms, aimed at elucidating the internal processes of the neural network.

iii

Contents

1 Dipolar Spectroscopy 1
1.1 Introduction . 1
1.2 Spin Hamiltonian Approximation . 2

1.2.1 Static Spin Hamiltonian . 2
1.2.2 Electron Zeeman Interaction . 3
1.2.3 Electron-Electron Dipole Interaction 3
1.2.4 Hyperfine Interaction . 4

1.3 Eigenvalues of the Spin Hamiltonian . 4
1.3.1 Zeeman Product Basis . 4
1.3.2 Weak Coupling Approximation . 5

1.4 Continuous Wave Spectroscopy . 6
1.5 Pulse Dipolar Spectroscopy . 7

1.5.1 Density Operator Formalism . 8
1.5.2 Product Operator Formalism . 9
1.5.3 Thermal Equilibrium . 11

1.6 Rotating Frame & Experimental Observables 11
1.7 Double Electron-Electron Resonance . 13

2 Linear Inverse Problems 17
2.1 Introduction . 17
2.2 Inverse Problems . 18
2.3 Least-Squares Solutions . 18
2.4 Ill-Conditioning . 19
2.5 Singular Value Decomposition . 21
2.6 Picard Plots . 22
2.7 Regularisation Methods . 24

2.7.1 Parametric Modelling . 24
2.7.2 Tikhonov Regularisation . 24
2.7.3 Non-Negative Least-Squares . 26

2.8 Background Correction . 27

3 Artificial Neural Networks 29
3.1 Introduction . 29
3.2 Node Character . 30
3.3 Network Architecture . 31
3.4 Training Algorithm . 33

3.4.1 Steepest Descent Method . 33
3.5 Backpropagation . 35
3.6 Application to Inverse Problems . 36

v

4 Tricks of the Trade 39
4.1 Introduction . 39
4.2 Stochastic Optimisation . 39

4.2.1 Momentum-Based Methods . 41
4.2.2 Normalisation-Based Methods . 42
4.2.3 Adaptive Step Sizes . 44

4.3 Vanishing Gradient Problem . 45
4.3.1 Non-Saturating Activation Functions 45
4.3.2 Batch Normalisation . 46

4.4 Application to DEERnet . 47
4.4.1 Online Learning . 48
4.4.2 Identifiability of Exchange . 48
4.4.3 Performance Evaluation . 48

4.5 Conclusions & Further Work . 54

5 Uncertainty Quantification 55
5.1 Introduction . 55
5.2 Statistical Learning Theory . 55
5.3 Three Sources of Uncertainty . 56

5.3.1 Model Misspecification Error . 57
5.3.2 Sampling Error . 58
5.3.3 Algorithmic Error . 59

5.4 Avoiding Overfitting . 59
5.4.1 Bias-Variance Trade-Off . 59
5.4.2 Early Stopping . 60
5.4.3 Weight Decay . 61

5.5 Confidence Intervals . 62
5.6 Prediction Intervals . 64
5.7 Conclusions & Further Work . 66

6 Out-of-Distribution Detection 67
6.1 Introduction . 67
6.2 Retrofitting the Input . 68
6.3 Extrapolation Error . 70
6.4 Near Extrapolation Error . 70
6.5 Generalisation Error . 72
6.6 Transfer Learning . 72
6.7 Automating Detection . 73
6.8 Training RIDMEnet . 74
6.9 Conclusions & Further Work . 78

7 Non-Uniform Sampling 79
7.1 Introduction . 79
7.2 Uniform Sampling . 79
7.3 Non-Uniform Sampling . 81
7.4 Tikhonov Regularisation . 83
7.5 Artificial Neural Networks . 85
7.6 Conclusions & Further Work . 88

8 Descrambling 91
8.1 Introduction . 91
8.2 Descrambling Transformations . 91
8.3 Gradient Derivation . 93
8.4 Application to a Two Layer Network . 95
8.5 Application to Deeper Networks . 100
8.6 Conclusions & Further Work . 101

References 103

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated by
me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree at this
University.

2. Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University, or any other institution, it has been clearly stated.

3. Where I have consulted the published work of others, this is always clearly attributed.

4. Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

5. I have acknowledged all main sources of help.

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly was done by others, and what I have contributed myself.

7. Parts of this work have been published as:

• Jake L Amey et al. “Neural network interpretation using descrambler groups”. In:
Proceedings of the National Academy of Sciences 118.5 (2021), e2016917118

• Jake Keeley et al. “Neural networks in pulsed dipolar spectroscopy: A practical
guide”. In: Journal of Magnetic Resonance 338 (2022), p. 107186

.
Signature Date

ix

Chapter 1

Dipolar Spectroscopy

1.1 Introduction
Biological macromolecules, such as proteins, heavily depend on their intricate structure
and dynamics for proper functioning. The structure of a protein, which is determined by
the order of its amino acids, governs its binding sites and its ability to selectively interact
with substrates. Additionally, conformational changes, often triggered by ligand binding or
environmental cues, play a pivotal role in processes like enzymatic catalysis.1

Traditionally, scientists have relied on X-ray diffraction (XRD) to study biomolecular
structures, which reveals atomic arrangements within crystalline samples. However, this
method requires removing the biomolecule from its natural environment, raising concerns
about preserving its in vivo conformational state accurately. Furthermore, some biomolecules,
especially membrane proteins, present challenges in crystallisation, which limits the applica-
bility of XRD.1

High-resolution nuclear magnetic resonance (NMR) spectroscopy measures transitions
between spin states of nuclei with non-zero spin. However, the abundance of such nuclei in
biomacromolecules makes spectral assignment challenging, especially without sophisticated
isotope labelling techniques. Without these specialised methods, the complexity of the
spectra and signal overlap make precise atom assignment difficult.1

Probe-based techniques like fluorescence resonance energy transfer (FRET) and electron
paramagnetic resonance (EPR) spectroscopy offer viable alternatives. FRET involves at-
taching fluorophores to the biomolecule, capturing electronic energy level transitions, and
providing insight into the average distance between labels across conformational space. In
contrast, EPR uses paramagnetic spin labels and can elucidate detailed distance distributions,
offering a comprehensive understanding of biomolecular structures and interactions. Although
EPR requires specialised equipment, it is favoured for its ability to provide nuanced distance
distributions.2

To attach paramagnetic spin labels to peptides or proteins, researchers often utilise the
reactivity of cysteine residues. Specific sites on the protein require cysteines, and interfering
cysteines can be replaced with serines or alanines. A commonly used spin label, (1-oxyl-
2,2,5,5-tetramethylpyrroline-3-methyl)methanethiosulfonate (MTSSL), is preferred for its
sulfhydryl specificity, compact size, and flexible linker, which allow the protein to maintain
its native folding in most cases.1

To fully harness the potential of EPR spectroscopy, pulse techniques are essential. Pulse
EPR, unlike continuous wave (CW) methods, enables scientists to isolate specific terms in the
Hamiltonian, providing enhanced spectral and time resolution.3 Pulse dipolar spectroscopy
(PDS), which includes methods like double electron-electron resonance (DEER), RIDME,

1

1.2. Spin Hamiltonian Approximation

DQC, and SIFTER, isolates the dipolar interaction, which depends on the reciprocal of
the cubed distance. Among these methods, DEER, being the oldest and most widely used,
will be the primary focus of this thesis. Developing a rigorous theory for PDS relies on a
quantum mechanical understanding of spin dynamics, starting with the derivation of the
spin Hamiltonian.

1.2 Spin Hamiltonian Approximation
To fully characterise a biomacromolecular system, we consider a wavefunction, |Ψi, that
depends on both the spatial and spin coordinates of all atoms in the system. In electron
paramagnetic resonance (EPR) experiments, we are primarily interested in observing transi-
tions between spin states. Therefore, for simplicity, we often assume that atoms retain their
ground state spatial positions for each spin state configuration. This assumption allows us to
separate the wavefunction into spatial and spin components4: X

|Ψi = an |ψn(r)i ⊗ |χni (1.1)
n

Here, r, signifies spatial coordinates, and |ψn(r)i represents the spatial ground state associated
with the spin state |χni. Assuming the spin states form a complete orthonormal set, we can
express the system’s Hamiltonian as a sum of Kronecker products of purely spatial operators,
Ĥ

pq, and spin state projectors |χpi hχq|4: X
ˆ ˆH = Hpq ⊗ |χpi hχq| (1.2)

pq

By integrating out the spatial degrees of freedom, we derive the spin Hamiltonian4: X
ˆ ∗ H = akan |χpi hψk(r)|Ĥ

pq|ψn(r)i hχq| (1.3)
knpq

This spin Hamiltonian simplifies the complex interactions within the biomacromolecular
system, focusing solely on the spin degrees of freedom and their interactions.4

1.2.1 Static Spin Hamiltonian
A charged particle generating angular momentum also produces a magnetic moment. Specifi-
cally for an electron, its spin, denoted as Ŝ, results in a magnetic moment, µ̂, which we can
express using the equation5:

e~
µ̂ = −γŜ = −gµBŜ = −g Ŝ (1.4)

2me

Here, γ, known as the gyromagnetic ratio, deviates from classical expectations by a factor, g.
For a free electron, this g-factor is known precisely6:

ge = 2.00231930436082(52) (1.5)

Similarly, many nuclei possess a magnetic moment, µ̂N, stemming from their nuclear
spins, I7:

e~
µ̂N = γNµNÎ = gN Î (1.6)

2mp

2

Chapter 1. Dipolar Spectroscopy

Here, the negative sign is dropped due to the positive charge of the nucleus. The nuclear
g-factor, gN, varies by isotope, typically ranging from 1 to 5. Because the proton’s mass is
approximately 1836 times larger than that of the electron, the nuclear magnetic moment is
significantly weaker than the electronic magnetic moment.7

The complete spin Hamiltonian details these magnetic moments’ interactions and reac-
tions to external magnetic fields. Due to nuclei’s relatively weak magnetic moments, their
interactions with external fields and each other usually have a minor effect on EPR spectra.3

Therefore, we focus primarily on three interactions: the electron Zeeman interaction, involving
electron coupling to external fields; the electron-electron dipole interaction, describing the
coupling between two electrons; and the hyperfine interaction, detailing the coupling between
electrons and nuclei.

1.2.2 Electron Zeeman Interaction
When we place a magnetic dipole, µ, in a magnetic field, B0, it experiences a torque, µ × B0.
The energy associated with this torque is −µ>B0. Consequently, the spin Hamiltonian term
describing the electron Zeeman interaction is given by5:

ĤEZ = γB>
0 Ŝ = gµBB0

>Ŝ (1.7)

In a material environment, an electron’s angular momentum contains contributions other
than pure spin, due to the coupling of spin and orbital angular momenta. These spatial
interactions can be captured in the g-tensor8:

ĤEZ = µBB
>
0 gŜ

 (1.8)

For nitroxide spin probes, the g-tensor exhibits rhombic symmetry. As an example, in the
principal axis frame, the values for MTSL are9:

gx ≈ 2.0083 − 2.0091, gy ≈ 2.0061, gz ≈ 2.0022 (1.9)

Equation (1.8) illustrates the interaction of an effective momentum −µBgŜ with the
external magnetic field, B0. Alternatively, we can view this as the spin’s interaction with a
local magnetic field, g>B0/ge. Unlike a free spin, which aligns with the external field, the
bound spins align along the effective local field.8

1.2.3 Electron-Electron Dipole Interaction
The electron-electron coupling is generally expressed as a sum of the exchange coupling and
dipole-dipole coupling. The exchange interaction between electrons arises from the overlap
of their orbitals, allowing their unpaired electrons to be exchanged. However, this orbital
overlap becomes insignificant when the distance exceeds approximately 1 nm. Therefore, the
exchange interaction can be ignored in many cases, especially when studying interactions
over long distances. Assuming the spins’ g-tensors are nearly isotropic, we derive the spin
Hamiltonian term for dipole-dipole interaction from the classical formula for the energy of
magnetic interaction between two point dipoles separated by a distance vector, r3: � �

1 µ0 32ĤD = g1g2µ Ŝ>Ŝ2 − (Ŝ>
1 r)(Ŝ

>
2 r) (1.10)B 1 r3 4π~ r2

We can capture the spatial interactions in a dipolar coupling tensor, D10: � �
µ0 1 3rr2Ĥ D = Ŝ>

1 DŜ
2 where D = g1g2µ (1.11)B4π~ r3 r5

3

���� ����

1.3. Eigenvalues of the Spin Hamiltonian

When we consider one electron as stationary relative to the other, r is treated as a fixed
parameter for the pair of spin labels.10

1.2.4 Hyperfine Interaction
Like the electron-electron coupling, the electron-nucleus coupling stems from the classical
energy interaction between two magnetic dipoles11: � �

µ0 1 3rr ĤA = Ŝ>AÎ, where A = geµBgNµN − (1.12)
4π~ r3 r5

However, this scenario differs from the electron-electron case because we cannot consider the
electron as stationary relative to the nucleus. Consequently, we must integrate the vector r
over the spatial electron probability density distribution in the ground state, resulting in
matrix elements of the form10: �

2 �
µ0 3rirj − δij r

Aij = geµegNµN ψ0 ψ0 (1.13)
4π~ r5

Hyperfine couplings, due to the weak magnetic moment of the nucleus, are typically
observable only between electrons and the specific nucleus they are localised on, where their
separation is less than 1 nm.11

In the case of nitroxide probes, the A-tensor exhibits almost axial symmetry. For example,
the principal components of A for MTSL are approximately9:

Ax/h ≈ 12 − 13 MHz, Ay/h ≈ 12 − 13 MHz, Az /h ≈ 92 − 103 MHz (1.14)

1.3 Eigenvalues of the Spin Hamiltonian
Under the assumptions that (i) both the nuclear Zeeman and inter-nuclear interactions are
negligible, and (ii) the hyperfine interaction becomes insignificant for distances exceeding 1
nm, we can define the effective spin Hamiltonian for the spin-label pair as follows:

Ĥ = B0
> g1Ŝ

1 + B>
0 g2Ŝ

2 + Ŝ>
1 DŜ

2 + Ŝ>
1 A1 ̂I1 + Ŝ>

2 A2 ̂I2 (1.15)

Here, Ŝ
iAi ̂Ii represents the hyperfine interaction between an electron and its adjacent

nitrogen nucleus (I = 1). This model effectively treats our system as a pair of nitrogen-centred
radicals.

To determine the energy levels of this system, we need to calculate the eigenvalues of
the spin Hamiltonian. When expressed in matrix form, the spin Hamiltonian is diagonal
in its eigenbasis, which means its diagonal elements are the eigenvalues. Therefore, solving
this problem requires diagonalising the Hamiltonian matrix. This is often straightforward
following a number of justifiable assumptions.12

1.3.1 Zeeman Product Basis
In our 4 spin system, there are 36 possible spin configurations, a quantity we refer to as the
dimension of the reduced Hilbert space, denoted nH

3:

n mY Y
nH = (2Sk + 1) (2Ik + 1) (1.16)

k=1 k=1

4

https://assumptions.12
https://labels.10

Chapter 1. Dipolar Spectroscopy

A general superposition state in our system can therefore be described as a linear
combination of 36 orthonormal basis states:

|Xi = c1 |χ1i + c2 |χ2i + · · · + c36 |χ36i (1.17)

We can represent this state as the column vector12:

|Xi =
�
c1 c2 · · · c36

�> (1.18)

In this representation, each ci is complex probability amplitude. These amplitudes must
satisfy the normalisation condition12:

36 36X X
∗ hX|Xi = ci ci = |ci|2 = 1 (1.19)

i=1 i=1

If the basis states are provided by the eigenstates of the operator:

Ŝ
1z + Ŝ

2z + Î
1z + Î

2z (1.20)

the basis set is referred to as the Zeeman12 (or Cartesian3) product basis. It is defined by
the eigenequations:

Ŝ1z |mS1 ,mS2 ,mI1 ,mI2 i = mS1 |mS1 ,mS2 ,mI1 ,mI2 i (1.21)

Ŝ
2z |mS1 ,mS2 ,mI1 ,mI2 i = mS2 |mS1 ,mS2 ,mI1 ,mI2 i (1.22)

Î1z |mS1 ,mS2 ,mI1 ,mI2 i = mI1 |mS1 ,mS2 ,mI1 ,mI2 i (1.23)

Î2z |mS1 ,mS2 ,mI1 ,mI2 i = mI2 |mS1 ,mS2 ,mI1 ,mI2 i (1.24)
(1.25)

In the notation |m1,m2,m3,m4i, the quantum numbers mi describe the definite values of
the z-projection for spin i.

1.3.2 Weak Coupling Approximation
If both electronic Zeeman terms are much larger than the coupling terms, and the g-tensors
are only weakly anisotropic, the electron and nuclear spins will be (approximately) quantised
along the external field direction. This condition, often fulfilled in the high-field limit, is
commonly referred to as the weak coupling condition12:

ˆ ˆ ˆ ˆ| − g1B>S1|, | − g2B>
0 S2| � |Ŝ

1DŜ
2|, |Ŝ

1A1I1|, |Ŝ
2A2I2| (1.26)0

Under this condition, the electron spins Ŝ
i align parallel to B0. If we let the direction of

B0 define the z-axis of the reference frame, we can simplify our expression for the Zeeman
interaction term:

2X �
ĤZ = −gi 0 0

� �
B0 0 0

�>
Ŝiz (1.27)

i=1
2X

= ˆ−giB0Siz (1.28)
i=1

Similarly, the dipolar interaction term may be rewritten by expanding the inner products:

5

1.4. Continuous Wave Spectroscopy

2ĤD =
r
1
3
µ0

g1g2µB(1 − 3 cos2 θ)Ŝ1zŜ2z (1.29)
4π~

= DŜ
1zŜ

2z (1.30)

And, again for the hyperfine interaction:

ĤA = A1Ŝ1z Î1z + A2Ŝ2z Î2z (1.31)

A direct result of the weak coupling condition is that Zeeman product states become
eigenstates of the spin Hamiltonian, which we can now express as12:

2 2X X
Ĥ = −giB0Ŝ

iz + AiŜ
iz + DŜ

1z Ŝ
2z (1.32)

i=1 i=1

This condition simplifies the derivation of eigenvalues, as the spin Hamiltonian is now diagonal
in the basis of Zeeman product states.3

1.4 Continuous Wave Spectroscopy

In a continuous wave (CW) experiment, we subject the sample to a microwave irradiation
field, B1 of constant frequency and sweep an external field, B0, across a range of frequencies.
To observe a transition, the energy level difference must match the frequency of the incoming
radiation, described by the equation13:

ΔE = ~ω (1.33)

NMR transitions occur at much lower frequencies than EPR transitions. This means
that the field range covered by an EPR spectrometer does not encompass the frequencies at
which NMR transitions occur. As a result, we typically don’t observe NMR transitions using
an EPR spectrometer. This concept is often articulated as a selection rule14:

ΔmI = 0 (1.34)

For a transition to occur, conservation of both total energy and angular momentum is
necessary. Since a photon has spin J = 1, a second selection rule for single photon transitions
arises3:

ΔmS = 0 (1.35)

With these selection rules in mind, it is straightforward to simulate the continuous wave
spectrum for the spin system described by eq. (1.32).15

6

https://1.32).15

Chapter 1. Dipolar Spectroscopy

8 / GHz

In
te

ns
ity

8 / GHz
In

te
ns

ity

Figure 1.1: Left: Simulated spectrum of a nitroxide spin pair with isotropic g- and hyperfine tensors,
displaying three distinct doublets corresponding to three nuclear spin states, each split by dipolar
interaction. Right: Hyperfine anisotropy in the spectrum causes broadening that conceals the dipolar
coupling.

In the idealised case shown in the left panel of fig. 1.1, we assume isotropic g-values
(iso) (iso) (iso) (iso)
g = g , and isotropic hyperfine couplings a = a . The spectrum shows threeA B 1 2
distinct doublets, associated with the three nuclear spin states MI ∈ {−1, 0, 1}, centred at
gµBB0 − a, gµBB0, and gµBB0 + a, respectively. The dipolar interaction splits each of these
doublets. The extent of this splitting depends on the distance r and angle θ. For a single
crystal oriented such that θ = 0◦ , the doublet will be split by 2ωdd/R

3 . At θ = 54.7◦ , the
two lines will coalesce. At θ = 90◦ , the splitting is ωdd/R

3 . In a frozen solution or powder
sample, as we assume here, all orientations of θ are present and the resulting spectrum is the
so-called Pake pattern. 16

The limitations of continuous-wave methods are highlighted when we contrast the simpli-
fied, isotropic spectrum shown in the left panel of fig. 1.1 with the spectrum depicted in the
right panel, where the line broadening caused by g- and A-tensor anisotropy conceals the
dipolar splitting.17

1.5 Pulse Dipolar Spectroscopy
By replacing continuous irradiation with precisely timed microwave pulses, we can isolate the
dipolar interaction from other confounding terms in the spin Hamiltonian found in continuous
wave spectra.3 For example, consider a spin system evolving under an unwanted interaction
term in the spin Hamiltonian for a time interval, t. We can describe the spin configuration
at time t by the equation:

−i ˆ|X(t)i = e Ht |X(0)i (1.36)

ˆ −iĤtHere, we derive the propagator, U(t) = e , by integrating the Schrödinger equation,
assuming a time-independent Hamiltonian:

∂ ˆi~ |X(t)i = H |X(t)i (1.37)
∂t

7

https://splitting.17

1.5. Pulse Dipolar Spectroscopy

By applying a microwave pulse that reverses the sign of the unwanted interaction term, and
letting the system evolve for another interval, t, we can negate the effect of the unwanted

3interaction at time 2t.

+iĤt −i ˆ|X(2t)i = e e Ht |X(0)i = |X(0)i (1.38)

For notational brevity, I will illustrate this technique in the absence of hyperfine coupling,
and focus on a system described by the spin Hamiltonian:

Ĥ = −g1µBB0Ŝ
1z − g2µBB0Ŝ

2z + DŜ
1z Ŝ

2z (1.39)

This system’s eigenstates are the Zeeman product states, defined as6:

1 1ˆ ˆS1z |ααi = + |ααi S2z |ααi = + |ααi (1.40)
2 2
1 1ˆ ˆS1z |αβi = + |αβi S2z |αβi = − |αβi (1.41)
2 2
1 1ˆ ˆS1z |βαi = − |βαi S2z |βαi = + |βαi (1.42)
2 2
1 1ˆ ˆS1z |ββi = − |ββi S2z |ββi = − |ββi (1.43)
2 2

In the notation |αβi, α signifies that the z-projection of spin S1 is +1/2, and β indicates
that the z-projection of spin S2 is −1/2. 12

By the chapter’s end, it will be clear that omitting the hyperfine interaction is a minor
simplification. It’s one of the elements we can effectively remove with a well-designed
microwave pulse sequence.

1.5.1 Density Operator Formalism
In studying macroscopic systems like powders, we can break down the system into K non-
interacting equivalent spin systems, labelled as k = 1, . . . ,K. Each system has its own
unique spin Hamiltonian, Ĥk, and follows its own Schrödinger equation. We assume that
the macroscopic system’s overall physical properties can be understood by averaging the
properties of these individual systems.6

Let’s start by representing the spin state |Xk(t)i of each system k with an operator that
encapsulates our state of knowledge:

Ĉk(t) = |Xk(t)i hXk(t)| (1.44)

Then, we define the ensemble-averaged spin density operator, as:

¯ ρ̂(t) = |Xk(t)i hXk(t)| (1.45)

Expanding the individual spin states in the Zeeman product basis, we get:

|X(t)i = cαα(t) |ααi + cαβ (t) |αβi + cβα(t) |βαi + cββ |ββi (1.46)

Consequently, the spin density operator takes the following matrix form:

ρ̂(t)

⎡ ⎢⎢⎣
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ c c c cααcαα αβ cαα βαcαα ββ cαα

∗ ∗ ∗ ∗ ∗ ∗ ∗∗ c c c cααcαβ αβ cαβ βαcαβ ββ cαβ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ c c c cααcβα αβ cβα βαcβα ββ cβα

⎤ ⎥⎥⎦ (1.47)
∗ ∗ ∗ ∗ ∗ ∗ ∗∗ c c c cααcββ αβ cββ βαcββ ββ cββ

8

Chapter 1. Dipolar Spectroscopy

∗In this basis, the diagonal elements, ρii = ci ci = |ci|2 represent the probability of each
system being in one of the Zeeman product states, and is called the population of the state.

∗The off-diagonal elements, ρii = ci cj , represent the probabilities of being in the superposition
12state of |χii and |χj i, and are known as coherences.

The time evolution of the spin density operator, ρ̂(t), is solely due to the time evolution
of the wave functions |χki6:

dρ(t)
= −i(H |ˆ X(t)i hX(t)| − |X(t)i hX(t)| Ĥ) = −i[Ĥ, ρ̂(t)] (1.48)

dt
This equation is known as the Liouville-von Neumann (LvN) equation. When Ĥ is time-
independent, formally integrating eq. (1.48) leads to3:

ρ̂(t) = exp(−iĤt)ρ̂(0) exp(−iĤt) (1.49)
The operator, Û(t) = exp(−iĤt) is known as a propagator because it “propagates” the

density operator in time.3

1.5.2 Product Operator Formalism
Describing the time evolution using the explicit density operator can be cumbersome. A
more practical approach is to use the product operator formalism, which decomposes ρ̂(t)
into a linear combination of orthogonal basis operators.18

In a two-spin system, the density operator has 16 elements, placing it in a 16-dimensional
vector space known as Liouville space. Consequently, we can expand the density operator
using any complete set of 16 basis operators. A commonly used set is the Cartesian product
operator basis3:

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ{Ŝ
1x, 2Ŝ

1xS2x, . . . } = { 1, S1x, S1y, S1z} ⊗ { 1, S2x, S2y, S2z} (1.50)
2 2

This set’s advantage is that each basis operator has a very interpretable meaning.12 For
example, consider the product operator Ŝ1z , with matrix representation: ⎡ ⎢⎢⎣

1
1
−1

⎤ ⎥⎥⎦ (1.51)1
Ŝ1z =

2
−1

(omitting zero elements). If ρ̂ contains a (positive) term Ŝ1z , then the population of states
12|βαi and |ββi are depleted with respect to the populations of states |ααi and |αβi.

We can categorise the remaining product operators, following Kuprov4:

• Ŝ1z, Ŝ2z correspond to population differences between Zeeman energy levels that are
one flip away from each other. They are called longitudinal single-spin orders.

• Ŝ1zŜ2z, Ŝ2z Ŝ1z correspond to population differences across levels connected by single
spin flips, but the sign of the difference depends on the state that the other spins have.
They are called longitudinal multi-spin orders.

• Ŝ
1x, Ŝ

2y , etc. are off-diagonal terms in the density operator corresponding to observable
transverse magnetisation states. They are called transverse single-spin orders.

• Ŝ1xŜ2y , etc. are off-diagonal terms in the density operator that correspond to correlated
patterns of transverse magnetisation of different spins. Such correlations do not directly
correspond to observable magnetisation, but they may evolve into states that do. They
are called transverse multi-spin orders.

9

https://meaning.12
https://operators.18

1.5. Pulse Dipolar Spectroscopy

All spin Hamiltonians can be represented in this Cartesian product basis. Therefore,
for a product operator, Â, evolving under another product operator, B̂, the evolution is
expressed3:

−iφB̂ ˆ B e Ae+iφ ˆ
= Ĉ (1.52)

Here, the rotation angle, φ, either denotes a pulse flip angle, or is defined by φ = ωt,
where ω is an interaction’s amplitude in the Hamiltonian. To solve eq. (1.52), we use the
Baker-Hausdorff formula, which expands the expression as3:

−iφB̂
Aeˆ +iφB̂ ˆ φ2

[ˆ iφ3
[ˆe = A − iφ[B,ˆ Â] − B, [B,ˆ Â]] + B, [B,ˆ [B,ˆ Â]]] + . . . (1.53)

2! 3!

For Cartesian product operators, B̂ 6= Â, the relation [B,ˆ [B,ˆ Â]] = Â always holds, so we
can simplify eq. (1.53) as3:

� � � �
φ2 φ4 φ3 φ5

−iφB̂ ˆ B ˆe Ae+iφ ˆ
= A 1 − + − . . . − i[B,ˆ Â] φ − + − . . . (1.54)

2! 4! 3! 5!

