
1.  Introduction
Drought is a naturally occurring hydrometerological event caused by chronic water shortage (He et al., 2020; Hunt 
et al., 2014; Long et al., 2023; Xu et al., 2015). Drought can have devastating impacts on agriculture, ecology, and 
society, and is recognized as one of the world's most severe and widespread types of disasters (He et al., 2019; 
Kao & Govindaraju, 2010; Logan et al., 2010; Markonis et al., 2021; Peng et al., 2020; Wilhite et al., 2014; Xu 
et al., 2021; Zhang et al., 2015). The global socio-economic cost of drought is approximately US$250 to $300 
billion per year and is increasing annually (FAO, 2018). In recent decades, China has suffered from prolonged and 
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severe droughts, posing a serious threat to food and water security while causing huge socio-economic losses (Wu 
et al., 2011; Yu et al., 2014). For example, severe droughts occurred in southwestern China from the summer of 
2009 to the spring of 2010, leading to crop failures on over 4 million hectares and causing water shortages for 16 
million people. The severe drought of 2011 triggered a dramatic drop or even complete drying up of lake levels in 
the affected areas and severe water shortages for crops and cities, with total losses of $2.3 billion (Jin et al., 2013). 
Therefore, the study of drought issues warrants continued attention (Huang et al., 2015).

Droughts can be generally classified into meteorological, agricultural, hydrological and socioeconomic droughts 
according to different hydrological cycle deficits (American Meteorological Society, 1997; He & Sheffield, 2020; 
Van Loon & Laaha,  2015; World Meteorological Organization,  2006). Meteorological droughts are usually 
associated with negative precipitation anomalies (Leng & Tang, 2014); agricultural droughts are generally trig-
gered by declining soil moisture; reduced local surface runoff or groundwater recharge will lead to hydrological 
drought (Wada et al., 2013; Wu et al., 2018); socioeconomic drought occurs when drought events cause socioec-
onomic impacts (Zhao et al., 2019). Previous research has found associations between different type of droughts, 
mostly focusing on meteorological and hydrological droughts, given that hydrological droughts often have the 
widest impacts across multiple sectors (Apurv et al., 2017; Guo et al., 2020; Han et al., 2019; He et al., 2017; 
Herrera-Estrada et al., 2017; Huang et al., 2017; S. Liu et al., 2019; Van Loon et al., 2012; Wu et al., 2017). In 
general, meteorological drought serves as the source of all droughts, impacting hydrological drought through 
connections in the water cycle, a process known as drought propagation. Better understanding of the propagation 
process can enable timely forecasting of hydrological drought, which, in turn, aids in establishing early warning 
systems for water resources management and mitigating the impacts of drought.

There is a lag-time from meteorological drought propagation to hydrological drought. Barker et al. (2016) calcu-
lated drought propagation time (PT) in 121 natural catchments in the UK using the Standardized Precipitation 
Index (SPI) and the Standardized Streamflow Index (SSI). The results indicate that the PT is longer in the south-
ern and eastern parts of the UK, while the opposite is observed in the western and northern regions. Huang 
et al. (2017) found that PT in the Weihe River basin has distinct seasonal characteristics. El Niño Southern Oscil-
lation (ENSO) and Arctic Oscillation (AO) are closely related to PT. Most of the existing studies focus on the PT 
of meteorological to hydrological drought, while there are other complex relationships in the drought propagation 
process (Van Loon & Laaha,  2015). PT only represents the lag-time characteristics of drought propagation, 
ignoring other important drought characteristics (e.g., duration, magnitude, and recovery time), which can be 
an important basis for measuring drought damage. Consideration of the structure and characteristics of drought 
propagation should also include the drought propagation rate (PR, proportion of meteorological drought propa-
gation to hydrological drought), duration (drought onset to end), magnitude (level of drought), and recovery time 
(drought peak to end). In this study, the propagation characteristics of various drought features are considered, 
which can better reveal the propagation process and help deepen understanding all-round.

In previous studies, drought propagation has been usually considered as a natural phenomenon. However, 
with increasing human activities in recent years, drought events cannot be considered as purely natural events 
(AghaKouchak et al., 2015; Lorenzo-Lacruz et al., 2013). Thus, the drivers of drought occurrence, development, 
and recovery cannot be considered as a natural process, but have shifted to a combination of natural and human 
factors (i.e., climate change and human activities) (Jiang et al., 2019; Van Loon et al., 2016). A few studies have 
considered the effects of human activities on drought, and there are roughly four ways to estimate the human 
impact: (a) the “upstream-downstream” comparison method (Rangecroft et al., 2019); (b) the “runoff mutation 
point” method; (c) the “paired sub-basins” method (Van Loon et al., 2019); (d) the “stem and tributary compar-
ison” method (Li et  al.,  2021; Wang et  al.,  2020). However, the above methods are only applicable to small 
watersheds or their applicability is constrained by various conditions. In addition, human activities affect drought 
propagation in various ways, and these methods cannot quantify the efffect of human activities, such as water 
extraction, irrigation, and reservoir scheduling.

Compared with the above methods, modeling approaches can be considered more useful and widely applicable. 
They can be used to explicitly separate out natural and human factors, albeit with uncertainties in how well 
the model represents the observed world. Hydrological models can comprehensively reveal the spatiotemporal 
changes of drought, which is why they are increasingly favored (Omer et  al.,  2020; Zhu et  al.,  2019). Many 
hydrological models consider human activities to some extent, but they still focus on simulating rainfall-runoff 
and make considerable generalizations about human activities, such as the widely used SWAT and VIC models 
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(Tallaksen et al., 2009; Van Loon et al., 2016). However, these models do not fully consider human activities such 
as water abstraction, irrigation, and reservoir regulation, which greatly affects their simulation accuracy. There-
fore, in the process of constructing hydrological models, fully considering the feedback relationship between 
human activities and hydrological processes is essential. It represents a more effective research approach for 
quantitatively analyzing the impact of human activities on hydrological drought.

The PCR-GLOBWB hydrological model developed by Utrecht University has been used to quantify the impact of 
human activities on the terrestrial water cycle (De Graaf et al., 2014; He et al., 2017; Sutanudjaja et al., 2018; Van 
Beek et al., 2011; Wada et al., 2014). The PCR-GLOBWB v2.0 model (Sutanudjaja et al., 2018) is an improved 
version of the PCR-GLOBWB1.0, which is a grid-based large-scale hydrological model with fine spatial reso-
lution (5 arcmin). The model is able to independently assess water demand and water availability, representing 
the vast majority of human activities that affect the water cycle, for example, groundwater abstraction, irrigation 
(paddy and non-paddy irrigation), human water abstraction (subdivided into domestic, livestock, and industrial 
water needs), desalination, reservoir dispatch, etc. The model runs on a daily step. It can simulate the terrestrial 
water cycle from catchment to continental or even global scale. The model has become a valuable tool for under-
standing the impacts of climate change and human activities on water resources (Cheng et al., 2021; De Graaf 
et al., 2019; Jiao et al., 2020; Sutanudjaja et al., 2018; Yang et al., 2020).

