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a b s t r a c t

This paper considers isolated responses in nonlinear systems; both in terms of isolas in
the forced responses, and isolated backbone curves (i.e. the unforced, undamped
responses). As isolated responses are disconnected from other response branches, reliably
predicting their existence poses a significant challenge. Firstly, it is shown that breaking

on the backbone curves, generating an isolated backbone. It is then shown how an energy-
based, analytical method may be used to compute the points at which the forced
responses cross the backbone curves at resonance, and how this may be used as a tool for
finding isolas in the forced responses. This is firstly demonstrated for a symmetric system,
where an isola envelops the secondary backbone curves, which emerge from a bifurcation.
Next, an asymmetric configuration of the system is considered and it is shown how isolas
may envelop a primary backbone curve, i.e. one that is connected directly to the zero-
amplitude solution, as well as the isolated backbone curve. This is achieved by using the
energy-based method to determine the relationship between the external forcing
amplitude and the positions of the crossing points of the forced response. Along with
predicting the existence of the isolas, this technique also reveals the nature of the
responses, thus simplifying the process of finding isolas using numerical continuation.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Due to the complexity of the dynamic responses of nonlinear structures, their computation can be quite challenging. This is,
in part, the result of features such as bifurcations, internal resonances, and multiple solutions, which are primarily observed in
the presence of nonlinearity. In many engineering applications the steady-state responses are of primary interest and, when a
structure exhibits nonlinear characteristics, the approaches for computing these responses consist of analytical and numerical
techniques. Analytical techniques include the harmonic balance method, multiple scale analysis, and the method of normal
forms [1–3]. Software packages for the numerical computation of such responses include AUTO-07p [4], Computational
Continuation Core (COCO) [5], and NNMcont (based upon the theory of nonlinear normal modes) [6].

One advantage of using analytical methods to find the periodic responses of nonlinear systems is that, in some instances,
approximate closed-form solutions may be obtained. As well as allowing solutions to be found efficiently, this also allows
them to be found directly, without the need for initial solutions. However, in many instances, closed-form solutions cannot
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be obtained, such as when the system is large or the nonlinearity is complex. In such instances, numerical approaches may
be adopted to solve the approximate analytical expressions, as has been demonstrated with the numerical implementation
of the harmonic balance method [7,8]. Alternatively, purely numerical approaches may be employed; however, these
approaches typically rely upon continuation, which requires an initial solution and can only be used to find new solutions
that form part of a continuous branch. Whilst these approaches are advanced and highly efficient, they are not readily suited
for finding isolas – i.e. solutions that are detached from the main, or primary, response branches – directly unless a solution
on, or an approximate solution in the vicinity of, the isola is known.

One numerical approach that may be used to find isolas is the continuation of fold bifurcations, as discussed in [9];
however, some isolas may only be reached using a specific choice of continuation parameters, and thus require a good
understanding of the behaviour of the system. Another numerical approach is global analysis [10], which involves simu-
lating the system for numerous initial conditions, and finding the resulting steady-state, or near-steady-state, responses. An
isola will be revealed if initial conditions are selected that are within the basin of attraction of that isola. This approach is
rigorous, provided a sufficiently large number of initial conditions are simulated; however this is often computationally
expensive, especially for systems with large numbers of degrees-of-freedom.

As isolas are detached from the primary response branches, finding them typically relies upon a priori knowledge of their
existence; however there is currently no rigorous, and efficient, method for determining the existence of isolas. The sig-
nificance of this was demonstrated in a paper by Alexander and Schilder [11], who discovered an isola in the dynamic
response of a nonlinear tuned mass damper. Despite extensive investigation prior to this, the existence of this isola was
unknown, and hence its dynamic behaviour had not been described.

This paper introduces a method for finding isolas in nonlinear dynamic systems. This method uses the backbone curves,
i.e. the loci of unforced, undamped responses, alongside an energy-based method. The requirement that the analytical
expressions for the backbone curves may be solved does limit this approach; however it is shown here that the backbone
curves represent a computationally simpler problem than the forced responses. As such, finding isolated backbone curves,
i.e. backbone curves that are not connected to primary backbone curves, is typically simpler than finding isolas in the forced
responses.

In order to demonstrate the approach for finding isolas, a conceptually simple, two-mass oscillator is introduced in
Section 2 and is considered throughout this paper. This oscillator may be used to represent a number of typical engineering
systems, such as tuned-mass dampers, and can also be used to represent the dynamics of continuous structures, such as
cables [12]. To compute the backbone curves of the example system, the second-order normal form technique is employed.
This analytical technique was first introduced in [13] and its application to backbone curves was demonstrated in [14].

When the two-mass oscillator has a symmetric configuration, a bifurcation exists in the backbone curves, as shown in
[14]. This is briefly demonstrated in Section 2.2 before, in Section 2.3, a number of asymmetric configurations are con-
sidered. It is shown that the breaking of the symmetry leads to an isolated backbone curve, via a breaking of the bifurcation
on the backbone curve, forming an imperfect bifurcation [15]. As closed-form solutions are obtained using the analytical
technique, finding these isolated backbone curves does not present any additional computational challenge. Next, in Section
3, the energy-based method for relating backbone curves to resonant forced responses is applied to the oscillator. This is
based upon the procedure that was first introduced in [16], and further developed in [17], and is used to estimate the points
at which the backbone curves are crossed by the forced responses at resonance, known as the resonant crossing points.

The forced responses of the symmetric configuration of the system are investigated in Section 4, where it is shown that
isolas may envelop the bifurcated backbone curves. The existence of these isolas is predicted using the backbone curves and
resonant crossing points. In Section 5 the asymmetric configuration is considered for a number of different forcing cases,
and it is firstly demonstrated that isolas that envelop the primary backbone curves may exist. Similar isolas have previously
been demonstrated in [9] and have been found experimentally in [18,19]. It is then shown that an isola may also exist on the
isolated backbone curve – a feature that requires a priori knowledge of both the isolated backbone curve and the locations of
the resonant crossing points on that backbone curve, both of which are provided by the technique presented here. A final
forcing case, where external forcing is applied to only one mass, is then considered and it is shown that an isola with
resonant crossing points on the isolated backbone curve may also exist. Finally, conclusions are drawn in Section 6.
2. Isolated backbone curves

2.1. The backbone curves of an example system

In this paper, the 2-DOF oscillator, represented by the schematic diagram in Fig. 1, is considered and its backbone curves,
i.e. the loci of responses of the equivalent conservative system, are computed. This oscillator consists of two equal masses,
both of mass m, with displacements x1 and x2 for the first and second masses respectively. These masses are both grounded
by identical linear springs, with stiffness k1, and are coupled via an additional linear spring, with stiffness k2. As a result, it
can be seen that the underlying linear structure of this system is symmetric. The oscillator also contains three cubic non-
linear springs with the force–displacement relationships F ¼ αiðΔxÞ3, where αi is a nonlinear constant and Δx is the
deflection of the spring. Two of these nonlinear springs, with constants α1 and α3, ground the masses, and one nonlinear
spring, with constant α2, couples the masses. Two identical linear, viscous dampers, with damping constant c1, ground the



Fig. 1. A schematic of a two-mass oscillator with three nonlinear springs.
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masses; and an additional damper, with constant c2, couples the masses. Additionally, the first and second masses are forced
sinusoidally at amplitudes P1 and P2 respectively, and both at frequency Ω.