This can be further simplified to3:

−iφB̂
Aeˆ +iφB̂ ˆ ˆ ˆe = A cos φ − i[B,ˆ Â] sin φ for B =6 A (1.55)

However, if [B,ˆ Â] = 0, as in the case where B̂ = Â, substition into the Baker-Hausdorff
formula yields3:

−iφB̂
Aeˆ +iφB̂ ˆ ˆ ˆe = A for B = A (1.56)

The commutators [B,ˆ Â] can easily be calculated. I will provide some useful identities
here. The commutators of single-spin operators are determined by fundamental commutation
relations5:

[Ŝ
x, Ŝ

y] = iŜ
z (1.57)

ˆ[Ŝ
y, Sz] = iŜ

x (1.58)

[Ŝ
z, Ŝ

x] = iŜ
y (1.59)

(1.60)

Commutators involving a single-spin and a two-spin operator follow:

[Ŝ
k, 2Ŝ

lÎ
i] = [Ŝ

k, Ŝ
l]Î

i (1.61)

[Îk, 2ŜiÎl] = Ŝi[Îk, Îl] (1.62)

And, among the commutators between two-spin operators, those that are non-zero can be
represented by:

[2Ŝk Îi, 2Ŝk Îl] = [Îi, Îl] (1.63)

[2ŜiÎk, 2ŜiÎk] = [Ŝi, Ŝl] (1.64)

Usually, a spin Hamiltonian consists of a sum of several product operator terms. Equa-
tion (1.53) can then be applied consecutively as long as all the terms of the Hamiltonian

ˆcommute with each other. This condition is always fulfilled if H is diagonal.3

10

Chapter 1. Dipolar Spectroscopy

1.5.3 Thermal Equilibrium
When a spin ensemble remains undisturbed for an adequate period, it reaches thermal
equilibrium with its molecular environment. Representing the complex number probability
amplitudes in phase form, we get the equation19:

∗ ∗ −i(φm−φn)c c − |cm||cn|e (1.65)m n

In statistical mechanics, it’s common practice to assume that the phases, φn, are statistically
independent from the amplitudes |cn|, and that φn and φm occur with equal probability
across all values. This assumption, known as the hypothesis of random phases, leads to the
elimination of all off-diagonal elements in ρ(t). 19

Thermodynamic principles also apply to population discussion. The equilibrium popula-
tions of a multi-level system’s states should follow a Boltzmann distribution, expressible in
terms of the density matrix as3:

−iĤ
e ~/kBT

ρeq =
−i ˆ (1.66)

Tr{e H~/kBT }
In the static Hamiltonian, typically one interaction dominates. In the high-field limit, this

dominant interaction is the electron Zeeman interaction, ĤZ = ω1Ŝ
1z + ω2Ŝ

2z . Furthermore,
in most experimental situations, the high-temperature approximation ~ω1, ~ω2 � kBT is
applicable. In this case, a first order series expansion of the exponential yields3:

ρeq = 1 −
~B0

(γ1Ŝ1z + γ2Ŝ2z) (1.67)
kBT

Typically, the identity operator is omitted as it remains invariant during the experiment. Also,
unless the absolute number of spins is relevant, constant factors are considered irrelevant.
For practical purposes, we simplify the expression to3:

ˆρeq = S1z + Ŝ2z (1.68)

1.6 Rotating Frame & Experimental Observables
When we apply a microwave (MW) irradiation field, B1 along the x-axis, perpendicular to
the external magnetic field, B0, that defines the z-axis, with a frequency ωMW, phase φMW,
and amplitude, 2ω1 = geµB~−1B1, the two-spin Hamiltonian becomes time-dependent.6

Under the weak coupling approximation, we can ignore the dipolar coupling’s effect during
the pulse12:

Ĥ = ωAŜ1z + ωBŜ2z + 2ω1(Ŝ1z + Ŝ2z) cos(ωMWt + φMW) (1.69)

To solve the L-vN equation for this time-dependent Hamiltonian and obtain Û(t), we need
to perform a stepwise integration. A common way to overcome the stepwise integration is to
transfer the spin density operator to a rotating frame in which the Hamiltonian can be made
time independent.6

Introducing the MW rotating frame transformation operator6:

−iωMWt(Ŝ1z +Ŝ2z)ÛRoF(t) = e (1.70)

we define the rotating frame spin density operator by the transformation ρ̂6:

ˆ Û −1ρ̃(t) = RoF(t)ρ̂(t)ÛRoF (1.71)

11

1.6. Rotating Frame & Experimental Observables

and derive the rotating-frame L-vN equation for ρ̂̃(t) by calculating the time derivative of
ρ̂̃(t) and using the static frame L-vN equation, resulting in6:

ˆd
ρ̂̃(t) = −i[H̃, ρ̂̃(t)] (1.72)

dt
where

˜ Û −1Ĥ = RoF(t)Ĥ(t)ÛRoF − ωMW(Ŝ1z + Ŝ2z) (1.73)

is the rotating-frame spin Hamiltonian.
Generally, we ignore the time-dependent terms oscillating a frequency of 2ωMW based on

the rotating wave approximation. This approach assumes that terms with 2ωMW � ω1 do
not significantly affect ρ̂̃(t). However, these terms do cause a minor shift in the transition
frequencies ωA and ωB called the Bloch-Siegert shift. Overlooking this minor shift, the
Hamiltonian in the rotating frame takes the form6:

ˆ̃ ˆ ˆH(t) = ΔωAS1z +ΔωBS2z + ω1(Ŝ1x + Ŝ2z) cos φMW + ω1(Ŝ1y + Ŝ2y) sin φMW (1.74)

We can express the rotating frame spin density operator as a linear combination of
orthogonal product operators, with the coefficients now dictating the spin evolution in
the rotating frame. During pulse EPR experiments we typically measure the transverse
magnetisation of the electron ensemble. The heterodyne detection scheme of the spectrometer
produces signals proportional to these magnetisation components, as if observed in the MW
rotating frame6:

mx(t) = −geµB Tr(ρ̃̂(t)(Ŝ
1x + Ŝ

2x)) (1.75)
ˆ̃

ˆmy (t) = −geµB Tr(S1y + Ŝ2y) (1.76)

By combining these two signals into a single complex signal, we define:

m(t) = mx(t) + imy (t) (1.77)

We can calculate the impact of a short microwave pulse on a two-electron spin system by
solving the Liouville-von Neumann (L-vN) equation in the rotating frame. During the pulse,
we neglect all relaxation effects. We assume the pulse duration (pulse width) is short enough
that resonance offsets cause negligible evolution during the pulse. Under these conditions,
the rotating frame spin Hamiltonian during the pulse is12:

Ĥ̃
p = ω1{(Ŝ

1x + Ŝ
2x) cos φMW + (Ŝ

1y + Ŝ
2y) sin φMW} (1.78)

The pulse propagator in the same frame is:

ˆ −iω1{(Ŝ1x+Ŝ2x) cos φMW+(Ŝ1y +Ŝ2y) sin φMW}Ũ p = e (1.79)

The phase, φMW defines the axis of rotation in the rotating frame. A pulse with φMW = 0
is called an x-pulse, and a second pulse with φMW is called a y-pulse. The flip angle ωMWt
describes the angle of rotation around this axis.6

Depending on the values of ΔωA and ΔωB, this Hamiltonian affects either all linear
operators of both electrons or only those of SA or SB. When ω1 � ΔωA the pulse is
non-selective, while if |ΔωA| ≤ ω1 and |ΔωB| � ω1, or vice versa, it is semi-selective, because
we ignored in eq. (1.78) all interaction terms causing possible frequency shifts.6

12

Chapter 1. Dipolar Spectroscopy

1.7 Double Electron-Electron Resonance
We can distinguish electron-electron couplings from other interactions using a pulse sequence
called double electron-electron resonance (DEER). In this experiment, we employ a two-pulse
echo sub-sequence with a fixed inter-pulse delay, denoted as τ , at the observer frequency ωA.
Additionally, we apply a pump pulse with a flip angle of π at a different frequency ωB. The
timing of this pump pulse relative to the first pulse of the observer sequence is variable and
represented by a delay time t. 3

Let us consider a two-electron spin system {eA − eB} where the difference ΔωAB =
|ωA − ωB| is much larger than the dipolar frequency ωAB. Furthermore, we assume that the
MW pulses are semi-selective with amplitudes satisfying the condition ωAB � ω1 � ΔωAB.
In this case, we can excite the pairs of the transitions corresponding to eA or eB selectively.6

We start our calculations by choosing the rotating frame of the MW irradiation at
ωMW = ωA. The Hamiltonian in this frame takes the form:

˜ ˆ ˆ ˆĤ = ΔωB S2z +
1
ωABS1z S2z (1.80)

2
At the start of the experiment, the rotating frame spin density operator is assumed to have
reached thermal equilibrium, such that

ρ̂̃(0−) = Ŝ
1z + Ŝ

2z (1.81)

A semi-selective y-pulse with flip angle π/2 is then applied to the A spins. Since
ˆ[Ŝ

1y, S2z] = 0, the B spin polarisation is unaffected by this pulse and we can write:

−i π ˆ +i π Ŝ1y2ρ̃̂(0+) = e 2 S1y (Ŝ
1z + Ŝ

2z)e (1.82)
−i π ˆ +i π ˆ

= e 2 S1y Ŝ1z e 2 S1y + Ŝ2z (1.83)

Applying the Baker-Hausdorff formula, we get

i ̂S1x0 1 z }| { z }| { z }| {
ρ̂̃(0+) = Ŝ

1z cos(π/2) −i [Ŝ
1y , Ŝ

1z] sin(π/2) +Ŝ
2z (1.84)

= Ŝ
1x + Ŝ

2z (1.85)

The system is then allowed to evolve for a period t under the static Hamiltonian of
eq. (1.80). The density operator term Ŝ

2z commutes with all terms of the Hamiltonian and
therefore remains invariant under free evolution. Furthermore, since the product operators
of different spins commute, the term Ŝ

1x does not evolve under the offset of spin B:

−i 1 ˆ +i 1 ˆˆ ωABtŜ1z S2z ˆ 2 ωABtŜ1z S2zρ̃(t−) = e 2 S1xe + Ŝ2z (1.86)

Again, applying the Baker-Hausdorff formula:

S1y S2z z i ̂ }| ˆ {
ρ̂̃(t−) = Ŝ1x cos 1 ωABt − i [Ŝ1zŜ2z , Ŝ1x] sin 1 ωABt + Ŝ2z (1.87)2 2

ˆ 1 ˆ= S1x cos ωABt + Ŝ1yS2z sin 1 ωABt + Ŝ2z (1.88)2 2

At this point, a semi-selective x-pulse with a flip angle of π is applied on spins B. Since
[Ŝ2x, Ŝ1x] = 0, the first term in ρ̂̃(t−) is unaffected by the pulse:

13

1.7. Double Electron-Electron Resonance

1ρ̂̃(t+) = Ŝ1x cos 2 ωABt + . . .
−iπ ˆ +iπ ˆ

= (sin 1 ωABt)e S2x Ŝ1y Ŝ2z e S2x + . . . (1.89)
2

−iπŜ2x ˆ +iπŜ2x= (cos 1 ωABt)e S2ze2

Applying the Baker-Hausdorff formula, and pre-empting that the terms in sin π = 0, and
the terms in cos π = −1 change sign, we get:

1ρ̂̃(t−) = Ŝ1x cos ωABt − Ŝ1y Ŝ2z sin(1 ωABt) − Ŝ2z (1.90)2 2

The system is then allowed to evolve for a further period (τ − t). Since all the terms of
the product operator commute with the offset frequency ΔωBŜ

2z we need only consider the
evolution under the coupling:

1 1ˆ ˆ−i ωAB(τ−t)Ŝ1z S2z (ˆ 1 +i ωAB(τ−t)Ŝ1z S2zρ̂̃(τ −) =e 2 S1x cos ωABt)e 2 − . . .2
1 1ˆ ˆ−i ωAB(τ−t)Ŝ1z +i ωAB(τ −t)Ŝ1z S2z (1.91)e 2 S2z (Ŝ1yŜ2z sin 1 ωABt)e 2 − . . .2

Ŝ2z

Applying the Baker-Hausdorff formula:

iŜ1y Ŝ2z z }| {
1 1ρ̂̃(τ−) =Ŝ1x cos ωABt cos ωAB(τ − t) − i [Ŝ1z Ŝ2z, Ŝ1x] cos 1 ωABt sin 1 ωAB(τ − t) − . . .2 2 2 2

ˆ ˆ 1 ˆ ˆ ˆS1yS2z sin 1 ωABt cos ωAB(τ − t) − i [Ŝ1zS2z, S1yS2z] sin 1 ωABt sin 1 ωAB(τ − t) − . . .2 2 2 2| {z }
i ̂S1x

Ŝ2z

(1.92)

Applying the trigonometric identities cos(A) cos(B) + sin(A) sin(B) = cos(A − B), and
cos(A) sin(B) − sin(A) cos(B) = sin(A − B), this equation simplifies to:

ˆ ˆ 1 ˆρ̃ = S1x cos ωAB(τ − 2t) + Ŝ1y S2z sin 1 ωAB(τ − 2t) − Ŝ2z (1.93)2 2

A semi-selective y-pulse with flip angle π is then applied on spins A, which simply flips
the sign of the first term:

1ρ̂̃(τ+) = −Ŝ
1x cos ωAB(τ − 2t) + Ŝ

1y Ŝ
2z sin 1 ωAB(τ − 2t) − Ŝ

2z (1.94)2 2

Finally, the system is allowed to evolve for another interval τ . Since all the terms of the
density operator commute with the offset frequency ΔωBŜ

2z, we need only consider evolution
under the coupling:

1 1ˆ ˆˆ −i ωABτŜ1z S2z (ˆ +i ωABτŜ1z S2z 1ρ̃(2τ) =e 2 S1x)e 2 cos ωAB(τ − 2t) + . . .2
1 1ˆ ˆ−i ωABτŜ1z S2z (ˆ ˆ +i ωAB τŜ1z S2z (1.95)e 2 S1yS2z)e 2 sin 2

1 ωAB(τ − 2t) − . . .

Ŝ2z

Applying the Baker-Hausdorff formula:

14

Chapter 1. Dipolar Spectroscopy

ρ̂̃(2τ) =
S1y S2z z i ̂ }| ˆ {

− Ŝ1x cos 1 ωAB(τ − 2t) cos 1 [Ŝ1zŜ2z, Ŝ1x] cos 1 (τ − 2t) sin 1
2 2 ωABτ − i 2 2 ωABτ + . . .

Ŝ
1yŜ

2z sin 1 ωAB(τ − 2t) cos 1 ωABτ + i [Ŝ
1z Ŝ

2z , Ŝ
1yŜ

2z] sin 1 (τ − 2t) sin 1 ωABτ − . . .2 2 2 2| {z }
i ̂S1x

Ŝ2z

(1.96)

Finally, by applying the trigonometric identities cos(A) cos(B) + sin(A) sin(B) = cos(A −
B), and cos(A) sin(B) − sin(A) cos(B) = sin(A − B), this equation simplifies to:

ρ̂̃(2τ) = −Ŝ
1x cos ωABt + Ŝ

1yŜ
2z sin ωAB(τ − t) − Ŝ

2z (1.97)

Recall from our classification of the product operators that that Ŝ
1x is the only term

in eq. (1.97) linked to observable transverse magnetisation. Consequently, the DEER time
trace, as a function of the pump pulse position, is given by:

v(t) = v0 cos ωABt (1.98)

Generally, however, only a fraction of the B spins are affected by the pump pulse. Then
the measured signal is a weighted sum of eq. (1.98), and the conventional spin echo signal
v0 ≡ mx(0

+). 20

When the spins in each interacting pair are equidistant, with constant r, but the orientation
of pairs with respect to B0 is random, the DEER time trace is the average of eq. (1.98) over
the angle θ20:

v(t) = v0(1 − λ(1 − k(t, r))) (1.99) r r ! r !!
π 6Dt 6Dt

k(t, r) = cos Dt · FrC + sin Dt · FrS (1.100)
6Dt π π

Here, FrS and FrC are Fresnel’s sine and cosine functions.
Most molecular systems exhibit an amount of conformational flexibility. Then the DEER

time trace is an average over the distance distribution function, p(r)20:

v(t) = v0 h1 − λ(1 − cos(D(r, θ)t))i (1.101)r,θ

When the pairs have random orientations relative to B0, the time trace can be written
as a Fredholm integral equation of the first kinds20: Z rmax

v(t) = v0 k(r, t)p(r)dr (1.102)
rmin

In reality, the interaction between spins extends beyond individual pairs. Each A spin
interacts with all B spins in the sample, including those in other pairs. The time trace
becomes a product of two contributions20:

v(t) = vinter(t) · vintra(t) (1.103)

The intermolecular background factor, vinter(t), averages eq. (1.98) considering the dis-
tribution of all spin pairs relative to each other. In inhomogeneous media like micelles and

15

1.7. Double Electron-Electron Resonance

membranes, distributions characterised by a fractal dimension are significant. For such fractal
dimensions, the average of eq. (1.98) is:

vinter(t) = v0 exp(−ktd/3) (1.104)

where d is the fractal dimension (space d = 3, plane d = 2, line d = 1), and k is a decay rate
that depends on a variety of empirical factors.21

16

https://factors.21

Chapter 2

Linear Inverse Problems

2.1 Introduction
In pulse dipolar spectroscopy, the strength of the echo signal undergoes modulation due
to the dipolar interaction between two spins, labelled as A and B within the system. This
modulation is directly influenced by the distance r between these spins. However, in the
presence of various conformers within the sample, this modulation is not contingent on a
single distance value. Instead, it is contingent on a distribution of distances denoted as
p(r). This distribution gives rise to a specific signal known as the dipolar evolution function
d(t), which encompasses the dipolar modulations. The connection between the distance
distribution and the dipolar evolution function is elucidated by the kernel K(r, t). This
kernel incorporates a powder average that spans all relative orientations θ of the inter-spin
vector with respect to the external magnetic field. The dipolar kernel is defined as1

Z � �π/2 µ0 ~γAγB
K(t, r) = cos (3 cos2 θ − 1) t sin θdθ (2.1)

0 4πr3 Z π/2 � �
= cos (3 cos2 θ − 1)ωdd(r)t sin θdθ (2.2)

0

where ωdd(t) is the dipolar modulation frequency, µ0 is the permittivity of vacuum, ~ the
reduced Planck constant, and γA/B are gyromagnetic ratios of spin A and B, respectively.
The dipolar evolution function can then be computed via a Fredholm integral equation of
the first kind1: Z ∞

d(t) = K(t, r)p(r)dr (2.3)
0

Experimentally, the echo amplitude d(t) is recorded at a discrete set of m time points ti,
leading to a discretised dipolar signal vector d = (d(t1), . . . , d(tm))> . In the analysis, p(r)
is also represented as a vector p = (p(r1), . . . , p(rn))

> over a discrete set of n equidistant
distances rj . With this, eq. (2.3) reads2:

d = Kp (2.4)

where K is the m × n kernel matrix with elements Kij = K(ti, rj)Δr, and Δr is the distance
domain increment.

17

2.2. Inverse Problems

Inferring the distance distribution p from the measured dipolar evolution function d,
therefore, necessitates solving the system of equations defined by eq. (2.4). If no exact
solution exists, an approximate least-squares solution may be derived.3

Unfortunately, it is well known that for regression models obtained by discretising first-kind
integral equations, the elements of the (least-squares) solution estimate p̂ are pathologically
sensitive to errors in the data d. Noise in d, arising as a result of measurement errors or
just numerical rounding errors, will often lead to totally nonphysical estimates that typically
oscillate wildly between extreme positive and negative values.4 Such problems are said to be

3ill-conditioned.
To address this issue, approaches to the analysis of DEER data impose some degree

of smoothness on p̂, either by adding an adjustable smoothness factor to fit criteria via
Tikhonov regularisation or by assuming some smooth functional form, such as a sum of
Gaussian components to model p̂. 5

2.2 Inverse Problems

The forward problem of computing d from a known p is a straightforward matrix-vector
multiplication. The matrix K acts on the vector p, and the output d is a linear combination
of the columns of K. 6 Denoting the ith column of K as the vector ki:

Kp = p1k1 + p2k2 + · · · + pmkm = d (2.5)

The set of all vectors that can be written as K multiplied by some vector p form the
column space of K, denoted C(K). We will assume that the matrix K is full rank (i.e. that
the columns of K are linearly independent), then the columns of K form a basis for C(K). 6

Given a data vector d ∈ C(K), the inverse problem describes the task of finding the unique
3linear combination of the columns of K that recreate the data vector d.

We assume the reader is familiar with solving such problems via Gaussian elimination. A
tutorial on the topic can be found in any introductory linear algebra text.

We will never talk in terms of solving the inverse problem by finding the matrix K−1 ,
such that K−1K = I, as this “simplification” is only possible for square kernels.6

2.3 Least-Squares Solutions

A full-rank rectangular (m 6= n) system of equations must be overdetermined. Then, even
under the assumption of full column rank (r 6= n), the matrix K will have fewer linearly
independent columns than the ambient space dimension m. In other words, the column space
of the overdetermined matrix K will be a proper subspace of the ambient space Rm . 6

To illustrate this point, I ask that you consider the overdetermined 2×1 “matrix” equation
given below:

� � � �
1 �

x
�
=

3 (2.6)
2 6

The data vector is consistent with the left-hand side because it lies on the line y = 2x
defining the column space (fig. 2.1, left).

18

Chapter 2. Linear Inverse Problems

5

x

5

y

d

y = 2x

5

x

5

y

d̂

d

y = 2x

Figure 2.1: A data point in alignment with the generating linear model (left). An inconsistent
measured data point that has deviated into the broader ambient space (right).

When the right-hand side of eq. (2.6) is measured empirically, subject to measurement
noise, it is extremely likely that the measured vector d will fall outside of the column space
and into the ambient space R2 (fig. 2.1, right). Then eq. (2.6) will have no exact solution.

A useful approximation may still be found by finding a particular model p that minimises
some measure of misfit between the actual data, d, and the model prediction, Kp. The
residual vector is the vector of differences between the observed vector and the corresponding
model predictions7 ,

r = d − Kp (2.7)

and the elements of r are are frequently referred to simply as residuals. One commonly
used measure of misfit is the 2-norm of the residual vector, and a model that minimises this
2-norm is called a least-squares solution. The least-squares or 2-norm solution is of special
interest because it is readily amenable to analysis and geometric intuition and is statistically
the most likely solution if data errors are normally distributed.7

The least-squares solution is, from the normal equations7:

p̂ = (K>K)−1K>d (2.8)

It can be shown that if K is of full column rank, then (K>K)−1 exists.7

The least-squares solution naturally reduces to the exact solution if d ∈ C(K). Therefore,
from now on, we can talk only about the least-squares solution without loss of generality.

2.4 Ill-Conditioning
We say that a problem is well-conditioned if small changes in the data cause only small
changes in the solution. If small changes in the data may potentially cause large changes in
the solution, the problem is said to be ill-conditioned. 8

In two dimensions, it is easy to show that ill-conditioning is a direct consequence of
“nearly” degenerate columns in the matrix K (i.e. the matrix is nearly rank-deficient).
Examine the following 2 × 2 matrix equation, written in a deliberately suggestive format: � �� � � �

−m1 1 x b1 = (2.9)−m2 1 y b2

19

2.4. Ill-Conditioning

As long as m1 6= m2, the matrix is full rank. But the closer m1 comes to m2, the closer to
rank deficiency we get. The solution to this system of equations is given by the point: � � ��

b2 − b1 b2 − b1
(x, y) = ,m1 + b1 (2.10)

m1 − m2 m1 − m2

If the elements of bi of the data vector are perturbed by some finite amounts Δbi, the
solution point moves to the coordinates:

� � � �
(b2 − b1) + (Δb2 − Δb1) (b2 − b1) + (Δb2 − Δb1)0(x , y 0) = ,m1 + b1 (2.11)

m1 − m2 m1 − m2

By subtracting eq. (2.10) from eq. (2.11), we can derive an expression for the changes Δx, Δy
in the coordinates x, y observed as a result of the changes in the data vector Δb1, Δb2: � � ��

Δb2 − Δb1 Δb2 − Δb1
(Δx, Δy) = ,m1 + b1 (2.12)

m1 − m2 m1 − m2

Clearly, as the matrix approaches rank deficiency (m1 − m2 → 0), the perturbation of the
solution approaches infinity (Δx, Δy →∞).

-0.5 0 0.5 1
1

1.5

2

2.5

3

3.5

4

-0.5 0 0.5 1
1

1.5

2

2.5

3

3.5

4

Figure 2.2: Comparison of solutions for a 2D Hilbert matrix with different conditioning: On the left,
solutions for two slightly different data points are depicted, illustrating significant movement with a
minor perturbation. On the right, the solution for a better-conditioned 2D matrix demonstrates
reduced sensitivity to the same magnitude perturbation.

The Hilbert matrices, with elements defined by:

(H)ij =
1 (2.13)

i + j + 1
are canonical examples of ill-conditioned matrices.9 The left panel of fig. 2.2 depicts the
solutions to the following pair of systems:

� �� � � �
11 x 1.552 = (2.14)1 1 y 0.90 � 2 3� � � � �
1 01 x 1.602 = (2.15)1 1 0y 1.002 3

20

Chapter 2. Linear Inverse Problems

and the right panel depicts the solutions to the following better-conditioned pair of systems
for comparison.

� �� � � �
1−1 x 1.552 = (2.16)1 1 y 0.90 � 2 3� � � � �
1 0−1 x 1.602 = (2.17)1 1 0y 1.002 3

2.5 Singular Value Decomposition
A method of particular interest in ill-conditioned systems of higher dimensions is the
singular value decomposition (SVD). It can be shown that every matrix has a singular value
decomposition. If we assume that the matrix is full rank, then for any matrix K ∈ Rm×n ,
the SVD takes the form3:

nX
>K = USV> = uisiv (2.18)i

i=1

where (i) the columns of Um×m are called the left singular vectors, and form an orthonormal
basis for Rm , (ii) the columns of Vn×n are called the right singular vectors, and form an
orthonormal basis for Rn , (iii) Sn×m is a (rectangularly) diagonal matrix of singular values. 3

The SVD of a full rank matrix K breaks the matrix into a sum of rank-1 pieces.10 Under
this interpretation, the singular values are coefficients of the sum that convey how vital the
piece is to the accurate reconstruction of K. A natural consequence of this interpretation is
that if the singular values are arranged in descending order:

s1 ≥ s2 ≥ · · · ≥ sn ≥ 0 (2.19)

then the matrix defined by:

k<nX
> >Kk = u siv (2.20)i i

i=1

is the best rank-k approximation to K. 11 The approximation error can be quantified exactly
in terms of the singular values, stated here without proof12:

kK − Kkk = sk+1 (2.21)

The smallest singular values are naturally associated with the nearly degenerate columns
of K that contain the least information on the span of the column space. This can be seen
by substituting the definition of the SVD (eq. (2.18)) into the definition of the least-squares
solution (eq. (2.8)). Then, in terms of the singular values, the least-squares solution is3:

nX >
i p̂ =

u d
vi (2.22)

sii=1

If the data vector d is perturbed by uncorrelated noise such that d + e, then the
least-squares approximation is given by13:

n n nX > X > X >u d u e u ei i i p̂ = vi + vi = p + vi (2.23)
si si sii=1 i=1 i=1

21

https://pieces.10

2.6. Picard Plots

where p is the exact solution. It is easy to see that small singular values amplify the
contribution to the least-squares solution from the noise.3

Thus, for p̂ not to be dominated by noise, the singular values need, on average, to decay
i d|. >faster than the Fourier coefficients |u

meet this condition is indicative of an ill-conditioned problem.14
This is the discrete Picard condition. Failure to

2.6 Picard Plots

We will finally turn our attention to the ill-conditioning of eq. (2.4). Figure 2.3 depicts an
artificial unimodal distance distribution p, alongside the noiseless dipolar evolution function
d ∈ C(K), and the same dipolar evolution function afflicted by additive Gaussian white noise
d + e 6= C(K).

10 20 30 40 50
Distance / Å

0

0.005

0.01

0.015

0.02

0.025

P
ro

ba
bi

lit
y

0 0.5 1 1.5 2
Time / μs

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

pl
tiu

de

Figure 2.3: An artificially generated Gaussian distance distribution (left) and the (noisy) form factor
generated from it (right).

>
i d|, along with the solution

3 The upper panel of fig. 2.4 shows coefficients |ui
>

A plot of the singular values si, and the Fourier coefficients |u
d|/si is often referred to as a Picard plot.

such a plot for the noiseless data vector d depicted in fig. 2.3. The Fourier coefficients decay

>

faster than the singular values until they level off for i ≥ 125, at a plateau determined by
the machine precision. The solution coefficients also decay for i < 125, but for i > 125, they

i d|.start to increase due to the inaccurate values of |u

22

Chapter 2. Linear Inverse Problems

0 50 100 150 200 250 300
i

10-5

100 <i

ju>
i bj

ju>
i bj=<i

0 50 100 150 200 250 300
i

10-5

100

105 <i

ju>
i bj

ju>
i bj=<i

Figure 2.4: Comparison of Picard plots for noiseless data (top) and noisy data (bottom). In the
noisy case, the coefficients fail to meet the discrete Picard condition throughout.

To illustrate how dramatically a few small singular values can spoil the estimated solution,
two solution estimates, obtained by truncating the singular values at 155 and 165, are shown
in fig. 2.5. The estimated solution obtained with the first 155 singular values is acceptable,
whereas the solution obtained with the first 165 singular values is entirely garbled due to just
a few very small singular values. This indicates that after ca. s155 the decreasing singular
values become dominant in the solution so that by s165, the solution has been dramatically
distorted just by computer round-off error.15

10 20 30 40 50
Distance / Å

0

0.005

0.01

0.015

0.02

0.025

P
ro

ba
bi

lit
y

10 20 30 40 50
Distance / Å

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

P
ro

ba
bi

lit
y

23

https://error.15

2.7. Regularisation Methods

Figure 2.5: Comparison of the estimates obtained by truncating the singular values at the 155th
(left) and the 165th (right).

The lower panel of fig. 2.4 shows the Picard plot for the noisy vector d + e. The Fourier
coefficients plateau at the noise level and fail throughout to meet the discrete Picard condition.
This indicates that the problem is severely ill-posed at this noise level.15

Practically, this plot also illustrates why the truncated SVD is not a sufficient general-
purpose solution method. When the singular values fail to meet the discrete Picard condition
throughout, there is no obvious place to truncate the singular values to make a solution
estimate.

2.7 Regularisation Methods
Regularisation methods attempt to stabilise the ill-conditioned problem by introducing prior
knowledge of the solution p. 16 Consider the case where we have a data vector afflicted with
Gaussian white noise of constant variance:

d + N (0, σ2I) (2.24)

The infinite set of points that may be sampled from this distribution form an �-neighbourhood
around d. Each point is associated with its own least-squares solution. When the matrix is
ill-conditioned, these solutions may vary wildly, and most will be nonphysical.

Regularisation aims to select one of the infinite number of solution estimates best fitting
our assumptions on p. There are many ways to achieve this trade-off, but only three of them
are commonly applied in dipolar spectroscopy.

2.7.1 Parametric Modelling
If a good parametric model exists for the shape of p(r), the data can be fit to the parametric
model by minimising the usual least-squares error function. As there are usually very few
free parameters, fits of an appropriate model are much less susceptible to noise artefacts.17

However, the selection of a parametric model must be made judiciously and always comes at
the cost of putting restrictions on the shape and complexity of p(r). 2 Typically, the distance
distributions are modelled as a sum of n ≥ 1 Gaussian components.18

2.7.2 Tikhonov Regularisation
The Tikhonov regularisation method is based on a modification linear regression problem that
intends to stabilise its solution15 by penalising solutions for traits that could be attributed to
amplified noise in the data.16 Specifically, the Tikhonov solution pα is defined as the solution
to the problem3: n o

2 2
pα = arg min kKp − dk + α2 kLpk (2.25)2 2

This is a form of penalised least-squares fitting. The first term is the least-squares term
capturing the misfit between the model Kp and the data d. The second term penalises for
unwanted properties of the solution p and depends on a specific form for the regularisation
operator L, and a specific value for the regularisation parameter α. 19

For an appropriate value of α, the first term on the right-hand side of eq. (2.25) forces the
result to become compatible with the data. The second term leads to a “regular” estimate of
the solution, in a sense determined by the regularisation operator. The quality of the result
depends strongly on the regularisation parameter. If α is too small, the solution estimate

24

https://components.18
https://artefacts.17
https://level.15

Chapter 2. Linear Inverse Problems

will inherit much of the noise of the unpenalised least-squares problem; if α is too large, the
result will be over-regularised.