Most previous studies have qualitatively described the effects of human activities on hydrological drought 
and drought propagation (Sattar et al., 2019; Wang et al., 2020), and such effects have not been quantified and 
fully understood. Therefore, this study explores the impact of human activities on drought in China using the 
PCR-GLOBWB v2.0 model. We conduct two scenarios (natural scenario and scenario considering human influ-
ences, hereafter referred to as NatSim and AnthrSim) and simulated the water cycle processes. The aim is to 
determine the contribution of human activities to hydrological drought and drought propagation, and how natural 
and human factors lead to differences in drought.

2.  Data and Study Area
According to the principles of China's water resources classification by the Resource and Environment Data 
Center of the Chinese Academy of Sciences (http://www.resdc.cn), the Chinese mainland is divided into nine 
major river basins. These regions are: Songliao River Basin (SRB), Haihe River Basin (HARB), Huaihe River 
Basin (HURB), Yellow River Basin (YERB), Yangtze River Basin (YZRB), Zhujiang Basin (ZRB), Dongnan 
basin (DRB), Xinan basin (XRB) and Neilu Basin (NRB), corresponding to numbers 1–9 in Figure 1.

Daily meteorological observations from 1961 to 2020 (including temperature and precipitation) were obtained 
from 756 meteorological stations, provided by the National Climate Center (NCC) of the China Meteorological 
Administration (CMA). We applied the inverse distance weight interpolation method to interpolate the station 
data to a 5 arcmin (∼10 km) grid and use this to force the PCR-GLOBWB v2.0 model. The model operates 
based on a water balance, allowing for the calculation of reference potential evapotranspiration according to the 
Hamon method with only daily average temperature (Sutanudjaja et al., 2018). The potential evapotranspiration 
for specific crops is calculated within the model using crop factors from different land cover types as outlined in 
the Food and Agriculture Organization (FAO) guidelines. Subsequently, the actual evapotranspiration for specific 
crops is determined based on their potential evapotranspiration. In addition to calculating evapotranspiration, 
another role of temperature is to distinguish between precipitation in the form of rain and snow. The other input 
data for the PCR-GLOBWB v2.0 model will be introduced in Section 3.1.1.

We obtained daily discharge observations from 30 hydrological stations (2007–2015) from the Annual Hydro-
logical Report of the People's Republic of China, which were used to evaluate the PCR-GLOBWB v2.0 model's 
performance. The geographical locations of the hydrological and the meteorological stations are shown in 
Figure 1. Furthermore, annual data for domestic, industrial, and irrigation water use for each province in China 
(2007–2015) are collected from the Ministry of Water Resources of the People's Republic of China (http://
www.mwr.gov.cn/). These data were utilized to validate the accuracy of the model in representing human water 
withdrawals.

3.  Methodology
In order to quantify the impacts of human activities on hydrological drought and drought propagation, we propose 
the following analytical framework (Figure 2). It is comprised of five major parts. (a) We used the PCR-GLOBWB 
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v2.0 model to simulate the terrestrial water cycle under NatSim and AnthrSim. (b) The difference in hydrological 
drought between the two scenarios was quantified based on the Standardized Runoff Index (SRI) and run theory. 
(c) The PT and PR from meteorological to hydrological drought were then obtained by matching drought events, 
and correlation analysis. (d) Linear and nonlinear drought propagation models were constructed to reveal how 
hydrological drought responds to the meteorological drought. (e) Cross-wavelet analysis was used to explore the 
potential reasons for differences in hydrological drought from both natural factors (including precipitation, evap-
otranspiration, and soil moisture) and human factors (irrigation water use, groundwater extraction, and human 
domestic and industrial water consumption).

3.1.  Discharge Simulation Under NatSim and AnthrSim

3.1.1.  PCR- GLOBWB v2.0 Model

The PCR-GLOBWB v2.0 model (Sutanudjaja et al., 2018) is an improved version of the PCR-GLOBWB 1.0 
model for assessing water scarcity at global scale. It is a state-of-the-art gridded global hydrological and water 
resources model. Compared to the PCR-GLOBWB 1.0 model, it has higher spatial resolution (5 arcmin), which 
means that it can more depict the fine spatial variability of surface parameters such as water routing, soil and 
vegetation and more accurately simulate terrestrial hydrological cycle processes (Bierkens et al., 2015; Pan & 
Wood, 2010). The model's inputs and parameter database primarily include meteorological drivers, upper and 
lower soil store parameters, land cover types, topographical parameters, root fractions per soil layer, parameters 
related to phenology, groundwater parameters, and so on. In this study, all inputs and parameters except for mete-
orological drivers are sourced from Wada et al. (2013, 2014, 2016) and Sutanudjaja et al. (2018).

In addition, the PCR-GLOBWB v2.0 model includes modules for water demand (domestic, industrial, livestock) 
and irrigation. These modules fully consider the impacts of human water withdrawals, encompassing demand, 
abstraction, net consumption, and return processes. Domestic water demand is calculated by multiplying the 
population (FAO AQUASTAT, http://www.fao.org/nr/water/aquastat/main/index.stm) in a single grid by the 
domestic water quotas for the region (FAO, 2016). Industrial water demand is not affected by seasons and remains 
constant throughout the year. The method for calculating the livestock water demand is to multiply the livestock 
density in a single grid (FAOSTAT, http://faostat.fao.org/) by the livestock water quota. The population, livestock 
density, and water quotas of each region vary year by year, which reflects that human water usage changes over 

Figure 1.  Locations of nine major basins, 30 hydrological stations and 756 meteorological stations in China. The altitude 
data in the figure is sourced from the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of 
Sciences (https://www.resdc.cn/Datalist1.aspx?FieldTyepID=9,13).
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time. The gridded data set required to drive the model for domestic water use is sourced from the Food and 
Agriculture Organization AQUASTAT database (http://www.fao.org/nr/water/aquastat/main/index.stm). Indus-
trial water use data are obtained from Shiklomanov (1997), WRI (1998), and Vörösmarty et al. (2005). Livestock 
water use data are sourced from the Food and Agriculture Organization (2007) and Steinfeld et al. (2006). The 
irrigation guidelines follow FAO rules (FAO, 2003), distinguishing between paddy and non-paddy irrigation and 
formulating corresponding crop regimes. The reservoir module considers the needs of human water use, drought 
resistance, irrigation, etc. The operating rules of the reservoir use a forward-looking scheme (Wada et al., 2014), 
assessing local and downstream water demand conditions to develop a dynamic water supply scheme (Van Beek 
et al., 2011).