A symmetric configuration of this system, i.e. where α1 ¼ α3, is considered in Section 2.2 where it is shown that the
backbone curves may exhibit bifurcations, leading to additional backbone curves. Note that a similar case has previously
been considered in [14]. We now outline how the second-order normal form technique may be used to find analytical
expressions describing these responses. This technique has previously been discussed in detail in [13,20], and has been used
to find the backbone curves of a similar system in [21]. As such, only a brief outline of the derivation of the backbone curve
expressions is presented here.

The equations of motion for a general oscillator may be written as

M €xþC _xþKxþNx x; _x ; tð Þ ¼ P cos Ωtð Þ; (1)

where M, C and K are the mass, damping and stiffness matrices respectively, and x, Nx and P are vectors of displacements,
nonlinear terms and forcing amplitudes respectively. Note that Nx may incorporate nonlinear stiffness, damping and forcing
terms; however only the stiffness terms affect the backbone curves. For the system considered here, these are written as

M¼ m 0
0 m

� �
; C¼

c1þc2 �c2
�c2 c1þc2

" #
; K¼

k1þk2 �k2
�k2 k1þk2

" #
;

Nx ¼
α1x31þα2ðx1�x2Þ3

α3x32þα2ðx2�x1Þ3
 !

; P¼
P1

P2

 !
; x¼

x1
x2

 !
:

(2)

To compute the backbone curves of a system, the forcing and damping terms are typically set to zero at this stage,
simplifying the equations of motion. However the energy-based analysis, considered later in this paper, requires that the
nonconservative terms are retained for now.

The first step of the second-order normal form technique, the linear modal transform, is applied to Eq. (1) in order to
decouple the linear components of the system. This is achieved using the substitution x¼Φq, where Φ is a linear mod-
eshape matrix and q is a vector of linear modal displacements. This transform results in the modal equations of motion,
written as

€qþΛqþNqðq; _qÞ ¼ Pq cos Ωt
� �

; (3)

where Λ is a diagonal matrix containing the squares of the linear natural frequencies, Nq is a vector of nonlinear and
damping terms, and Pq is a vector of modal forcing amplitudes. From Eqs. (1) and (2), these are written as

Λ¼
ω2

n1 0
0 ω2

n2

" #
¼ 1
m

k1 0
0 k1þ2k2

" #
; Φ¼ 1 1

1 �1

� �
;

Pq ¼
Pq1

Pq2

 !
¼ 1
2m

P1þP2

P1�P2

 !
; q¼

q1
q2

 !
;

Nq ¼
2ζ1ωn1 _q1

2ζ2ωn2 _q2

 !
þ 1
2m

α1ðq1þq2Þ3þα3ðq1�q2Þ3
α1ðq1þq2Þ3þα3ðq2�q1Þ3þ16α2q32

 !
; (4)

where 2ζ1ωn1 ¼ c1=m and 2ζ2ωn2 ¼ ðc1þ2c2Þ=m. Here it is assumed that the linear modal damping ratios are equal, i.e.
ζ1 ¼ ζ2 ¼ ζ, which is achieved when 2c2 ¼ ðωn2=ωn1�1Þc1. Note that, as the modeshapes of the equivalent linear system
have been used, cross-coupling via the nonlinear terms remains in the modal equations of motion – here, the term modal is
used to denote the underlying linear modes of the system. Additionally, note that in the examples considered here, the
linear natural frequencies are close, i.e. ωn1 �ωn2; hence it may be assumed that the fundamental components of these
linear modes will respond at the same frequency. Whenωn1≉ωn2, the system may exhibit responses where the fundamental
components of the modes have different, but commensurate, frequencies – see, for example, [18].

The next step in the second-order normal form technique is the forcing transform, which seeks to remove any non-
resonant external forcing terms from the equations of motion. Here, however, it is assumed that all external forcing is
resonant, i.e. it is assumed that the fundamental response of both modes is at the forcing frequency, Ω; as such, this is a
unity transform and so is not applied here. For examples of the application of the forcing transform in the presence of non-
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resonant forcing, see [13,22]. The following step, the nonlinear near-identity transform, involves the substitution q¼ uþh
where u and h are vectors describing the fundamental and harmonic components of q respectively.

The second-order normal form technique relies on the assumption that the nonlinear and damping terms are small, in
comparison to the undamped linear terms, and that the harmonics are also small, in comparison to the fundamental
components. Therefore, it may be assumed that the contribution of the harmonic components to the nonlinear and damping
terms is negligible, and hence the approximation q¼ u may be substituted into the vector of modal damping and nonlinear
terms, Nqðq; _qÞ. Additionally, it is assumed that the fundamental components of the response are sinusoidal, and hence the
ith element of u, i.e. the fundamental component of the ith mode, may be written as

ui ¼Ui cos ωrit�ϕi

� �¼ upiþumi ¼
Ui

2
eþ j ωrit�ϕið ÞþUi

2
e� j ωrit�ϕið Þ; (5)

where Ui, ωri and ϕi represent the amplitude, response frequency and phase of ui respectively. Note that ωri and ωni are
distinct, and represent the ith response frequency and linear natural frequency respectively. Additionally, note that the
subscripts p and m denote the positive and negative (i.e. plus and minus) signs of the exponents respectively.

This transform results in the resonant equation of motion, written as

€uþΛuþNuðu; _uÞ ¼ Pu cos Ωt
� �

; (6)

where Nu is a vector of resonant nonlinear and damping terms. As it is assumed that the fundamental components of the
modes, u, respond at the forcing frequency, i.e. ωr1 ¼ωr2 ¼Ω, then all terms in Nu must resonate at frequency Ω. It
therefore follows that Pu ¼ Pq. Note that expressions for the harmonic components, in terms of u, may also be developed;
however, for the cases considered here, the harmonics are neglected. For details of how the harmonics may be computed,
see [23,24].