While it may not be immediately clear from the formulation in eq. (2.25), this is a linear
least-squares problem in p. If we use the fact that, for arbitrary vectors a, b3: �� 2 � �> ��

a a a > 2 2
= = a a + b>b = kak + kbk (2.26)2 2b b b

2

then it follows immediately that the Tikhonov problem can be reformulated as3: (� ��� 2
)

pα = arg min K
p − d (2.27)

αL 0
2

or simply

(K>K + α2L>L)−1K>d (2.28)

The goal is to find a good balance between these two terms, via a suitable value of α,
such that the regularised solution pα is sufficiently regular and, at the same time, fits the
data well enough. The hope is then that we achieve a regularised solution that approximates
the exact solution.3

Regularisation Matrix Selection

The regularisation operator, L, defines the criterion by which p should be penalised. Physically
reasonable distance distributions between spin labels on proteins are smooth on a tenths-of-
nanometre scale. Three L choices can all encourage smoothness and penalise roughness in p,
in one sense or another.19 The second derivative, represented by the second-order difference
matrix:

L2 ∝

⎡ ⎢⎢⎢⎣
1 −2 1 0

1 −2 1
.

0 1 −2 1

⎤ ⎥⎥⎥⎦ (2.29)

penalises sharp turns in the distribution, which arise from sharp peaks. The first derivative,
represented by the first-order difference matrix:

L1 ∝

⎡ ⎢⎢⎢⎣
−1 1 0

−1 1
.

0 −1 1

⎤ ⎥⎥⎥⎦ (2.30)

penalises steep slopes, which are also associated with sharp peaks. Lastly, the identity
matrix L0 = I can be used. It penalises tall peaks, which tend to be narrow due the overall
normalisation of p. 19

Regularisation Parameter Selection

Once an appropriate regularisation matrix has been selected, the optimal regularisation
parameter, α, needs to be sought.15 Several numerical methods for determining the regulari-
sation parameter were critically discussed in the literature.19

Perhaps the most convenient graphical tool for analysis of discrete ill-posed problems
is the so-called L-curve which is a plot, for all valid regularisation parameters, of the

25

https://literature.19
https://sought.15
https://another.19

2.7. Regularisation Methods

semi-norm η = kLpαk of the regularised solution, versus the corresponding residual norm2
ρ = kKp − dk2. 20

For discrete ill-posed problems, it turns out that the L-curve, when plotted in a log-log
scale, almost always has a characteristic L-shaped appearance (hence its name) with a distinct
corner separating the vertical and horizontal parts of the curve.20 The optimal value for α is
considered to correspond to this corner since it intuitively represents a reasonable balance
between the fitting error and the regularisation error. The corner is not a mathematically
defined quantity, therefore, different operational definitions of locating such a corner exist.19

One possible definition of the corner is the point closest to the lower left corner of the
L-curve plot. DeerAnalysis17 uses one implementation of this idea. The two coordinates ρ
and η are evaluated over a range of α values and then rescaled to the interval [0, 1]. The
corner is determined as the location on the L-curve that is closest to the origin of these
rescaled coordinates19: (� �2 � �2

)
ρ̂ − ρ̂min η̂ − η̂min

α̂ = argmin + (2.31)
ρ̂max − ρ̂min η̂max − η̂min

Figure 2.6 illustrates the L-curve of the noisy data vector depicted in fig. 2.3. The “optimal”
regularisation parameter in the sense just defined is highlighted, and the corresponding
solution estimate is shown.

10-1 100

Residual Norm

10-2

100

102

104

S
ol

ut
io

n
N

or
m

6 = 5.0293

10 20 30 40 50
Distance / Å

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

P
ro

ba
bi

lit
y

Figure 2.6: Tikhonov regularised solution estimate (right) for a regularisation parameter selected
from the L-curve (left).

It is worth noting that α cannot be optimal simultaneously for narrow and broad
peaks. This situation is frequently encountered with protein preparations, where the narrow
peak corresponds to the properly folded and solubilised molecule, whereas the broad peak
corresponds to unfolded or aggregated material. One should resist the temptation to interpret
artificially ragged broad peaks as minor, well-defined conformations.21

2.7.3 Non-Negative Least-Squares
The final assumption commonly used to regularise dipolar evolution functions is that p
should be non-negative across its entire domain. This is not so much an assumption as a
defining feature of all probability density functions. It is commonly used alongside Tikhonov
regularisation to yield an approximate solution that is both smooth and non-negative. The

26

https://conformations.21
https://exist.19
https://curve.20

�

�

�

�

�

Chapter 2. Linear Inverse Problems

drawback of implementing this assumption is that non-negative least squares problems do
not have analytical solutions, so the optimisation must proceed numerically, requiring more
time and computational resources.1

2.8 Background Correction

So far, we have limited our analysis to the dipolar evolution function, which is strictly correct
only for an isolated spin pair. In a macroscopic sample, where only a fraction of the spins, λ,
are excited by the microwave pump pulse, the recorded time-domain signal is a sum of the
contributions from the modulated and unmodulated echoes – the so-called form factor1:

f = 1 − λ + λd (2.32)

Furthermore, intermolecular interactions contribute to a background factor, b, which has
been modelled for DEER as a stretched exponential function1:

−(kt)d/3
bi = b(ti) = e (2.33)

where k is the decay rate, and d is the so-called fractal dimension. 1

The experimental signal consists of the form factor multiplied by the background. However,
the set of electronics that enables its detection introduces random fluctuations. These
fluctuations result in noise e detected in the signal which can be modelled as1:

v = f b + e (2.34)

Experiments found that the noise distribution in DEER signals is well approximated by
an uncorrelated Gaussian distribution with zero mean and constant variance.22

To invert eq. (2.34) via the Tikhonov regularisation approach given in eq. (2.25), the most
common approach in dipolar spectroscopy data processing is to remove the background in the
experimental signal v prior to regularisation.1 This requires an estimate of the background
factor be made a priori by fitting the latter portion of the time domain signal.5 Then, the
(fitted) background factor is divided from the experimental signal:

0 v = v b (2.35)

where represents the Hadamard (element-wise) division. Hence, the correct signal has the
form:

0 v = f + e b (2.36)

where the form factor is obtained as desired, but the term e b represents noise, with
an amplitude that increases exponentially with time. For strongly decaying backgrounds,
this term leads to the so-called noise explosion (fig. 2.7). This can be devastating for
measurements containing short distances (ca. < 5 nm) whose oscillations decay fast but is
less of an issue for longer distances, where the oscillations are more pronounced at longer
times. A common workaround is to truncate the signal subjectively at the point where the
noise seems to drown the oscillation. Not only is there no optimal criterion for selecting this
truncation time, but the approach also sacrifices measured data that may still contain some
information.1

27

https://variance.22

2.8. Background Correction

0 0.5 1 1.5 2
Time / μs

0

0.2

0.4

0.6

0.8

1
A

m
pl

tiu
de

0 0.5 1 1.5 2
Time / μs

0

0.5

1

1.5

2

2.5

A
m

pl
tiu

de

Noisy Trace
Fitted Background

Noise Explosion
Form Factor

Figure 2.7: Illustrative example of a noise explosion. The fitted background (left) is divided from
the noisy trace, leading to an exponentially increasing noise (right).

Recently, Ibáñez et al. demonstrated that the simultaneous fitting of a non-parametric
distance distribution and a parametric background model could be formulated as a separable
non-linear least-squares problem, thus sidestepping the need for a priori background correction
and expelling the artefacts associated with a noise explosion.23

28

https://explosion.23

Chapter 3

Artificial Neural Networks

3.1 Introduction
Effective regularisation methods rely on subjective assumptions about the solution vector’s
characteristics. For instance, Tikhonov regularisation penalises traits believed to be absent
in the solution using a regularisation matrix1: n o

2 2
p̂ = arg min kKp − dk + α2 kLpk (3.1)2 2

Due to their availability in software tools, finite difference matrices are commonly employed
to penalise roughness in the solution. However, the presumption of a globally smooth solution
is often a poor reflection of reality, leading to an oversmoothed solution, and a loss of fine
structural detail, even in the case of an optimally chosen regularisation parameter.2

The “ideal” Tikhonov regularisation operator, L, which may be nonlinear, is the one
that for a representative training set of input-output pairs, T = {(di, pi)}N minimises the i=1
following bilevel optimisation problem over a sufficiently large function space L3: ()

NX n o
2 2

L̂ = arg min kpi − p̂ik2 s.t. p̂i ∈ arg min kKp − dk + L(p) (3.2)2
L∈L i=1

However, employing the Tikhonov functional form within the context of dipolar spec-
troscopy presents a significant limitation. It necessitates that a parametric model for the
background factor be assumed a priori, and corrected for, either by background division or
suitable modification of the kernel.4

An alternative approach to the problem is to assume the existence of a well-regularised
inverse function that can be estimated by an unknown model. This problem is fundamentally
one of function approximation. In the absence of the background factor, and under the
assumption of a linearly regularised solution, a linear model suffices. It estimates the linearly
regularised solution:

(K>K − α2L>L)−1K> : d → p (3.3)

It is then reasonable to expect that any model function capable of mapping the experimentally
measured signal, including the background factor, to a non-linearly regularised solution
estimate should be more flexible.

Artificial neural networks (ANNs) are highly effective tools for function approximation.5

Inspired by the structure of the brain, these networks comprise interconnected nodes that

29

3.2. Node Character

x2

1

collaborate to approximate intricate functions.6 Their effectiveness has captured the atten-
tion of academics and laymen alike, fuelled by science fiction’s depiction of their versatile
capabilities. Despite their perceived complexity, constructing an artificial neural network
model involves surprisingly straightforward algebraic procedures.7

The three essential features of an artificial neural network are (i) the basic computing
elements, referred to as neurons, nodes, or computational units; (ii) the network architecture
describing the connections between computing units; and (iii) the training algorithm used to
find values of the network parameters for performing a particular task.8

3.2 Node Character
The neuron is the basic computational unit of the brain. A human brain has approximately
1011 neurons acting in parallel. The neurons are highly interconnected, with a typical neuron
being connected to several thousand others.9 The points where neurons connect are known as
synapses, facilitating communication between them. Electrochemical signals are transmitted
across synapses, and when a neuron receives a total signal surpassing a specific threshold, it
fires, sending a signal to nearby neurons. It is believed that the modification of synaptic
connections underlies the process of memory formation.10

x1

P
a (i wixi)

Figure 3.1: Graph-based representation of an artificial neuron. The inputs flow in from the left, and
an activation function is applied to their weighted sum to produce the node output.

ANNs are designed based on the structure of biological neural networks. Similar to their
biological counterparts, ANNs consist of interconnected nodes, mimicking neurons. Although
the biochemical processes in biological neurons are intricate, the logical operations they
perform are relatively simple. One of the initial models in this field was the binary threshold
unit. 11 In this model, a neuron receives a weighted sum of inputs from connected units and
outputs a value of one (fires) if the sum exceeds a specific threshold; otherwise, it outputs
zero. Mathematically, this model can be expressed as10: !

NX
y = a wixi − b (3.4)

i=1

where y is the output of node, wi is the connection weight on input xi, b is the threshold,
and a(·) is the activation function, defined as9: (

1 if z ≥ 0
a(z) = (3.5)

0 if z < 0

The connection weights are the model’s learnable parameters. During training, these
weights are fine-tuned to adapt the network’s behaviour, enabling it to learn complex patterns
and relationships effectively.6

The weighted sum in eq. (3.4) can be easily understood as the inner product between a
12:vector of inputs, (x)i = xi, and a vector of connection weights, denoted as (w)i = wi

30

https://formation.10

Chapter 3. Artificial Neural Networks

> y = (w x − b) (3.6)

The threshold value can be incorporated into this inner product by prepending a constant
input value of -1 to x. Then, the first element of the weight vector, usually denoted w0 ≡ b,
becomes the learnable threshold value13: �� � � �>

�
y = a w0 w −1 x (3.7)

While the binary threshold unit resembles a biological neuron in concept, it falls short in
one key aspect: it merely signals whether the input crosses a threshold without indicating
by how much. This limitation restricts its effectiveness for complex tasks. More favourable
activation functions produce output signals that uniquely reflect the size of the input. One
such widely used function is the logistic sigmoid, which serves as a smooth and continuous
approximation to the step function14:

z
s(z) =

1
=

e (3.8)−z1 + e ez + 1
From any real input, this function provides a unique output in the range [0, 1].

The hyperbolic tangent function:

−zez − e ez(1 − e−2z)
t(z) = = = 2s(2z) − 1 (3.9)−z −2z)ez + e ez(1 + e

has a similar shape, but an output that covers the range [−1, 1]. The differentiability of
these two functions confers a speed advantage during training.14

3.3 Network Architecture
Network architecture refers to the arrangement and connections of nodes. In the brain,
connections between neurons may seem random, at least locally, but creating entirely random
artificial neural networks presents difficulties such as unclear data input points and the risk
of endless data loops during training. The most common type of artificial neural network is
therefore neither entirely random nor completely uniform; the nodes are arranged in layers
(fig. 3.2). This structured network is easier to train than networks with utterly random
connections, while remaining capable of addressing complex problems.14

x1 ŷ

x2

hidden output
layer layer

1
1

input
layer

Figure 3.2: Graph-based representation of a 2 layer feed-forward, fully-connected network. Every
node is connected to every node in the next layer, and inputs flows in one direction, from left to
right.

31

https://problems.14
https://training.14

3.3. Network Architecture

In this structured network, one layer comprises input nodes, another contains output
nodes, and one or more layers consist of hidden nodes in between. Signals flow from the
input layer to the hidden layer(s) for processing and then proceed to the output layer, which
provides the network’s response to the user. Notably, this network lacks recursive links,
preventing signals from moving backwards or returning to the same node. This unidirectional
flow during input data processing characterises it as a feed-forward network. Moreover, since
every node in a layer is connected to every node in the subsequent layer, it is additionally
termed a fully-connected network.14

The feed-forward fully-connected network can feature any number of hidden layers with
a variable number of hidden nodes per layer. In practice, experimenting with networks of
different architectures and using cross-validation or test set performance helps identify simple
yet effective networks. When counting layers, it is customary to exclude the input layer, as it
merely passes data to the next layer without transforming it. Thus, a network with an input
layer, one hidden layer, and an output layer is termed a two-layer network. A network with
more than one hidden layer is termed a deep neural network, leading to the expression deep
learning.14

Suppose that the network has L layers, with layers 0 and L being the input and output
layers, respectively. A layer has nl nodes. Overall, the network is a mapping from Rnl to
Rnl−1 . The output of layer l is a vector a(l) called the post-activation vector15:

(l) (l)(z(l))a = s (3.10)

where the activation function, s(l)(·), is applied element-wise to the pre-activation vector
(l)15:z

(l) (l−1)z = W(l)a (3.11)
(l)Here, W(l) is the nl × nl−1 matrix of connection weights. More precisely, (W(l))ij = wij is

the weight that node j at layer l applies to the output from node i at layer l − 1. 15

Thus, given an input vector x, we can succinctly summarise the network’s action as16:

(L)(W(L) (L−1)(W(L−1) (1)(W(1)y = s s · · · s x) · · ·)) (3.12)

By organising nodes into layers, artificial neural networks can effectively replicate the
parallelism of the brain by leveraging parallelised matrix multiplication techniques embedded
in high-performance libraries such as LAPACK and BLAS.17

Parameter Sharing

Fully-connected architectures with sigmoidal activation functions are potent tools, capable
of reproducing any continuous function with just one hidden layer containing a sufficient
number of nodes. Introducing a second hidden layer extends this capability to modelling
non-continuous functions.14

However, for tasks like image recognition, the efficiency of fully-connected architectures
is notably lacking. A child can learn to recognise an object with minimal exposure, while a
fully-connected neural network often requires thousands of examples to generalise effectively.18

The challenge lies in the excessive parameterisation of the fully-connected architecture
for such tasks. For instance, if an image has dimensions of 200x300 pixels, the first layer
alone would have 60,000 columns. Due to the fully-connected nature, the output depends on
every pixel simultaneously, even though the feature of interest is typically localised.7

Moreover, the search for structure in the image is essentially uniform across all regions.
There’s usually no need to process one part of an image differently from another. By sharing
weights across all parts, we can construct a neural network that is shift-invariant. 7

32

https://effectively.18
https://functions.14
https://learning.14
https://network.14

Chapter 3. Artificial Neural Networks

If each neuron is connected to only E neurons in the next layer, with the connections
being the same for all neurons, the weight matrix has only E independent parameters,
and optimising these parameters becomes considerably faster. A shift-invariant matrix is
a banded Toeplitz matrix or a filter. Multiplying a vector by this matrix equates to a
discrete convolution operation. A network with weight matrices of type is therefore called a
convolutional neural network (CNN).19

3.4 Training Algorithm
Given a training set of input-output pairs, T = {(xi, yi)}Ni=1, the objective is to train the
network to approximate the functional relationship between inputs and outputs. This is akin
to solving a regression problem, where the objective is to discern the relationship between
independent variables (inputs) and dependent variables (outputs).9

From an optimisation point of view, training a neural network is equivalent to minimising
a scalar function of w called a loss function20:

∗ w = arg min ̀ (w) (3.13)

The loss function should provide a metric of disparity between the network’s predictions
and the target values. A high value indicates a choice of parameters that would give poor
performance, while the opposite holds for a set of parameters providing a low value.21

A common loss function used in neural networks (although not the only one) is the
mean-squared error function21:

NX
2

`(w) =
1 kyi − f(xi, w)k (3.14)22

i=1

The inclusion of the factor 1/2 is a matter of convenience, simplifying things when we come
to differentiate `(·). In principle, rescaling the objective function does not alter the minimiser,
so the factor 1/2 should not impact the outcome.15

While the objective in eq. (3.14) appears straightforward, its non-convex nature precludes
analytical solutions.22 Consequently, local optimisation methods are employed to iteratively
refine a point in weight space, guiding it towards an approximate minimum.21 Most of these
methods are based on a common strategy, illustrated by the pseudo-algorithm below20:

1. Choose the initial weight vector w0 and set k = 0.

2. Determine a search direction Δwk and a step size ηk so that `(wk + ηkΔwk) < `(wk).

3. Update the weight vector wk+1 ← wk + ηΔwk.

4. If r`(wk+1) =6 0 then set k ← k + 1 and go to 2, else return wk+1 as the desired
minimum.

Hence, every local optimisation algorithm comprises three essential components: (i)
selecting an initial guess, (ii) determining a search direction in weight space, and (iii) deciding
the step length, i.e. how far to advance in the chosen direction.20

3.4.1 Steepest Descent Method
Given an initial estimate w0, the aim is to find a perturbation Δw0 such that the next vector
w0 +Δw0 decreases the loss function `(·). In the absence of a global view of the function’s

33

https://direction.20
https://minimum.21
https://solutions.22
https://outcome.15
https://value.21

3.4. Training Algorithm

geometry, we must determine this pertubration based solely on the local information provided
by the function evaluation `(w).

For a small perturbation Δw0, the loss function `(·) can be approximated around w0 by
a Taylor series expansion17:

2`(w0 +Δw0) ≈ `(w0) + r`(w0)
>Δw0 + O(Δw0) (3.15)

Given the immense number of parameters in a typical neural network, it becomes prohibitively
expensive to extend this approximation beyond the first order.21

To minimise the cost function to the greatest extent, we should therefore choose the
direction Δw0 in a way that maximises the negativity of r`(w0)

>Δw0. 17 Obviously some
normalisation must be imposed on Δw0, otherwise for any Δw0 such that r`(w0)

>Δw0 < 0,
one could simply multiply Δw0 by an arbitrarily large number.23

The unit direction of most rapid decrease, then, is the solution to the problem24: � �
Δw0

Δw0 = arg min r`(w0)
> (3.16)
kΔw0k2

Since r`(w0)
>Δw0 = kr`(w0)k2 cos θ, it is easy to see that the minimiser is attained

when cos θ = −1, and Δw0 is the unit step in the opposite direction of the loss function’s
gradient24:

r`(w0)
Δw0 = − (3.17)

kr`(w0)k2

The steepest descent method is the optimisation algorithm that moves along Δw at every
step.24

Step Size Selection

When determining the step length, often referred to as the learning rate in the context of
artificial intelligence, we encounter a trade-off. The goal is to select η to achieve a substantial
reduction in `(·), while simultaneously avoiding excessive time spent on the selection process.
The ideal choice would be the global solution to the line search problem24:

η ∗ = arg min ̀ (w + ηΔw) (3.18)

However, in practice, identifying this value is often too computationally expensive. Instead,
a common approach is to use a fixed step length, often taking the form of 10η . 21 However, a
constant learning rate poses a dilemma to the analyst. If a lower learning rate is used early
on, the algorithm takes too long to approach an optimal solution. Conversely, a large initial
learning rate allows the algorithm to get reasonably close to a good solution initially, but
then it may oscillate around that point for an extended period or diverge in an unstable
manner if the high learning rate is maintained.25

An alternative to fixed step length rules is the use of diminishing step length rules,
where the step length is reduced at each iteration of local optimisation. A straightforward
way to implement a diminishing step length rule is to set η = 1/k at the kth iteration.
This approach gradually reduces the distance between subsequent steps as the optimisation
progresses, enabling the exploration of smaller details and intricacies in the loss landscape
where potential minima might be located.21

34

https://located.21
https://maintained.25
https://number.23
https://order.21

�

�

Chapter 3. Artificial Neural Networks

Parameter Initialisation

The starting values of the weights can have a significant effect on the training process.
Weights should be chosen randomly but in such a way that the sigmoid is primarily activated
in its linear region. Initialising weights over the linear region of the sigmoid offers two
advantages26:

1. Starting with excessively large weights can lead to sigmoid saturation, resulting in
small gradients and slow learning. Activating weights in the linear region addresses
this by ensuring sufficiently large gradients for effective learning.

2. If all layers’ sigmoids are activated linearly, the neural network initially functions as
a composition of linear functions. This means that in the early stages, the network
behaves as a linear approximation, and non-linearity is introduced gradually as needed
during training.

One common approach to weight initialisation is generating random values from a
Gaussian distribution with a small standard deviation, such as 10−2 . However, a drawback
is the insensitivity to the number of inputs to a specific neuron. This insensitivity arises
because the same standard deviation is uniformly applied to all neurons during initialisation.
Consequently, there can be a significant difference in the impact of individual weights on the
neuron’s output, especially in the early stages of training. Neurons with more inputs may
exert a disproportionately larger influence on the overall output due to the additive effect of
these inputs, potentially resulting in larger gradients during backpropagation.25

To address this, it can be shown that the variance of outputs linearly scales with thep
number of inputs. Therefore, the standard deviation is adjusted to 1/nl−1, where nl−1 is
the number of inputs to that neuron. This adjustment aims to balance the impact of weighs
on neurons with varying input counts. More sophisticated rules for initialisation, such as
the Glorot initialiser, consider the inter-layer interactions among nodes, acknowledging their
contribution to to output sensitivity.25

3.5 Backpropagation
In the early days of neural network development, calculating derivatives was a tough nut
to crack. Finite difference methods involve perturbing individual parameters and observing
the resulting changes in the network’s output to estimate derivatives. However, they are
computationally infeasible for neural networks due to the sheer number of parameters,
requiring multiple forward passes for each parameter perturbation. This approach becomes
impractical as network size increases, resulting in a prohibitively high computational cost.

The breakthrough in neural network training came with the development of backprop-
agation, a technique that leverages the chain rule of calculus. This technique is tailored
specifically for efficiently computing the gradients needed to update the weights in a neural
network during training. The following equations describe the partial derivative of the loss
function for the weight matrix of any layer l13:

� �
(l) (l)∂` ∂` ∂a ∂z

= · (3.19)
∂W(l) ∂a(l) ∂z(l) ∂W(l) � �

(l)∂` ∂a (l−1))> = · (a (3.20)
∂a(l) ∂z(l)

35

https://sensitivity.25
https://backpropagation.25

�

�

�

� �

3.6. Application to Inverse Problems

The simplification in eq. (3.20) follows from the definition of z and highlights that by caching
a(l−1) during the forward pass, we can expedite the calculation of the derivatives during the
backward pass for layer l.

Now consider the derivative of the loss function with respect to the weight matrix of the
preceding layer: � �

(l−1) (l)∂` ∂` ∂a ∂z
= · (3.21)

∂W(l−1) ∂a(l−1) ∂z(l−1) ∂W(l−1)

This expression echoes the previous form, and we can circumvent the explicit calculation
of ∂a(l−1)/∂z(l−1) by applying the chain rule again, expressing it in terms of previously
computed products that can be cached for efficiency:

� �
(l) (l)∂` ∂` ∂a ∂z

= · (3.22)
∂a(l−1) ∂a(l) ∂z(l) ∂a(l−1) � �

(l)∂` ∂a
= · (W(l))> (3.23)

∂a(l) ∂z(l)

The exact form of the derivatives in a and ` will depend on the loss function and the
activation function used at the layer. For instance, for the last layer with a logistic sigmoid
activation function, and a quadratic loss function:

∂` (L) − y) (L) (L−1))> = (a (a (1 − a(L))) · (a (3.24)
∂W(L)

This recursive process can be applied to earlier layers by continuing to differentiate the
expressions backward through the layers, using the chain rule and utilizing the values cached
during both the forward and backward passes. The derivatives for the weights of each layer
can be expressed in terms of the gradients of the subsequent layer, facilitating the efficient
computation of gradients for the entire neural network during training.

3.6 Application to Inverse Problems
Since the 1980s, researchers have explored the application of artificial neural networks for
solving linear problems. Initially, their focus was on addressing simple, low-dimensional ”toy
problems” that lacked a specific physical model or context. In some of these early attempts,
researchers trained the networks using noiseless data, which resulted in what is known as
”inverse crimes” and produced unregularized solution estimates.27

In recent years, the academic literature has shifted its attention towards using con-
volutional neural networks to address inverse problems in imaging applications. These
applications encompass a range of tasks, including fundamental restoration tasks like deblur-
ring, super-resolution, and image inpainting, as well as various tomographic imaging tasks
like magnetic resonance imaging, X-ray computed tomography, and radar imaging.

One notable application of artificial neural networks to the inverse problem is the work by
Worswick et al.16 They developed a network called DEERnet to predict distance distributions
from measured DEER traces. DEERnet is a fully-connected 5-layer feed-forward model with
256 nodes in each layer. Mathematically, it can be represented as:

p̂ = logsig(W(5) tanh(W(4) . . . tanh(W(1)v) . . .)) (3.25)

They included a logistic function at the output layer to ensure that DEERnet’s predicted
distance distributions remained strictly positive, and this improved accuracy on a test set.

36

https://estimates.27

Chapter 3. Artificial Neural Networks

Due to the ill-conditioned nature of the inverse problem, real distance distributions are
rarely known exactly. Therefore, they generated a training set of 200,000 artificial DEER
traces through simulation. This was feasible because the forward problem is well-posed. They
assumed that a combination of up to three skew-Gaussian peaks would cover a representative
range of distance distributions. The mean and standard deviation of each peak were randomly
selected from specified range. These peaks were then integrated with the kernel to generate
form factors. Modulation depth and background model parameters were also randomly
selected for each trace, and Gaussian white noise imposed.

0 0.5 1
Time / μs

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
m

pl
tiu

de

Input Data

20 30 40 50
Distance / Å

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

P
ro

ba
bi

lit
y

Prediction

Tikhonov
DEERnet

Figure 3.3: DEERnet performance on pairs of nitroxide radicals tethered to the surface of gold
nanoparticles, with the thiol tether attachment points diffusing on the surface of the nanoparticle.

In fig. 3.3 DEERnet successfully predicted a distance distribution that included a narrow
peak sitting atop a broad pedestal. This type of distribution poses a challenge for Tikhonov
regularisation, because the Tikhonov regularisation parameter cannot be simultaneously
optimised for narrow and broad features.

37

3.6. Application to Inverse Problems

38

Chapter 4

Tricks of the Trade

4.1 Introduction
Historically, neural network models were confined to small, shallow networks. Training deeper
networks often resulted in non-convergence.1 This issue stemmed from two main challenges:

1. The use of sigmoidal activation functions can lead to very small gradients. When these
derivatives are multiplied together during backpropagation, the gradient can diminish
exponentially with depth, leading to stalled or slow learning.

2. More parameters necessitate more training data, following the statistical rule of 10.
However, traditional gradient descent training becomes unfeasible if the dataset size
exceeds the available system memory.

In response to these challenges:

1. Piecewise constant activation functions were introduced. These functions have segments
where the gradient is constant and not less than 1. This prevents the gradient from
vanishing when multiplied across layers.

2. Stochastic training algorithms were developed, eliminating the need to compute the
gradients of the entire batch during training.

These techniques revolutionised deep learning, leading to a significant increase in the size
of state-of-the-art networks. For example, GPT-3, one of the largest language models trained
to date, has 175 billion parameters and was trained with 300 billion tokens.2

Even in shallow networks, the application of non-saturating activation functions can
accelerate the training process. While the vanishing gradient problem might not completely
impede learning in these networks, it has the potential to decelerate it. Furthermore,
irrespective of the training database’s size, using stochastic optimisation algorithms can
enhance efficiency and generalisation.