The PCR-GLOBWB v2.0 model has a flexible modular structure, and the link connecting each module is the 
mutual conversion process of water (Yang et al., 2020). The modular components can be modified and replaced 
according to specific goals, allowing activation of the reservoir regulation, irrigation and different water use 
modules to simulate the hydrological process under the influence of human activities (Cheng et al., 2021; Wu 
et  al.,  2024). These refined settings make the PCR-GLOBWB v2.0 model an ideal choice for simulating the 

Figure 2.  A framework based on the PCR-GLOBWB v2.0 model for isolating the effects of human activities on drought and drought propagation. Note: The 
conceptual diagram of the model is cited from Sutanudjaja et al. (2018).
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impact of human activities on terrestrial hydrological processes. More details about the model can be found in 
Wada et al. (2013, 2014, 2016) and Sutanudjaja et al. (2018).

3.1.2.  Scenario Settings

The main objective of this study was to evaluate the effect of human activities on hydrological drought and 
drought propagation, so two experimental scenarios were set up. The first scenario was to run the PCR-GLOBWB 
v2.0 model without any human activities to simulate the terrestrial water cycle process in the natural state. The 
second scenario includes human activity components of the model (human water use, irrigation water, reservoir 
scheduling), simulating human influenced hydrological processes under the same meteorological forcing condi-
tions of the NatSim. These two scenarios are simulated independently, and they start simulating subsequent years 
only after the model has achieved stability through the spin-up process. This ensures that there is no interference 
from previous periods or between scenarios.

3.1.3.  Model Validation

In order to evaluate the PCR-GLOBWB v2.0 model's performance, we calculated the Nash-Sutcliffe coefficient 
(NSE; Nash & Sutcliffe, 1970) of the discharge between the model simulation (AnthrSim) and the observations 
from 30 hydrological stations in China. Water level decline and reduced flow are considered as the primary 
factors leading to hydrological drought, with low flow phenomenon particularly exerting significant influence on 
hydrological drought. To comprehensively assess model performance, the Kling-Gupta Efficiency (KGE, Gupta 
et al., 2009; Kling et al., 2012) coefficient is used to evaluate the simulation performance of low-flow events 
(Q90, which represents the 90% exceedance of the long-term average daily flow). In addition, the accuracy of 
human activity data is primarily measured through the quantification of Relative Bias (BIAS) and root mean 
square errors (RMSE) between model simulations and statistical data.

3.2.  Drought Measurement and Characteristic Identification

3.2.1.  Standardized Precipitation Index

We use the Standardized Precipitation Index (SPI) to characterize meteorological drought (Mckee et al., 1993). 
The SPI takes into account the precipitation within a specific time frame (Xu et al., 2019). The principle is to 
normalize precipitation using a specific probability distribution function to measure the degree of drought (Faiz 
et al., 2018). SPI is temporally flexible and can be applied to precipitation deficits at different time scales (1, 3, 6, 
12, 24 months) to characterize cumulative drought conditions. The SPI is calculated as follows:

𝑓𝑓 (𝑥𝑥) =
1

𝛽𝛽Γ(𝛼𝛼)
𝑥𝑥𝛼𝛼−1𝑒𝑒

−𝑥𝑥

𝛽𝛽� (1)

Where, x is the precipitation in a certain time period; Γ is the gamma distribution function; α and β are shape and 
scale parameters of Γ function.

𝐹𝐹 (𝑋𝑋) = ∫
𝑥𝑥

0

𝑓𝑓 (𝑥𝑥)𝑑𝑑𝑑𝑑� (2)

Where, F(x) is the cumulative probability distribution of precipitation, which is normalized to obtain the SPI.

SPI = −

(

𝑘𝑘 −
𝑐𝑐0 + 𝑐𝑐1𝑘𝑘 + 𝑐𝑐2𝑘𝑘

2

1 + 𝑑𝑑1𝑘𝑘 + 𝑑𝑑2𝑘𝑘2 + 𝑑𝑑3𝑘𝑘3

)

, 𝑘𝑘 =

√

ln

[

1

𝐹𝐹 (𝑥𝑥)
2

]

, 0 < 𝐹𝐹 (𝑥𝑥) ≤ 0.5� (3)

SPI = 𝑘𝑘 −
𝑐𝑐0 + 𝑐𝑐1𝑘𝑘 + 𝑐𝑐2𝑘𝑘

2

1 + 𝑑𝑑1𝑘𝑘 + 𝑑𝑑2𝑘𝑘2 + 𝑑𝑑3𝑘𝑘3
, 𝑘𝑘 =

√

ln

[

1

1 − 𝐹𝐹 (𝑥𝑥)
2

]

, 0.5 < 𝐹𝐹 (𝑥𝑥) ≤ 1� (4)

Where, c0 = 2.515517, c1 = 0.802853, d1 = 1.432788, d2 = 0.189269, d3 = 0.001308.

3.2.2.  Standardized Runoff Index

The Standardized Runoff Index (SRI) was proposed by Shukla and Wood (2008). It follows the SPI calculation 
principle and only requires replacing the input variable precipitation with discharge. As with SPI, it is spatially 
comparable and temporally flexible.
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3.2.3.  Run Theory

Run theory is a threshold-based method that defines drought events as values less than the threshold, and extracts 
events from the drought index series. The schematic diagram of run theory is shown in Figure S1 in Supporting 
Information S1. In this study, the thresholds of SPI and SRI were set at −0.5 to identify the meteorological and 
hydrological drought characteristics, including the drought duration (e.g., M_D1 represents the duration of mete-
orological drought event 1), the drought event frequency (the number of drought events that occurred during the 
study period) and the drought magnitude (e.g., H_M1 represents the magnitude of hydrological drought event 1). 
Furthermore, in order to fully characterize drought propagation, the drought event recovery time (RP, defined as 
the time difference between the drought peak point and the drought recovery point) was extracted.

3.3.  Correlation Analysis

3.3.1.  Drought Propagation Lag Time and Propagation Rate

Typically, hydrological droughts are triggered by meteorological droughts, which results in a lag time between 
them. The Pearson Correlation Coefficient (CC) is one of the most commonly used methods for calculating PT 
in previous studies (Barker et al., 2016; Hellwig et al., 2020; Huang et al., 2019; Xu et al., 2019). The method 
involves cross-correlating the hydrological drought index at a specific time scale (e.g., 1-month time scale SRI) 
with the meteorological drought index at different time scales (e.g., 1, 2, 3…n-month time scales SPI). The time 
scale corresponding to the highest cross-correlation (CC) was then taken as the propagation time (PT). The study 
area covers the entire China, and there are large differences in natural conditions among different basins, so the 
time scale of SPI is extended to 1–24 months. We cross-correlated the SPI-n with SRI-1 in the NatSim and Anthr-
Sim, respectively, to obtain the spatial distribution of PT in the two scenarios.