After making the substitution q¼ u and _q¼ _u into Nqðq; _qÞ, the resonant components may be identified and used to
populate the vector of resonant nonlinear terms, written as

Nu ¼ 2ζ
ωn1 _u1

ωn2 _u2

 !
þ3

αp up1um1þ2up2um2
� �

u1þup1u2
m2þum1u2

p2

h i
αm up1um1þ2up2um2

� �
u1þup1u2

m2þum1u2
p2

h i
0
B@ þαm 2up1um1þup2um2

� �
u2þu2

p1um2þu2
m1up2

h i
þαp 2up1um1þup2um2

� �
u2þu2

p1um2þu2
m1up2

h i
þ8

α2

m
up2um2u2

1
CA;

(7)

where

αp ¼
α1þα3

2m
; αm ¼ α1�α3

2m
: (8)

Further details of this step, applied to a general nonlinear system, may be found in [13,20], and the application to a
similar system to that considered here may be found in [21].

As it is known that all terms in the ith element of Nu respond at the forcing frequency, Ω, it may be written in terms of
the time-independent components Nþ

ui and N�
ui , such that

Nui ¼Nþ
ui e

þ jΩtþN�
ui e

� jΩt ; (9)

where Nþ
ui and N�

ui are complex conjugates. Substituting this, along with the assumed solution for ui, from Eq. (5), into the
ith resonant equation of motion, from Eq. (6), leads to

ω2
ni �Ω2� �Ui

2
e�jϕi þNþ

ui �
Pqi

2

� �
eþ jΩtþ ω2

ni �Ω2� �Ui

2
eþ jϕi þN�

ui �
Pqi

2

� �
e�jΩt ¼ 0; (10)

where it has been recalled that Pu ¼ Pq, and where the contents of the two square brackets are complex conjugates. As such,
the first of these brackets may be equated to zero, to give a time-independent expression written as

ω2
ni�Ω2

� �
Uiþ2Nþ

ui e
þ jϕi ¼ Pqieþ jϕi : (11)

These expressions may be solved, for i¼ 1;2, to find the forced response branches; however this can prove challenging,
especially for larger and more complex systems. Instead, the backbone curves may be computed by setting the forcing and
damping terms to zero. Hence, finding Nþ

u1 and Nþ
u2 from Eq. (7), and substituting these into Eq. (11) gives

ω2
n1−ω

2� �
U1þ

3
4

αp U3
1þU1U

2
2 2þeþ j2ϕd

� �h i
þαm U3

2þU2
1U2 2þe−j2ϕd

� �h i
eþ jϕd

n o
¼ 0; (12a)

ω2
n2−ω

2� �
U2þ

3
4

αp U3
2þU2

1U2 2þe−j2ϕd

� �h i
þαm U3

1þU1U
2
2 2þeþ j2ϕd

� �h i
e−jϕd þ8

α2
m
U3

2

n o
¼ 0; (12b)

where ϕd ¼ϕ1�ϕ2 and where the forcing and damping have been set to zero. Note that, as the backbone curves are
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unforced, ω has been used in place ofΩ, to represent the common response frequency of the two modes. These expressions
may now be solved in order to find the backbone curves of this system.

2.2. Backbone curves of the symmetric configuration

We now consider a symmetric configuration of the 2-DOF oscillator, where α1 ¼ α3 and hence, from Eq. (8), αp ¼ α1=m
and αm ¼ 0. Using this, Eqs. (12) may be written as

ω2
n1�ω2þ3α1

4m
U2

1þU2
2 2þeþ j2ϕd

� �h i� 	
U1 ¼ 0; (13a)

ω2
n2�ω2þ3α1

4m
γU2

2þU2
1 2þe� j2ϕd

� �h i� 	
U2 ¼ 0; (13b)

where γ ¼ 1þ8α2=α1.
The case where U1 ¼ U2 ¼ 0 is a trivial solution to Eqs. (13), corresponding to no motion. In addition to this, the modes

may exist independently, resulting in two different backbone curves. The first of these backbone curves is denoted S1, and
contains only the first mode, i.e. U1a0 and U2 ¼ 0. The second backbone curve, denoted S2, is composed of only the second
mode, i.e. U2a0 and U1 ¼ 0. From Eqs. (13), these are described by the frequency–amplitude relationships

S1: U2 ¼ 0; ω2 ¼ω2
n1þ

3α1

4m
U2

1; (14a)

S2: U1 ¼ 0; ω2 ¼ω2
n2þ

3α1γ
4m

U2
2: (14b)

The case where U1a0 and U2a0 corresponds to a further set of solutions. This case leads to complex terms in Eqs. (13), and
the imaginary components of these terms may both be written as

sin 2 ϕ1�ϕ2


 �� �¼ 0; (15)

where it has been recalled that ϕd ¼ϕ1�ϕ2. Eq. (15) may be satisfied by ϕ1�ϕ2 ¼ 0; π2;π;…, and hence the variable p may
be defined, where

p¼ cos 2 ϕ1�ϕ2


 �� �¼ þ1 when ϕ1�ϕ2 ¼ 0;π;…;

�1 when ϕ1�ϕ2 ¼
π
2
;
3π
2

;…:

8<
: (16)

Substituting Eq. (16), into the real parts of Eqs. (13) gives

ω2 ¼ω2
n1þ

3α1

4m
U2

1þU2
2 2þpð Þ

h i
; (17a)

ω2 ¼ω2
n2þ

3α1

4m
γU2

2þU2
1 2þpð Þ

h i
: (17b)

In [12] it has been shown that the case where p¼ �1 may only lead to valid solutions when α2o0, i.e. the nonlinear
spring that couples the masses exhibits softening behaviour. It is demonstrated that such solutions exhibit out-of-unison
resonance, where the phase between the modes is 7901, as indicated by Eq. (16). Here, however, it is assumed that all
springs are hardening, and hence only the p¼ þ1 case is considered, which, from Eqs. (17), leads to the expressions

U2
1 ¼ 1�4α2

α1

� 
U2

2�
2m
3α1

ω2
n2�ω2

n1

� �
; (18a)

ω2 ¼ 3ω2
n1�ω2

n2

2
þ3 α1�α2ð Þ

m
U2

2; (18b)

describing the amplitude and frequency relationships of an additional set of backbone curves. From Eq. (16) it can be seen
that the fundamental components of the two modes may be in-phase, i.e. ϕ1�ϕ2 ¼ 0, or in anti-phase, i.e. ϕ1�ϕ2 ¼ π.
Therefore Eqs. (18) describe two backbone curves Sþ

1;2 and S�
1;2 (denoted S7

1;2 when referring to both) which have the phase
relationships

Sþ
1;2: ϕ1�ϕ2 ¼ 0; (19a)

S�
1;2: ϕ1�ϕ2 ¼ π: (19b)

Note that the subscripts of the backbone curve labels (S1, S2, S
þ
1;2 and S�

1;2) denote the modes that are present, whilst the
superscripts denote the phase between the modes, where applicable. Due to the constant phase relationship between the
modes, fewer variables are required in the computation of the backbone curves. This is in comparison to the computation of
the forced responses, where the phase of each mode, with respect to the external forcing, must also be computed. This is



Fig. 2. The backbone curves of a symmetric, 2-DOF oscillator, where the single- and mixed-mode backbone curves, S1, S2 and S7
1;2, are represented by solid-

blue lines. Dark-blue crosses mark the linear natural frequencies, ωn1 and ωn2, and a dark-blue dot, labelled “BP”, represents a bifurcation from S2 onto S7
1;2.