4.2 Stochastic Optimisation
The simplest learning (minimisation) procedure is the gradient descent algorithm where w is
iteratively adjusted as follows3:

NX
k k−1 − η k−1)w = w r`(xi, w (4.1)

i=1

39

4.2. Stochastic Optimisation

At each iteration, eq. (4.1) requires a complete pass through the entire dataset to compute
the average or “true” gradient. This is called batch learning because it requires processing a
whole “batch” of data before updating the weights.3 As we need to calculate the gradients
for the whole dataset to perform just one update, batch gradient descent can be very slow
and is intractable for datasets that do not fit in memory.4

Alternatively, in stochastic learning, we randomly select a single example, xi, from the
training set at each iteration k. Then, we calculate an estimate of the true gradient based
on the error, `, of this example. Following this, we update the weights according to the
formula3:

k k−1)w = w k−1 − ηr`(xi, w (4.2)

We repeat this for every example in the training set. One complete pass through the
training set is called an epoch. 5

Stochastic learning typically outperforms batch learning in terms of speed, especially on
large datasets with redundant data. This can be easily demonstrated. For example, imagine
a training set of 1,000 samples that contains 10 identical copies of a smaller set with 100
samples. Averaging the gradient over all 1,000 patterns yields the same result as computing
the gradient using just the first 100. Therefore, batch gradient descent is inefficient as it
recalculates the same quantity 10 times before updating a single parameter. In contrast,
stochastic gradient descent views a full epoch as 10 iterations through a training set of 100
samples. In real-world scenarios, it’s rare for examples to repeat in a dataset. However,
datasets often have clusters of patterns that are quite similar, and are therefore effectively
redundant.3

Stochastic learning often also leads to better solutions. Our objective function typically
features multiple local minima of varying depths. Training aims to find one of these minima.
In batch learning, the algorithm locates the minimum within the basin where the initial
weights are placed. However, in stochastic learning, the “noise” in the updates can cause the
weights to jump into the basin of a different, potentially deeper local minimum.3

However, the same noise that enables stochastic gradient descent (SGD) to escape local
minima also impedes its full convergence to the minimum. The gradient from a single example,
being only an estimate of the true gradient, often leads SGD to overshoot the minimum in
each iteration. Overshooting happens when SGD, following this noisy or imperfect gradient,
surpasses the optimal minimum point. Instead of a smooth convergence to the loss function’s
minimum, the algorithm frequently moves past it. This occurs because the gradient estimated
from a single example, or a small batch, may indicate a steeper descent direction than the
true gradient from the entire dataset. Consequently, the step size in each iteration might be
excessively large, causing the algorithm to bypass the minimum point.3

Mini-batch gradient descent combines the advantages of both batch and stochastic
approaches. It updates the parameters after processing a subset of training examples, known
as a mini-batch3:

B<NX
k k−1)w = w k−1 − η r`(xi, w (4.3)

i=1

This approach actively reduces the variability in parameter updates for more consistent
convergence and efficiently calculates gradients for mini-batches using sophisticated matrix
optimisation techniques found in state-of-the-art deep learning libraries.4

Starting with a small mini-batch size allows us to use the noise in the updates to identify
basins with more favourable local minima. Later, by increasing the mini-batch size in
subsequent iterations, we improve the accuracy of gradient approximations, leading to a
more precise convergence to the lowest point in that basin.3

40

Chapter 4. Tricks of the Trade

4.2.1 Momentum-Based Methods
A significant weakness of gradient descent, also affecting its stochastic variants, is its struggle
to navigate ravines efficiently. Ravines in the optimisation landscape are characterised by
a much steeper slope in one direction compared to others, creating nearly parallel contour
lines.4

As the negative gradient direction is always perpendicular to these contour lines, steps in
gradient descent tend to oscillate or “zig-zag” across the ravine’s sloped sides. Each step
moves the algorithm across the ravine, but the subsequent step often undoes some of this
progress to correct the path. This back-and-forth movement results in minimal progress
over many steps, delaying the algorithm’s convergence to the minimum, if it reaches it at
all. This topographical feature is widespread in high-dimensional, non-convex optimisation
landscapes, like those encountered in neural network training, where it poses a significant
challenge to effective learning.6

w$

0 2 4 6 8 10
w1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

w
2

w$

0 2 4 6 8 10
w1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
w

2

Figure 4.1: Zig-zagging behaviour of gradient descent. n gradient descent, the algorithm moves in a
direction perpendicular to the contour lines during each iteration. However, in regions resembling a
“ravine” where these contour lines are nearly parallel, the progress achieved in one iteration may be
partially reversed in the next. This results in a slower optimisation process. The rightmost panel in
the figure illustrates a more extreme example of this behaviour, with steeper contours, compared to
the left panel.

Figure 4.1 demonstrates the zig-zagging behaviour of gradient descent using two two-
dimensional quadratic functions of the form `(w) = w>Cw. In the left panel, we see the
contour plot for the matrix: � �

C = 0.50
0

0
12 (4.4)

This matrix has a global minimum at the origin. On the right panel, we have the contour
plot for the matrix: � �

0.05 0
C = (4.5)

0 12

Although this matrix has the same global minimum at the origin, we have adjusted the
upper left value to elongate its contours along the horizontal axis. This adjustment makes
the contours closer to parallel near our point of initialisation.6

41

4.2. Stochastic Optimisation

We then perform 25 gradient descent steps to minimise each function, using the same� �>0initial point w = 10 1 and a step-length α = 10−1 . We plot the weights found at each
step on the contour plots for both cases. The algorithm makes slower progress towards the
minimum in this elongated case because the zig-zagging behaviour is more severe.

w$

0 5 10
w1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

w
2

w$

0 5 10
w1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

w
2

Figure 4.2: Comparison of gradient descent with (right) and without momentum (left). Gradient
descent tends to progress slowly in regions with nearly parallel contour lines. Momentum, addresses
this issue by utilising an exponentially averaged step direction, which helps smooth out the optimi-
sation process.

To counter the common zig-zagging behaviour in gradient descent, incorporating mo-
mentum terms proves beneficial. Momentum, a modification of the basic gradient descent
algorithm, enhances optimisation by using an exponential average of previous gradients. This
exponential averaging smooths the optimisation path, guiding the algorithm in a consistent
direction influenced by these past gradients. As a result, it reduces abrupt directional changes
and minimises the zig-zagging typically associated with gradient descent.6

To implement this we first initialise d0 = −r`(w0). For k > 1, the exponentially average
descent direction dk−1 takes the form:

dk−1 k−1)= βdk−2 + (1 − β)(−r`(w (4.6)

We can then use this descent direction in our generic local optimisation framework to take a
step as:

k k−1 w = w + ηdk−1 (4.7)

As with any exponential average, the choice of β ∈ [0, 1] is a trade-off. A smaller β makes the
exponential average more closely resemble the actual sequence of negative descent directions,
as it incorporates more of each negative gradient in the update. However, it summarises the
previously seen negative gradients less effectively. Conversely, a larger β value diverges more
from the individual negative gradient directions in each update but better summarises them
over time. In practice, larger values of [0.7, 1], are often used.6

4.2.2 Normalisation-Based Methods
The second weakness of gradient descent lies in how its step size depends directly on the
gradient’s magnitude at each point:

42

Chapter 4. Tricks of the Trade

k−1 w k − w = η r`(w k−1) (4.8)
2 2

In regions far from stationary points, where gradients are substantial, gradient descent takes
large steps, accelerating progress towards minimisation. However, the step size decreases
when it approaches stationary points with smaller gradients. This reduction in step size
significantly decelerates the algorithm’s progress to a “slow crawl”. Consequently, gradient
descent typically stops short of reaching the true minimum.6

To address the issue of varying step sizes in gradient descent, one common approach is to
normalise the gradient vector:

k−1)r`(wk w = w k−1 − η (4.9)2kr`(wk−1)k
However, normalising the entire gradient vector has its limitations. In certain regions of the
parameter space, such as ravines, the gradient can be small in some directions but large
in others. Normalising by the entire gradient magnitude essentially divides each gradient
component by the same constant, which may not adequately address the imbalance in
gradient magnitudes across dimensions.6

We should, therefore, normalise the gradient element-wise:

k w = w k−1 − η sign(r`(w k−1)) (4.10)

Here, the sign function acts on the gradient vector, resulting in a vector where each element
is either -1 or +1, indicating the direction of the corresponding gradient component. The
length of a single step of this element-wise normalised gradient descent step, assuming all
partial derivatives of the gradient are non-zero, can be calculated as6:

√
k − w k−1 w = −η sign(r`(w k−1)) = η P (4.11)

2 2

where P is the number of model parameters.

w$

-10 -5 0 5 10
w1

-10

-5

0

5

10

w
2

w$

-10 -5 0 5 10
w1

-10

-5

0

5

10

w
2

Figure 4.3: Comparison of gradient descent (left) and signed gradient descent (right). Gradient
Descent tends to progress slowly in directions with small partial derivatives, which can lead to
slow convergence. On the other hand, sign gradient descent normalises the gradients element-wise,
resulting in step directions that are determined by the signs of the derivatives rather than their
magnitudes.

43

�

4.2. Stochastic Optimisation

Figure 4.3 illustrates the contour plot for the quadratic function:

2 2f(w1, w2) = w1/100 + w (4.12)2

which has a minimum at the origin. The left panel depicts 25 iterations of vanilla gradient � �>0descent from an initial guess of w = 8 8 . Since the slope in the w2 direction,

∂f
= 2w2 (4.13)

∂w2

is 100 times larger than the slope in the w1 direction,

∂f w1
= (4.14)

∂w1 50

the optimisation steps quickly descent along the vertical axis but make negligible progress
along the horizontal axis.

In the right panel, we have employed sign gradient descent, which moves diagonally across
the surface by taking uniform steps in both directions, efficiently approaching the minimum.

4.2.3 Adaptive Step Sizes

Adaptive Moment Estimation (Adam) is an element-wise normalised gradient step employing
independently calculated exponential averages for both the descent direction, dk−1 , and its
magnitude, hk−16:

dk−1 k−1)= β1dk−2 + (1 − β1)r`(w (4.15)

hk−1 = β2hk−2 + (1 − β2)(r`(w k−1))2 (4.16)

These moving averages estimate the gradient’s first moment (the mean) and the second raw
moment (the uncentered variance). The exponential average parameters, βi ∈ [0, 1], typically
chosen are β1 = 0.9 and β2 = 0.999. The square is applied element-wise.7

The Adam update step is then8: s
k w = w k−1 − η

1
sign(dk−1) (4.17)

hk−1−(dk−1)2
1 +

(dk−1)2

where division, roots, and squares are interpreted element-wise.
Here, the coefficient under the square root is an adaptive learning rate. If the variance of

the gradients is much larger than the square of the mean gradient, then the ratio will be
large, and the overall learning rate will be small. This means that if the gradients are very
noisy (high variance), the learning rate will be reduced to prevent the optimiser from taking
steps that are too large and potentially overshooting the minimum.8

Conversely, if the variance of the gradients is much smaller than the square of the mean
gradient, then the ratio will be small and the overall learning rate will be close to 1. This
means that if the gradients are consistent (low variance), the optimiser will take larger steps
and converge faster.8

Adam has become the most popular algorithm for training in deep learning due to its
effectiveness and efficiency in handling large datasets and complex models.9

44

� � �

�

Chapter 4. Tricks of the Trade

4.3 Vanishing Gradient Problem
Traditional activation functions like the logistic sigmoid and hyperbolic tangent, known for
their “s”-shaped curves, saturate as input magnitudes approach ±∞. This saturation causes
their gradients to shrink towards zero for inputs far from the origins. During backpropagation
in neural networks, this leads to extremely small weight updates, especially in the early layers,
a phenomenon known as the vanishing gradient problem. This issue becomes more pronounced
in deeper networks, where gradients, already small, are multiplied across successive layers.10

-5 0 5
x

-1

0

1

2

y

logsig(x)
d
dx logsig(x)

-5 0 5
x

-1

0

1

2

y

softplus(x)
d
dx softplus(x)

Figure 4.4: Comparison of activation functions. On the left, we have the logistic sigmoid activation
function, and on the right, the softplus activation function. The corresponding derivatives are shown
as dashed lines. Notably, the derivative of the logistic sigmoid activation function approaches zero
for large positive inputs, which can cause the vanishing gradient problem. In contrast, the derivative
of the softplus activation function levels off at 1 for large positive inputs, effectively addressing the
vanishing gradient issue.

The backpropagation algorithm calculates the derivatives of the loss function with respect
to the weights in each layer by applying the chain rule of calculus. For a network with L
layers, the derivative of the weight matrix in the first layer is proportional to the product11:

(1) (L−1) (L)∂` ∂a ∂a ∂a ∝ · · · (4.18)
∂W(1) ∂z(1) ∂z(L−1) ∂z(L)

Here, ∂a(l)/∂z(l) is the derivative of the activation function at layer l. The choice of activation
function significantly impacts training by affecting the magnitudes of these partial derivatives.
For instance, the logistic sigmoid function’s gradient:

σ0(z) = σ(z) (1 − σ(z)) (4.19)
attains its maximum value at the inflection point σ0(0) = 0.25 and asymptotically approaches
zero as z → ±∞. As a result, the magnitude of the gradient update step in is significantly
diminished for earlier layers due to the multiplicatively decaying sequence in eq. (4.18).

4.3.1 Non-Saturating Activation Functions
Several unbounded activation functions have been proposed to preserve sufficient gradients.
The rectified linear unit (ReLU) or ramp function is the most commonly used activation
function today, and may be formulated as12:

45

https://layers.10

4.3. Vanishing Gradient Problem

ReLU(z) = max(0, z) (4.20)

The ReLU activation function has two notable advantages over traditional, sigmoidal
functions12:

1. ReLU maintains constant gradients for positive inputs, preventing exponential dimin-
ishment as they propagate through multiple neural network layers.

2. For input values less than zero, ReLU assigns gradients of zero. This promotes sparsity
within the network, allowing it to focus computational resources on relevant and active
features for more efficient and effective learning.

However, it also has two disadvantages13:

1. ReLU exhibits a discontinuous derivative at zero, introducing challenges during gradient-
based optimisation.

2. Continuous production of negative inputs to the ReLU function can lead to oversparsity.
In such cases, neurons consistently output zero, resulting in zero gradients. This renders
these “dying” neurons ineffective for learning, diminishing the network’s capacity and
overall performance.

To address the limitations of the ReLU activation function, a smooth approximation to it
known as the softplus function, was introduced13:

softplus(z) = ln(1 + e z) (4.21)

Unlike ReLU, the softplus function ensures a smooth and continuous derivative across all
points, including zero, enabling the propagation of gradients through all real inputs. The
derivative of the softplus unit takes the form of a sigmoid function. However, a drawback
of the softplus function is its computational cost due to its definition’s inclusion of an
exponential and a logarithm. This computational expense is generally not substantial.13

4.3.2 Batch Normalisation
Batch normalisation is a relatively recent technique designed to solve the vanishing gradient
problem in deep neural networks by standardising the pre-activation vectors. For a layer with
d-dimensional pre-activation vector z(l) = (z1, z2, . . . , zd)

> , batch normalisation standardises
every dimension of z across the mini-batch:

zi − µi
z̄ i = p (4.22)

σ2
i

Here, µi and σi are the sample mean and standard deviations computed over the mini-batch:

BX
µi =

1
zi (4.23)

B
i=1
BX

σ2 =
1

(zi − µi)
2 (4.24)i B

i=1

This approach ensures that values are confined to the linear region of the sigmoid function,
thereby mitigating the vanishing gradient problem, which is more pronounced in the flatter

46

https://substantial.13

Chapter 4. Tricks of the Trade

regions of the function. However, incorporating batch normalisation at every layer could limit
the network to making only linear approximations. To counter this, it’s crucial to ensure
that the transformations within the network can represent the identity transformation. For
this purpose, we introduce a pair of parameters, γi and βi, for each pre-activation value, zi.
These parameters scale and shift the normalised value as follows14:

z̃i = γiz̄ i + βi (4.25)

These parameters are learned along with the original model parameters and restore the
representational capacity of the network.14

4.4 Application to DEERnet
In the previous chapter, we reviewed DEERnet 1.0, an artificial neural network developed by
Worswick et al. to estimate distance distributions from noisy DEER spectroscopy data.15

DEERnet 1.0 had five fully-connected layers, each consisting of 256 nodes. This version faced
two major challenges due to its limited dimensionality:

1. Experimental data needed downsampling to fit the network’s fixed input dimension,
introducing uncertainty and potentially affecting the accuracy of the predicted distance.

2. The network’s fixed output dimension limited the resolution of these predicted distri-
butions.

A straightforward solution would have been to train a network with larger input and
output dimensions. A larger input would reduce the extent of downsampling, while a larger
output would enhance resolution. However, the network’s size was practically limited by
the memory requirements of the batch training algorithm, as expanding the network would
require more data and more RAM.15

DEERnet 2.0 overcomes these limitations by switching to mini-batch training with the
Adam algorithm, which enabled the point count to be increased to 512 nodes in each layer.
The architecture was also updated to support healthier gradients during training. This update
included replacing the sigmoidal activation functions with non-saturating softplus functions
and adding batch normalisation between every linear and nonlinear layer to minimise internal
covariate shift.

In DEERnet 1.0, a logistic sigmoid function was used at the output layer to ensure
positive predictions, aligning with the physical interpretation of distance distributions. In
contrast, DEERnet 2.0 consistently uses the strictly positive softplus function across all
layers. However, since the distance distributions in the training set are not only positive but
also normalised to 1, DEERnet 2.0 includes an output renormalisation layer :

Pŷi ȳ i = 512 · (4.26)
ŷii

This additional layer normalises the output to the updated point count of 512, in line with
the training set normalisation, a change hypothesised to bring efficiency gains by integrating
this specific domain knowledge.16

The architecture of DEERnet 2.0 can therefore be described by the equation:

p̂ = on(sp(bn(W(L) . . . sp(bn(W(1)v) . . .)))) (4.27)

In this expression, bn denotes the batch normalisation layer, sp represents the softplus
function, and on is the output normalisation layer.

47

https://knowledge.16
https://network.14

4.4. Application to DEERnet

4.4.1 Online Learning
The conventional method of neural network training, which we’ll refer to as offline learning,
involves a three-step process: (i) generating the training set, (ii) storing this set on a disk,
and then (iii) reading it back for training, one mini-batch at a time. A significant limitation
of offline learning is that the I/O operations needed to retrieve each mini-batch from the
disk or network can become a performance bottleneck.17

However, it’s important to note that the mini-batch algorithm only requires a small subset
of examples for each iteration. If the training data is simulated, we have the opportunity to
generate these examples dynamically, or “on-the-fly”, during each iteration. This approach
eliminates the delays associated with waiting for data to be fetched.18

Moreover, under this online learning paradigm, there’s no need to predefine the size of
the training set. Effectively, this creates an endless stream of training data, meaning the
network is unlikely to encounter the same training example more than once. This aspect of
online learning significantly enhances the network’s ability to generalise, as it is constantly
exposed to new data throughout the training process.19

The online training process can be made more efficient using asynchronous operations
that overlap data generation with gradient computations. In this setup, two threads run
in parallel: the prefetch and training threads. The prefetch thread generates mini-batches
of data, while the training thread waits for these mini-batches and processes them as soon
as they become available. The optimal scenario is when the time taken to simulate the
data is shorter than the time needed for gradient computation. This ensures a smooth and
uninterrupted training process, eliminating any delays caused by waiting for data.18

4.4.2 Identifiability of Exchange
To optimise the online training process for DEERnet 2.0, a minor change is needed in how we
generate the training database compared to the approach used in DEERnet 1.0. The original
method led to considerable data waiting times due to the inclusion of isotropic exchange
coupling in the training data. In DEERnet 1.0, the exchange coupling parameter, J , was
randomly chosen from a predefined distribution. This continuous variable forced the kernel
to be recomputed at every iteration, accommodating the changes in exchange coupling.

However, in DEER experiments, where the frequency of oscillation measured is the sum
of dipolar and exchange coupling, these parameters are statistically indistinguishable. This
means that the inclusion of exchange coupling extends the data generation time unnecessarily
without adding meaningful information. In fact, it introduces an irreducible error in the
predicted distance distribution.

We can eliminate the exchange coupling to streamline the data generation and precompute
a single kernel matrix for a fixed time and distance grid. The kernel depends not on time
and distance separately but on their ratio. This approach allows us to use the same kernel
for different time grids by simply rescaling the distance grid. Whenever we encounter a new
time grid, we can apply the same kernel and adjust the distance grid to preserve the ratio.
This modification dramatically enhances the efficiency of the data generation process, better
suiting the training needs of DEERnet 2.0.

4.4.3 Performance Evaluation
Apart from the exclusion of the exchange term, the parameters for generating the training
database in DEERnet 2.0 closely mirror those used in DEERnet 1.0. The training algorithm
parameters for DEERnet 2.0 were set to the default values as specified in MATLAB R2021b.

To evaluate the effectiveness of the network architecture, we trained six groups of 32
networks each, divided into two sets based on the type of activation functions used. The

48

https://process.19
https://fetched.18
https://bottleneck.17

Chapter 4. Tricks of the Trade

first three groups utilised sigmoidal activation functions, similar to DEERnet 1.0. Within
this set, one group employed the logistic sigmoid function without batch normalisation or
output normalisation. The second group used the logistic sigmoid function along with batch
normalisation, and the third group combined the logistic sigmoid function with both batch
normalisation and output renormalisation. The second set of three groups mirrored the first
but replaced the sigmoidal activation functions with the non-saturating softplus activation
function.

Each network had five fully connected layers, consistent with DEERnet 1.0, and was
trained online until convergence with a mini-batch size of 4096.

Logistic Sigmoid Softplus
0

0.1

0.2

0.3

0.4

0.5

Te
st

 R
M

S
E

without renormalisation
with batch normalisation
with batch and output normalisation

2 3 4 5 6 7 8
Number of Layers

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Te
st

 R
M

S
E

Figure 4.5: Architecture selection statistics for DEERnet 2.0. Incorporating non-saturating activa-
tion functions, batch normalisation, and output renormalisation layers were all found to improve
performance over a test set (left). For the optimal architecture configuration, it was determined
that employing 6-layer blocks strikes the ideal balance between predictive accuracy and training
time (right).

We assessed the performance of the six architectural variations using 64,000 previously
unseen examples. The average prediction from the 32 networks in each set was used for
statistical analysis. Figure 4.5 reveals that networks using softplus functions generally
outperformed those using sigmoidal functions. Additionally, within each type of activation
function, the inclusion of both batch normalisation and output renormalisation was found to
improve the networks’ generalisation capabilities.

For the optimal architecture – softplus activations with batch and output normalisation –
we trained six additional ensembles with varying depths, from 2 to 8 layers. Our findings
indicated that a six-layer configuration best balanced test performance and training time.

We evaluated our six-layer network using a test set of six experimentally measured DEER
traces, covering a broad spectrum of scenarios:

1. DEER data from site pair 96/143 in the monomeric plant light-harvesting complex II
(LHCII), representing narrow distance distributions that result in several observable
oscillations in the time-domain data.20

2. Site pair 3/34 in LHCII, illustrates cases where intrinsically disordered domains lead
to very broad distance distributions.20

49

https://distributions.20

4.4. Application to DEERnet

3. A short oligo-phenyleneethynylene, end-labelled with a rigid nitroxide label, showcasing
the smallest width-to-distance ratio found in polymer science.21

4. A very broad distribution observed in a [2]catenane spin-labelled on both intertwined
macrocycles.22

5. Decorated gold nanoparticles as an example where narrow and broad distance distribu-
tion peaks are simultaneously present.23

6. A double labelled phenyleneethynylene molecule typical of the distribution encountered
in large rigid organic molecules.24

All primary data were pre-processed using DeerAnalysis. 25 The zero time of the dipolar
oscillation and the signal phase, as automatically determined by DeerAnalysis, were accepted.
To remove the “2+1” end artefact, which arises due to the overlap of pump and observe
pulses in the excitation band, the last 400 ns of each trace were cut off. However, for sample
3, where part of the end artefact was still visible, it was necessary to remove the last 800 ns.

These processed data were then fed into DEERnet 2.0. We report the average prediction
from the ensemble of 32 networks. DEERnet 2.0 requires a column vector containing the
time axis, ranging from 0 to tmax in microseconds, and a corresponding column vector of
DEER signal amplitudes. Internally, DEERnet 2.0 shifts and scales the signal to align with
the network’s dynamic range. The signal is then resampled using a piecewise cubic Hermite
interpolating polynomial, adjusting the number of points to match the number of nodes in
the input layer.

For a comparative analysis, the data were also fully processed using DeerAnalysis. This
involved applying the default background fitting, assuming a homogeneous spatial distribution
(n = 3). Subsequently, the L-curve was computed in all cases, and the default choice of the
optimum regularisation parameter was accepted. This provided a baseline against which to
compare the performance of DEERnet 2.0.

0 1 2 3 4 5
Time (µs)

0.6

0.7

0.8

0.9

1

A
m

pl
itu

de

Input Data

20 40 60 80
Distance (#)

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

Prediction

Tikhonov
DEERnet

Figure 4.6: DEERnet 2.0 performance on sample I: A site pair V96C/I143C in the lumenal loop of
a double mutant of LHCII.

The results obtained from DEERnet for sample I are presented in fig. 4.6. A comparison
with the Tikhonov regularisation method shows essentially no difference. Both approaches

50

https://molecules.24
https://present.23
https://macrocycles.22
https://science.21

Chapter 4. Tricks of the Trade

successfully identified the major distances, although some degree of uncertainty was observed
around the baseline in both cases.

0 2 4 6
Time (µs)

0.5

0.6

0.7

0.8

0.9

1

A
m

pl
itu

de

Input Data

20 40 60 80
Distance (#)

0

0.005

0.01

0.015

0.02

0.025

0.03

P
ro

ba
bi

lit
y

Prediction

Tikhonov
DEERnet

Figure 4.7: DEERnet 2.0 performance on sample II: A site pair S3C/S34C in the N-terminal domain
of a double mutant of the LHCII.

In sample II, one label is positioned in the structured part of the N-terminal domain
(residue 34), while the other is located near the N-terminus (residue 3), within a disordered
region that extends to at least residue 12. This arrangement naturally leads to a broad
distance distribution. Indeed, both the Tikhonov regularisation method and the neural
networks consistently identified a broad distribution (fig. 4.7).

0 2 4 6 8 10
Time (µs)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
m

pl
itu

de

Input Data

20 40 60 80 100
Distance (#)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

ba
bi

lit
y

Prediction

Tikhonov
DEERnet

Figure 4.8: DEERnet 2.0 performance on sample III: End-labeled oligo(para-phenyleneethynylene)—a
rigid linear molecule.

For sample III, which exhibits a very narrow and skewed distribution, the Tikhonov
method outperforms the neural networks, as depicted in fig. 4.8. Despite including skewed

51

4.4. Application to DEERnet

distributions in the training database, the neural networks tend to predict a symmetric peak,
albeit at the correct distance. On the other hand, the Tikhonov method accurately captures
the skewed nature of the distribution. This skewness aligns with expectations for the rigid
linker between the two labels in sample III, which behaves as a worm-like chain. The neural
networks’ tendency to lose this skewness is likely due to an under-representation of such
distributions in the training set.

0 1 2 3
Time (µs)

0.6

0.7

0.8

0.9

1

A
m

pl
itu

de

Input Data

20 30 40 50 60 70
Distance (#)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
P

ro
ba

bi
lit

y

Prediction

Tikhonov
DEERnet

Figure 4.9: DEERnet 2.0 performance on Sample IV: [2]catenane (a pair of large interlocked rings)
with a nitroxide spin label on each ring

In discussing broad distance distributions, the [2]catenane example (sample IV), featuring
two interlocked rings, may represent an extreme case of how wide a distance distribution
between a pair of nitroxide radicals can get. The original study of this sample provided
statistical estimates of the distance distribution, but these were based on the approximate
Pake transformation. This approach was subject to the subjective choice of distance-domain
smoothing. A more objective comparison can be made with the current Tikhonov results,
where the L-curve determines the regularisation parameter, as depicted in fig. 4.9.

Both the Tikhonov method and DEERnet perform well in this case. However, the distance
distribution predicted by the Tikhonov regularisation exhibits a minor spurious peak at the
longer distance range, a feature not present in the predictions made by DEERnet.

52

Chapter 4. Tricks of the Trade

0 0.5 1
Time (µs)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
m

pl
itu

de

Input Data

20 30 40 50
Distance (#)

0

0.05

0.1

0.15

0.2

P
ro

ba
bi

lit
y

Prediction

Tikhonov
DEERnet

Figure 4.10: DEERnet 2.0 performance on sample V: Pairs of nitroxide radicals tethered to the
surface of gold nanoparticles, with the thiol tether attachment points diffusing on the surface of the
nanoparticle.

DEERnet showcases its most striking performance with sample V, which features a
relatively narrow peak atop a very broad pedestal, as shown in fig. 4.10. In these complex
scenarios, Tikhonov regularisation fails to provide effective solutions, with no points on the
L-curve leading to a correct result. The accurate answer for this case is confirmed by fitting
a parameterised model that matches the known parameters of the gold nanoparticles.15

With overlapping broad and narrow peaks, the Tikhonov regularisation method faces
a limitation: its parameter only alternates the solution between artificially broadening the
narrow peak and causing an artificial split in the broad peak. DEERnet, on the other hand,
proficiently manages this intricate situation.

0 1 2 3 4 5
Time (µs)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

pl
itu

de

Input Data

20 40 60 80
Distance (#)

0

0.02

0.04

0.06

0.08

0.1

0.12

P
ro

ba
bi

lit
y

Prediction

Tikhonov
DEERnet

Figure 4.11: DEERnet 2.0 performance on sample VI: A rigid molecular triangle labeled with
nitroxide radicals on two out of three corners

53

https://nanoparticles.15

4.5. Conclusions & Further Work

For sample VI, the results obtained from Tikhonov regularisation and DEERnet align
quite closely, except for a minor peak around 30 Å, which is present only in the distribution
derived from Tikhonov regularisation. Both methods produce similar width and shape
for the main peak. The significance of the minor peak near 30 Å remains uncertain, as
molecular dynamics simulations for an isolated molecule at 298 K did not provide conclusive
results.15 Consequently, in this case, the quality of the distance distributions generated by
both Tikhonov regularisation and DEERnet should be considered comparable.

4.5 Conclusions & Further Work
In the ever-expanding landscape of deep learning research, where the number of papers being
published yearly continues to soar into the thousands, it often feels like a race to construct
the most extensive network. These architectural behemoths are often crafted through a
combination of trial and error and sheer luck.

Our focus here was on practical strategies to enhance efficiency and predictive accuracy
in smaller networks. We aimed to address the input uncertainty introduced in DEERnet 1.0
by avoiding downsampling through an increase in input dimensionality. By transitioning
from batch training to a stochastic approach, we made this possible while maintaining
training feasibility on consumer-grade hardware. Additionally, we carefully considered
how architectural choices affect gradient dynamics during training, leading to a significant
improvement in test set performance.

