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A historical introduction is given of the theory of
normal forms for simplifying nonlinear dynamical
systems close to resonances or bifurcation points. The
specific focus is on mechanical vibration problems,
described by finite degree-of-freedom second-order-
in-time differential equations. A recent variant of
the normal form method, that respects the specific
structure of such models, is recalled. It is shown how
this method can be placed within the context of the
general theory of normal forms provided the damping
and forcing terms are treated as unfolding parameters.
The approach is contrasted to the alternative theory
of nonlinear normal modes (NNMs) which is argued
to be problematic in the presence of damping. The
efficacy of the normal form method is illustrated on
a model of the vibration of a taut cable, which is
geometrically nonlinear. It is shown how the method
is able to accurately predict NNM shapes and their
bifurcations.

1. Introduction: nonlinear normal modes and
normal forms

The problem addressed here is how to extend the well-
established notion of normal modes of linear vibration
systems to nonlinear systems in a mathematically
consistent way that also allows for practical implementa-
tion. In recent years, there has been a lot of research
related to the concept of a so-called ‘nonlinear normal
mode’ (NNM). We shall not go into the complete theory
here, but refer instead to Kerschen et al. [1] and Peeters
et al. [2]) and Avrimov & Mikhlin [3] for surveys of the
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Figure 1. Illustrating the limitation of the NNM concept in the presence of damping. Computations are for the unforced two-
degree-of-freedom systemwhose radial parts arewritten in polar coordinates as ṙ1 = −δ1r1 − r31 + (3 + 0.5 cos θ2)r42 , ṙ2 =
−δ2r2 − r32 + (0.2 sin(θ1) − 1)r31 , where (a) δ1 = δ2 = 0, (b) δ1 = 0.1, δ2 = 0.05 and (c) δ1 = 0.05, δ2 = 0.1. We show
projections, ignoring the angular motion, of the invariant manifolds of the system that are tangent to the linear eigenspaces
r1 = 0 and r2 = 0.

state of the art. As we shall explain, this concept is of limited use when forcing and damping
are present, a restriction that is not shared by the more general concept of the normal form of a
nonlinear system near an equilibrium [4–6]. At present though, the application of normal form
analysis to structural vibration systems [7,8], described in more detail in §3 below, is rather
technical and not widely adopted. It is also not clear how these structural vibration normal forms
relate to the generic theory of normal forms as treated in Murdock [6]. Thus, the aim of this paper
is to explain the normal form theory for structural vibrations in a more rigorous and historical
context, and to show its relevance for a variety of practical problems.

Consider mechanical structures: the dynamics can be modelled as

Mẍ + Dẋ + Kx + N(x, ẋ, r) = Pr + c.c., (1.1)

where x ∈ R
n represents the displacements of the n degrees of freedom of the structure, M, D and

K are, respectively, mass, damping and stiffness matrices and N represents nonlinearity, which
is assumed to be sufficiently smooth. The right-hand side represents the forcing on the system
r(t) ∈ C

n and can be written as a sum of eiΩit terms. The concept of the NNM applies well to the
case where there is no forcing or damping, so that P = D = 0 in (1.1) and N is a pure function of x.
In this case, Shaw & Pierre [9,10] argued that an NNM is just an invariant manifold composed of
periodic solutions, whose frequency in the limit of amplitude tending to zero is the same as the
linear mode. Here, they can appeal to the Liapunov Centre Theorem that guarantees that such
a manifold must exist. Attempts have been made to extend this definition to include damping.
Here, things are more troublesome because the Liapunov centre theorem no longer applies and,
in general, one should not expect there to be small periodic solutions. Nevertheless, one can still
appeal to the theory of invariant manifolds, but unfortunately such manifolds will be non-unique
in general and will depend crucially on the relative size of the damping in each mode; see figure 1
illustrating this point for a general two degrees of freedom system. Figure 1a illustrates NNMs the
case of zero damping. These manifolds which are shown as projections onto a radial coordinate
are composed entirely of periodic orbits, as given by the Liapunov centre theorem. By contrast,
figure 1b,c shows damped cases where the damping coefficient is greater in either the first or the
second mode. In each case, only the most strongly damped mode has a unique invariant manifold
tangent to it, with solutions in the manifold now composed of decaying oscillations. For the more
weakly damped mode, there are now infinitely many such invariant manifolds and there is no
uniquely distinguished one. In general, a tiny perturbation in initial condition will lead to a very
different manifold if one computes backwards in time.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 J

un
e 

20
24

 



3

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140404

.........................................................