The three panels are in the projection of the common response frequency, ω, against: (a) the amplitude of displacement of the first mass, X1; (b) the
fundamental response amplitude of the first mode, U1; (c) the fundamental response amplitude of the second mode, U2. The parameter values for this
system are provided in Table 1. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Table 1
The parameter values for the 2-DOF oscillator, used for all examples given in this paper. Note that, in Fig. 3, a number of different values for α3 are
compared. Additionally, various different forcing amplitudes are employed throughout, and hence are not listed here.

Parameter m ωn1 ωn2 ζ α1 α2 α3

Symmetric configuration 1 1 1.1 0.5% 0.5 0.02 0.5
Asymmetric configuration
0:4-0:6
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particularly important for larger systems, where numerical approaches become necessary to when computing the forced
responses.

In order to find the physical displacements, x1 and x2, the linear modal transform is used, which, from Eqs. (4), leads to
x1 ¼ q1þq2 and x2 ¼ q1�q2. Therefore, neglecting harmonics such that qi ¼ ui, the physical displacement amplitudes are
written: X1 ¼U1þU2 and X2 ¼ jU1�U2jwhen the modes are in-phase; and X1 ¼ jU1�U2j and X2 ¼ U1þU2 when the modes
are in anti-phase.

Fig. 2 shows the backbone curves of the system, for the parameters given in Table 1, and calculated using Eqs. (14) and
(18). It can be seen that the single mode backbone curves, S1 and S2, emerge from the trivial, zero-amplitude solution, and
that the mixed-mode backbone curves, S7

1;2, emerge from a bifurcation on S2. This is discussed in detail in [14], where it is
shown that a bifurcation is only present when α144α2, a condition which is satisfied by the system considered here.

As previously discussed, the computation of the physical displacement amplitudes is dependent on the phase difference
between the modes. As such, in Fig. 2(a), which shows the displacement amplitude of the first mass, X1, it can be seen that
the backbone curves Sþ

1;2 and S�
1;2 are distinct. However, in Fig. 2(b) and (c), which shows the amplitudes U1 and U2

respectively, these backbone curves are superposed, as the modal projections are independent of phase. Furthermore, if
Fig. 2(a) were shown in the projection of ω against X2, this plot would look identical, except that Sþ

1;2 and S�
1;2 would be

interchanged.
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Here the backbone curves labelled S1 and S2 are defined as primary backbone curves, as they emerge from a zero-
amplitude, trivial solution at the two linear natural frequencies. The backbone curves S7

1;2 are known as secondary backbone
curves as they bifurcate from primary backbone curves. Whilst secondary backbone curves do not emerge from the trivial
solution, they are connected to backbone curves which do, and hence can be traced back to the trivial solution. As such,
provided the primary backbone curves may be computed and the bifurcations are detected, these secondary branches may
be found using continuation-based methods.

2.3. Backbone curves of an asymmetric configuration

The asymmetric configuration of the system, where α1aα3, is now considered. Returning to the resonant equations of
motion, Eqs. (12), the imaginary parts are now written as

αpU1U2 sin 2ϕd

� �þαm U2
2þU2

1

� �
sin ϕd

� �h i
U2 ¼ 0; (20a)

αpU1U2 sin 2ϕd

� �þαm U2
1þU2

2

� �
sin ϕd

� �h i
U1 ¼ 0; (20b)

and the real parts of Eqs. (12) are given by

ω2
n1−ω

2� �
U1þ

3
4

αp U3
1þU1U

2
2 1þ2 cos 2 ϕd

� �� �h i
þαm U3

2þ3U2
1U2

h i
cos ϕd

� �n o
¼ 0; (21a)

ω2
n2−ω

2� �
U2þ

3
4

αp U3
2þU2

1U2 1þ2 cos 2 ϕd
� �� �h i

þαm U3
1þ3U1U

2
2

h i
cos ϕd

� �þ8
α2
m
U3

2

n o
¼ 0: (21b)

It can be seen from Eqs. (21) that the asymmetric configuration cannot exhibit single-mode solutions. Therefore, Eqs. (20)
may both be simplified to

2αpU1U2 cos ϕ1�ϕ2

� �þαm U2
2þU2

1

� �h i
sin ϕ1�ϕ2

� �¼ 0; (22)

where ϕd ¼ϕ1�ϕ2 has been used. One solution to Eq. (22) involves setting the contents of the square brackets is zero;
however, it is found that this is not possible for the case where the springs are hardening – this case is considered in [20],
where softening behaviour is permitted. Therefore, Eq. (22) may only be satisfied by sin ϕ1�ϕ2

� �¼ 0.
Similar to the symmetric configuration, the condition sin ϕ1�ϕ2

� �¼ 0 leads to the phase relationship ϕ1�ϕ2 ¼ 0;π, i.e.
the modes may either be in-phase or in anti-phase. This allows the variable p to be defined as

p¼ cos ϕ1�ϕ2

� �¼ þ1 when ϕ1�ϕ2 ¼ 0;
�1 when ϕ1�ϕ2 ¼ π:

(
(23)

Note that the phase condition, defined by p, takes a different form in this example. Substituting this into Eqs. (21) gives
the frequency–amplitude relationships

ω2
n1�ω2� �

U1þ
3
8m

α1 U1þpU2
� �3þα3 U1�pU2

� �3h i
¼ 0; (24a)

ω2
n2�ω2� �

U2þ
3
8m

α1 pU1þU2
� �3�α3 pU1�U2

� �3þ16α2U
3
2

h i
¼ 0; (24b)

where Eq. (8) has been used. Eqs. (24) may now be rearranged to give the frequency–amplitude relationships

p3 α3−α1ð Þ
8m

U−1
1

� �
U4

2þ
3 8α2−α1−α3ð Þ

4m

� �
U3

2þ ω2
n2−ω

2
n1þ

3 α1þα3ð Þ
4m

U2
1

� �
U2þ

p3 α1−α3ð Þ
8m

U3
1

� �
¼ 0; (25a)

ω2 ¼ω2
n1þ

3
8m

α1 U1þpU2
� �3þα3 U1�pU2

� �3h i
U�1

1 ; (25b)

which may be solved to find the backbone curves of this system.
Fig. 3 shows the backbone curves of the 2-DOF oscillator for four different values of α3, where α1aα3 such that the

system is asymmetric, and these are compared to the backbone curves of the symmetric configuration. It can be seen that, as
a result of breaking the symmetry, the bifurcation on S2 also breaks and forms an imperfect bifurcation. As a result of this
imperfect bifurcation, an isolated backbone curve is formed, denoted Siþ

1;2 in Fig. 3a1 and a2, and Si�1;2 in Fig. 3b1 and b2. These
are distinct from primary and secondary backbone curves, and cannot be traced to the zero-amplitude, trivial solution. As
such, finding such backbone curves using techniques that rely upon an initial solution, such as numerical continuation, can
prove challenging. Note that the superscripts iþ and i- are used to denote isolated backbone curves where the modes are in-
and out-of-phase, i.e. p¼ þ1 and p¼ �1, respectively.