Drought propagation rate is represented by the ratio of hydrological drought propagated by meteorological 
drought. A higher propagation rate indicates a greater sensitivity of hydrological drought in the region to meteor-
ological drought, implying a closer connection between the two. A lower propagation percentage suggests a lesser 
extent of meteorological drought propagating to hydrological drought. The mathematical expression for drought 
propagation rate is as follows:

PR =
𝑛𝑛

𝑚𝑚
� (5)

Where, PR represents the drought propagation rate, where n signifies the count of hydrological drought events in 
response to meteorological drought events, and m represents the total number of meteorological drought events 
during the study period. Note: Due to the existence of the drought propagation time relationship, when calculat-
ing the propagation rate statistically, SPI-n sequences corresponding to the time scale of the propagation time in 
that area should be selected.

3.3.2.  Drought Characteristic Propagation Model

The process of the drought characteristics propagation model is described as follows. First, we matched the SPI-n 
(n is the time scale corresponding to PT) with SRI to identify the one-to-one corresponding meteorological and 
hydrological drought events, and extracted their drought characteristics via run theory. Second, drawing on the 
method proposed by Wu et al. (2017), two types (linear and nonlinear) of models are constructed. The linear 
model includes univariate linear regression, and the nonlinear model includes multiple regression, exponential 
function, power function and logarithmic function (Figure 2). Finally, we fit and analyzed drought characteristics, 
and selected the model with the highest coefficient of determination (R 2) as the best fit.

3.3.3.  Wavelet Analysis

Wavelet analysis (Hudgins et al., 1993) is an effective tool for exploring the correlation between two time series. 
It's a novel technique that combines cross-spectral analysis and wavelet transform, allowing the revelation of 
the interaction and correlation between two signals at different time scales. Therefore, we utilize Cross Wavelet 
Transform (XWT) to uncover the connection between influencing factors and hydrological drought.

The cross wavelet power spectrum between X and Y is defined as:

𝑊𝑊 𝑋𝑋𝑋𝑋
𝑗𝑗 (𝑠𝑠) = 𝑊𝑊 𝑋𝑋

𝑗𝑗 (𝑠𝑠)𝑊𝑊 𝑌𝑌 ∗
𝑗𝑗 (𝑠𝑠)� (6)
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Where 𝐴𝐴 𝐴𝐴 𝑋𝑋𝑋𝑋
𝑗𝑗

(𝑠𝑠) is the cross wavelet transform result of X and Y; 𝐴𝐴 𝐴𝐴 𝑋𝑋
𝑗𝑗
(𝑠𝑠) is the continuous wavelet transform result 

of X; 𝐴𝐴 𝐴𝐴 𝑌𝑌 ∗
𝑗𝑗

(𝑠𝑠) is the complex conjugate of 𝐴𝐴 𝐴𝐴 𝑋𝑋
𝑗𝑗
(𝑠𝑠) ; and s is the frequency scale. It should be noted that in this 

article, X represents the time series of the modeled human activity or natural factors, while Y represents the time 
series of hydrological drought.

The wavelet coherence is defined as:

�2
� (�) =

|

|

|

�
(

�−1� ��
� (�)

)

|

|

|

2

�
(

�−1||
|

� �
� (�)||

|

2
)

�
(

�−1||
|

� �
� (�)||

|

2
)� (7)

Where, 𝐴𝐴 𝐴𝐴2
𝑗𝑗
(𝑠𝑠) is the wavelet coherence result of X and Y; S is the smoothing operator.

4.  Results
The NSE coefficients suggest that the model's performance in China is generally satisfactory (Table S1 in Supporting 
Information S1). The model performs better in the south than north, which might be due to lack of accurate snowmelt 
simulation and higher uncertainties in precipitation in dryland (Figure 3). Overall, the PCR-GLOBWB v2.0 model 
can the simulate large-scale terrestrial hydrological cycle and reproduce the monthly discharge well across China.

Figure S2 in Supporting Information S1 displays the KGE values and Correlation Coefficients (CC) for simula-
tions and observations of Q90 at 30 hydrological stations. Among them, KGE values at more than 20 sites exceed 
0.6, and the simulation performance is better under AnthrSim compared to NatSim. CC for 27 stations exceed 0.8, 
demonstrating a strong fitting trend between simulated and observed water flows. Overall, the PCR-GLOBWB 
v2.0 model effectively captures the variations and patterns of low flow at most stations.

Figure S3 in Supporting Information S1 compares model simulations against observational data for human water 
usage. Due to data limitations, the assessment was conducted only at the annual scale. Despite some differences 

Figure 3.  Nash-Sutcliffe coefficients (NSE) for simulated monthly flows and observed monthly flow rates (m 3/s) at 30 stations for the AnthrSim and their spatial 
locations for the period 2007–2015. The number of the hydrological station corresponds to the information in Table S1 in Supporting Information S1.
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from the real-world situation, the PCR-GLOBWB v2.0 model still maintains a reasonable level of error when 
simulating human water usage.

4.1.  The Impact of Human Activities on Hydrological Drought

The average drought duration shows spatial heterogeneity across China (Figure 4), with higher values in north-
west China compared to the south under both scenarios (Figures 4a and 4b). The impact of human activities 
is mainly concentrated in the northeast, southeast, and central China, corresponding to an increase in drought 
duration (Figure 4c). In contrast, human activities reduced the drought duration by 1–7 months in parts of YZRB, 
DRB, ZRB and central SRB. This indicates that the impacts of human activities on hydrological drought duration 
are not consistent in the south and north of China.

Figure 4.  Spatial distribution of averaged hydrological drought duration (month) across China ((a) AnthrSim and (b) NatSim) and the difference between the two 
scenarios (human—natural) ((c) spatial distribution and (d) differences across sub-basins).

 19447973, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035443 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [06/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

YANG ET AL.

10.1029/2023WR035443

10 of 24

Figure 5 shows the same information but for hydrological drought magnitude. The drought magnitude and dura-
tion show a similar spatial pattern, with an increasing gradient from the southeast coast to the northwest interior 
(Figures 5a and 5b). Drought magnitude under human activities is substantially higher in most areas of northern 
China. Especially in the HURB and HARB, the AnthrSim's drought magnitude increases by 1–2.5 on average 
(Figure 5d). The drought magnitude in southeast coastal China (lower YZRB, eastern ZRB, and DRB) has been 
alleviated by human activities, with a decrease between 0.1 and 7 (Figure 5c). These results demonstrate that 
human activities have opposite effects on drought magnitude in different basins.