The changes we’ve made in this chapter provide a solid foundation for building larger
networks. Future work should aim to eliminate the need for input downsampling entirely by
exploring recurrent neural network architectures capable of handling sequence inputs.

54

https://results.15

Chapter 5

Uncertainty Quantification

5.1 Introduction
Double electron-electron resonance (DEER) has emerged as a powerful technique for studying
distance distributions in biomacromolecules and materials at the nanoscale.1 While the
distance distribution theoretically contains valuable structural information, its practical
utility is often confined to the primary spin-spin distance. The precision of peak widths
and shapes, which convey information about structural heterogeneity, is more uncertain
due to their sensitivity to noise levels, regularisation degree, time-domain truncation, and
background correction.2

Several approaches have been proposed for uncertainty estimation, including validation
of the regularisation model3,4, iterative scanning of the χ2-surface5,6, covariance matrices6,7,
and Bayesian inference.2,8 . However, until recently9 , the reporting of uncertainty estimates
in the literature remained scarce.2

The advent of artificial intelligence and its successful integration into DEER data pro-
cessing has reignited interest in uncertainty quantification due to the inherent black-box
nature of neural networks. While neural networks have demonstrated remarkable proficiency
in predicting distance distributions, their opacity in the decision-making process has raised
valid concerns regarding the reliability and generalisation of their predictions.10

Throughout the historical evolution of neural networks as tools for function approxima-
tion, the focus has traditionally leaned towards predictive accuracy rather than precision.
Numerous literature reviews have underscored the absence of uncertainty intervals as a
notable drawback in the application of neural network methods.11,12

Neural networks, nonetheless, possess a clear statistical interpretation as non-linear
regression functions. From a statistical standpoint, the challenges of (i) defining a suitable
network architecture and (ii) training the network effectively using a training set are directly
analogous to (i) specifying a regression model and (ii) estimating the model parameters
based on a dataset. It is within this framework that we can establish frequentist uncertainty
intervals for a neural network model.13

5.2 Statistical Learning Theory
A statistical model is a mathematical representation of a real-world phenomenon.14 The “true”
model, or data-generating function, is the (hypothetical) statistical model that describes how
one could generate the target variables from the input variables. For the inverse problem
in DEER, this is the many-to-one function, f(·), that maps a (noisy) DEER trace, v, to a
noiseless distance distribution p:

55

https://phenomenon.14
https://model.13
https://predictions.10

5.3. Three Sources of Uncertainty

f(v) = p (5.1)

The model is valid for intervals of v where the probability density function (PDF), P (v),
is non-zero.

The goal of regression analysis is to approximate the data-generating function with an
estimated model or regression function, f̂(v, w), where w is the vector of model parameters. A
sufficiently flexible model should be capable of (approximately) recreating the data-generating
function for an optimal choice of parameters, wj:

f(v) ≈ f̂(v, w ∗) (5.2)

After defining the regression function’s parametric form, training aims to select the
∗parameter set, w , that minimises a loss function, `(·), across the entire data distribution

P (v, p): Z
∗ w = arg min `(p, f̂(v, w))dP (v, p) (5.3)

This objective, known as the expected risk, defines the expected risk minimisation problem.
Practically, we don’t have direct access to P (v, p), but to a training set of independent

sample points drawn from this distribution. Thus, we approximate the expected risk
minimisation by empirical risk minimisation problem:

NX
∗ wemp = arg min `(pi, f̂(vi, w)) (5.4)

i=1

This approximation approaches eq. (5.3) as the size of the training set, N , increases.
∗However, the global minimiser of the empirical risk, wemp, may not be reachable from our

0initial guess, w , or converge within a finite time limit, tmax. Therefore, the actual outcome
of our optimisation is: (

NX 0w(t = 0) = w
ŵ emp = arg min `(pi, f̂(vi, w)) s.t. (5.5)

i=1 t ≤ tmax

How well our estimated model f̂(v, ŵ emp) approximates the true model f(v) is the concern
of uncertainty analysis.

5.3 Three Sources of Uncertainty
We define the excess error, ε, as the expected difference between the targets, and our model’s
predictions:

ε = E[f(v) − f̂(v, ŵ emp)] (5.6)

This measure quantifies the extent to which the approximations and simplifications made in
eqs. (5.1) to (5.5) impact the accuracy of our predictions. It may be decomposed as a sum of
three terms:

E[f(v) − f̂(v, ŵ emp)] =
∗ ∗E[f(v) − f̂(v, w ∗)] + E[f̂(v, w ∗) − f̂(v, w)] + E[f̂(v, w) − f̂(v, ŵ emp)] (5.7)emp emp| {z } | {z } | {z }

εmodel εsamp εalg

56

Chapter 5. Uncertainty Quantification

Here:

1. The model misspecification error, εmodel, measures how closely our network architecture
can approximate the data-generating function. It can be reduced by choosing a larger
architecture with greater flexibility.

2. The sampling error, εsamp, measures the effect of minimising the empirical risk instead
of the expected risk. It can be reduced by choosing a less flexible architecture, or by
increasing the size of the training set.

3. The algorithmic error, εalg, measures the impact of the approximate optimisation on
the empirical risk. It can sometimes be reduced by training for longer periods, or by
choosing a less flexible architecture.

I will describe each of these three terms in detail in the subsequent three subsections.

5.3.1 Model Misspecification Error
Model misspecification error occurs when the estimated model’s functional form fundamentally
cannot replicate the true model, no matter the chosen parameter values:

f̂(v, w) =6 f(v) ∀w (5.8)

We say the model is underfitting the data when it is too simple to capture the true model’s
inherent complexity.

x1

1

w0 + w1x

Figure 5.1: A neural network representation of simple linear regression. It features one input node and
one output node with a linear (identity) activation function, including a bias term. This architecture
effectively models the relationship between a single independent variable and a dependent variable
in a linear manner.

For example, imagine a neural network with just one input node and one output node
using a linear (identity) activation function, as shown in fig. 5.1. This setup effectively
represents a simple linear regression function: � �� �

ŷ = 1 x
w0 = w0 + w1x (5.9)
w1

Thus, the learning problem becomes finding the solution to: � �� �
1 x w0 = y (5.10)

w1

where x is a column vector of inputs, and y is a column vector of targets.
If our targets are quadratic in x, then our system of equations is inconsistent, and

eq. (5.10) has no exact solution:

2 w0 + w1x =6 c0 + c1x + c2x ∀w0, w1 (5.11)| {z } | {z } y
ŷ

In this case, even our best predictions will have an excess error of at least:

57

5.3. Three Sources of Uncertainty

2ε ≥ c2x = c0 + c1x + c2x 2 − c0 − c1x (5.12)| {z }
∗ y−y

To reduce this error, we must increase the capacity of the estimated model.

5.3.2 Sampling Error
Sampling error describes the variability in estimates or model outcomes due to using different
subsets of data in training. In stochastic environments with noisy target variables, sampling
error arises because a particular data sample might not fully represent the population defined
by P (x, y). In stochastic linear regression, inherent noise in the target variables means
any two points can define slightly different lines. As a result, regression lines derived from
different samples can vary, demonstrating sampling error.

In the deterministic regression setting we are considering, target variables have no noise,
altering how we perceive sampling error. In this case, it’s not about variability from noise
in the targets but about the risk of the model overfitting the data. In deterministic linear
regression, any two points consistently define the same line. The issue arises when the model
is overly complex or insufficient data is available for fitting. This over-parameterisation can
result in multiple precise fits to the training data but poor generalisation to new data.

x1

x2

x3

P3
i=1 wixi

Figure 5.2: A neural network designed for linear regression with multiple inputs. It consists of three
input nodes, representing three independent variables, and one output node equipped with a linear
(identity) activation function. Notably, this architecture does not include a bias term, focusing solely
on the linear relationship among the multiple input variables and the single output variable.

Take, for example, a basic single-layer network with three input nodes and one output
node using a linear activation function, without bias (fig. 5.2). The target value is always
double the first feature’s value:

y = 2x1 (5.13)
With just two training cases, the task is to solve: ⎡ ⎤� � � �w11 1 0 2⎣w2

⎦ = (5.14)
2 0 1 4

w3 � �t∗The correct parameters, based on the true model, are w = 2 0 0 op. While this
incurs zero error on training data, the limited number of training points compared to the
number of parameters means there are infinitely many solutions with zero error. For example,� �t
ŵ = 0 2 4 op. also fits the training data perfectly but performs poorly on unseen data,
as it doesn’t reflect the true model.

To mitigate overfitting, one can either decrease the estimated model’s complexity or
increase the training set size. In linear cases, it’s feasible to determine the number of data
points needed to fit the model uniquely. However, it’s unclear how many data points prevent
overfitting in non-linear scenarios. Generally, having ten times as many data points as free
parameters is a good rule of thumb.

58

Chapter 5. Uncertainty Quantification

5.3.3 Algorithmic Error

Algorithmic error arises when our chosen numerical optimisation algorithm cannot locate the
minimum of the empirical risk minimisation problem:

∗ f̂(v, ŵ emp) 6= f̂(v, wemp) (5.15)

This error may occur simply because we don’t give the algorithm enough time to converge.
It can also stem from the algorithm’s inherent limitations.

Take gradient descent as an example. This algorithm progresses toward the minimum of
0a basin based on the initial parameter guess, w . If this basin doesn’t encompass the global

minimum, the algorithm will fail to reach it.
Stochastic algorithms like mini-batch gradient descent offer both challenges and oppor-

tunities here. Their inherent randomness can help escape local minima and possibly move
toward a basin closer to the true minimum. However, because a mini-batch gradient is just an
approximation of the true gradient, accurately finding the minimum of any basin necessitates
a carefully managed learning rate schedule and gradually increasing the mini-batch size to
enhance gradient estimates.

The model’s complexity further complicates this scenario. An overly complex or overfitted
model often has multiple minima that may fit the training data well but do not generalise
effectively to new data. The presence of numerous minima makes it more challenging for the
optimisation algorithm to identify the one that offers the best generalisation performance.

The set of possible hyperparameters (including the initial guess) represents a range of
distinct, often divergent, paths across the optimisation landscape. These paths lead to
different stationary points, yielding varied estimates for the parameter vector.

Reducing algorithmic uncertainty is possible through higher-order optimisation methods,
though they often have prohibitive computational costs. Alternatively, simplifying the model
complexity can make the optimisation landscape more navigable.

5.4 Avoiding Overfitting

5.4.1 Bias-Variance Trade-Off

The three sources of error identified in neural network training highlight a fundamental
statistical dilemma known as the bias-variance trade-off. Increasing the complexity of the
neural network model can reduce model misspecification error but may lead to higher sampling
and algorithmic errors.

If we could train an infinite number of neural networks on randomly selected subsets of
the training data, each with different algorithmic hyperparameters, the resulting predictions,
f̂(v, ŵ emp), would be distributed about the mean, E[f̂(v, ŵ emp)], with variance:

E[{f̂(v, ŵ emp) − E[f̂(v, ŵ)]}2] (5.16)

However, E[f̂(v, ŵ emp)] is not necessarily equal to f(v), the difference:

E[f̂(v, ŵ emp)] − f(v) (5.17)

being the bias.
The average proximity of f̂(v, ŵ emp) to f(v) is related to the bias and variance by the

expression:

59

5.4. Avoiding Overfitting

E[{f̂(v, ŵ emp) − f(v)}2] =

{E[f̂(v, ŵ emp)] − f(v)}2 + E[{f̂(v, ŵ emp) − E[f̂(v, ŵ emp)]}2] (5.18)| {z } | {z }
{bias}2 variance

Testing the model on different data subsets allows us to measure variance. However,
quantifying bias accurately is philosophically challenging because we don’t have direct access
to the true model. Luckily, many neural network architectures show little bias due to their
high flexibility. Therefore, our main objective should be to lower variance by preventing
overfitting.

5.4.2 Early Stopping
In typical optimisation models, gradient-descent-based methods are applied until convergence.
However, reaching convergence on the training data doesn’t guarantee optimal performance
on out-of-sample test data. The final iterations of gradient descent often lead to overfitting,
capturing training data nuances that may not generalise well to the test data.15

Early stopping is a natural solution. A portion of the training data is set aside as
the validation set. The training algorithm operates solely on the training set, excluding
the validation set. Simultaneously, the model’s error on the validation set is continuously
monitored. When the validation set error starts to increase, signalling a potential overfitting,
further training is halted.15

Iteration

R
M

S
E

Training
Validation

Iteration

R
M

S
E

Figure 5.3: The left panel shows a monotonically decreasing training curve, while the validation
curve initially decreases but then increases due to overfitting. The right panel depicts a noisy
validation curve with multiple local minima, highlighting the difficulty in determining the optimal
stopping point for training.

In most introductory papers on supervised neural networks, one can find a diagram like
the one shown in the left panel of fig. 5.3. It is claimed to show the evolution of the error
over time on the training and validation sets. Given this behaviour, it is clear how to do
early stopping using validation16:

1. Divide the training data into a training set and a validation set, e.g. in a 2-to-1
proportion.

60

https://halted.15

Chapter 5. Uncertainty Quantification

2. Train exclusively on the training set, periodically evaluating the error on the validation
set.

3. Halt training when the error on the validation set exceeds the previously recorded
value.

4. Utilise the weights the network had in the preceding step as the result of the training
run.

In practice, validation error curves often exhibit more complexity than the idealised
case, as shown in the right panel of fig. 5.3. They may feature noise and multiple local
minima. Stopping training at the first sign of a rise in validation error risks missing deeper
minima associated with superior generalisation capabilities. Therefore, a more sophisticated
stopping criterion is necessary to make informed decisions about when to conclude the
training process.16

One of the simplest stopping criteria among several plausible options is to halt the training
process when the validation error increases in s consecutive iterations. This criterion operates
on the premise that persistent increases in the validation error are likely to signal the onset
of final overfitting.16

5.4.3 Weight Decay
While early stopping provides a quick and intuitive approach to prevent overfitting, challenges
in selecting the optimal stopping criterion have prompted the exploration of alternative
strategies. Explicit regularisation methods offer a systematic way to address overfitting by
augmenting the loss function with a penalty term that discourages the emergence of large
weights in the model.17

By penalising large weights, the regularisation term promotes sparsity in the model,
effectively moderating the risk of overfitting by restraining the growth of parameter values.
An effective choice for this regularisation term is the L1-norm15:

BX
2

`(w) = kyi − ŷik + λ kwk (5.19)2 1
i=1

where λ is the user-specified regularisation parameter that alters the strength of the penalty.
Then, for any given weight in the neural network, wi, the gradient update step is given by15:

wi ← wi − η
∂` − λη sign(wi) (5.20)
∂wi

The additional term in the update step, −λη sign(wi), introduces a regularisation pressure
that is proportional to the sign of the current weight. The effect of this term is to drive the
weights towards zero during each iteration of the optimisation process.15

However, while L1-regularisation is adept at inducing sparsity, it may come at the cost of
predictive accuracy. To strike a balance, a softer penalty is often applied in the form of the
L2-norm:

BX
2 2

`(w) = kyi − ŷik + λ kwk2 2 (5.21)
i=1

with update step15:

∂`
wi ← wi − η − ληwi

∂wi
(5.22)

61

https://process.15
https://model.17
https://overfitting.16
https://process.16

5.5. Confidence Intervals

Unlike L1-regularisation, the L2-regularisation term is proportional to the magnitude of
the weight rather than just its sign. This difference results in a gentler regularisation effect
during the weight update step. The penalty term tends to shrink the weight towards zero,
but unlike L1-regularisation, it doesn’t encourage the weights to reach precisely zero unless
the regularisation strength is very high. Consequently, L2-regularisation is often interpreted
not as reducing the number of parameters but rather as reducing the search space for any
given parameter.15

While regularisation is better defined than early stopping, it initially comes with a more
significant computational cost. The optimal regularisation parameter must be determined
through cross-validation, where various choices for its value are evaluated based on their
impact on the model’s performance over a validation set.17

Regularisation does not necessarily replace early stopping; in fact, they are often employed
in tandem for a complimentary effect.16

5.5 Confidence Intervals
For a desired degree of confidence (namely, for a given probability), a confidence interval is a
prediction of the range of the output of a model where the actual value exists.18 In other
words, we have to consider the probability, P (f(v)|f̂(v, ŵ emp), that the true model is f(v)

19given our estimate is f̂(v, ŵ emp).
To establish our confidence intervals, we assume that our neural network offers an unbiased

estimate of the true model, f(v). That is, we assume that the distribution P (f(v)|f̂(v, ŵ)
is centred around the estimate f̂(v, ŵ emp). While this assumption may not always hold in
practice, it is generally accepted that the variance component of the excess error dominates
the bias component, especially if early stopping and regularisation are applied.20

Next, we need to estimate the variance of the distribution, P (f(v)|f̂(v, ŵ emp). However,
we do not have direct access to this distribution, nor do we know the true model f(v). We
can use ensembling to generate an estimate.20

0.296 0.297 0.298 0.299 0.3 0.301
Mean Test RMSE

2.95

3

3.05

3.1

M
ax

im
um

 T
es

t R
M

S
E

All Networks
Ensemble Average

Figure 5.4: Scatter plot of the performance metrics for an ensemble of networks trained on independent
training sets, from different initial parameter guesses. Each circle represents an individual network
in the ensemble, and the star is the performance of the bagged, or averaged, predictor.

62

https://estimate.20
https://applied.20
https://exists.18
https://effect.16
https://parameter.15

Chapter 5. Uncertainty Quantification

We begin by generating B training sets, where each training set contains N input-output
pairs. This is feasible because simulating DEER data is cost-effective, but if access to training
data is limited, additional sets can be generated by resampling without replacement from
the original data (bootstrapping).21

(b)Using these training sets, we train a set of networks {f̂(v, ŵ emp}B from different random b=1
initial parameter vectors. The predictions from these ensemble members are then averaged
to form a bagged prediction20:

BX
¯ (b)f(v) =

1
f̂(v, ŵ) (5.23)empB

i=1

Bagging high-variance predictors in this way can substantially improve their generalisation
performance (fig. 5.4).20

The ensemble outputs give us an empirical estimate of the distribution P (f̂(v|ŵ emp), f(v)),
which is the “inverse” of the distribution P (f(v)|f̂(v, ŵ emp)). This empirical estimate is

¯denoted P (f̂(v, ŵ emp)|f̄(v)), with f(v) replacing the inaccessible true model.20

If we assume that P (f(v)|f̂(v, ŵ emp) is Gaussian, we also assume that its inverse is
Gaussian. Therefore any estimates of the variance for P (f(v)|f̂(v, ŵ emp) can be used
as estimates of the variance for P (f̂(v, ŵ emp)|f(v). The variance of this distribution is
approximated by calculating the variance across the ensemble outputs:

BX1 (b)σ2
¯(v) = (f̂(v, ŵ emp) − f̄(v)) (5.24)f B − 1

b=1

This variance measure is used to construct standard Gaussian confidence intervals for
bagged ensemble predictions:

¯ ¯ ¯f(v) − t0.975σf̄ (v) ≤ f(v) ≤ f(v) + t0.975σf̄ (v) (5.25)
where the t-statistic is computed with the number of degrees of freedom equal to the ensemble
size, B.

0 0.5 1 1.5 2
Time / μs

0

0.2

0.4

0.6

0.8

1

A
m

pl
tiu

de

Input Data

10 20 30 40 50
Distance / Å

0

1

2

3

4

5

6

7

P
ro

ba
bi

lit
y

Prediction

Figure 5.5: A protoypical DEER trace (left), and the distance distribution predicted by an bagged
ensemble of 32 networks (right). The grey area around the mean prediction is the 95% confidence
interval generated from the estimated variance over the ensemble.

63

https://model.20
https://bootstrapping).21

5.6. Prediction Intervals

The variance estimate is likely to exhibit an upward bias in most predictions. This occurs
because it more accurately reflects the variance of the distribution P (f(v)|f̂(v, ŵ emp) rather
than P (f(v)|f̄(v)). In simpler terms, it measures the variance for an individual network
prediction. Most ensemble techniques are designed to reduce prediction variance. Carney
et al. have proposed a method that employs an ensemble of ensembles to correct this bias,
but it significantly increases computational costs.20 Since we do not consider conservative
confidence intervals undesirable, we choose not to use this more expensive technique.

Figure 5.5 shows the average prediction and 95% confidence intervals for an example trace
analyzed with DEERnet. Since the true model is deterministic, we anticipated low sampling
error. Surprisingly, the narrowness of the observed intervals indicates that algorithmic
uncertainty is also low, suggesting that the loss landscape is likely relatively convex.

5.6 Prediction Intervals
The confidence interval indicates how uncertain we are about the model parameters. If the
estimated model is less robust to measurement noise than what we assume in the true model,
input uncertainty can also affect the precision of the prediction. Published empirical evidence
shows that the noise in a DEER trace follows an uncorrelated normal distribution with a
mean of zero, expressed as2:

e ∼ N (0, Cv) where Cv = diag(σ1, . . . , σd) (5.26)
We can estimate this distribution by fitting residuals in the time domain or analysing the

difference between the raw signal and a filtered version (e.g. by the Savitkzy-Golay method).
To gain a comprehensive understanding of how input uncertainty affects predictions, we

must propagate this distribution through the estimated model. However, the model’s non-
linearity may unpredictably alter the shape of the distribution. Since analytical propagation
is only practical in a few straightforward scenarios, the ISO Guide to the Expression of
Uncertainty in Measurement recommends using a first-order Taylor (linear) approximation
to estimate the model22:

¯ ¯f(v) ≈ f(v − e) + Je (5.27)
Here, J is the Jacobian matrix.

100 200 300 400 500
Input Dimension

50

100

150

200

250

300

350

400

450

500

O
ut

pu
t D

im
en

si
on

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

64

https://costs.20

Chapter 5. Uncertainty Quantification

Figure 5.6: Jacobian of the network prediction in fig. 5.5. Its sparsity indicates that small perturba-
tions to the input will not lead to spurious peaks in the output.

As a linear function preserves the symmetry of the Gaussian distribution, we only need
to propagate the variance to be able to define the distribution fully23:

σ2 = diag(JCvJ
>) (5.28)e

Since the network is differentiable, it would be feasible to derive an analytical expression for
the Jacobian from matrix calculus. This is especially convenient if an automatic differentiation
routine is accessible within the chosen deep learning framework. Alternatively, the Jacobian
may be computed column-wise through a central difference approximation:

√ √¯ ¯ ∂p̂ f(v + eps · ui) − f(v − eps · ui)
= √ (5.29)

vi 2 · eps

Here, ui is the unit vector in the ith dimension, and eps represents machine precision.

0 0.5 1 1.5 2
Time / μs

0

0.2

0.4

0.6

0.8

1

A
m

pl
tiu

de

Input Data

10 20 30 40 50
Distance / Å

0

1

2

3

4

5

6

7

P
ro

ba
bi

lit
y

Prediction

Figure 5.7: A protoypical DEER trace (left), and the distance distribution predicted by an bagged
ensemble of 32 networks (right). The lighter grey area around the mean prediction is the 95%
confidence interval generated from the estimated variance over the ensemble. The darker grey
prediction interval extends it by linear propagation of input uncertainty.

As weight uncertainty and input uncertainty are statistically independent, we derive a
prediction interval as: q q

¯ σ2 ¯ ¯ σ2f(v) − t0.975 (v) + σ2(v) ≤ f(v) ≤ f(v) + t0.975 (v) + σ2(v) (5.30)¯ e ¯ ef f

Figure 5.6 illustrates the finite-difference Jacobian for the input scenario depicted in
Figure 5. The Jacobian is approximately zero everywhere except around the predicted peak.
Therefore, we may reasonably infer that the prediction is stable and that small changes in
the noise line do not cause the emergence of spurious peaks in the predicted distribution.
This is further illustrated by the narrow prediction intervals present in fig. 5.7.

65

5.7. Conclusions & Further Work

5.7 Conclusions & Further Work
The intersection of a black box estimator with an ill-posed inverse problem inevitably raises
questions about the reliability of its predictions, as traditional deep learning methods often
struggle to adequately capture model uncertainty. In this study, we have undertaken a
comprehensive examination of the myriad sources of uncertainty within DEERnet. Further-
more, we have explored strategies to effectively confront and quantify these uncertainties,
exemplified by the derivation of frequentist uncertainty intervals.

Nevertheless, the computationally intensive nature of the ensemble approach underscores
the need for future investigations to prioritize the exploration of more scalable alternatives,
such as dropout. 24 By randomly deactivating a fixed percentage of node activations during
training, dropout layers create an ensemble of distinct neural network architectures without
the need for retraining. However, questions persist regarding the statistical robustness of
this approach. Hence, forthcoming research should rigorously evaluate the accuracy and
dependability of dropout by comparing it to the ensemble method outlined in this study. If
dropout proves successful, it may pave the way for more economical and efficient methods of
estimating uncertainty.

66

Chapter 6

Out-of-Distribution Detection

6.1 Introduction
Neural networks approximate the conditional probability distribution P (y|x) using a parame-
terised model P (y|x, w), where x and y are the inputs and output vectors, respectively. The
network determines the optimal parameters ŵ by maximising the likelihood of the observed
data1:

ŵ = arg max P (y1, . . . , yN |x1, . . . , xN , w) (6.1)

When faced with a new test example, the network outputs the expected value of the model
based on the optimised parameters ŵ 2:

∗ ˆŷ = E[P (y|x = x , w)] (6.2)
∗Extrapolation error occurs when a network is provided with a test input x outside the

support of the true distribution P (y|x). In such cases, the network deals with data types
not seen during training. For example, a neural network trained on images of cats and dogs
will experience an extrapolation error if it receives an image of a car, as cars fall outside its
trained animal image distribution.3

∗Generalisation error occurs when the test input x resides within the support of the true
distribution P (y|x), but the learned model fails to make accurate predictions. Assuming
the network architecture is well specified, this usually points to an under-representation of
certain example types in the training set and can, therefore, be considered as occurring when

∗the example x falls outside of the support of P (y|x, ŵ). An example is the misclassification
of a rare dog breed by the animal classification network; though dogs are within the training
distribution, the model doesn’t adequately represent this particular variation.

Since examples beyond the support of P (y|x) are also beyond the support of P (y|x, ŵ),
we categorise both types of data as out-of-distribution (OOD). Identifying such test examples

4is the task of out-of-distribution detection.
OOD detection is crucial for ensuring the reliability of machine learning models. This

becomes especially important in safety-critical systems like autonomous driving, where the
system must recognise and appropriately respond to scenes or objects outside its training
experience, such as by alerting a human operator. Even in less critical applications, OOD
detection significantly enhances the reliability and trustworthiness of model predictions.4

Most existing OOD detection methods cater to classification tasks5 , where classifiers
assign softmax probability scores to each predefined class. These scores reflect the probability
of an input belonging to each class. When all softmax probabilities are low, it often indicates

67

�

�

�

6.2. Retrofitting the Input

that the data is out-of-distribution, signalling the model’s uncertainty in classifying it into
any known category.6

However, machine learning models often misclassify test samples from unknown classes,
assigning them to familiar categories with high confidence. This overconfidence, known as
“arrogance”, is a significant hurdle for effective OOD detection.7

Arrogance also affects regression tasks. Traditional OOD detection methods in regression
use ensemble techniques to create confidence intervals, assuming that out-of-distribution
examples will result in wider intervals. Yet, the model’s arrogance can lead to deceptively
narrow confidence intervals for out-of-distribution data.5

To tackle these challenges, developers have created reconstruction-based methods. In this
approach, an encoder compresses the input data into a compact representation, and then a
decoder works to reconstruct the original input from this compressed format. When trained
on in-distribution (ID) data, this system tends to reconstruct ID samples accurately while
struggling to do the same for OOD samples. By evaluating how well the model reconstructs
new data, these methods effectively pinpoint out-of-distribution examples.8

When an accurate model for the training data is already established, using an encoder-
decoder for out-of-distribution detection becomes unnecessary. In this scenario, a more
pragmatic approach involves fitting the test example to the existing model and assessing the
goodness of fit. This evaluation serves as a basis for classifying the data as in-distribution or
out-of-distribution. This chapter will describe how we applied this methodology to DEERnet.

6.2 Retrofitting the Input
In an earlier chapter, we developed a model for the time-domain DEER trace, which we
revisit here briefly:

v = (1 − λ + λKp) b + e (6.3)

In this model, p represents the distance distribution, and we derive the trace, v, by
applying the dipolar kernel matrix, K. We denote the scalar modulation depth parameter
as λ, and the Gaussian measurement noise as e ∼ N (0, σ2I). The background factor, b, is
modelled as the exponential decay:

(b)i = b(ti) = exp(−(kt)d/3) (6.4)

where k is the decay rate ,and d represents the fractal dimension. DEERnet extracts p from
v.

∗For a given test input v , we aim to reconstruct the deterministic component of eq. (6.3)
using the network’s prediction p̂. Since the forward problem is stable, fitting this model is
feasible and can be expressed as a numerical optimisation problem:

2ˆ{v̂0, λ, k,ˆ d̂} = arg min kv ∗ − v0(1 − λ + λKp) bk (6.5)2

∗If v closely resembles the input examples seen during training and the network has
effectively generalised to such inputs, the reconstruction error:

2
� = kv ∗ − v0(1 − λ + λKp) bk (6.6)2

will be low, indicating that the example is in-distribution. Conversely, a high reconstruction
error suggests that the data does not conform to the input model or that the network’s
prediction is poor due to a failure in generalising to this type of input. In such cases, the
example should be labelled as out-of-distribution.

68

Chapter 6. Out-of-Distribution Detection

0 0.5 1 1.5 2
Time / μs

0

0.2

0.4

0.6

0.8

1

A
m

pl
tiu

de

Input Data

Experimental
7 Fit
'2< Interval

10 20 30 40 50
Distance / Å

0

2

4

6

8

10

12

14

16

P
ro

ba
bi

lit
y

Prediction

7 Prediction
'2< Interval

Figure 6.1: An example showcasing the retrofitting procedure for an in-distribution DEER trace.
The neural network generates a prediction (right) for the DEER trace (left), and subsequently, the
well-posed and known forward model is applied to this predicted distance distribution. Through
a least squares fit of background parameters and modulation depth, the input data is accurately
recovered.