Recalling that, in the symmetric case, α3 ¼ 0:5, Fig. 3 demonstrates that the direction in which the symmetry is broken
dictates the direction in which the separation occurs in the bifurcated backbone curve. This can be seen in Fig. 3a1 and a2,
representing breaking in the direction α3oα1, and where the isolated backbone curve appears below the primary backbone



Fig. 3. The backbone curves of four different configurations of the example system, compared to those of the symmetric case. In all panels, dark-blue lines
represent the asymmetric backbone curves, whilst light-blue lines show the symmetric backbone curves. Dark-blue crosses and light-blue dots mark the
linear natural frequencies and the backbone curve bifurcations respectively. In all cases, the parameters are listed in Table 1, aside from α3 which adopts a
number of different values (as noted above each panel). All four panels are in the projection of the common response frequency, ω, against the dis-
placement amplitude of the first mass, X1. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of
this paper.)
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curves in this projection. Conversely, when the symmetry is broken such that α34α1, as shown in Fig. 3b1 and b2, the
isolated backbone appears above the primary curve. As the high-amplitude response is often of primary concern in engi-
neering, this appears to demonstrate that breaking the symmetry such that α3oα1 is typically of lower concern in this
system. However, it is worth noting that in the projection of ω against X2, rather than against X1, as shown in Fig. 3, this
breaking appears to be reversed such that α3oα1 leads to a higher-amplitude isolated backbone.

Recalling the schematic of the two-mass oscillator, Fig. 1, it can be seen that the symmetry of the unforced, undamped
system may also be broken by changing the linear stiffness components – i.e. if the stiffness of the first grounding spring
does not equal that of the second. It is found that this symmetry-breaking also results in a similar phenomenon, and isolated
backbone curves are also formed. However, for the sake of brevity, this is not demonstrated here.
3. Determining the forced responses from the backbone curves

Whilst backbone curves provide valuable insight into the underlying dynamic behaviour of a system, they cannot be used
directly to determine the forced responses. As forced responses are, ultimately, of greatest interest in many engineering
applications, the ability to determine a direct link between the backbone curves and the forced responses provides
numerous benefits. One method for achieving this is energy transfer analysis, detailed in [17]. An overview of this approach is
now provided, and it is shown how it may be used to understand the forced responses of the example system using the
backbone curves.

Energy transfer analysis relies on the observation that, for any steady-state response, the net energy transfer into a
system, over one period of motion, must be zero – referred to as the energy criterion. The analysis also relies on the
assumption that the forced responses at resonance share a solution with a backbone curve. From this it can be seen that, if a
point on a backbone curve represents a solution for the forced response, it must satisfy the energy criterion. As such, it may
also be assumed that any point on the backbone curve that does satisfy the energy criterion represents a solution to a
resonant forced response, known as a resonant crossing point. For detailed discussion of the significance and validity of these
assumptions, see [17].

In order to compute the energy transfer into and out-of the system, the nonconservative terms must be identified – i.e.
the external forcing and damping terms. If f i;k represents the kth nonconservative term in the ith modal equation of motion,
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the energy transfer into that mode over one period, as a result of that term, may be written as

Ei;k ¼
Z T

0
f i;kðtÞ _qiðtÞdt; (26)

where T is the period of the response of the system.
For the system considered here, the harmonics are assumed to be negligible, and hence the approximation qi ¼ ui is used.

Using this, the nonconservative terms are found from Eqs. (6) and (7) as

f i;1 ¼ 2ζωni _ui; (27a)

f i;2 ¼ �Pqi cos Ωt
� �

; (27b)

where it has been recalled that Pu ¼ Pq. Substituting these terms into Eq. (26), and using the assumed solution for ui from Eq.
(5), the external energy transfer may be written as

Ei;1 ¼ 2ζωniω2U2
i

Z T

0
cos ωt�ϕi�

π
2

� �h i2
dt; (28a)

Ei;2 ¼ PqiUiω
Z T

0
cos Ωt

� �
cos ωt�ϕi�

π
2

� �
dt: (28b)

Using Ω¼ω, and calculating the period to be T ¼ 2π=ω, Eqs. (28) may be computed as

Ei;1 ¼ 2πζωniωU2
i ; (29a)

Ei;2 ¼ �πPqiUi sin ϕi

� �
: (29b)

As previously discussed, the energy criterion states that the total energy into the system over one period must be zero for
any steady-state response. Therefore, if the ith modal equation of motion contains Ki nonconservative terms, this may be
expressed as

X2
i ¼ 1

XKi

k ¼ 1

Ei;k ¼ 0; (30)

which, substituting Eqs. (29), is written for the example system as

2ζω ωn1U
2
1þωn2U

2
2

� �
¼ Pq1U1 sin ϕ1

� �þPq2U2 sin ϕ2

� �
: (31)

Eq. (31) represents the energy relationship that must be satisfied in order for a backbone curve solution to represent a
resonant crossing point. Note, however, that this expression contains the phase values ϕ1 and ϕ2. Whilst, for each backbone
curve, the relationship between these values is known, the individual values are not known. As discussed in [17], these
phase values may be found by considering that, in order for the forced response to cross a backbone curve precisely, the
conservative components of the equation of motion must equate to zero independent of the nonconservative components.
This may be expressed, for the ith mode, as

XKi

k ¼ 1

f i;k ¼ 0; (32)

which, using Eqs. (27), leads to

2ζωniUiω cos ϕiþ
π
2

� �
þ tan ωtð Þ sin ϕiþ

π
2

� �h i
þPqi ¼ 0: (33)

From this it can be seen that sin ϕiþπ
2

� �¼ 0 is required for the expression to be time-invariant. As such, it is also required
that cos ϕiþπ

2

� �
is opposite in sign to Pqi, and therefore the phase of the ith mode is given by

ϕi ¼ sign Pqi
� �π

2
: (34)

The condition described by Eq. (32) is only satisfied under specific conditions, and hence, when these conditions are not
satisfied, Eq. (34) is approximate. Now, substituting Eq. (34) into Eq. (31) gives

2ζω ωn1U
2
1þωn2U

2
2

� �
¼ Pq1U1þPq2U2: (35)

The backbone curve solutions may now be substituted into Eq. (35) for specific forcing and damping values. It can be
determined that any solution satisfying this expression must represent an approximate resonant crossing point. Note that
this crossing point is precise if the phase relationship given by Eq. (34) is satisfied.
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4. Isolas in the symmetric configuration

It has previously been observed that, for the symmetric configuration of the example system, no isolated backbone
curves exist. We now investigate whether isolated forced responses, or isolas, may exist for this configuration.