Figure 6 shows the same analysis but for hydrological drought frequency, which shows less spatial variability as 
compared to duration and magnitude. Drought frequency ranges from 20 to 40 events, with a higher frequency 
in parts of northern China (Figures 6a and 6b). Within the areas affected by human activities, drought frequency 

Figure 5.  Same as Figure 4, but for the average hydrological drought magnitude.
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increased by 3–31 in most basins, and decreased only in parts of YZRB and SRB (Figures 6c and 6d), by 1–32 
events. Human activities (water extraction, irrigation, etc.) interfere with the natural terrestrial water cycle 
processes and impede the natural recharge of river systems, which is likely responsible for the general increase of 
drought frequency. Meanwhile, the decrease of drought duration, frequency and magnitude in the lower reaches 
of YZRB may be a benefit of reservoir regulation (e.g., Three Gorges Dam).

4.2.  Influence of Human Activities on Drought Propagation Rate and Lag Time

The PR for the two scenarios and their differences are shown in Figures 7a and 7b. The PR ranged from 45% 
to 75% (Figure 7b), with lower PR in most parts of China affected by human activities. The regions where PR 
decreased substantially due to human activities were distributed in HARB and SRB, reaching a maximum 60% 
decrease (Figure 7a).

Figure 6.  Same as Figure 4, but for the hydrological drought frequency (times).
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The PT is the maximum correlation between 1 and 24 months times scale SPI and SRI for the two scenarios 
(Figures 7c and 7d). The correlation coefficients of all basins (except NRB) are between 0.5 and 0.8, indicating a 
strong response of hydrological drought to meteorological drought. Under the influence of human activities, the 
correlation coefficients in HARB, HURB, YZRB, and YERB decreased at various levels (Figures 7c and 7d). 
Generally speaking, meteorological and hydrological droughts are strongly correlated in natural conditions, and 
human activities have weakened this relationship to some extent.

We took the time scale of SPI-n (n corresponding to the time scale with maximum correlation coefficient) as PT 
(Barker et al., 2016; Hellwig et al., 2020; Huang et al., 2019; Xu et al., 2019), and evaluated the differences of 
PT between two scenarios (Figures 7e and 7f). Overall, PT ranges from 6 to 23 months, with the PT in northern 
China generally longer than in the south (Figure 7f). As a result of human activities, the PT in SRB, YERB, 
HARB, and HURB was shortened by 1–13 months, while in DRB, ZRB, and lower YZRB, the PT was extended 
by 1–10 months (Figure 7e). Areas with substantial changes in PT correspond to intense human water extraction 
and irrigation activities (these areas are densely populated or have large irrigation districts).

PR decreased in most basins under human activities, ranging from 0.26% to 7.51%, with only slight increases 
in YZRB, YERB, and XRB (Figure 8a). The PR decreases more in the north than in the south, which may be 
due to the high human demand for water extraction and irrigation in northern China. Except in DRB and ZRB, 
the averaged PT decreases in all other basins (Figure 8b. Similar to the PR, the shortening of PT due to human 
activities is more substantial in northern China. It indicates that the effects of human activities are substantially 
different in southern and northern China.

4.3.  Impact of Human Activities on Drought Propagation Characteristics in Typical Basins

The areas affected by human activities in terms of PT mainly include SRB, HARB, HURB, YERB, and YZRB 
(Figures 7e and 7f). In order to compare the propagation characteristics among different basins, we divided the 
basins into two groups according to the size of the basins. The first group is YZRB and YERB, and the second 
group is HARB and HURB. These basins are located in central China with a high magnitude of human activities, 
which is representative for reflecting human activities impact on drought propagation characteristics. SRB was 
not included because no suitable similar basins could be identified.

Based on the averaged PT in each basin, we determined the SPI time scale corresponding to SRI for the two 
scenarios (e.g., the AnthrSim SRI for the YERB corresponds to SPI-14). Following the method proposed by 
Barker et al. (2016), precipitation was spatially accumulated across the basin. Subsequently, the SPI-n was calcu-
lated and matched with the SRI extracted from the basin control stations. This process was carried out to obtain 
the corresponding drought events and their characteristics in the basin. (Figure S4 and Tables S2–S9 in Support-
ing Information S1). The scheme follows the physical mechanisms of flow generation and confluence. To further 
validate the feasibility of the proposed approach, correlation tests were performed on each basin separately 
(Figure S4 in Supporting Information S1). It can be observed that the SRI of each basin shows significant positive 
correlations with its corresponding SPI-n. This observation confirms the feasibility of the proposed approach.

The relationships between meteorological and hydrological drought characteristics were fitted using linear and 
non-linear models, and Table 1 gives the optimal fitting model (all fitting equations can be found in Table S10 
in Supporting Information S1). The determination coefficients (R 2) of the fitted models are mostly above 0.8, 
indicating that the model fits well.

Figure S5 in Supporting Information S1 shows the fitted curves of the drought characteristics propagation for the 
YZRB and YERB. As the duration, magnitude, and recovery time of meteorological drought increase, the corre-
sponding characteristics of hydrological drought also increase. The best-fit curves are given in Figure 9. When hydro-
logical droughts last more than 25 months, the fitted curve for natural duration is above the AnthrSim's curve. This 
indicates that under the same meteorological drought conditions, the NatSim's hydrological drought duration is longer 
than in the AnthrSim. In the YZRB, the drought magnitude fitted curve for the NatSim is above the AnthrSim when 
X ＞ 15, which implies that human activities have mitigated drought propagation to some extent. The NatSim's recov-
ery time fitted curves are consistently lower than in the AnthrSim, indicating that the AnthrSim's hydrological drought 
recovery time is longer than in NatSim. The drought magnitude fitted curve for the AnthrSim in the YERB is slightly 
above the NatSim. The recovery time curve has an intersection point at X = 8, indicating that hydrological droughts 
recover more quickly when the duration is shorter than 8 months, while the opposite is true for longer than 8 months.
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Figure 7.  Spatial distribution of PR (a, b), maximum correlation coefficients (c, d), PT (e, f) and its differences (humn - natural) from meteorological drought 
propagation to hydrological drought under NatSim and AnthrSim in China.
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Figure 10 shows the best-fit curves (Figure S6 in Supporting Information S1 provides all curves) of HURB and 
HARB. In the AnthrSim for HURB, the hydrological drought duration triggered by short-term meteorological 
drought (<10 months) is longer than in the NatSim. When X > 20, the hydrological drought magnitude is greater 
in the AnthrSim than in the NatSim. The recovery time propagation curves largely overlap. In HARB, for hydro-
logical droughts triggered by meteorological droughts lasting longer than 12 months, the hydrological drought 
duration in the AnthrSim is always longer than in the NatSim. The hydrological drought magnitude in the Anthr-
Sim is always larger than that in the NatSim.