Figure 6.1 shows the outcome of this fitting procedure for an input taken from the training
set. The network confidently predicts the result, and the time-domain model fits the data
well. Therefore, we can classify this input as in-distribution.

-0.05 0 0.05 0.1
Residuals

0

20

40

60

80

100

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8
Fitted Value

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

R
es

id
ua

l

Figure 6.2: Residual plot for the retrofit data in fig. 6.1. The residuals are normally distributed
around zero, indicating that the estimate of the noiseless trace is unbiased.

We do not attempt to fit the input data’s stochastic component; therefore, a level of misfit
is to be expected. However, the residuals are approximately normally distributed about a
zero mean (fig. 6.2). This is consistent with the noise model, e, used to generate the trace.

69

6.3. Extrapolation Error

6.3 Extrapolation Error

Figure 6.3 shows an example of an out-of-distribution test case: an arbitrary sine wave. This
instance demonstrates DEERnet’s arrogance. The network confidently predicts a peak at
the longer edge, and the confidence intervals suggest that the prediction should be trusted.

0 0.5 1 1.5 2
Time / μs

-1

-0.5

0

0.5

1

1.5

2

2.5

A
m

pl
tiu

de

Input Data

Experimental
7 Fit
'2< Interval

10 20 30 40 50
Distance / Å

0

5

10

15

20

25

30

35

40

45

P
ro

ba
bi

lit
y

Prediction

7 Prediction
'2< Interval

Figure 6.3: An illustrative example of the retrofitting procedure using an out-of-distribution input,
represented by a sine wave (left). While the network generates a prediction (right), applying the
known forward model fails to accurately reconstruct the input data

However, this confidence is misleading, as an accurate reconstruction of the wave from
the network’s prediction is impossible. A visual inspection of the retrofitted time-domain
signal clearly shows that this test case is out-of-distribution.

6.4 Near Extrapolation Error

The difficulty of the OOD detection tasks depends on how semantically close the outliers
are to the inliers.9 Winkens et al. differentiate between near-OOD tasks, which are more
challenging, and far-OOD tasks, which are comparatively more straightforward.10

For example, consider a model trained to distinguish between cats and dogs. In this case,
identifying handwritten digits as outliers represents a far-OOD task, which is relatively easy
due to the clear distinction from the trained categories. Conversely, for the same model,
detecting images of wolves poses a near-OOD task. This task is more difficult because wolves
are semantically similar to the classes (cats and dogs) the model is trained on, making the
differentiation subtler and more complex.

For DEERnet, identifying a background factor without dipolar modulations can be seen
as a near-OOD challenge. DEERnet was not trained to extract distance distributions from
signals where such distributions are absent. However, since the background factor is a
component of the overall trace, it inherently shares semantic similarities with the data on
which DEERnet was trained.

70

https://straightforward.10

Chapter 6. Out-of-Distribution Detection

0 0.5 1 1.5 2
Time / μs

0.0995

0.1

0.1005

0.101

0.1015

0.102

0.1025

0.103

0.1035

A
m

pl
tiu

de

Input Data
6 = 0.00 k = 0.04 d = 3.02

Experimental
7 Fit
'2< Interval

10 20 30 40 50
Distance / Å

1

2

3

4

5

6

P
ro

ba
bi

lit
y

#10-3 Prediction

7 Prediction
'2< Interval

Figure 6.4: An example of the retrofitting procedure applied to a background factor with no dipolar
modulations. As the least squares fit of the modulation depth parameter was unconstrained, the
background factor was perfectly recovered from the incorrect prediction by setting the modulation
depth parameter to zero.

Figure 6.4 shows the outcome of the retrofitting procedure applied to a background factor.
Since we did not impose any constraints on our model parameters, the optimisation managed
to achieve a good fit. It accomplished this by setting the modulation depth to zero and
eliminating the dipolar modulations that the predicted distance distribution would typically
introduce.

0 0.5 1 1.5 2
Time / μs

0.0995

0.1

0.1005

0.101

0.1015

0.102

0.1025

0.103

0.1035

A
m

pl
tiu

de

Input Data
6 = 0.01 k = 0.06 d = 3.48

Experimental
7 Fit
'2< Interval

10 20 30 40 50
Distance / Å

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

P
ro

ba
bi

lit
y

Prediction

7 Prediction
'2< Interval

Figure 6.5: An example of the retrofitting procedure applied to a background factor with no dipolar
modulations. In the fitting procedure, a lower limit of 5% was placed on the modulation depth.

When we set a constraint on the modulation depth to a minimum value of 1% (in line
with the training set), the optimisation process naturally minimised this value. However,

71

6.5. Generalisation Error

this constraint led to a marginally worse fit (fig. 6.5). This outcome, though subtle, indicates
that the background factor is, in fact, out-of-distribution.

6.5 Generalisation Error

Detecting when the network fails to generalise is both challenging and essential. The inputs
involved in such cases are semantically similar to the training data, making this a near OOD
detection task.

We create a separate test set distinct from the training inputs to identify such cases.
Within this test set, we specifically focus on those cases where the network’s predictive
accuracy is subpar.

Prediction

20 40 60 80 100
Distance / Å

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

P
ro

ba
bi

lit
y

Tikhonov
7 Prediction
'2< Interval

0 5 10 15
Time / μs

5

5.5

6

6.5

7

7.5

8

8.5

A
m

pl
tiu

de

#105 Input Data

Input
7 Prediction
'2< Interval

Figure 6.6: An illustrative instance showcasing the utilisation of the retrofitting procedure to identify
generalisation errors. The expected outcome was the network accurately recovering the genuine
trimodal distribution; however, it struggled to generalise effectively to inputs of this nature. The
observed bias in the retrofit input data serves as a indicator of this limitation.

An illustrative example of a poor prediction by the network is shown in fig. 6.6. Here, the
true distribution is trimodal and is accurately captured by Tikhonov regularisation. However,
the neural network’s prediction tends to over-smooth the data, resulting in a single peak
instead of the true trimodal form.

The error in the retrofit time-domain signal is subtle and could easily go unnoticed in
a production environment. Therefore, we must actively identify such instances and restart
training with a more representative training set.

6.6 Transfer Learning

We use transfer learning to quickly improve DEERnet’s predictive accuracy on examples
that show generalisation error. This technique updates a model’s parameters starting from a
previously trained model rather than training from scratch. This method allows for rapid
enhancements in the model’s performance.11

72

https://performance.11

Chapter 6. Out-of-Distribution Detection

Prediction

20 40 60 80 100
Distance / Å

0

0.01

0.02

0.03

0.04

0.05

P
ro

ba
bi

lit
y

Tikhonov
7 Prediction
'2< Interval

0 5 10 15
Time / μs

5

5.5

6

6.5

7

7.5

8

8.5

A
m

pl
tiu

de

#105 Input Data

Input
7 Prediction
'2< Interval

Figure 6.7: Transfer learning was employed to enhance the network’s capacity to generalise when
presented with inputs akin to those depicted in fig. 6.6. The effectiveness of this strategy is
demonstrated by the improved accuracy in the reconstructed distance distribution and its subsequent
alignment with the input data.

To enhance DEERnet’s accuracy on the trimodal distribution shown in fig. 6.6, we
modified the data generation function by adding a linear bias. This bias aimed to better
capture narrow peaks. We then continued training the model until it converged. Figure 6.7
displays the updated prediction, which shows a marked improvement in resolution.

Importantly, when we evaluated both the original and the updated models on an unbiased
test set, their performance remained consistent. This consistency suggests that our update
did not negatively impact the model’s generalisation ability. As a result, only the updated
model needs to be maintained, as it successfully incorporates the improvements without
compromising overall performance.

6.7 Automating Detection

Adding an automated system to DEERnet that notifies users of potential out-of-distribution
(OOD) inputs would benefit the user experience. Under the assumption that in-distribution
data, on average, exhibits a lower reconstruction error than OOD data, a simple solution
involves establishing a threshold, λ, on the reconstruction error, �. If � > λ, we classify the
input as out-of-distribution. Conversely, if � ≤ λ, we categorise it as in-distribution.

73

6.8. Training RIDMEnet

0 0.01 0.02 0.03 0.04
Reconstruction RMSE

0

5

10

15

20
Fr

eq
ue

nc
y

DEER Traces
Background

0 0.2 0.4 0.6 0.8
False Positive Rate

0

0.2

0.4

0.6

0.8

1

Tr
ue

 P
os

iti
ve

 R
at

e

6 = 0.0254

6 = 0.0302

6 = 0.0354

Figure 6.8: Left: The distribution of reconstruction errors obtained from retrofitting a library
containing in-distribution DEER traces and out-of-distribution background traces. Right: A
Receiver Operating Characteristic (ROC) plot illustrating the trade-off between false positives
and true positives when utilising the reconstruction errors as thresholds to distinguish between
in-distribution and out-of-distribution data.

We generate two test sets to set this threshold: one comprising in-distribution (ID) data
and another containing out-of-distribution (OOD) background factors. Figure 6.8 displays
the observed distribution of reconstruction errors across these two sets. Identifying the
background factor as an anomaly falls under the near-OOD detection heading, so these
distributions overlap.

Our objective is to determine the dividing line, λ, that most effectively separates these
distributions. The ideal threshold should simultaneously maximise the number of OOD
examples correctly identified as OOD (the true positive rate) and minimise the number of ID
examples incorrectly identified as OOD (the false positive rate).

We can visualise this by plotting the true positive rate against the false positive rate for
a range of potential threshold values. This plot is known as a receiver operator characteristic
(ROC) curve, and the optimal threshold value is found at its top left point (fig. 6.8, right).12

A significant limitation of this method is that the ideal threshold determined for a specific
OOD test case, like background factors, may not be suitable for different types of OOD
data. Given that the range of possible OOD scenarios is virtually limitless, it’s impractical
to account for every potential OOD instance. Therefore, although the threshold can serve
as a valuable early warning system, it should be considered context-specific. It offers the
most effective separation for the particular type of OOD test data being examined, but its
applicability may be limited beyond that specific context.

6.8 Training RIDMEnet
In our final case study on out-of-distribution detection with DEERnet, we examine data from
the relaxation induced dipolar modulation enhancement (RIDME) experiment.13

Like DEER, we model the RIDME trace as a discretised Fredholm integral equation.
Despite RIDME being less extensively studied than DEER, the DEER kernel seems to be a
suitable approximation for the RIDME kernel. A notable difference, however, is found in the
background factor. While DEER features a monotonically decaying background, RIDME’s
background factor is expressed differently14 , and may be non-monotonic15:

74

https://experiment.13
https://right).12

Chapter 6. Out-of-Distribution Detection

b(t) = exp(−a1t − a2t2) (6.7)
In this expression, a1 and a2 are parameters dependent on the various time delays present

in the RIDME pulse sequence. As long as eq. (6.7) is used for prior background correction,
RIDME data can be analysed using software packages originally created for DEER data
analysis. As far as we know, there are no specialised tools exclusively for RIDME data
analysis.

0 0.5 1 1.5 2
Time / μs

0

0.2

0.4

0.6

0.8

1

A
m

pl
tiu

de

Input Data

Input
7 Prediction
'2< Interval

Prediction

10 20 30 40 50
Distance / Å

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

P
ro

ba
bi

lit
y

True Distribution
7 Prediction
'2< Interval

Figure 6.9: The retrofitting procedure applied to RIDME data. In this case, the non-monotonic
decay of the RIDME background factor made the poor fit easy to spot.

Considering this, it’s plausible that a user might use DEERnet for RIDME data analysis.
Figure 6.9 shows how DEERnet performs when applied to a simulated RIDME trace. In this
case, DEERnet interprets the inherent curvature of the RIDME background factor as a slow
oscillation, resulting in a misleading peak at the long edge. In a testing scenario where the
ground truth isn’t known, users might not question the accuracy of this prediction, especially
when only considering the provided confidence intervals. However, the issue becomes clear
when we retrofit the time-domain trace, revealing the prediction’s inaccuracy (fig. 6.10).

0 0.02 0.04 0.06 0.08 0.1
Reconstruction RMSE

0

5

10

15

20

Fr
eq

ue
nc

y

In Distr.
Out of Distr.

0 0.2 0.4 0.6 0.8
False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ue

 P
os

iti
ve

 R
at

e

6 = 0.0198

6 = 0.0266

6 = 0.0331

75

6.8. Training RIDMEnet

Figure 6.10: The distribution of reconstruction errors obtained from retrofitting a library containing
in-distribution DEER traces and out-of-distribution RIDME traces. Right: A Receiver Operating
Characteristic (ROC) plot illustrating the trade-off between false positives and true positives when
utilising the reconstruction errors as thresholds to distinguish between in-distribution and out-of-
distribution data.

In a broader range of test cases, the distribution of reconstruction errors for DEER
and RIDME data shows considerable overlap, reflecting this detection task’s near out-of-
distribution (OOD) nature. Consequently, we cannot expect to consistently and accurately
identify all OOD instances.

Furthermore, a diagonal trend is observed when we derive a receiver operating charac-
teristic (ROC) curve for these test cases. This pattern suggests that using reconstruction
error as a metric to distinguish between DEER and RIDME data is no more effective than a
random guess.

Recognising the shortcomings of existing methods and the necessity for a specialised
tool to analyse RIDME data, we trained a neural network specifically for this purpose. We
followed the same training database generation and optimisation process as DEERnet, with
the key modification being the substitution of the background factor with a RIDME-specific
background. The selection of the parameters a1 and a2 is described below.

Based on practical experience, we understand that a RIDME background factor, if initially
steady or increasing, is expected to reach a turning point by tmax/5, where tmax represents
the signal’s duration. To ensure an initial increase or steadiness, the background must meet
the criterion b0(t = 0) = 0. The derivative of b(t) is:

b0(t) = −a1 exp(−a1t − a2t2) − 2a2t exp(a1t − a2t2) (6.8)

At t = 0, this simplifies to b0(0) = −a1, indicating that a1 must be less than or equal to
zero for an initially increasing or steady background. To position the turning point we set
b0(tmax/5) = 0 and solve for t, leading to tmax/5 = −a1/2a2. Thus, a reasonable initially
increasing background factor is described by:

a1 ≤ 0 (6.9)
a2 ≥ −5a1/2tmax (6.10)

Conversely, if the RIDME background function initially decreases, it should continue to
decrease for the entire duration of the experiment. Applying similar logic and solving for
b0(tmax) < 0, an appropriately decreasing background factor is characterised by:

a1 < 0 (6.11)
a2 > a1/2tmax (6.12)

In practice, we draw a1 from a Gaussian distribution with a standard deviation of 3t−1
max,

−2and a2 from a half-Gaussian distribution with a standard deviation of 3t These standard max.
deviations were not derived analytically, but were empirically determined to reproduce
realistic background factors effectively.

76

Chapter 6. Out-of-Distribution Detection

0.326 0.328 0.33 0.332 0.334 0.336 0.338
Mean RMSE

3.84

3.86

3.88

3.9

3.92

3.94

3.96

3.98

4

M
ax

im
um

 R
M

S
E

All Networks
Ensemble Average

Figure 6.11: Scatter plot of the performance metrics for an ensemble of networks trained on
independent training sets, from different initial parameter guesses. Each circle represents an
individual network in the ensemble, and the star is the performance of the bagged, or averaged,
predictor

We have also made the sampling requirements for RIDME input data more stringent.
Due to the potential non-monotonic nature of the background factor in eq. (6.7), it becomes
essential to sample a complete signal period for reliable differentiation of dipolar oscillations
from the background. Moreover, in high-spin systems, the shorter distance limit of RIDME
may encompass overtone frequencies, requiring sampling of frequencies roughly twice as high
as 2ωdd to avoid reflections. The sampling conditions for RIDME are thus defined by:

r
γ1γ2µ0 ~

rmin = 3

π2 Δt (6.13) r
γ1γ2µ0 ~ 3

rmax = tmax (6.14)
8π2

Following these changes, we trained an ensemble of 32 networks to extract the distance
distribution from RIDME input data. Figure 11 illustrates the performance metrics of this
ensemble over a test set. Figure 6.11 illustrates the performance metrics of this ensemble
over a test set.

77

6.9. Conclusions & Further Work

0 0.5 1 1.5 2
Time / μs

0

0.2

0.4

0.6

0.8

1
A

m
pl

tiu
de

Input Data

Input
7 Prediction
'2< Interval

Prediction

20 30 40
Distance / Å

0

1

2

3

4

5

6

7

P
ro

ba
bi

lit
y

#10-3

True Distribution
7 Prediction
'2< Interval

Figure 6.12: An illustrative example of the performance of RIDMEnet on a a test example.

When we analyse the RIDME data from fig. 6.9 using this new network ensemble, the
spurious peak vanishes, and we accurately recover the distance distribution from the trace
(fig. 6.12).

6.9 Conclusions & Further Work
In this study, we introduced out-of-distribution detection to DEERnet, thereby increasing the
reliability and trustworthiness of its predictions. Our approach involves fitting the network’s
predictions back into the physical process model that generated them. This method could
apply to any inverse problem where the forward problem is known and well-posed, but the
inverse is not.

However, our work highlights the complexities of automating out-of-distribution detection,
especially in near out-of-distribution tasks like RIDME detection. This challenge lies in
distinguishing between very similar in-distribution and out-of-distribution data.

We’ve also shown that transfer learning can be effectively applied to improve results when
a generalisation error is detected. This approach has proven helpful for adapting DEERnet to
RIDME data, suggesting that it could be similarly adapted to other spectroscopic techniques.
The success of transfer learning here indicates the potential for DEERnet to become a more
versatile tool applicable across a broader range of spectroscopic analyses.

Future work should focus on developing more robust methods for near out-of-distribution
detection. An area of interest could be exploring whether the separation of in-distribution
and out-of-distribution data is more feasible in the Fourier domain. Such developments are
essential for further enhancing the model’s accuracy and expanding its applicability.

78

Chapter 7

Non-Uniform Sampling

7.1 Introduction
Non-uniform sampling (NUS) offers significant potential for time-saving in DEER and
RIDME signal detection. By reducing sampling requirements, NUS methods have enabled
the practical implementation of high-resolution 4D NMR experiments, a feat unattainable
with uniform sampling.1 While NUS has found routine use in NMR experiments, its adoption
in EPR applications has been hindered by the absence of a straightforward implementation
on common commercial spectrometers.2

Recent advancements in spectrometer hardware now permit non-uniform sampling in
EPR3, particularly advantageous for the widely used HYSCORE experiment, as demonstrated
by previous simulations.4,5 In this contribution, building on the success of artificial neural
networks in uniformly sampled DEER spectroscopy6, we introduce an artificial neural network
tailored for reconstructing distance distributions from non-uniformly sampled DEER data
with randomly missing data points.

7.2 Uniform Sampling
In all dipolar spectroscopy methods, distance determination is based on the dipole-dipole
interaction between the magnetic moments of two electron spins. If the dipolar coupling is
significantly smaller than the Zeeman splitting of the electron spins and the g-tensors are
only weakly anisotropic, we need only consider the secular term7:

ωdd
D(r, θ) =

r3 (1 − 3 cos2 θ) + J (7.1)

3Here, ωdd ≈ 327 rad nm /µs is the dipolar interaction constant, r is the interspin distance,
θ is the angle between the external magnetic field direction and the vector connecting the
spins, and J is the exchange integral.

Among the various dipolar spectroscopy methods, the double electron-electron resonance
(DEER) experiment is most commonly used to measure the dipolar frequency and determine
distance between spins. For randomly oriented pairs of spin labels at a fixed distance,
r, assuming short microwave pulses, the DEER time trace is described by the following
equation8:

v(t) = 1 − λ{1 − f(r, t)} (7.2)

where f(r, t) is the form factor :

79

7.2. Uniform Sampling

f(r, t) = hcos(D(r, θ)t)iθ (7.3)

Here, λ is the probability of a B spin being flipped by the pump pulse, and h. . . iθ denotes
averaging over the angle θ.

Fourier analysis of this DEER time trace yields a so-called Pake doublet (fig. 7.1), which
allows us to determine the distance r and the exchange coupling J , since8:

ωk = |2ωdd − J | (7.4)
ω⊥ = |ωdd + J | (7.5)

The minimum distance accessible to DEER is 1.5-2.0 nm. Above these distances, the
exchange interaction is weak (with rare exceptions), and we can estimate ωk = 2ωdd and
ω⊥ = ωdd precisely.9

Time

A
m

pl
itu

de

Frequency

A
m

pl
itu

de

!D

!?

2!k

Figure 7.1: DEER signal decay oscillations due to dipole-dipole interactions for randomly oriented
pairs and constant spin-spin distance (left), and the corresponding dipolar Pake doublet (right).

The accuracy of the spectrum obtained by this approach depends critically on how the
data is sampled.1 According to the Nyquist sampling theorem, accurate wave characterisation
requires sampling at least twice per cycle. The sampling interval, Δt, sets the upper limit for
the highest frequency, or the shortest distance, that can be determined without ambiguity.10

This relationship is given by: � �1/3
γ2~

rmin = Δt (7.6)
π

Sampling less frequently than mandated by the Nyquist criterion leads to the appearance
of signals in the spectrum at incorrect frequencies, referred to as aliasing or folding.1

The total number of samples recorded plays a crucial role in defining the frequency
resolution of the spectrum. This resolution, the interval between frequency elements, is
determined by 1/NΔt where N is the total number of samples collected, and NΔt is the
overall signal length.11

Since the duration of the experiment is directly proportional to the number of samples
recorded, achieving high-resolution spectra often necessitates extended experimental times.

80

https://length.11
https://ambiguity.10

�

Chapter 7. Non-Uniform Sampling

Coupled with the requirement to measure at an appropriate sampling rate, a substantial
number of points are needed. As a result, DEER experiments can vary in length, ranging
from a few minutes to many hours, depending on the sample concentration, the measured
distance, and the required resolution.12

Although digital frequency resolution can be increased through zero filling, this process
invariably introduces a discontinuity in the time domain data. This discontinuity, in turn,
leads to the appearance of unwanted signals in the spectrum, commonly referred to as
truncation artefacts or sinc wiggles. 1

7.3 Non-Uniform Sampling

Non-uniform sampling (NUS) refers to any sampling strategy that deviates from uniform
interval sampling. The specific arrangement of these non-uniformly sampled points is called
the schedule. In an on-grid schedule, a selection is made from a subset of points that would
usually be found on the Nyquist grid.11

Because NUS omits certain measurements, the data it produces contains “gaps” compared
to traditional, uniformly sampled data. This strategy reduces the total duration of the
experiment. However, it also means that the DFT is not directly applicable. Therefore, the
primary objective of most NUS methods is to “fill in the gaps” in the data. By reconstructing
these missing points, the DFT can be applied effectively.13

Let’s consider augmenting the NUS data with zeroes at the points where the data is
missing points. We can express this zero-augmented data vector, ṽ, as the element-wise
product of the uniformly sampled data vector, v, and a logical sampling mask1:

� �
ṽ = v 1 0 0 1 . . . (7.7)

Clearly, the DFT can be applied to this zero-augmented data vector. However, the
spectrum derived from this zero-augmented data will exhibit artefacts when compared to the
“true” spectrum. Like the case of zero-filled data, these artefacts arise due to discontinuities
in the zero-augmented data. In this context, such artefacts are called sampling artefacts. 1

The origin of sampling artefacts becomes even more apparent when viewed in the frequency
domain. According to the convolution theorem, multiplying two vectors in the time domain
equates to their convolution in the frequency domain. Therefore, the frequency spectrum of
the zero-augmented data is the true spectrum convolved with the DFT of the sampling mask.
The DFT of the sampling mask is known as the point spread function (PSF). 10 Figure 7.2
illustrates this point for a sine wave in which 80% of samples are missing completely at
random (MCAR).

81

https://effectively.13
https://resolution.12

7.3. Non-Uniform Sampling

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1
(a)

20 40 60 80 100 120

0.05
0.1

0.15
0.2

0.25
0.3 (b)

0 50 100 150 200 250
-0.5

0

0.5

1

1.5
(c)

20 40 60 80 100 120

0.05

0.1

0.15
(d)

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1
(e)

20 40 60 80 100 120

0.01
0.02
0.03
0.04
0.05
0.06 (f)

Figure 7.2: The DFT of a decaying sinusoid (A, B) and a sampling schedule (C, D), and their
multiplication in the time domain (E) resulting in their convolution in the frequency domain (F).

When the signal has only a single frequency component, as demonstrated in the example,
the locations and intensities of sampling artifacts can be clearly predicted by examining
the point spread function (PSF). The artefacts will occur at frequencies corresponding to
the peaks in the PSF, offset from the original frequency component by the same amount as
the peaks in the PSF are offset from the zero frequency. However, when the signal includes
multiple frequency components, the sampling artefacts from one component can overlap and
interact with those from other components, resulting in either constructive or destructive
interference.10

Drawing from the convolution analogy, a sampling schedule that results in a point spread
function (PSF) with weaker non-zero frequency components will lead to less pronounced
sampling artefacts. One straightforward method to minimise these artefacts is by increasing
the number of samples collected, though this extends the experiment’s duration. For a given
size of a non-uniform sampling (NUS) set, different configurations of sample times produce
distinct PSFs, and, consequently, varied sampling artefacts.10

If the sampling density decays rapidly (meaning more data is collected at shorter times),
the resulting signals will be stronger but broader. In contrast, a slower decay in sampling
density leads to noisier spectra with sharper lines.10

The point spread function (PSF) offers valuable insights into sampling artefacts’ position
and magnitude when uniform sampling data is accessible. However, we lack a theoretical
framework for predicting the performance of specific NUS schedules in advance. This gap
makes optimising sampling schemes challenging and necessitates the reconstruction of the
spectrum from the compromised NUS spectrum.1

Spectral reconstruction methods aim to reconstruct the true spectrum through a penalised

82

https://lines.10
https://artefacts.10
https://interference.10

�

�

Chapter 7. Non-Uniform Sampling

least squares fit. The penalty (or regularisation) term ensures that the estimated spectrum
is physically reasonable and is often chosen to encourage sparsity in the recovered spectrum.
For example, iterative soft thresholding employs the L1-norm as a sparsity promoting
regularisation term2:

ŝ = arg min{λ kṽ − m F−sk − ksk } (7.8)2 1

Here, s represents the spectrum, ṽ, is the zero-augmented data, F− is the inverse Fourier
transform kernel, and m represents the sampling mask.

Meanwhile, maximum Entropy (MaxEnt) methods strive to reconstruct a spectrum that
displays minimal statistical information content, or in other words, maximal entropy. MaxEnt
methods were the first to be applied and studied among all reconstruction methods used
in NMR. They have also been successfully applied to the hyperfine sub-level correlation
(HYSCORE) experiment in EPR.2

There is no universal, one-size-fits-all choice for the reconstruction method in spectral
analysis, but the decision on which reconstruction method to use appears less critical than
the selection of the sampling schedule.

7.4 Tikhonov Regularisation

While we have shown that spectral reconstruction methods used in NMR are applicable to
DEER traces involving spin pairs with fixed distances, our main objective in DEER is often
to extract the distance distribution from a system that exhibits conformational flexibility. In
this case, the DEER trace can be represented as7:

v = (1 − λ + λKp) b + e (7.9)

where p is the distance distribution we wish to extract, K is the dipolar kernel matrix, b is
the intermolecular background factor, λ is the modulation depth parameter, and e denotes
(Gaussian) measurement noise.

The commonly used two-step processing method, popularised by DeerAnalysis, involves
first fitting a parametric model to b and then performing an inversion of K in the least-
squares sense.14 As the kernel is ill-conditioned, this inversion requires regularisation with a
matrix, L, which promotes smoothness in the solution estimate15:

2 2
p̂ = arg min{kKp − vk + α2 kLpk } (7.10)2 2

Here, α is the regularisation parameter that balances the fit to the data with the regularity
of the solution estimate.

83

https://sense.14

7.4. Tikhonov Regularisation

0 0.5 1 1.5 2
Time / μs

0

0.2

0.4

0.6

0.8

1
A

m
pl

itu
de

Uniform
Non-Uniform

10 20 30 40 50 60
Distance / Å

0

0.002

0.004

0.006

0.008

0.01

0.012

P
ro

ba
bi

lit
y

Uniform
Non-Uniform

Figure 7.3: Noisy DEER form factor with 87.5% points missing completely at random (left), and the
distance distribution reconstructed by Tikhonov regularisation (right). The distance distribution
can be well approximated when the background factor has been appropriately corrected for.

When the DEER trace is non-uniformly sampled, the kernel may be under-determined.
Despite this, we can still seek a solution using the same Tikhonov regularisation approach.
Figure 7.3 illustrates the efficacy of this method when the background factor has been
accurately corrected for.

0 0.5 1 1.5 2
Time / μs

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

Uniform
Non-Uniform

10 20 30 40 50 60
Distance / Å

0

0.05

0.1

0.15

0.2

P
ro

ba
bi

lit
y

Uniform
Non-Uniform

Figure 7.4: Noisy DEER trace with 87.5% points missing completely at random (left) and the
distance distribution reconstructed by Tikhonov regularisation (right). Because there are too few
points to accurately fit the background factor, the estimated solution is completely garbled by
incomplete background correction.

However, fitting the background factor to a non-uniformly sampled DEER trace is
practically challenging. When the DEER trace is sampled below the Nyquist rate, there
frequently isn’t enough measured data to obtain a reliable fit. Then, the solution estimate
will be entirely garbled by incomplete background correction, as illustrated in fig. 7.4.

84

Chapter 7. Non-Uniform Sampling

20 40 60 80
Distance / Å

0

0.005

0.01

0.015

0.02

P
ro

ba
bi

lit
y

Uniform
Non-Uniform

0 1 2 3 4 5
Time / μs

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
m

pl
tiu

de

Interpolation
Measured

Figure 7.5: Noisy DEER trace with 87.5% of points missing (left). In this case, the sampling
schedule is dense around the turning points of the trace. Therefore, the distance distribution can be
accurately reconstructed from the linearly interpolated trace (right).

In rare instances, general-purpose interpolation schemes, such as linear interpolation,
can improve background correction in non-uniformly sampled DEER data (fig. 7.5). The
effectiveness of this approach largely depends on having a sampling schedule that is densely
populated around the trace’s turning points. However, it is crucial to note that the per-
formance of these interpolation methods generally falls short of what is achievable with
uniformly sampled data.