When equal forcing is applied to both masses, i.e. P1 ¼ P2, then, from Eqs. (4), it can be seen that the second linear mode
is not directly forced, i.e. Pq2 ¼ 0. In this case, Eq. (35) may be written as

Pq1 ¼ 2ζω
ωn1U

2
1þωn2U

2
2

U1
; (36)

which may be used to determine the modal forcing amplitude required to cross a backbone curve at a given point. For the
backbone curve S2, described by Eq. (14b), U1 ¼ 0 throughout. From Eq. (36) it can be seen that no valid solution exists when
U1 ¼ 0, therefore the forced response cannot cross S2 at resonance for this forcing case. To determine the modal forcing
amplitude required to cross the backbone curves S1 and S7

1;2, their solutions, given by Eqs. (14a) and (18), are substituted into
Eq. (36).

The relationship between the first modal forcing amplitude, Pq1, and the locations of the resonant crossing points on the
backbone curves S1 and S7

1;2 are shown in Fig. 4. This reveals that, even for very low excitation amplitudes, the forced
response will cross S1, whilst the S7

1;2 backbone curves will not be crossed unless Pq140:0234. The specific case where
Pq1 ¼ 0:025 is shown in Fig. 4 and the corresponding crossing points are highlighted. At this forcing amplitude, it can be seen
that the forced response must cross the backbone curve at resonance at five points: once on S1, twice on Sþ

1;2 and twice on
S�
1;2. Note that Sþ

1;2 and S�
1;2 are superposed, and hence the predicted points shown in Fig. 4 represent resonant crossing

points on both backbone curves. However, it cannot be directly determined whether these points correspond to an isola, as
the points may all be connected via a continuous forced response curve, or via bifurcated forced response curves. In order to
determine the nature of the forced responses, the branches must be computed.

It can be seen that Eq. (36) approaches an asymptote as U1-0 when U2a0. Such a condition is met as the mixed-mode
backbone curves, S7

1;2, approach the bifurcation from S2, and therefore corresponds to a vertical asymptote on the left-hand
side of the S7

1;2 curves in Fig. 4. This asymptotic behaviour may be understood physically by observing that the forcing is
applied only to the first mode, and hence the energy input to the system, due to the forcing, will decrease as the first modal
amplitude decreases. As a result, the forcing amplitude must increase in order to maintain the response in the second mode.
If, instead, the forcing were applied to the second mode, i.e. if Pq2a0, then such an asymptote would not exist, and a
crossing at the bifurcation point may be achieved.

Fig. 5 shows the forced response branches of the symmetric configuration when forcing is applied at amplitude
Pq1; Pq2

 �¼ 0:025; 0½ �. These are compared to the backbone curves of this configuration, along with the predicted resonant
crossing points. Whilst the backbone curves have been computed using the second-order normal form technique, as
described in Section 2, the forced branches have been computed using the numerical continuation software AUTO-07p [4].
The good agreement between the backbone curves and forced responses validates the assumptions used to find these
backbone curves. It can be seen, however, that there is some disparity between S1 and the forced response branch that
envelops it, suggesting that the assumptions are less valid in this region. This may be due to the assumption that the
harmonics are negligible, as the continuation data includes the harmonics. It may also be due to the assumptions that are
inherent to the second-order normal form technique, which typically lose validity at higher amplitudes. If greater accuracy
were required, the harmonics may be included, and the second-order normal form technique may be computed to a higher
order of accuracy – see [13,24] for examples of this.
Fig. 4. The relationship between the first modal forcing amplitude, Pq1, and the positions of the resonant crossing points on the backbone curves for the
symmetric configuration, with Pq2 ¼ 0. This is shown in the projection of the common response frequency, ω, against the first modal forcing amplitude, Pq1.
The loci of required forcing amplitudes, for each backbone curve, are represented by solid-blue lines. The specific case where the forcing amplitude is
Pq1 ¼ 0:025 is shown by a dashed-black line and the corresponding crossing points are highlighted by green circles. (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this paper.)



Fig. 5. The backbone and forced response curves for the symmetric configuration, with the forcing Pq1 ¼ 0:025. The backbone curves are represented by
solid-blue lines, whilst solid-black and dashed-red lines represent the stable and unstable forced responses respectively. Dark-blue crosses mark the linear
natural frequencies and a dark-blue dot, labelled “BP”, represents the backbone curve bifurcation. Small-red dots show the fold bifurcations on the forced
response curves. The green circles represent the predicted resonant crossing points, as given in Fig. 4. This figure is shown in the projection of the common
response frequency, ω, against the displacement amplitude of the first mass, X1. (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this paper.)
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To generate these forced responses, the primary branch, enveloping S1, was first computed. Comparing only the primary
branch to the backbone curves and resonant crossing points, it is clear that not all crossing points have been reached,
suggesting that additional responses exist. If numerical continuation is employed, the initial orbits may be generated using
the amplitude, frequency and phase information provided by the second-order normal form technique at the crossing
points. If these initial orbits are not sufficiently accurate, the resonant crossing points still indicate the existence of addi-
tional solution branches, and may be found using alternative techniques; for example, the continuation of fold bifurcations
may be used to find the isolated solutions, see [9].

It is worth noting that the resonant crossing points only detect the crossing points between the forced response branches
and backbone curves at resonance. Other crossing points that are observed are a feature of the projection used to represent
the response. For example, in Fig. 5, the primary forced branch is seen to cross S2 near to the second linear natural fre-
quency; however, as this point is not resonant, it is not predicted as a crossing point. Furthermore, if this were to be viewed
in a different projection, ω against X2 for example, this apparent crossing point would occur at a different point.