Overall, the hydrological drought characteristics intensified in the northern basins (YERB, HARB) and the 
north-south divide basin (HURB). While, in the southern basin (YZRB), those characteristics were alleviated. In 
addition, we found that large basins were less affected by human activities than small ones, possibly because large 
basins have stronger self-regulation capabilities.

Figure 8.  Averaged PR (a) and PT (b) for NatSim and AnthrSim in the nine basins of China.

Drought characteristics

Human Natural

Fitting equation R 2 Fitting equation R 2

Yangtze River

  Duration y = 0.462 + 0.904x + 0.002x 2 0.904 y = exp(1.068 + 0.133x − 0.001x 2) 0.896

  Magnitude y = exp (4.479 – 41.214/(x + 10.503)) 0.948 y = exp(1.04 + 0.101x − 0.0006x 2) 0.957

  Recovery time y = 0.575 + 1.037x + 0.001x 2 0.973 y = x 1.091 0.941

Yellow River

  Duration y = exp(1.27 + 0.097x − 0.008x 2) 0.905 y = exp(1.145 + 0.108x − 0.001x 2) 0.883

  Magnitude y = 1.503 + 0.567x + 0.014x 2 0.929 y = 1.72 + 0.573x + 0.013x 2 0.835

  Recovery time y = exp(0.482 + 0.209x − 0.004x 2) 0.745 y = exp(0.282 + 0.192x + 0.002x 2) 0.907

Huaihe River

  Duration y = exp(0.968 + 0.161x − 0.003x 2) 0.736 y = −0.191 + 0.945x + 0.0001x 2 0.873

  Magnitude y = −35.32 – 15.771ln(x + 9.138) 0.699 y = −3.658 − 5.938ln(x + 1.795) 0.612

  Recovery time y = exp(0.130 + 0.355x − 0.015x 2) 0.779 y = exp(0.057 + 0.341x − 0.012x 2) 0.873

Haihe River

  Duration y = exp(0.415 + 0.204x + 0.0035x 2) 0.856 y = exp(0.746 + 0.168x − 0.002x 2) 0.865

  Magnitude y = exp(0.553 + 0.134x − 0.001x 2) 0.753 y = −1.927 + 0.001(abs(x − 42.161)  3.9) 0.880

  Recovery time y = exp(0.682 + 0.138x + 0.001x 2) 0.661 y = 1.088 + 0.647x + 0.028x 2 0.899

Table 1 
Best-Fit Models of Drought Propagation Characteristics for Two Scenarios in Each Basin
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Figure 9.  Best-fit curves for drought propagation characteristics in the YZRB (a) and YERB (b).

Figure 10.  Best-fit response curves for drought characteristics propagation in the HURB (a) and HARB (b).
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4.4.  Association of Natural and Human Factors With Drought Propagation

We explored the association of potential influencing factors with drought propagation by the cross-wavelet trans-
form. Figure 11 shows the cross-wavelet transform spectra of the natural factors with SRI. At 95% confidence 
level, there is a strong positive correlation between precipitation and SRI in the YERB, YZRB and HURB 
throughout the study period (arrows to the right), and a slightly weaker correlation in the HARB. The signifi-
cantly correlated period of the wavelet spectrum is concentrated in 9–14 months (Figure 11a). The correlations 
between soil water content and SRI in the YERB and HARB are strong throughout the study period, while that 
in the YZRB and HURB are strong before 1990s and then weakened. Unlike precipitation, soil water content 
exhibited positive correlations concentrated in the 40–80 months period (Figure 11b). The high energy range of 
the evapotranspiration and SRI cross-wavelet spectra is similar to precipitation, and the period of high energy is 
concentrated in 9–14 months (Figure 11c). The wavelet periods of precipitation and evapotranspiration are gener-
ally consistent with the range of PT, and they both affect drought propagation in the short term (9–14 months). 
While, soil water content affects drought propagation via a slower process (40–80 months).

The relationship between the main human activity factors and drought propagation is shown in Figure 12. The 
high-energy period of irrigation water and SRI in the YZRB and YERB is mainly concentrated after the 1970s. 
This phenomenon occurred in the HURB and HARB after 1985, with a period of 9–14  months. This indi-
cates that the YZRB and YERB carried out irrigation activities earlier and thus influenced hydrological drought 
(Figure 12a). In addition, there are long-period positive correlation areas in the HURB and HARB, which may 
be caused by the seepage of irrigation water to recharge soil water and groundwater. Groundwater abstraction and 
SRI shows a negative correlation (arrows to the left). After 1990, the contribution of groundwater abstraction to 
drought propagation was more pronounced in the HURB and HARB than before the 1990s. This relationship was 
weaker in the YERB and YZRB (Figure 12b). This implies that groundwater extraction in the HURB and HARB 

Figure 11.  Cross wavelet transform spectra of SRI with influencing factors for the NatSim, (a) precipitation, (b) soil water, (c) total evaporation. Note: In the figure, 
the horizontal axis represents years, while the vertical axis represents time scales, which can also be understood as resonant periods. The shaded region enclosed by 
thick solid lines (mostly in deep red) indicates a passage through a 95% significance noise test, signifying significant correlation between the two signals at certain time 
scales. The direction of the arrows reflects their phase relationship: arrows pointing from left to right indicate positive correlation, while those pointing from right to 
left depict negative correlation between the two signals.
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has greatly affected the pattern of hydrological drought in recent years. Human water demand in the YZRB and 
YERB started to significantly influence drought propagation after the 1980s, and the relationship in the HURB 
and HARB started to be strong only after the 1990s (Figure 12c).

The impact of human and natural factors on drought propagation varies greatly. First, the influence of human 
factors on drought propagation has become stronger over the last three decades (Figure 12). While, natural factors 
have persistent impacts throughout the study period (Figure  11). Second, the influence of human factors on 
SRI is mainly concentrated in 9–14 months (Figure 12), while the influence of some natural factors can reach 
40–80 months (Figure 11). Finally, all human activity factors were negatively correlated with SRI, suggesting 
that human water withdrawal exacerbates drought. In addition, the roles played by these factors in the process of 
drought propagation exhibit significant spatial variations.

5.  Discussion
5.1.  Mechanism of Human Activities Affect Hydrological Drought and Drought Propagation

Human activities have altered the patterns of hydrological drought and its propagation in China. Human produc-
tion and daily water use, including domestic, industrial, and livestock water use, are relatively evenly distrib-
uted throughout the year and have a high return rate (Van Beek et al., 2011; Van Loon & Laaha, 2015; Wada 
et al., 2013). In contrast, irrigation, usually carried out during the dry season in water-scarce regions (X. Liu 
et al., 2019), is considered the primary factor exacerbating hydrological drought in China (Shao et al., 2018; 
Yang et al., 2020). Taking the Yellow River Basin as an example, we separately calculated the magnitude of 
hydrological drought under the activation of the irrigation/human water use and reservoir modules (Figure S7 in 
Supporting Information S1). Then, the differences between them and NatSim were compared. It can be seen that, 
compared to other factors, irrigation is the primary factor exacerbating hydrological droughts.