7.5 Artificial Neural Networks

Previously, we demonstrated the effectiveness of fully connected neural networks in accurately
extracting the distance distribution from uniformly sampled DEER traces. We called this
network DEERnet. Figure 7.6 illustrates the performance of DEERnet on a zero-augmented
data vector where 87.5% of the points are missing completely at random.

Like other analysis methods, the network correctly extracts the average distance but
struggles to replicate the distribution’s shape. This is further illustrated by examining the
misfit between the measured points and the DEER trace derived from the predicted distance
distribution.

85

�

7.5. Artificial Neural Networks

Prediction

20 40 60 80 100
Distance / Å

0

5

10

15

20

25

P
ro

ba
bi

lit
y

True
7 Prediction
'2< Interval

0 2 4 6 8 10
Time / μs

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
A

m
pl

tiu
de

Input Data

Measured
7 Fit
'2< Interval

X

Figure 7.6: Application of DEERnet to the zero-augmented data vector of a non-uniformly sampled
trace with 87.5% points missing completely at random. The network well approximates the average
distance but struggles to reconstruct the shape of the distance distribution.

To adapt DEERnet to the NUS case, we will maintain the fully-connected architecture
but need to generate a training set that comprises NUS input signals. The training set for the
uniformly sampled DEERnet consisted of N input-output pairs {vi, pi}Ni=1, where pi ∈ R512

is the distance distributions that we aim to predict from its corresponding trace vi ∈ R512 .
Each vector in this set contains exactly 512 points, as required by the architecture.

The most straightforward way to modify the training set for NUS data involves creating
N logical sampling masks, denoted as {m}N We can then derive the NUS training seti=1.
from the US training set, forming {ṽi, pi}, where ṽi = vi mi. Training can be framed as
the optimisation problem:

N
2

ŵ = arg min kpi − f(ṽi, w)k (7.11)2
i=1

where w are the learnable parameters of the network, f .
The optimisation stalled after a few iterations using this input pattern, which led us to

reevaluate what it is we’re asking the network to learn. Assuming the network approximates
the US vector v ∈ R512 from a NUS input ṽ ∈ Rm , it could then proceed with inversion as
in the US case.

The polynomial interpolation problem is to find a polynomial:

2 n p(ti) = a0 + a1ti + a2ti + · · · + anti (7.12)
which satisfies p(ti) = v(ti) for all i = 1, 2, . . . ,m. We can reformulate this problem into a
matrix equation using a Vandermonde matrix: ⎡ ⎢⎢⎢⎣

⎡ ⎢⎢⎢⎣
⎤ ⎥⎥⎥⎦

a1
a2
. . .

⎤ ⎥⎥⎥⎦ =

⎡ ⎢⎢⎢⎣
ṽ(t1)
ṽ(t2)

. . .

⎤ ⎥⎥⎥⎦ (7.13)

1 t1 t2 · · · tn
1 1

1 t2 t2 · · · tn
2 2

.
1 tm t2 · · · tn an ṽ(tm)m m

The network’s task is to solve this matrix equation in the least squares sense for the
coefficient vector:

86

� �

Chapter 7. Non-Uniform Sampling

â = (T>T)−1T> ṽ (7.14)

The coefficients are thus linear functions of the measured values, ṽi, and rational functions
of the time grid locations, ti.

Considering the algebraic structure of fully-connected networks, which makes learning
multiplicative binary functions challenging, we propose that the input vector should be
structured as: � �>

x = t t2 ṽ t ṽ t2 ṽ (7.15)

where the exponents are applied element-wise.

Prediction

20 40 60 80 100
Distance / Å

0

5

10

15

20

25
P

ro
ba

bi
lit

y
True
7 Prediction
'2< Interval

0 2 4 6 8 10
Time / μs

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
m

pl
tiu

de

Input Data

Measured
7 Fit
'2< Interval

Figure 7.7: Application of DEERvet to a non-uniformly sampled trace with 87.5% points missing
completely at random. The network makes a confident prediction.

However, the length of t, ṽ, and ultimately x, depends on the number of measured points.
Since the fully-connected network’s input dimension is fixed, we must enforce a constant
sparsity level.

512 Points 128 Points 64 Points

0

0.5

1

1.5

2

2.5

3

P
re

di
ct

io
n

R
M

S
E

512 Points 128 Points 64 Points

0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 S
TD

87

7.6. Conclusions & Further Work

Figure 7.8: Violin plot illustrating the distribution of mean prediction errors (left) and standard
deviations (right) across ensembles of networks trained at different sparsity levels: 0% (uniform),
25%, and 12.5%.

We trained ensembles of neural networks with sparsity levels set at 25% (128/512) and
12.5% (64/512). Following the approach used for the uniformly sampled DEERnet, we trained
32 networks with varying initial conditions for each sparsity level and then calculated their
average predictions. We derived confidence intervals from the standard error across these
ensembles. Figure 7.7 showcases an example output for a 512-point trace with 64 points,
and demonstrates a remarkably accurate match.

The performance of these networks on a test set comprising 100 non-uniformly sampled
(NUS) DEER traces is illustrated in fig. 7.8. As anticipated, both the prediction error and
predictive uncertainty increased with higher sparsity, although the increase was slight.

10 20 30 40 50 60
Input Dimension

50

100

150

200

250

300

350

400

450

500

O
ut

pu
t D

im
en

si
on

-200

-150

-100

-50

0

50

100

150

200

Figure 7.9: Jacobian of the network prediction in fig. 7.7. Its sparsity indicates that small perturba-
tions to the input will not lead to spurious peaks in the output.

Additionally, given that the kernel matrix in the non-uniformly sampled (NUS) case is
under-determined, an increase in noise sensitivity might be anticipated. However, when
we calculated the finite difference Jacobian for the ensemble predictor across a set of test
cases, we observed a remarkable level of stability. This stability was on par with that of the
uniformly sampled DEERnet. We showcase the network Jacobian for a non-uniform input in
fig. 7.9. The sparsity of this Jacobian suggests that minor perturbations in the measurement
are unlikely to result in the formation of spurious peaks in the distance distribution.

7.6 Conclusions & Further Work
Unlike in NMR, where non-uniform sampling (NUS) has become standard practice, its
adoption in EPR has been limited due to the unavailability of commercial spectrometers
that support this technique. This discrepancy can be attributed to market dynamics: the
majority of NMR spectrometers are used in industry, which values the time-saving advantages
of NUS, whereas approximately 90% of EPR spectrometers are directed toward academic
institutions.16 Nevertheless, NUS with maximum entropy reconstruction has been successfully
applied to HYSCORE experiments using home-built spectrometers.2

88

https://institutions.16

Chapter 7. Non-Uniform Sampling

In this contribution, we introduced a neural network capable of accurately predicting
distance distributions from simulated DEER traces, with 87.5% of points missing completely
at random.

The accuracy of traditional spectral reconstruction techniques depends heavily on the
sampling schedule chosen.10 Our next step is to analyse whether a similar dependency
holds true for neural networks. Additionally, evaluating the network’s performance on real
experimental data will be crucial to validate its practical applicability.

89

https://chosen.10

7.6. Conclusions & Further Work

90

Chapter 8

Descrambling

8.1 Introduction
Machine learning, particularly deep learning, has supplied many scientific and industrial
applications with powerful predictive models. As deep learning penetrates critical domains
such as medicine, the criminal justice system, and financial markets, the imperative to
establish trust in these models has grown.1

This raises an epistemological question: what is “trust”? One way for users to quantify
their trust in a model is by how comfortable they are with relinquishing control to it. However,
translating such subjective assessments into an objective, codified form is challenging.2

Linear models are often deemed trustworthy because the input and output relationship is
easily understood. Therefore, intelligibility (i.e. our ability to grasp how the model works)
might be considered a prerequisite for trust.2 Methods aimed at obtaining intelligible models
are called interpretations. While simpler models are inherently more intelligible, they may
sacrifice predictive accuracy. Thus, most practical interpretation methods are applied after
the model is trained.3

To date, explainable artificial intelligence (XAI) has primarily focused on explaining the
decisions of classification models, where finding interpretations reduces to the problem of
identifying the decision boundaries. However, in regression problems, this simplification
does not hold, and published interpretations are sparse.4 A considerable portion of the prior
art has instead been focused on sensitivity analysis. This approach seeks to quantify the
importance of a specific feature by systematically removing it and observing the resulting
impact on the model’s output. However, it’s important to note that this method doesn’t
fully elucidate the learned function; it only measures the strength of the model’s dependency
on individual input variables.5

We present here a group-theoretical procedure that attempts to bring the weight matrices
of regression networks into a human-readable form. We applied the proposed method to
DEERnet and peeked inside this enigmatic “black box”.

8.2 Descrambling Transformations
A feed-forward artificial neural network is recursively defined by the following set of equations6:

(l) = W(l) (l−1)z a (8.1)
(l) = σ(l)(z(l))a (8.2)

91

8.2. Descrambling Transformations

Here, the post-activation vector, a(l), for layer l is obtained by applying the activation
function, σ(l)(·), element-wise to its pre-activation vector z(l).

The post-activation vector of the input layer (l = 0) is the model input, and the post-
activation vector of the output layer (l = L) is the corresponding prediction.

All commonly employed activation functions are invertible in the sense that they establish
a one-to-one correspondence between the pre-activation vector of a layer and its corresponding
post-activation vector. This means that each pre-activation vector can be uniquely recon-
structed from its post-activation counterpart. Consequently, while the post-activation vector
can be viewed as an encoding of the pre-activation vector, it is not inherently unintelligible
or irreversibly transformed.

In contrast, the weight matrix, W(l), represents a linear transformation within a specific
pair of bases. However, because the weight matrix elements are learned during training
rather than intentionally chosen, the bases of representation remain unknown.

Consider the matrix: � �
0.7071 −0.7071

W = (8.3)
0.7071 0.7071

It’s challenging to discern its functional form without specifying the bases of representation.
However, a rotation by 45 degrees would expose it as the identity transformation, taking on
a more recognisable diagonal form.

We suggest that each weight matrix has an equivalent matrix that more clearly elucidates
its functional form. In other words, for each “scrambled” matrix, like the one in eq. (8.3),
there exists an equivalent “descrambled” matrix:

LWR> (8.4)

where L and R are invertible change of basis matrices.
However, specifying a change of basis matrix demands familiarity with both the old

and new bases.7 Because the weight matrix elements are learned during training, we lack
information about the old bases. Consequently, it remains unclear which new basis set would
result in an equivalent matrix with a more interpretable form. We can, however, attempt
to conceptualise the characteristics that a more interpretable representation of the matrix
might exhibit.

In the context of digital signal processing the most interpretable matrix is expected to
map a smooth input vector to a smooth output vector. Therefore, the matrix R(l) should
impart smoothness to a(l) across a broad range of input cases. The smoothness of the

(l−1)transformed vectors, R(l)aj can be quantified in the familiar Tikhonov sense through the
squared Euclidean norm of its second derivative.8 This leads to the numerical optimisation
problem of finding R(l): X 2

(l−1)
R̂ (l) = arg min DR(l)aj (8.5)

2det R(l) 6=0 j

Here, D is a second derivative operator, such as a Fourier spectral differentiation matrix.9

Similarly, the matrix L(l), which smooths the output of W(l), can be found as follows: X 2 X 2
(l) (l−1)

L̂(l) = arg min DL(l)zj = arg min DL(l)W(l)aj (8.6)
2 2det L(l) 6 det L(l)=0=0 6j j

Implemented naively, descrambling is an expensive non-linear programming problem.
Fortunately, the set of invertible matrices forms a mathematical structure known as a matrix
Lie group; specifically, the general linear group, denoted as GL(n, R). 10 Each matrix Lie

92

2

Chapter 8. Descrambling

group is associated with a second set of matrices, its Lie algebra, that can be mapped onto
the group by exponentiation. The algebra of the general linear group is the set of all real
n × n matrices. This allows us to reduce eq. (8.5) to the following linear programming
problem: X 2

(l) (l) (l) (l−1)
R̂ (l) = exp(Q̂

R) s.t. Q̂ = arg min D exp(QR)a (8.7)R j
j

To prevent optimisation by arbitrary reductions in scale, we should also impose an
orthogonality constraint on R(l) (and L(l)). That is, we should restrict our search space to
the orthogonal subgroup O(n, R) ⊂ GL(n, R). The algebra of the orthogonal group is the set
of n × n skew-symmetric matrices, so: X 2

(l) (l) (l) (l−1)
R̂ (l) = exp(Q̂ s.t. Q̂ = arg min D exp(Q (8.8)R) R R)aj

Q> 2
R =−QR j

Although skew-symmetry is a non-linear constraint, it may be implemented linearly by
reducing the number of free parameters in QR

(l) to only the upper or lower triangle and
symmetrising at each iteration.

It’s also worth highlighting that the exponential map has costly derivatives and can
cause numerical accuracy problems in finite precision arithmetic.11 Therefore, we focused our
search on a subset of orthogonal matrices with a determinant of one. This subset, denoted
SO(n, R) ⊂ O(n, R), is known as the special orthogonal group. It can be reached from the
set of skew-symmetric matrices by the more economical Cayley transform12:

(l) (l)
R̂ (l) = (1 + QR)

−1(1 − QR) s.t. X 2
(l) (l) (l) (l−1)

Q = arg min D(1 + QR)
−1(1 − QR)a (8.9)R j

Q> 2
R =−QR j

The objective function in eq. (8.9) is differentiable in closed form. This allows us to use
efficient quasi-Newton optimisers such as L-BFGS algorithm.13 A detailed derivation of the
gradient is provided in the next section but is not required to appreciate the result: if a
network can be trained on some hardware, it can be descrambled on that same hardware.

8.3 Gradient Derivation
The gradient of the functional in eq. (8.9) may be obtained by matrix differentiation rules.
Let’s start by defining the matrix of observations: � �

A = a1 a2 . . . aN (8.10)

where, for brevity, the layer index has been dropped.
Then, the objective function can be succinctly expressed using the Frobenius norm: X

η(Q) = kDRak2
= kDRAk2 (8.11)2 F

j

Here, R = (1 − Q)−1(1 + Q).
Using the chain rule: #"� �> X� �

∂η ∂η ∂R ∂η ∂Rlk
= Tr = (8.12)

∂Qij ∂R ∂Qij ∂R ∂Qijlk kl

93

https://algorithm.13
https://arithmetic.11

8.3. Gradient Derivation

The derivative of η with respect to R is obtained using the Frobenius norm differentiation
rule14:

∂η
= 2D>DRAA> (8.13)

∂R

The derivative of R with respect to an element of Q is another instance of the chain rule:

� �
∂Rlk ∂

= [(1 + Q)−1(1 − Q)] (8.14)
∂Qij ∂Qij� lk �

∂(1 + Q)−1 ∂(1 − Q)
= (1 − Q) + (1 + Q)−1 (8.15)

∂Qij ∂Qij lk X X∂[(1 + Q)−1]lm
= [1 − Q]mk − [(1 + Q)−1]liδkj (8.16)

∂Qijm n

The last derivative is ∂Qnk/∂Qij = δniδkj and the derivative of the inverse matrix is:

∂[(1 + Q)−1]lm
= −[(1 + Q)−1]li[(1 + Q)−1]jm (8.17)

∂Qij

This eliminates all derivatives and all explicit sums from the right-hand side:

X X∂Rjk
= − [(1 + Q)−1]li[(1 + Q)−1]jm[1 − Q]mk − [(1 + Q)−1]ln∂nl∂kj (8.18)

∂Qij m n

= −[(1 + Q)−1]li[(1 + Q)−1(1 − Q)]jk − [(1 + Q)−1]liδkj (8.19)

Using the definitions of R and 1 yields further simplifications:

∂Rlk
= −[(1 + Q)−1]li[1 + R]jk (8.20)

∂Qij

Inserting this into eq. (8.12) produces: � �X∂η ∂η
= − [(1 + Q)−1]li [1 + R]jk (8.21)

∂Qij ∂R lk kl

and the explicit sum can now be collapsed: � �
∂η

(1 + Q)−> ∂η
= − (1 + R)> (8.22)

∂Qij ∂R ij

The final result is:

∂η
= −2(1 + Q)−>[D>D]R[AA>](1 + R)> (8.23)

∂Q

Numerical evaluation of both the function and the gradient may be accelerated by pre-
computing the terms in the square brackets.

94

Chapter 8. Descrambling

8.4 Application to a Two Layer Network
We will apply the descrambling routine to a two layer DEERnet with the following architec-
ture15:

p̂ = logsig(W(2) tanh(W(1)v)) (8.24)
(0) (L)The input, a = v, is a DEER trace, and the output, a = p̂ is the predicted distance

distribution.
As the inputs are (approximately) smooth, the first layer weight matrix need only be
descrambled from the left: X 2

L(1) = arg min DLW(1)vj (8.25)
L∈SO(n,R) 2

j

Heat maps of the scrambled matrix, W(1), and the descrambled matrix, L(1)W(1), are
depicted in the top and bottom rows of fig. 8.1, respectively. The success of the descrambling
is evident in the smoothing of the output, L(1)W(1)vj .

W(1)

-6

-4

-2

0

2

4

6
W(1)v

L(1)W(1)

-4

-3

-2

-1

0

1

2

3

L(1)W(1)v

Figure 8.1: Upper left: Raw weight matrix of the first hidden layer. Upper right: Result of applying
the raw weight matrix to the network inputs. Lower left: Descrambled weight matrix of the first
hidden layer. Lower right: Smoothed output from applying the descrambled weight matrix to the
network inputs.

It may not be immediately clear how L(1) has transformed W(1)vj . The interlocking
wave pattern observed in L(1)W(1) exhibits symmetry features reminiscent of a Toeplitz
matrix. Toeplitz matrices have constants along the diagonal and are commonly used in filter

95

8.4. Application to a Two Layer Network

and convolution operations. However, our matrix deviates from this pattern; instead, its
elements appear to follow a polynomial path, suggesting additional axis rearrangement in
the frequency domain.

By introducing forward (F) and backward (F−1) Fourier transforms into the equation:

(1) = W(1) Fz(1) = FW(1)F−1Fvz v =⇒ (8.26)

we illustrate the connection between the input signal frequency spectrum Fv and the
output signal frequency spectrum Fz(1) through the matrix FW(1)F−1 . Computation and
visualisation of this matrix in fig. 8.2 reveals the function of the first fully connected layer. It
seems to apply a low-pass filter to eliminate high-frequency noise, a notch filter at the zero
frequency to eliminate the non-oscillatory baseline and performs frequency rearrangement in
such a way as to effectively take the cubic root of the frequency axis within the filter band.
The latter operation appears to reflect the fact that the beating of the dipolar oscillation
depends on the cube of the distance.16

FL(1)W(1)F!1

B
an

dp
as

s
Fi

lte
r

N
ot

ch
 F

ilt
er

500

1000

1500

2000

2500

Figure 8.2: Symmetrised absolute value two-dimensional fast Fourier transform of the descrambled
first layer weight matrix. The layer applies a low-pass filter to remove high-frequency noise; a notch
filter at zero frequency to remove the non-oscillatory baseline; and also appears to be rearranging
frequencies in such a way as to effectively take the cubic root of the frequency axis within the filter
band.

Because the preceding layer functions as a digital filter, we expect the second fully-
connected layer’s weight matrix to execute a regularised pseudo-inversion. Given the smooth-
ness of the outputs, our descrambling requirement is limited to the right side:

X 2
R(2) DR(2)σ(1)(W(1)= arg min vj) (8.27)

SO(n,R) 2
j

Figure 8.3 portrays the descrambled second-layer weight matrix, which displays an
approximate similarity to the Moore-Penrose pseudo-inverse of the corresponding kernel
matrix.

96

https://distance.16

Chapter 8. Descrambling

K+ W(2)R(2)>

-1

-0.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

#1013

Figure 8.3: The descrambled second layer weight matrix (right) bears a resemblance to the Moore-
Penrose pseudo-inverse of the dipolar kernel (left).

As anticipated, the rows and columns of the descrambled weight matrix demonstrate
approximate orthogonality, as depicted in fig. 8.4.

W(2)>W(2)

10

15

20

25

30

35

40

W(2)W(2)>

0

20

40

60

80

100

120

Figure 8.4: The second layer descrambled weight matrix is (approximately) orthogonal, as could be
expected for an invertible transformation.

To better comprehend how W(2) transforms its input, a(1), we choose to perform a
singular value decomposition (SVD). Post-descrambling, SVD proves valuable due to its
structured representation:

W = USV> (8.28)

This decomposition naturally dissects the weight matrix into an orthogonal set of conjugate
signals it anticipates receiving (columns of V) and an orthogonal set of signals it expects to
send out (columns of U).17 It’s crucial to note that the SVD yields informative results only
after descrambling; singular vectors of a scrambled matrix are also scrambled.

97

8.4. Application to a Two Layer Network

Right Singular Vectors Left Singular Vectors

Figure 8.5: Descrambling the link dimension reveals an approximately orthogonal conjugate signal
library that singular value decomposition shows to be distorted sinusoids (left). The output
signal library also appears to be approximately orthogonal; singular value decomposition reveals
spontaneous emergence of distorted Chebyshev polynomials as the entries of that library (right).

The SVD revealed that the conjugate input signals manifest as sinusoids (fig. 8.5). These
sinusoids are slightly distorted, likely as a result of imperfect training. Likewise, the output
signals appear to be distorted Chebyshev polynomials.

Exactly why the network chose Chebyshev polynomials remains unclear, but they offer
insight into how regularisation is achieved within DEERnet. The ranks of the Chebyshev
polynomials observed in the output signal library are smaller than those that could, in princi-
ple, be digitised on the 256-point output grid. Consequently, a level of smoothness is imposed
on the output signal. This procedure resembles that of spectral filtering regularisation.

To the best of our knowledge, we have now fully descrambled the two-layer DEERnet. As
far as we can tell, descrambling results do not depend on the initialisation. We found the
interpretation to be the same for each of the independently initialised and trained nets that
DEERnet uses for confidence interval estimation.

Our interpretations, however, are subjective and necessarily rely on our prior knowledge of
the problem domain. To validate the correctness of the DEERnet functionality interpretation,
we’ve assembled a combination of digital filters replicating the functionality of the first fully
connected layer. Additionally, we’ve implemented a time-distance transformation to replicate
the functionality of the second layer.

98

Chapter 8. Descrambling

0 0.2 0.4 0.6 0.8
Normalized Frequency (#: rad/sample)

-100

-80

-60

-40

-20

0

M
ag

ni
tu

de
 (d

B
)

Magnitude Response (dB)

0 0.2 0.4 0.6 0.8
Normalized Frequency (#: rad/sample)

-25

-20

-15

-10

-5

0

M
ag

ni
tu

de
 (d

B
)

Magnitude Response (dB)

Figure 8.6: Digital filters used in the recreation of the functionality of the first fully connected
layer of DEERnet. (Left) Notch filter at zero frequency, implemented as order 256 direct-form FIR
high-pass filter with pass band edge at 0.008 and stop-band edge at 0.001 normalised frequency units.
(Right) Order 32 direct-form FIR low-pass filter with pass-band edge at 0.01 and stop-band edge at
0.3 normalised frequency units. Filters were created and analysed by using the Signal Processing
Toolbox of MATLAB R2020a.

To emulate the first fully connected layer, we used standard FIR filters with pass and
reject bands (fig. 8.6) chosen to correspond approximately to the patterns seen in fig. 8.2.
The frequency re-scaling transform and the regularised time-distance transform are both
linear and were therefore combined into one regularised pseudo-inverse:

K+ = (K>K + α21)−1K> (8.29)
The regularisation parameter α was obtained using the L-curve method.18 Although

some parameters (filter orders and bands, pseudo-inverse regularisation factor) were chosen
empirically, they all now have a clear and rational interpretation. Thus, a physically
meaningful data processing method was obtained from a descrambler group interpretation of
a neural network.

0 0.5 1
Time / μs

0

0.2

0.4

0.6

0.8

1

A
m

pl
tiu

de

DEER Trace
+ Low Pass
+ High Pass
Form Factor

10 20 30 40 50
Distance / Å

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

True Distr.
DSP Result

99

https://method.18

8.5. Application to Deeper Networks

Figure 8.7: An example DEER processing run using the rational digital signal processing replica
of DEERnet. The calculation starts with a realistic randomly generated DEER trace, for which
the correct answer is known. The low-pass filter eliminates the noise, and the notch filter at zero
eliminates the baseline. Up to the noise, the result matches the known form factor at this stage.
The subsequent time-distance transform yields a distance pattern in reasonable agreement with the
known right answer.

The performance of the rationally constructed sequence of transformations is illustrated
in fig. 8.7. When applying the same transformations to different inputs, occasional pass and
reject band adjustments in the digital filters are needed to match the network’s performance,
but those adjustments always have physical explanations.

8.5 Application to Deeper Networks
The depth of the DEERnet architecture can be increased arbitrarily as:

p̂ = logsig(W(L) tanh(W(L−1) . . . tanh(W(1)v) . . .)) (8.30)

The descrambling procedure can be applied to these larger networks, but as both the
inputs and outputs of the layer may be non-smooth, the matrix will need to be descrambled
from both the left and the right:

X 2
(l) (l) (l) (l−1)

R̂(l) = exp(Q̂
R) s.t. Q̂ = arg min DQR a (8.31)R j

SO(n,R) 2
j X 2

(l) (l) (l) (l)
L̂(l) = exp(Q̂

L) s.t. Q̂
L = arg min DQL zj (8.32)

SO(n,R) 2
j

(8.33)

We applied this procedure to architectures with 3 to 5 layers. In all cases, we observed
that the first and last layers perform transformations identical to those of the two-layer
network. The layers in between consistently took on the form depicted in fig. 8.8.

L(2)W(2)R(2)

-1

-0.5

0

0.5

1

FL(2)W(2)R(2)F!1

50

100

150

200

250

300

Figure 8.8: The descrambled middle layer is diagonalised by the Fourier transform, possibly indicative
of a convolution operation.

100

Chapter 8. Descrambling

Worswick et al. observed an improvement in test set performance as the number of
layers increased from 2 to 5.15 Consequently, we cannot conclude that the layers are devoid
of function. The descrambled weight matrices are diagonalised by a Fourier transform,
suggestive of a convolutional operation.19 Hence, it seems reasonable to infer that these inner
layers are engaged in a denoising operation, smoothing the output of the first layer to lighten
the load on the last layer.

Input Phase Spectra Output Phase Spectra

Figure 8.9: Phase rotations applied by the descrambled middle layer. They appear to be reversed by
later layers in deeper networks, and therefore have no clear purpose.

We additionally observed that each of these inner layers rotates the phase of the input
spectrum (fig. 8.9), but these shifts seem arbitrary, often reversed by subsequent layers. In
any case, it is clear that the network’s strategy does not appear to change as its depth
increases.

8.6 Conclusions & Further Work
The descrambler method has enhanced our understanding of the operations of a fully-
connected neural network. After a brief training phase, a two-layer DEERnet seems to have
developed a bandpass filter, a notch filter, a frequency axis rescaling transformation, and
spectral filtering regularisation.

The intelligibility of the descrambled weight matrices is still a matter of debate. Even after
descrambling, the weight matrices remain indecipherable to non-specialists. However, this is
still a marked improvement over the scrambled weight matrices, which were unintelligible to
all.

The mathematical framework presented is highly flexible and may be applied to networks
across various domains. For example, when frequency domain data is expected at both the
input and output of an acoustic filter network, it would be logical to seek an output space
transformation that maximises the similarity between output and input signals. In this
context, the descrambled weight matrix is expected to be diagonally dominant, which can be
achieved by an orthogonal transformation of the output space that maximises the diagonal
sum of the weight matrix:

R̂ = arg min Tr(RW) (8.34)
O(n,R)

101

https://operation.19

8.6. Conclusions & Further Work

A significant advantage of the descrambler group method is its applicability to fully
connected layers, which are generally more difficult to interpret than convolutional layers.
Current interpretability methods often focus on convolutional nets due to their importance
in image processing.20

So far, our networks have only discovered mathematics already known to humans. However,
it’s conceivable that previously unknown mathematical concepts might emerge at some point.
Artificial neural networks could then be mined as a source of new mathematics.

102

https://processing.20

References

Chapter 1
[1] Sabine Böhme, Heinz-Jürgen Steinhoff, and Johann P Klare. “Accessing the distance

range of interest in biomolecules: Site-directed spin labeling and DEER spectroscopy”.
In: Spectroscopy 24.3-4 (2010), pp. 283–288.

[2] Daniel Klose et al. “Resolving distance variations by single-molecule FRET and EPR
spectroscopy using rotamer libraries”. In: Biophysical Journal 120.21 (2021), pp. 4842–
4858.

[3] Arthur Schweiger and Gunnar Jeschke. Principles of pulse electron paramagnetic
resonance. Oxford university press, 2001.

[4] Ilya Kuprov. Spin: From Basic Symmetries to Quantum Optimal Control. Springer
Nature, 2023.

[5] David J Griffiths and Darrell F Schroeter. Introduction to quantum mechanics. Cam-
bridge university press, 2018.

[6] Akiva Feintuch and Shimon Vega. “Spin Dynamics”. In: EPR Spectroscopy: Fundamen-
tals and Methods (2018), p. 143.

[7] Hisaharu Hayashi. Introduction to dynamic spin chemistry: magnetic field effects on
chemical and biochemical reactions. Vol. 8. World Scientific, 2004.

[8] Peter Gast and Edgar J.J. Groenen. “EPR Interactions - g-Anisotropy”. In: eMagRes.
John Wiley & Sons, Ltd, 2016, pp. 1435–1444. isbn: 9780470034590. doi: https://doi.
org/10.1002/9780470034590.emrstm1500. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/9780470034590.emrstm1500. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/9780470034590.emrstm1500.

[9] Enrica Bordignon. EPR spectroscopy of nitroxide spin probes. Vol. 6. 2017.
[10] Marina Bennati, D Goldfarb, and S Stoll. “EPR interactions—Hyperfine couplings”.

In: EPR spectroscopy: fundamentals and methods (2018), p. 81.
[11] Gunnar Jeschke and Adelheid Godt. “Co-Conformational Distribution of Nanosized [2]

Catenanes Determined by Pulse EPR Measurements”. In: ChemPhysChem 4.12 (2003),
pp. 1328–1334.