In the presence of general forcing, there is no guarantee that these invariant manifolds persist.
Instead, what one needs is a calculation tool; a way of simplifying the system that respects normal
modal analysis in the limit of small amplitude response, but for moderate amplitude also allows
for the inclusion of only the necessary nonlinear effects. This is precisely what the theory of
normal forms does. A concise description of that theory forms the subject of §2.

The link between normal form theory and NNMs was pointed out by Montaldi et al. [11],
who showed that NNMs can be constructed directly, as a consequence of the Birkhoff normal
form (§2) for undamped systems written in Hamiltonian coordinates. More general normal analysis
was carried out on various structural systems in the late 1970s and early 1980s by Holmes and
co-workers, see Guckenheimer & Holmes [4] and references therein. Jezequel & Lamarque [7]
showed how forcing and damping can be incorporated in the approximation of normal forms
for systems equivalent to (1.1), but written in first-order, i.e. state-space, form. Their method is
essentially a hybrid between normal form reduction and the harmonic balance method. Direct
harmonic balance and other asymptotic methods, such as multiple scales analysis have been
applied by many authors to derive approximations to systems of the form (1.1) [12].

Recently, Neild & Wagg [8] have extended the work of Jezequel & Lamarque [7] to deal
directly with second-order systems of the form (1.1); see §1 for the details. One purpose of this
paper is to survey their method and to demonstrate its power through applications. Primarily
though, we shall show how the second-order method can be recast using the general theory of
normal forms, where forcing and damping terms can be treated as specific forms of unfoldings.
One does not need to make the additional approximations inherent in the harmonic balance
method when deriving the normal form itself. Application of the harmonic balance method
to the derived normal form, though, is shown to lead to remarkably powerful predictions for
resonant responses, leading to so-called backbone curves in structural analysis, for mode switching
in complex multimodal responses and for analytically finding NNMs.

The rest of this paper is outlined as follows. In §2, we describe the historical context of normal
form transformations. Section 3 goes on to apply these concepts to engineering vibration problems
of the form (1.1). In particular, we show how the Neild & Wagg method can be thought of as the
choice of a particular type of normal form. We also explain how to use this method to predict
resonant responses, by interpreting the normal form in the context of harmonic balance. Section 4
demonstrates the theory through application to a particular model of a taut cable. The power of
the method is illustrated by showing how it can predict secondary bifurcations corresponding to
switches in mode shapes. Finally, §5 draws conclusions and points to avenues of future work.

2. Historical background to normal form analysis
Much of our modern-day understanding of dynamical systems can be traced to the work of the
French genius Henri Poincaré and the geometric theory he introduced [13] to understand systems
like the three-body problem in celestial mechanics; see, for example, Barrow-Green [14], Diacu &
Holmes [15], Verhulst [16] for historical reviews. His key insight was to work on approximating
the system rather than producing series solutions for individual trajectories.

(a) Birkhoff normal form
The original context for normal forms was that of conservative systems written in Hamiltonian
form. Consider a Hamiltonian system in R

2n close to an elliptic equilibrium point, written in
canonical form(

ṗ
q̇

)
=
(

0 1
−1 0

)
∇H(p, q), where H = 1

2

n∑
j=1

ωj(q
2
j + p2

j ) + H1(q, p), (2.1)

in which q ∈ R
n represents the column vector of positions (q1, q2, . . . , qn)T, p represents the

momenta (p1, p2, . . . , pn)T and H1 contains all higher-power terms, starting with cubic. For the
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purposes of this paper, we shall assume that all vector fields are analytic (infinitely smooth) and
we shall suppress any parameter dependence for the time being. Without the nonlinear terms,
the system (2.1) is easily solvable and decomposes into quasi-periodic motion with independent
frequencies ωj, j = 1, 2, . . . , n. That is, in each degree-of-freedom, the motion comprises periodic
orbits of period 2π/ωj. We say that the system is completely integrable.