To reveal the mechanisms by which irrigation activities affect hydrological drought and its propagation in China, 
we extracted and compared some irrigation-related factors (Figure 13).

Figure 12.  Cross wavelet transform spectra and influencing factors of SRI for the AnthrSim, (a) irrigation water, (b) groundwater abstraction, (c) human water demand.
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The proportion of irrigation water to total water intake varies greatly between northern and southern China. 
According to statistics from the Yellow River Conservancy Commission (YRCC, http://www.yrcc.gov.cn/), irri-
gation water in the Yellow River basin accounts for about 60% of total water intake. In the south, due to abundant 
surface water resources, the proportion of water extracted for irrigation is smaller, for example, in the Yangtze 
River basin this proportion is about 35% (Changjiang Water Resources Commission, CWRC, http://www.cjw.
gov.cn/). This conclusion has been confirmed by previous research results (Dai et al., 2008; Liu et al., 2017; Wada 
et al., 2013). In addition, irrigation water in the Yellow River basin accounts for 80%–90% of the total reduced 
flow of the Yellow River, which may be the main cause of hydrological drought intensification (Wang, 1998).

There are significant differences in irrigation patterns between northern and southern China, with paddy irriga-
tion concentrated in the south (Figure 13a), while the water demand for nopaddy irrigation is greater in the north 
(Figure 13b). Different irrigation patterns have a significant impact on hydrological drought. Due to the water 
storage required in fields during the growth season of paddy irrigation, the water will seep into the soil and return 
to groundwater or rivers through infiltration and soil flow (Leng & Tang, 2014; Liu et al., 2005), resulting in 
little water loss. Therefore, the irrigation return flow in southern China is greater than in the north (Figure 13c). 
The greater transpiration of crops is also one of the driving factors exacerbating water scarcity in northern China 
(Figure 13d). Chen et  al.  (2003) showed that high transpiration in northern irrigation areas results in a large 
amount of surface and groundwater loss, reducing the proportion of irrigation return flow and exacerbating local 
hydrological drought.

The impact of the regulation function of reservoirs on hydrological drought cannot be ignored. In southern China, 
where water resources are abundant, a large amount of water is collected during flood season. The existence of 
reservoirs reduces the surplus water during this period and stores it to alleviate water scarcity during drought 

Figure 13.  Average annual distribution of irrigation factors: (a) paddy irrigation demand, (b) nopaddy irrigation demand, (c) irrigation return flow, (d) crop 
transpiration from irrigation.
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season (Dai et al., 2008; Shao et al., 2018; Wang et al., 2017; Yuan et al., 2017). The multi-year average storage 
capacity of reservoirs in southern China is much higher than that in the north (Figure S8 in Supporting Informa-
tion S1). Taking the Yangtze River as an example, according to statistics from CWRC, the annual average storage 
capacity in the basin is about 1350 × 10 8 m 3. During the severe drought in 2011, the Three Gorges Dam released 
approximately 215 × 10 8 m 3 of water to alleviate the situation. However, there are relatively fewer reservoirs 
in northern China compared to the south, and water resources are relatively scarce. As a result, the amount of 
water stored during the non-drought season is relatively small. Irrigation activities in these areas during the crop 
growing season mainly rely on water supply from reservoirs. When a drought occurs, the reservoirs do not have 
enough storage capacity to alleviate it (X. Liu et al., 2019), resulting in an exacerbation of the drought situation.

We found an interesting phenomenon that the PR/PT of most basins under the AnthrSim are decreased/shortened 
compared with the NatSim (Figures 6b and 6f). The main reason for the decline of PR may be the implemen-
tation of various drought-resistance measures, such as various water management projects, including reservoir 
management and storage, etc. When meteorological drought occurred, water management caused the connec-
tion between the meteorological drought and the hydrological drought to be curtailed, and the hydrological 
drought that should have occurred naturally was effectively controlled, in agreement with Wan et  al.  (2017). 
Such drought-resistance measures have led to a reduction in the number of hydrological drought events asso-
ciated with meteorological drought, resulting in a substantial decrease in PR. Over the past 30 years, increased 
irrigation and water demand, as well as high-intensity groundwater withdrawals have disrupted the natural water 
cycle, disrupting the natural recharge of rivers and accelerating the development of hydrological droughts (Ma 
et al., 2019), resulting in a shortening of the PT. This phenomenon is more pronounced in the northern basins 
(SRB, HARB, HURB, YERB). The decline/shortening of PR/PT in these areas may be related to water scarcity 
and over-exploitation in northern China, where increased water stress further affects hydrological drought. While, 
the abundant water resources and water management measures (reservoir regulation) in southern China have 
mitigated the impact caused by human activities to some extent.

5.2.  Uncertainty From Meteorological Forcing and Model

Meteorological forcing is crucial for hydrological modeling but can also introduce uncertainty (Chilkoti 
et al., 2017; Wang et al., 2017; Wei et al., 2020). We examined the uncertainty introduced by interpolation meth-
ods by randomly selecting 85% of the stations for interpolation and using the remaining 15% for accuracy vali-
dation (Figure S9 in Supporting Information S1). Linear trends for most meteorological variables at the stations 
were good, with precipitation biases ranging from −10% to 7.5% and temperature biases between −1°C and 2°C, 
indicating that the uncertainty from the interpolation methods remains within reasonable bounds. However, in 
regions with low meteorological station coverage, especially in NRB, the representativeness of the model can 
be compromised. This implies that meteorological variables in large areas not covered by station networks need 
to rely on estimation, which will increase uncertainty and, consequently, impact the accuracy and reliability 
of hydrological simulations (Barman et al., 2014). Future work should aim to acquire more observational data 
or utilize satellite remote sensing data to fill the gaps in the meteorological station network, providing a more 
comprehensive meteorological data set (Wei et al., 2022; Yu et al., 2023).

We used the Yangtze River and Yellow River basins as typical cases to estimate the impact of incorporating 
human activities into the model on streamflow simulations. The Nash-Sutcliffe Efficiency (NSE) between the 
observed and NatSim/AnthrSim simulated streamflow are calculated in Table S11 in Supporting Information S1. 
It showed that simulated streamflow considering human influence perform better than those under natural 
conditions. While including human activities enhances the performance of streamflow simulations (Sutanudjaja 
et al., 2018), the model is reliant on the accuracy of human water consumption calculations (De Graaf et al., 2014; 
Wada et al., 2013). This study compared annual human water deviations between statistical data and model's 
simulations (Figure S3 in Supporting Information S1) for approximate human impacts in region scale. Mean-
while, the evaluations at an annual scale cannot capture the seasonality of human water withdrawal and irrigation 
(Cheng et al., 2021). These uncertainties may overestimate/underestimate the human water withdrawals, results 
in estimation biaes of flow reduction effects and introduce biases into the assessment of drought conditions 
(Wang et al., 2020; Zhang et al., 2022).