[12] Malcolm H Levitt. Spin dynamics: basics of nuclear magnetic resonance. John Wiley
& Sons, 2013.

[13] Colin N Banwell and Elaine M McCash. Fundamentals of molecular spectroscopy. Indian
Edition, 2017.

[14] Marina Brustolon and Elio Giamello. Electron Paramagnetic Resonance: A Practitioners
Toolkit. John Wiley & Sons, 2009.

103

https://wiley.com/doi/abs/10.1002/9780470034590.emrstm1500
https://onlinelibrary
https://onlinelibrary.wiley
https://doi

[15] Stefan Stoll and Arthur Schweiger. “EasySpin, a comprehensive software package for
spectral simulation and analysis in EPR”. In: Journal of magnetic resonance 178.1
(2006), pp. 42–55.

[16] Yu D Tsvetkov, Aleksandr Dmitrievich Milov, and Aleksandr Georgievich Maryasov.
“Pulsed electron–electron double resonance (PELDOR) as EPR spectroscopy in nanome-
tre range”. In: Russian Chemical Reviews 77.6 (2008), p. 487.

[17] Richard Ward and Olav Schiemann. “Interspin Distance Determination by EPR”. In:
Encyclopedia of Biophysics. Ed. by Gordon C. K. Roberts. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 1116–1123. isbn: 978-3-642-16712-6. doi: 10.1007/978-3-
642-16712-6_662. url: https://doi.org/10.1007/978-3-642-16712-6_662.

[18] OW Sørensen et al. “Product operator formalism for the description of NMR pulse
experiments”. In: Progress in nuclear magnetic resonance spectroscopy 16 (1984),
pp. 163–192.

[19] Charles P Slichter. Principles of magnetic resonance. Vol. 1. Springer Science & Business
Media, 2013.

[20] Yuri D Tsvetkov, Michael K Bowman, and Yuri A Grishin. Pulsed electron–electron
double resonance. Springer, 2019.

[21] AD Milov, AG Maryasov, and Yu D Tsvetkov. “Pulsed electron double resonance (PEL-
DOR) and its applications in free-radicals research”. In: Applied Magnetic Resonance
15 (1998), pp. 107–143.

Chapter 2
[1] Luis Fábregas Ibáñez and Gunnar Jeschke. “Optimal background treatment in dipolar

spectroscopy”. In: Physical Chemistry Chemical Physics 22.4 (2020), pp. 1855–1868.
[2] Luis Fábregas-Ibáñez, Gunnar Jeschke, and Stefan Stoll. “Compactness regularization

in the analysis of dipolar EPR spectroscopy data”. In: Journal of Magnetic Resonance
339 (2022), p. 107218.

[3] Per Christian Hansen. Discrete inverse problems: insight and algorithms. SIAM, 2010.
[4] Bert W Rust and Bert W Rust. Truncating the singular value decomposition for ill-posed

problems. US Department of Commerce, Technology Administration, National Institute
of …, 1998.

[5] Eric J Hustedt et al. “Confidence analysis of DEER data and its structural interpretation
with ensemble-biased metadynamics”. In: Biophysical Journal 115.7 (2018), pp. 1200–
1216.

[6] Gilbert Strang. Linear algebra and learning from data. SIAM, 2019.
[7] RC Aster, B Borchers, and CH Thurber. “Linear regression”. In: Parameter estimation

and inverse problems (2013), pp. 25–53.
[8] Alan J Laub. Computational matrix analysis. Vol. 125. SIAM, 2012.
[9] Rainer Kress and Rainer Kress. “Ill-conditioned linear systems”. In: Numerical Analysis

(1998), pp. 77–92.
[10] Gilbert Strang. Introduction to linear algebra. SIAM, 2022.
[11] Carl Eckart and Gale Young. “The approximation of one matrix by another of lower

rank”. In: Psychometrika 1.3 (1936), pp. 211–218.
[12] Charles F Van Loan and G Golub. “Matrix computations”. In: Matrix Computations 5

(1996).

104

https://doi.org/10.1007/978-3-642-16712-6_662

[13] Per Christian Hansen, Victor Pereyra, and Godela Scherer. Least squares data fitting
with applications. JHU Press, 2013.

[14] Per Christian Hansen. “The discrete Picard condition for discrete ill-posed problems”.
In: BIT Numerical Mathematics 30.4 (1990), pp. 658–672.

[15] Yun-Wei Chiang, Peter P Borbat, and Jack H Freed. “The determination of pair
distance distributions by pulsed ESR using Tikhonov regularization”. In: Journal of
Magnetic Resonance 172.2 (2005), pp. 279–295.

[16] Daniela Calvetti and Erkki Somersalo. “Inverse problems: From regularization to
Bayesian inference”. In: Wiley Interdisciplinary Reviews: Computational Statistics 10.3
(2018), e1427.

[17] Gunnar Jeschke et al. “DeerAnalysis2006—a comprehensive software package for
analyzing pulsed ELDOR data”. In: Applied magnetic resonance 30 (2006), pp. 473–
498.

[18] Richard A Stein, Albert H Beth, and Eric J Hustedt. “A Straightforward approach to
the analysis of double electron–electron resonance data”. In: Methods in enzymology.
Vol. 563. Elsevier, 2015, pp. 531–567.

[19] Thomas H Edwards and Stefan Stoll. “Optimal Tikhonov regularization for DEER
spectroscopy”. In: Journal of Magnetic Resonance 288 (2018), pp. 58–68.

[20] Per Christian Hansen. “Regularization tools: A Matlab package for analysis and solution
of discrete ill-posed problems”. In: Numerical algorithms 6.1 (1994), pp. 1–35.

[21] Gunnar Jeschke. “Dipolar spectroscopy—double-resonance methods”. In: EPR Spec-
troscopy: Fundamentals and methods (2016), pp. 401–423.

[22] Thomas H Edwards and Stefan Stoll. “A Bayesian approach to quantifying uncertainty
from experimental noise in DEER spectroscopy”. In: Journal of magnetic resonance
270 (2016), pp. 87–97.

[23] Luis Fábregas Ibáñez, Gunnar Jeschke, and Stefan Stoll. “DeerLab: a comprehensive
software package for analyzing dipolar electron paramagnetic resonance spectroscopy
data”. In: Magnetic Resonance 1.2 (2020), pp. 209–224.

Chapter 3
[1] Daniela Calvetti and Erkki Somersalo. “Inverse problems: From regularization to

Bayesian inference”. In: Wiley Interdisciplinary Reviews: Computational Statistics 10.3
(2018), e1427.

[2] Thomas H Edwards and Stefan Stoll. “Optimal Tikhonov regularization for DEER
spectroscopy”. In: Journal of Magnetic Resonance 288 (2018), pp. 58–68.

[3] Simon Arridge et al. “Solving inverse problems using data-driven models”. In: Acta
Numerica 28 (2019), pp. 1–174.

[4] Luis Fábregas Ibáñez, Gunnar Jeschke, and Stefan Stoll. “DeerLab: a comprehensive
software package for analyzing dipolar electron paramagnetic resonance spectroscopy
data”. In: Magnetic Resonance 1.2 (2020), pp. 209–224.

[5] Bing Cheng and D Michael Titterington. “Neural networks: A review from a statistical
perspective”. In: Statistical science (1994), pp. 2–30.

[6] Hugh M Cartwright. Applications of Artificial Intelligence in Chemistry. Oxford
University Press, 1997.

[7] Gilbert Strang. Introduction to linear algebra. SIAM, 2022.

105

[8] Hal S Stern. “Neural networks in applied statistics”. In: Technometrics 38.3 (1996),
pp. 205–214.

[9] Brad Warner and Manavendra Misra. “Understanding neural networks as statistical
tools”. In: The american statistician 50.4 (1996), pp. 284–293.

[10] Jinming Zou, Yi Han, and Sung-Sau So. “Overview of artificial neural networks”. In:
Artificial neural networks: methods and applications (2009), pp. 14–22.

[11] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in
nervous activity”. In: The bulletin of mathematical biophysics 5 (1943), pp. 115–133.

[12] Phil Kim. “Matlab deep learning”. In: With machine learning, neural networks and
artificial intelligence 130.21 (2017).

[13] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representa-
tions by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.

[14] Hugh Cartwright. Using artificial intelligence in chemistry and biology: a practical
guide. CRC Press, 2008.

[15] Catherine F Higham and Desmond J Higham. “Deep learning: An introduction for
applied mathematicians”. In: Siam review 61.4 (2019), pp. 860–891.

[16] Steven G Worswick et al. “Deep neural network processing of DEER data”. In: Science
advances 4.8 (2018), eaat5218.

[17] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. “Implementing neural
networks efficiently”. In: Neural Networks: Tricks of the Trade: Second Edition. Springer,
2012, pp. 537–557.

[18] Reuben Feinman and Brenden M Lake. “Learning inductive biases with simple neural
networks”. In: arXiv preprint arXiv:1802.02745 (2018).

[19] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[20] Martin Fodslette Møller. “A scaled conjugate gradient algorithm for fast supervised
learning”. In: Neural networks 6.4 (1993), pp. 525–533.

[21] Jeremy Watt, Reza Borhani, and Aggelos K Katsaggelos. Machine learning refined:
Foundations, algorithms, and applications. Cambridge University Press, 2020.

[22] Gareth James et al. An introduction to statistical learning. Vol. 112. Springer, 2013.
[23] Philip E Gill, Walter Murray, and Margaret H Wright. Practical optimization. SIAM,

2019.
[24] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.
[25] Charu C Aggarwal et al. “Neural networks and deep learning”. In: Springer 10.978

(2018), p. 3.
[26] Yann LeCun et al. “Efficient backprop”. In: Neural networks: Tricks of the trade.

Springer, 2002, pp. 9–50.
[27] Martin Genzel, Jan Macdonald, and Maximilian März. “Solving inverse problems with

deep neural networks–robustness included?” In: IEEE transactions on pattern analysis
and machine intelligence 45.1 (2022), pp. 1119–1134.

106

Chapter 4
[1] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep

feedforward neural networks”. In: Proceedings of the thirteenth international conference
on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings.
2010, pp. 249–256.

[2] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural
information processing systems 33 (2020), pp. 1877–1901.

[3] Yann LeCun et al. “Efficient backprop”. In: Neural networks: Tricks of the trade.
Springer, 2002, pp. 9–50.

[4] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: arXiv
preprint arXiv:1609.04747 (2016).

[5] Catherine F Higham and Desmond J Higham. “Deep learning: An introduction for
applied mathematicians”. In: Siam review 61.4 (2019), pp. 860–891.

[6] Jeremy Watt, Reza Borhani, and Aggelos K Katsaggelos. Machine learning refined:
Foundations, algorithms, and applications. Cambridge University Press, 2020.

[7] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[8] Lukas Balles and Philipp Hennig. “Dissecting adam: The sign, magnitude and variance
of stochastic gradients”. In: International Conference on Machine Learning. PMLR.
2018, pp. 404–413.

[9] Gilbert Strang. Linear algebra and learning from data. SIAM, 2019.
[10] Charu C Aggarwal et al. “Neural networks and deep learning”. In: Springer 10.978

(2018), p. 3.
[11] Yann LeCun et al. “A theoretical framework for back-propagation”. In: Proceedings

of the 1988 connectionist models summer school. Vol. 1. San Mateo, CA, USA. 1988,
pp. 21–28.

[12] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural
networks”. In: Proceedings of the fourteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings. 2011, pp. 315–
323.

[13] Hao Zheng et al. “Improving deep neural networks using softplus units”. In: 2015
International joint conference on neural networks (IJCNN). IEEE. 2015, pp. 1–4.

[14] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International conference on machine
learning. pmlr. 2015, pp. 448–456.

[15] Steven G Worswick et al. “Deep neural network processing of DEER data”. In: Science
advances 4.8 (2018), eaat5218.

[16] Peter W Battaglia et al. “Relational inductive biases, deep learning, and graph networks”.
In: arXiv preprint arXiv:1806.01261 (2018).

[17] Lucas Thibaut Meyer et al. “Training deep surrogate models with large scale online
learning”. In: International Conference on Machine Learning. PMLR. 2023, pp. 24614–
24630.

[18] Wenbin Jiang et al. “An Efficient Data Prefetch Strategy for Deep Learning Based on
Non-volatile Memory”. In: Green, Pervasive, and Cloud Computing: 15th International
Conference, GPC 2020, Xi’an, China, November 13–15, 2020, Proceedings 15. Springer.
2020, pp. 101–114.

107

[19] Doyen Sahoo et al. “Online deep learning: Learning deep neural networks on the fly”.
In: arXiv preprint arXiv:1711.03705 (2017).

[20] Niklas Fehr et al. “Modeling of the N-terminal section and the lumenal loop of trimeric
light harvesting complex II (LHCII) by using EPR”. In: Journal of Biological Chemistry
290.43 (2015), pp. 26007–26020.

[21] Gunnar Jeschke et al. “Flexibility of shape-persistent molecular building blocks com-
posed of p-phenylene and ethynylene units”. In: Journal of the American Chemical
Society 132.29 (2010), pp. 10107–10117.

[22] Gunnar Jeschke and Adelheid Godt. “Co-Conformational Distribution of Nanosized [2]
Catenanes Determined by Pulse EPR Measurements”. In: ChemPhysChem 4.12 (2003),
pp. 1328–1334.

[23] Petre Ionita et al. “Lateral diffusion of thiol ligands on the surface of Au nanoparticles:
An electron paramagnetic resonance study”. In: Analytical chemistry 80.1 (2008),
pp. 95–106.

[24] Gunnar Jeschke et al. “Three-spin correlations in double electron–electron resonance”.
In: Physical Chemistry Chemical Physics 11.31 (2009), pp. 6580–6591.

[25] Gunnar Jeschke et al. “DeerAnalysis2006—a comprehensive software package for
analyzing pulsed ELDOR data”. In: Applied magnetic resonance 30 (2006), pp. 473–
498.

Chapter 5
[1] Gunnar Jeschke. “DEER distance measurements on proteins”. In: Annual review of

physical chemistry 63 (2012), pp. 419–446.
[2] Thomas H Edwards and Stefan Stoll. “A Bayesian approach to quantifying uncertainty

from experimental noise in DEER spectroscopy”. In: Journal of magnetic resonance
270 (2016), pp. 87–97.

[3] Christian Altenbach. “Long Distances - A Program to Analyse DEER Data”. In: EPR
Newsletter 31 (2021), pp. 12–13.

[4] Gunnar Jeschke et al. “DeerAnalysis2006—a comprehensive software package for
analyzing pulsed ELDOR data”. In: Applied magnetic resonance 30 (2006), pp. 473–
498.

[5] Suzanne Brandon, Albert H Beth, and Eric J Hustedt. “The global analysis of DEER
data”. In: Journal of magnetic resonance 218 (2012), pp. 93–104.

[6] Richard A Stein, Albert H Beth, and Eric J Hustedt. “A Straightforward approach to
the analysis of double electron–electron resonance data”. In: Methods in enzymology.
Vol. 563. Elsevier, 2015, pp. 531–567.

[7] Eric J Hustedt et al. “Confidence analysis of DEER data and its structural interpretation
with ensemble-biased metadynamics”. In: Biophysical Journal 115.7 (2018), pp. 1200–
1216.

[8] Sarah R Sweger, Stephan Pribitzer, and Stefan Stoll. “Bayesian probabilistic analysis
of DEER spectroscopy data using parametric distance distribution models”. In: The
Journal of Physical Chemistry A 124.30 (2020), pp. 6193–6202.

[9] Olav Schiemann et al. “Benchmark test and guidelines for DEER/PELDOR experiments
on nitroxide-labeled biomolecules”. In: Journal of the American Chemical Society 143.43
(2021), pp. 17875–17890.

108

[10] Steven G Worswick et al. “Deep neural network processing of DEER data”. In: Science
advances 4.8 (2018), eaat5218.

[11] William G Baxt and Halbert White. “Bootstrapping confidence intervals for clinical
input variable effects in a network trained to identify the presence of acute myocardial
infarction”. In: Neural Computation 7.3 (1995), pp. 624–638.

[12] Richard Dybowski and Vanya Gant. “Artificial neural networks in pathology and
medical laboratories”. In: The Lancet 346.8984 (1995), pp. 1203–1207.

[13] Bing Cheng and D Michael Titterington. “Neural networks: A review from a statistical
perspective”. In: Statistical science (1994), pp. 2–30.

[14] Ivan Svetunkov and John Edward Boylan. “Multiplicative state-space models for
intermittent time series”. In: (2017).

[15] Charu C Aggarwal et al. “Neural networks and deep learning”. In: Springer 10.978
(2018), p. 3.

[16] Lutz Prechelt. “Early stopping-but when?” In: Neural Networks: Tricks of the trade.
Springer, 2002, pp. 55–69.

[17] Thorsteinn S Rognvaldsson. “A simple trick for estimating the weight decay parameter”.
In: Neural networks: Tricks of the trade. Springer, 2002, pp. 71–92.

[18] George Chryssolouris, Moshin Lee, and Alvin Ramsey. “Confidence interval prediction
for neural network models”. In: IEEE Transactions on neural networks 7.1 (1996),
pp. 229–232.

[19] Tom Heskes. “Practical confidence and prediction intervals”. In: Advances in neural
information processing systems 9 (1996).

[20] John G Carney, Pádraig Cunningham, and Umesh Bhagwan. “Confidence and prediction
intervals for neural network ensembles”. In: IJCNN’99. International Joint Conference
on Neural Networks. Proceedings (Cat. No. 99CH36339). Vol. 2. IEEE. 1999, pp. 1215–
1218.

[21] Richard Dybowski and Stephen J Roberts. “Confidence intervals and prediction intervals
for feed-forward neural networks”. In: Cambridge University Press, 2001.

[22] Leon Jay Gleser. “Assessing uncertainty in measurement”. In: Statistical Science (1998),
pp. 277–290.

[23] Kai O Arras. An introduction to error propagation: derivation, meaning and examples
of equation CY= FX CX FXT. Tech. rep. ETH Zurich, 1998.

[24] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning”. In: international conference on machine
learning. PMLR. 2016, pp. 1050–1059.

Chapter 6
[1] Richard Dybowski and Stephen J Roberts. “Confidence intervals and prediction intervals

for feed-forward neural networks”. In: Cambridge University Press, 2001.
[2] Trevor Hastie et al. The elements of statistical learning: data mining, inference, and

prediction. Vol. 2. Springer, 2009.
[3] Brian Jalaian, Michael Lee, and Stephen Russell. “Uncertain context: Uncertainty

quantification in machine learning”. In: AI Magazine 40.4 (2019), pp. 40–49.
[4] Jingkang Yang et al. “Generalized out-of-distribution detection: A survey”. In: arXiv

preprint arXiv:2110.11334 (2021).

109

[5] Geoff Pleiss et al. “Neural network out-of-distribution detection for regression tasks”.
In: (2019).

[6] Weitang Liu et al. “Energy-based out-of-distribution detection”. In: Advances in neural
information processing systems 33 (2020), pp. 21464–21475.

[7] Akshay Raj Dhamija, Manuel Günther, and Terrance Boult. “Reducing network agnos-
tophobia”. In: Advances in Neural Information Processing Systems 31 (2018).

[8] Taylor Denouden et al. “Improving reconstruction autoencoder out-of-distribution
detection with mahalanobis distance”. In: arXiv preprint arXiv:1812.02765 (2018).

[9] Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. “Exploring the limits of out-
of-distribution detection”. In: Advances in Neural Information Processing Systems 34
(2021), pp. 7068–7081.

[10] Jim Winkens et al. “Contrastive training for improved out-of-distribution detection”.
In: arXiv preprint arXiv:2007.05566 (2020).

[11] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. “A survey of transfer learning”.
In: Journal of Big data 3.1 (2016), pp. 1–40.

[12] Shengping Yang and Gilbert Berdine. “The receiver operating characteristic (ROC)
curve”. In: The Southwest Respiratory and Critical Care Chronicles 5.19 (2017), pp. 34–
36.

[13] Sergey Milikisyants et al. “A pulsed EPR method to determine distances between
paramagnetic centers with strong spectral anisotropy and radicals: The dead-time free
RIDME sequence”. In: Journal of Magnetic Resonance 201.1 (2009), pp. 48–56.

[14] Katharina Keller et al. “Intermolecular background decay in RIDME experiments”. In:
Physical Chemistry Chemical Physics 21.16 (2019), pp. 8228–8245.

[15] Irina Ritsch et al. “Improving the accuracy of Cu (II)–nitroxide RIDME in the pres-
ence of orientation correlation in water-soluble Cu (II)–nitroxide rulers”. In: Physical
Chemistry Chemical Physics 21.19 (2019), pp. 9810–9830.

Chapter 7
[1] Mehdi Mobli and Jeffrey C Hoch. “Nonuniform sampling and non-Fourier signal

processing methods in multidimensional NMR”. In: Progress in nuclear magnetic
resonance spectroscopy 83 (2014), pp. 21–41.

[2] Luis Fábregas Ibáñez et al. “Non-uniform HYSCORE: Measurement, processing and
analysis with Hyscorean”. In: Journal of Magnetic Resonance 307 (2019), p. 106576.

[3] Gunnar Jeschke. “Quo vadis EPR?” In: Journal of Magnetic Resonance 306 (2019),
pp. 36–41.

[4] KK Nakka et al. “Non-uniform sampling in EPR–optimizing data acquisition for
HYSCORE spectroscopy”. In: Physical Chemistry Chemical Physics 16.31 (2014),
pp. 16378–16382.

[5] Alina E Motygullina, Mehdi Mobli, and Jeffrey R Harmer. “Optimizing the transfor-
mation of HYSCORE data using the maximum entropy algorithm”. In: Journal of
Magnetic Resonance 301 (2019), pp. 30–39.

[6] Steven G Worswick et al. “Deep neural network processing of DEER data”. In: Science
advances 4.8 (2018), eaat5218.

110

[7] J e ff r e y H a r m e r. “ D E E R of M et all o p r ot ei n s ”. I n: E n c y cl o p e di a of Bi o p h y si c s . E d. b y
G o r d o n C. K. R o b e rt s. B e rli n, H ei d el b e r g: S p ri n g e r B e rli n H ei d el b e r g, 2 0 1 3, p p. 4 3 5 –
4 4 1. i s b n: 9 7 8- 3- 6 4 2- 1 6 7 1 2- 6. d oi : 1 0 . 1 0 0 7 / 9 7 8 - 3 - 6 4 2 - 1 6 7 1 2 - 6 _ 5 7 8 . u r l : h t t p s :
/ / d o i . o r g / 1 0 . 1 0 0 7 / 9 7 8 - 3 - 6 4 2 - 1 6 7 1 2 - 6 _ 5 7 8 .

[8] O S Fe d o r o v a et al. “ P ul s e d el e ct r o n d o u bl e r e s o n a n c e i n st r u ct u r al st u di e s of s pi n-
l a b el e d n u cl ei c a ci d s ”. I n: A ct a N at u r a e (������������ ������) 5. 1 (1 6) (2 0 1 3), p p. 9 – 3 2.

[9] Y u D Ts v et k o v, Al e k s a n d r D mit ri e vi c h Mil o v, a n d Al e k s a n d r G e o r gi e vi c h M a r y a s o v.
“ P ul s e d el e ct r o n – el e ct r o n d o u bl e r e s o n a n c e (P E L D O R) a s E P R s p e ct r o s c o p y i n n a n o m e -
t r e r a n g e ”. I n: R u s si a n C h e mi c al R e vi e w s 7 7. 6 (2 0 0 8), p. 4 8 7.

[1 0] M e h di M o bli a n d J e ff r e y C H o c h. “ M a xi m u m e nt r o p y s p e ct r al r e c o n st r u cti o n of n o n u ni -
f o r ml y s a m pl e d d at a ”. I n: C o n c e pt s i n M a g n eti c R e s o n a n c e P a rt A: A n E d u c ati o n al
J o u r n al 3 2. 6 (2 0 0 8), p p. 4 3 6 – 4 4 8.

[1 1] J e ff r e y C H o c h et al. “ N o n u nif o r m s a m pli n g a n d m a xi m u m e nt r o p y r e c o n st r u cti o n i n
m ulti di m e n si o n al N M R ”. I n: A c c o u nt s of c h e mi c al r e s e a r c h 4 7. 2 (2 0 1 4), p p. 7 0 8 – 7 1 7.

[1 2] M a r c u s A H e m mi n g a a n d L a w r e n c e B e rli n e r. E S R s p e ct r o s c o p y i n m e m b r a n e bi o p h y si c s .
V ol. 2 7. S p ri n g e r S ci e n c e & B u si n e s s M e di a, 2 0 0 7.

[1 3] Fr a n k D el a gli o et al. “ N o n- u nif o r m s a m pli n g f o r all: m o r e N M R s p e ct r al q u alit y, l e s s
m e a s u r e m e nt ti m e ”. I n: A m e ri c a n p h a r m a c e uti c al r e vi e w 2 0. 4 (2 0 1 7).

[1 4] G u n n a r J e s c h k e et al. “ D e e r A n al y si s 2 0 0 6 — a c o m p r e h e n si v e s oft w a r e p a c k a g e f o r
a n al y zi n g p ul s e d E L D O R d at a ”. I n: A p pli e d m a g n eti c r e s o n a n c e 3 0 (2 0 0 6), p p. 4 7 3 –
4 9 8.

[1 5] T h o m a s H E d w a r d s a n d St ef a n St oll. “ O pti m al Ti k h o n o v r e g ul a ri z ati o n f o r D E E R
s p e ct r o s c o p y ”. I n: J o u r n al of M a g n eti c R e s o n a n c e 2 8 8 (2 0 1 8), p p. 5 8 – 6 8.

[1 6] S a n d r a S E at o n a n d G a r et h R E at o n. “ T h e f ut u r e of E P R ”. I n: B ull eti n of M a g n eti c
R e s o n a n c e 1 6 (1 9 9 4), p p. 1 4 9 – 1 4 9.

C h a p t e r 8

[1] A ml a n J y oti et al. “ O n t h e r o b u st n e s s of e x pl a n ati o n s of d e e p n e u r al n et w o r k m o d el s:
A s u r v e y ”. I n: a r Xi v p r e p ri nt a r Xi v: 2 2 1 1. 0 4 7 8 0 (2 0 2 2).

[2] Z a c h a r y C Li pt o n. “ T h e m yt h o s of m o d el i nt e r p r et a bilit y: I n m a c hi n e l e a r ni n g, t h e
c o n c e pt of i nt e r p r et a bilit y i s b ot h i m p o rt a nt a n d sli p p e r y.” I n: Q u e u e 1 6. 3 (2 0 1 8),
p p. 3 1 – 5 7.

[3] W J a m e s M u r d o c h et al. “ D e fi niti o n s, m et h o d s, a n d a p pli c ati o n s i n i nt e r p r et a bl e
m a c hi n e l e a r ni n g ”. I n: P r o c e e di n g s of t h e N ati o n al A c a d e m y of S ci e n c e s 1 1 6. 4 4 (2 0 1 9),
p p. 2 2 0 7 1 – 2 2 0 8 0.

[4] Si m o n L et z g u s et al. “ T o w a r d e x pl ai n a bl e a rti fi ci al i nt elli g e n c e f o r r e g r e s si o n m o d el s:
A m et h o d ol o gi c al p e r s p e cti v e ”. I n: I E E E Si g n al P r o c e s si n g M a g a zi n e 3 9. 4 (2 0 2 2),
p p. 4 0 – 5 8.

[5] A nt o ni o s M a m al a ki s, Eli z a b et h A B a r n e s, a n d I m m e E b e rt- U p h o ff. “ C a r ef ull y c h o o s e
t h e b a s eli n e: L e s s o n s l e a r n e d f r o m a p pl yi n g X AI att ri b uti o n m et h o d s f o r r e g r e s si o n
t a s k s i n g e o s ci e n c e ”. I n: Arti fi ci al I nt elli g e n c e f o r t h e E a rt h S y st e m s 2. 1 (2 0 2 3), e 2 2 0 0 5 8.

[6] C h a r u C A g g a r w al et al. “ N e u r al n et w o r k s a n d d e e p l e a r ni n g ”. I n: S p ri n g e r 1 0. 9 7 8
(2 0 1 8), p. 3.

[7] Gil b e rt St r a n g. I nt r o d u cti o n t o li n e a r al g e b r a . SI A M, 2 0 2 2.

1 1 1

https://doi.org/10.1007/978-3-642-16712-6_578

[8] Yun-Wei Chiang, Peter P Borbat, and Jack H Freed. “The determination of pair
distance distributions by pulsed ESR using Tikhonov regularization”. In: Journal of
Magnetic Resonance 172.2 (2005), pp. 279–295.

[9] Lloyd N Trefethen. Spectral methods in MATLAB. SIAM, 2000.
[10] Andrew Baker. Matrix groups: An introduction to Lie group theory. Springer Science &

Business Media, 2003.
[11] Cleve Moler and Charles Van Loan. “Nineteen dubious ways to compute the exponential

of a matrix”. In: SIAM review 20.4 (1978), pp. 801–836.
[12] Arthur Cayley. “Sur quelques propriétés des déterminants gauches.” In: (1846).
[13] Dong C Liu and Jorge Nocedal. “On the limited memory BFGS method for large scale

optimization”. In: Mathematical programming 45.1-3 (1989), pp. 503–528.
[14] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. “The matrix cookbook”. In:

Technical University of Denmark 7.15 (2008), p. 510.
[15] Steven G Worswick et al. “Deep neural network processing of DEER data”. In: Science

advances 4.8 (2018), eaat5218.
[16] AD Milov, KM Salikhov, and MD Shirov. “Application of the double resonance method

to electron spin echo in a study of the spatial distribution of paramagnetic centers in
solids”. In: Sov. Phys. Solid State 23 (1981), pp. 565–569.

[17] Per Christian Hansen. “The discrete Picard condition for discrete ill-posed problems”.
In: BIT Numerical Mathematics 30.4 (1990), pp. 658–672.

[18] Per Christian Hansen and Dianne Prost O’Leary. “The use of the L-curve in the
regularization of discrete ill-posed problems”. In: SIAM journal on scientific computing
14.6 (1993), pp. 1487–1503.

[19] Gilbert Strang. Linear algebra and learning from data. SIAM, 2019.
[20] David Bau et al. “Network dissection: Quantifying interpretability of deep visual

representations”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 6541–6549.

112