It can also be seen in Fig. 5 that, whilst the resonant crossing points provide a good level of agreement between the
predicted and true resonant points, they are not exact. This is due, in part, to the assumption that the forced responses cross
the backbone curves precisely, which is only true under very specific conditions. This can be seen by considering the points
on S7

1;2, where both modes are active (and thus are both losing energy through damping) but only the first mode is forced. It
is therefore clear that there must be a net energy transfer from the first mode into the second. However, any response that
exhibits a net energy transfer between the modes cannot lie on a backbone curve, as backbone curves represent con-
servative responses. This observation underpins the method presented in [17], which allows the relative accuracy of the
resonant crossing points to be estimated. This method also relies on the observation that energy transfer between the
modes is only possible when there is a phase difference between the modes. As such, the phase difference that is required to
support the necessary energy transfer may be computed, and used as a measure of the accuracy of the points – a predicted
phase difference that is close to that of the backbone curve may be assumed to be accurate, whilst a large discrepancy
suggests an inaccurate resonant crossing point. The details of how this phase is calculated are provided in [17].

Due to the symmetry of the system considered here, the estimated phase difference for the resonant crossing points on
Sþ
1;2 is the same as the corresponding points on S�

1;2. For the lower points, near ω¼ 1:2, the error in the phase difference is
ϕ1�ϕ2 � 0:0995π, whilst the higher points, near ω¼ 1:33, predict an error of ϕ1�ϕ2 � 0:0267π. Note that these are not
intended to represent accurate predictions of the phase difference at resonance, but rather to provide a metric for estimating
the accuracy of these points. As these errors are both relatively small, these points can be expected to be relatively accurate.
Furthermore, as the difference is larger for the lower points than for the higher, it can be expected that the higher points are
more accurate. These predictions are both confirmed in Fig. 5. This demonstrates the physical mechanism that governs the
difference between the predicted resonant crossing points and the true resonant points. The method can also prove useful in
assessing the relative accuracy of the points when the true responses are unknown, and for assessing the suitability of a
resonant crossing point as an initial condition for numerical continuation. For the remainder of this paper, however, these
metrics are not computed, as the forced responses are provided for comparison.



Fig. 6. The relationship between the first modal forcing amplitude, Pq1, and the positions of the resonant crossing points on the backbone curves for the
asymmetric configuration. This is shown in the projection of the common response frequency, ω, against the first modal forcing amplitude, Pq1. The loci of
required forcing amplitudes, for each backbone curve, are represented by solid-blue lines. The specific cases where the forcing amplitude is Pq1 ¼ 0:025 and
Pq1 ¼ 0:035 are shown by dashed-black lines and the corresponding crossing points are highlighted by green circles. (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 7. The backbone and forced response curves for the asymmetric configuration, with the forcing Pq1 ¼ 0:025. The backbone curves are represented by
solid-blue lines, whilst solid-black and dashed-red lines represent the stable and unstable forced responses respectively. Dark-blue crosses mark the linear
natural frequencies and small-red dots show the fold bifurcations on the forced response curves. The green circles represent the predicted resonant
crossing points, as given in Fig. 6. This figure is shown in the projection of the common response frequency, ω, against the displacement amplitude of the
second mass, X2. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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5. Isolas in the asymmetric configuration

In the previous section it was demonstrated that isolas may exist on the secondary backbone curves of the symmetric
configuration, i.e. on S7

1;2. In this section, the asymmetric configuration is considered for the case where α3 ¼ 0:4, and the
presence of isolas on primary and isolated backbone curves is investigated.
5.1. Single-mode forcing

As with the symmetric configuration, forcing in only the first linear mode is considered, allowing Eq. (36) to be used,
together with Eqs. (25), to find the relationship between the forcing amplitude, Pq1, and the positions of the resonant
crossing points. This relationship is shown in Fig. 6, and the specific cases where Pq1 ¼ 0:025 and Pq1 ¼ 0:035 are highlighted.
From this it can be seen that, as with S1 in the symmetric configuration, S�

1;2 will be crossed at very low amplitudes. The
primary backbone curve Sþ

1;2 will not be crossed unless the forcing amplitude is sufficiently high, and the amplitude must be
higher still in order for the isolated backbone curve Si�

1;2 to be crossed. For the case where Pq1 ¼ 0:025, three crossing points
are predicted: one on S�

1;2 and two on Sþ
1;2, suggesting that an isola may exist on Sþ

1;2.
Fig. 7 shows the forced branches of the asymmetric configuration when forcing is applied at amplitude

Pq1; Pq2

 �¼ 0:025; 0½ �, along with the backbone curves and resonant crossing points for this case. As in the previous
example, the forced responses have been computed using numerical continuation, and the good agreement between these
responses and the backbone curves indicates a good level of accuracy in the computation of the backbone curves. The
predicted resonant crossing points have again proved valuable in predicting the existence of an isola which, in this case,



Fig. 8. The backbone and forced response curves for the asymmetric configuration, with the forcing Pq1 ¼ 0:035. The backbone curves are represented by
solid-blue lines, whilst solid-black and dashed-red lines represent the stable and unstable forced responses respectively. Dark-blue crosses mark the linear
natural frequencies. Small-red dots and green asterisks show the fold and torus bifurcations on the forced response curves respectively. The green circles
represent the predicted resonant crossing points, as given in Fig. 6. This figure is shown in the projection of the common response frequency, ω, against the
displacement amplitude of the second mass, X2. (For interpretation of the references to colour in this figure caption, the reader is referred to the web
version of this paper.)

Fig. 9. The backbone and forced response curves for the asymmetric configuration, with the forcing Pq1 ¼ 0:040, showing a merging of an isola with the
primary forced branch. The backbone curves are represented by solid-blue lines, whilst solid-black and dashed-red lines represent the stable and unstable
forced responses respectively. Dark-blue crosses, small-red dots and green asterisks mark the linear natural frequencies, fold bifurcations and torus
bifurcations respectively. The green circles represent the predicted resonant crossing points. The case where Pq1 ¼ 0:035, as shown in Fig. 8, is represented
by thin, light lines. This figure is shown in the projection of the common response frequency, ω, against the displacement amplitude of the second mass, X2.
(For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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envelops a primary backbone curve. Without these crossing points, and noting the negligible influence of Sþ
1;2 on the pri-

mary forced response branch, the presence of the isola would be difficult to predict.
When forcing is applied at amplitudes Pq1; Pq2


 �¼ 0:035; 0½ �, it can be seen from Fig. 6 that five resonant crossing points
are predicted: one on S�

1;2, two on Sþ
1;2 and two on the isolated backbone curve Si�1;2 . Fig. 8 shows the forced response

branches for this case, along with the backbone curves and predicted resonant crossing points. From this it can be seen that
an isola envelops the primary backbone curve Sþ

1;2, which may be viewed as an evolution of the isola seen in Fig. 7.
Additionally, in Fig. 8 there is an isola enveloping the isolated backbone curve Si�

1;2 . It is interesting to note that the primary
forced branch appears to be influenced, to a small degree, by Sþ

1;2; however, this small response is not resonant, and hence is
not predicted by the resonant crossing points.