To validate the impact of the inherent uncertainty in the model simulation, we extracted the model database over 
China from the global database of the PCR-GLOBWB model (available through the ISIMIP intercomparison 
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project) (Sutanudjaja et al., 2018) and used it to calculate the SRI for comparison with our study (Figure S10 
in Supporting Information S1). The differences in most regions are generally within the range of −0.2 to 0.2, 
with slightly larger discrepancies only found on the western of the Qinghai-Tibet Plateau and edge of SRB. The 
meteorological stations in these areas are very scattered, and errors driven by meteorological factors may be the 
cause of inconsistencies in hydrological simulations. Both data sets reflect similar drought conditions, indicating 
that the uncertainty in our drought estimation results is within a reasonable range. Nevertheless, there are uncer-
tainties in the model's structure and parameters. First, the model does not account for inter-basin water diversion 
plans (Wada et al., 2016), such as China's renowned South-to-North Water Diversion Project, which provides 
some relief to water-deficient regions during dry seasons. Consequently, in the model, water resource demands in 
water-scarce areas can only be met locally, potentially leading to an overestimation of water extraction and, conse-
quently, an overestimation of drought severity in these regions (Wada et al., 2016). Second, the parameters were 
extracted from a global database without local calibration. These uncertainties can result in deviations between 
model simulations and actual conditions (Shah et al., 2021; Van Loon et al., 2019).

5.3.  Limitations of the Study

The PCR-GLOBWB v2.0 model represents multiple human activity processes, and this study confirms its reli-
ability in simulating the effects of anthropogenic activities on hydrological processes. However, there are still 
some limitations. This study primarily focuses on the impact of human water withdrawal, irrigation, and reservoir 
regulation on hydrological drought, without taking into account the role of changes in land cover types. While 
we have isolated the effect of irrigation and other water management strategies, addressing this issue is left for 
further study. In addition, we used a standardized drought index and set the threshold at −0.5 to identify drought 
events. This threshold has the advantage of capturing the onset, development, and decline of all drought events 
effectively. However, different threshold choices may influence the results. For instance, lowering the threshold 
to −1 or −1.5 could lead to variations in the characteristics of drought events and the outcomes of propagation 
models. In the future, further subdivision of drought level should be considered to comprehensively explore 
their characteristics and propagation patterns. The drought response model considers all drought events, and 
its reliability in fitting drought characteristics has been confirmed by multiple studies (Huang et al., 2021; Wu 
et al., 2017, 2021). Whereas, the choice of fitting functions can sometimes be influenced by one or several major 
drought events, leading to uncertainty. We should consider adopting more methods capable of handling complex 
dependency relationships, such as using Copula functions to describe the nonlinear relationships between drought 
propagation in the future researches. Furthermore, the research framework of this paper can only reveal the extent 
of human activities on drought propagation, while the mechanism of human activities affecting drought propaga-
tion is not fully addressed, indicating that future research should focus on such topics.

6.  Conclusion
We used the PCR-GLOBWB v2.0 model to simulate the terrestrial water cycle in China (1961–2020) under 
NatSim and AnthrSim, distinguishing the degree of human impacts on hydrological drought and drought propa-
gation. The following conclusions were obtained.

1.	 �The impact of human activities is mainly concentrated in the northeastern, southern and central China, reduc-
ing the severity of hydrological drought in the south, but exacerbating it in the north. The averaged hydro-
logical drought duration in most of northern China was extended by 1–12 months, the magnitude increased 
by 0–9, and the frequency increased by 3–31 events. In contrast, in parts of the YZRB and the DRB, the 
average drought duration was shortened by 1–7 months, the magnitude was reduced by 0–7, and frequency 
was reduced by 1–32 events.

2.	 �The PR of meteorological to hydrological drought in China is 45%–75%, with little variability from north to 
south. The PT ranges from 6 to 23 months, and it is generally longer in the north than south. The response 
rate decreased by 1%–60% in most areas of China due to human activities, and the substantial decreases were 
distributed in the HARB and SRB. Human activities have led to 1–13 months reduction in PT in the SRB, 
YERB, HARB, HURB, and 1–10 months extension in parts of the DRB, ZRB, and Lower YZRB.

3.	 �The nonlinear model fits better to the meteorlogical and hydrological drought characteristics than the linear 
model, with most of determination coefficients R 2 above 0.8. It indicates that the reliability of the fitted 
model. As the duration, magnitude and recovery time of meteorological drought increased, the corresponding 
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characteristics of hydrological drought also increased. Under the same meteorological drought conditions, 
human activities exacerbated/mitigated drought propagation characteristics in the northern/southern basins, 
respectively. In addition, the larger basins were less affected by human activities than the smaller basins.

4.	 �The correlation between natural factors and drought propagation is high throughout the study period, with 
precipitation and evapotranspiration having a short period of influence (9–14  months). While, soil water 
content slowly (40–80 months) influences drought propagation. The impact of human factors has become 
more pronounced in the last three decades, all showing negative correlations, indicating that human water 
extraction generally exacerbates hydrological drought.

Data Availability Statement
The PCR-GLOBWB v2.0 model code, model parameters and their components used in the paper are provided 
by the Github repository (https://github.com/UU-Hydro/PCR-GLOBWB_model). The input files of the 
model is stored on the following website (https://zenodo.org/records/1045339). The ini-files used to config-
ure the parameter files and invoke the model are stored on the following website (https://github.com/UU-Hy-
dro/PCR-GLOBWB_model/tree/master/clone_landmask_maps) The global output results of the model can be 
obtained from the following website (https://opendap.4tu.nl/thredds/catalog/data2/pcrglobwb/catalog.html). The 
file for configuring the model runtime environment (https://github.com/UU-Hydro/PCR-GLOBWB_model/blob/
master/conda_env/pcrglobwb_py3.yml). Meteorological data are available at China Meteorological Data Service 
Center (http://data.cma.cn/). The water usage statistics of various provinces in China are sourced from the Water 
Resources Bulletin (http://www.mwr.gov.cn/). Data of abstraction water from groundwater and surface water, 
irrigation water and irrigation return water, and storage capacity of all reservoirs in Yellow River and Yang-
tze River were collected from the water resources bulletins of the Yellow River and Yangtze River, which can 
be downloaded from Yellow River Conservancy Commission (YRCC, http://www.yrcc.gov.cn/zwzc/gzgb/gb/
szygb/) and Changjiang Water Resources Commission (CWRC, http://www.cjw.gov.cn/zwzc/bmgb/).
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