It is found, if the forcing amplitude is increased further, that the isola enveloping Sþ
1;2 will merge with the primary forced

branch. This is demonstrated in Fig. 9 which shows the case where the forcing amplitudes are Pq1; Pq2

 �¼ 0:040; 0½ �. The

previous case, shown in Fig. 8, where Pq1; Pq2

 �¼ 0:035; 0½ � is represented by thin lines. A detailed region shows that the

small increase in the forcing amplitude leads to a merging of the isola that envelops Sþ
1;2 and the primary forced branch. The

isola that envelops Si�
1;2 is seen to change under the increased forcing amplitude; however it does not merge with the

primary branch. For this forcing configuration (i.e. in only the first linear mode), this isola remains isolated at amplitudes as
high as Pq1; Pq2


 �¼ 4; 0½ �, 100 times of that shown in Fig. 9. It can therefore be assumed that, if this isola does merge with
the primary branch, it will only do so at amplitudes beyond the region of validity of the analytical methods used here. This
highlights the care that must be taken when using continuation techniques to find isolas, as this indicates that in the
projection of Ω against Pq1, S

i�
1;2 may not be connected to the primary branch. As such, the resonant crossing points prove



Fig. 10. The relationship between the amplitude of the forcing applied to the second mass, P2, and the positions of the resonant crossing points on the
backbone curves for the asymmetric configuration. This is shown in the projection of the common response frequency, ω, against the amplitude of the
forcing at the second mass, P2. The loci of required forcing amplitudes, for each backbone curve, are represented by solid-blue lines. The specific case where
the forcing is at amplitude P1 ; P2½ � ¼ 0; 0:02½ � is shown by a dashed-black line and the corresponding crossing points are highlighted by green circles. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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valuable for providing initial conditions for the continuation, or for informing the search using continuation in parameters
other than Ω or Pq1.

5.2. Single-mass forcing

Previous examples in this paper have investigated the response of the two-mass oscillator to the single-mode forcing,
requiring that both masses are forced with equal frequency and amplitude. Although such forcing is achievable for a two-
mass oscillator, single-point excitation is more representative of real cases [18,25]. As such, the response of the systemwhen
forcing is applied to the second mass is now investigated.

From Eq. (4) it can be seen that forcing is applied to only the second mass when Pq1 ¼ �Pq2 and hence P2 ¼ 2mPq1.
Substituting this into Eq. (35) allows the relationship between the forcing amplitude, P2, and the positions of the resonant
crossing points to be found using

P2 ¼
4mζω ωn1U

2
1þωn2U

2
2

� �
U1�U2

: (37)

The relationship described by Eq. (37) is shown in Fig. 10 using the backbone curves of the asymmetric configuration, and
the case where the forcing is applied to the second mass at an amplitude of P2 ¼ 0:02 is highlighted. This case results in four
resonant crossing points: one on each of the primary backbone curves, S�

1;2 and Sþ
1;2, and two on the isolated backbone curve,

Si�1;2 . This figure shows that Sþ
1;2 will be crossed by the forced response when the forcing amplitude is very low. This is in

contrast to the case where the forcing was applied in only the first mode, as shown in Fig. 6, where a sufficiently high forcing
amplitude is required before this backbone curve is crossed.

The forced response branches and backbone curves for the asymmetric configuration, when forcing is applied to the
second mass with an amplitude of P2 ¼ 0:02, are shown in Fig. 11. This demonstrates that an isola may exist in the forced
response when forcing is applied to just one mass, and that this isola envelops the isolated backbone curve Si�

1;2 . It can be
seen that, for this case, Sþ

1;2 is crossed by a primary forced branch. This is in contrast to the cases where forcing is applied in
only the first mode, shown in Figs. 7 and 8, where Sþ

1;2 is crossed by an isola at resonance.
Furthermore, it may be assumed that, for an isola to envelop a single backbone curve, there must be at least two resonant

crossing points on that backbone curve. It can be seen from Fig. 10 that, for the primary backbone curves Sþ
1;2 and S�

1;2, when
the forcing is applied to just the second mass, the loci of resonant crossing point positions are monotonic, for the range of
forcing amplitudes shown. As such, when forcing amplitude is fixed, only one crossing point will be seen on each of these
backbone curves, and hence an isola cannot envelop these curves independently.
6. Conclusions

This paper has shown how isolated responses, in both the backbone curves and the forced responses, may exist in
different configurations of a two-mass oscillator with cubic nonlinear springs. This was first demonstrated by showing how,
by breaking the symmetry of the system, the bifurcations on the backbone curves can break to form imperfect bifurcations,
resulting in isolated backbone curves. The second-order normal form technique was used to generate analytical descriptions
of the backbone curves, and closed-form solutions were obtained, allowing the isolated backbone curves to be computed
naturally. Whilst it may not be possible to obtain closed-form solutions for more complex systems, it has been shown that



Fig. 11. The backbone and forced response curves for the asymmetric configuration, with forcing at amplitude P2 ¼ 0:02 applied to the second mass. The
backbone curves are represented by solid-blue lines, whilst solid-black and dashed-red lines show the stable and unstable forced responses respectively.
Dark-blue crosses mark the linear natural frequencies. Small-red dots and green asterisks show the fold and torus bifurcations on the forced response
curves respectively. The green circles represent the predicted resonant crossing points, as given in Fig. 10. This figure is shown in the projection of the
common response frequency, ω, against the displacement amplitude of the second mass, X2. (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this paper.)
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the backbone curves represent a simpler problem than the forced responses, due to the fixed phase relationships between
the modes. As such, in complex systems, where finding isolas becomes impractical, the use of iterative techniques for
finding isolated backbone curves may still be feasible.

The use of an energy-based technique to find the resonant crossing points of forced responses on backbone curves was
then demonstrated. Although these points do not directly reveal the existence of isolas, they do indicate whether or not all
forced responses have been computed. Additionally, the crossing points may be used to understand the nature of the isolas,
thus simplifying the task of finding and computing the responses. The energy analysis was used to find the range of forcing
amplitudes that lead to isolas in the symmetric configuration of the example system. Next, it was shown that an isola may
envelop a primary backbone curve of the asymmetric configuration. When a higher forcing amplitude is applied, this isola
becomes larger, and an additional isola forms around the isolated backbone curve. These cases reveal how the relationship
between the forcing amplitude and the resonant crossing point locations, described by the energy analysis, may be used to
give great insight into the nature of the forced responses. Finally, the case where forcing was applied to just one of the
masses was considered. This represents a more typical case for such a system, and it was shown that an isola may also exist
under such conditions.

Whilst the ability to compute isolated backbone curve in large systems still poses a significant challenge, many of the
isolas shown in this paper envelop primary backbone curves. As these may be computed for relatively large and complex
systems, using numerical continuation, the approach demonstrated in this paper may be extended to such systems.
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