Would not it be nice, at least in a sufficiently small neighbourhood of the zero equilibrium, to
find coordinate transformations to successively remove all the nonlinear terms from the equation
(cubic and higher terms in H) so that the equation is once again trivially integrable up to any given
power? Formally, such reductions can be performed using canonical (i.e. Hamiltonian-structure-
preserving) near-identity (i.e. differing only in nonlinear terms) transformations; see, for example,
Meyer et al. [17] for details.

But a naive approach can go wrong. Suppose, for example, H1 contained a term γj(p2
j + q2

j )2

for some j and some given non-zero coefficient γi, leading to terms 4γjpj(pj + qj)2 in the q̇j
equation and 4γjqj(pj + qj)2 in the ṗj equation. Such a term is called resonant because, no matter
what near-identity transformation is chosen, a nonlinear component of this term remains. The

resonance occurs in terms that contain powers p
αj

j and q
βj

j , where certain integer relationships
existing between the corresponding eigenvalues ±iωj, j = 1, . . . , n. The specific fourth-order
expression γj(p2

j + q2
j )2 contains resonant terms where αj(iωj)2 + βj(−iωj)2 = 0 with αj = βj = 2.

Other resonances can arise due to internal resonances where two or more of the frequencies ωj are
rationally related (which leads to the so-called small divisors problem in Hamiltonian systems that
had greatly exercised Poincaré and his contemporaries). A good choice of transformed variables
are the so-called action-angle coordinates, and the resulting system is often called the Birkhoff
normal form [18].

(b) General first-order normal forms
The problem is that many vibration problems (1.1) cannot be written in Hamiltonian form owing
to the presence of non-conservative forces due to excitation, damping, friction or gyroscopic
effects. Even if a Hamiltonian formation does exist, the mechanical interpretation in terms of
velocities and displacements is likely to be lost. Instead, there is a more general theory of normal
forms that can be applied to arbitrary-dimensional dynamical systems of the form

ẋ = Ax + Nx(x), x ∈ R
p (2.2)

in the neighbourhood of an equilibrium point, where Nx represents nonlinear terms (with the
subscript reminding us that we are in the original unscaled coordinates x). Here, we shall be
interested in the case that the Jacobian is non-hyperbolic (that is, there are eigenvalues on the
imaginary axis). Often this theory is implemented in conjunction with centre manifold theory
so that only the nonlinear terms associated with the non-hyperbolic degrees of freedom are
retained [4,19].

Note that the unforced version of (1.1) can be written in this form by setting the number of
states p = 2n and

A =
[

0 I
−M−1K −M−1D

]
and Nx =

[
0

−M−1N(x)

]
, (2.3)

in which x = (x, ẋ)T, as pointed out by Jezequel & Lamarque [7].
Now, let us suppose that a linear transformation x =Φq is applied to (2.2) so that it is written

in the form

q̇ =Λq + Nq(q), q ∈ C
p, (2.4)

where Nq(q) =Φ−1Nx(Φq) and Λ contains the linearization in the simplest (Jordan
canonical) form.
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We seek to systematically change variables by a sequence of near-identity transformations to
remove non-resonant terms of successively higher powers in the Taylor series expansion of the
nonlinear term Nq. That is, we seek a new variable u ∈ C

p with

q̇ =Λq + Nq(q)
q = u + h(u)−−−−−−−−−→ u̇ =Λu + Nu(u), (2.5)

where h = o(u), and Nu contains only resonant terms (in a sense to be made precise shortly). To
find the unknown function h(u), we differentiate the transform, q̇ = (I + Dh(u))u̇, and substitute
for q̇ and u̇ to give

Λu +Λh(u) + Nq(u + h(u)) = (I + Dh(u))(Λu + Nu(u)). (2.6)

On its own, (2.6) is a complicated, nonlinear functional equation for h(u). But we simplify it
by expanding h(u) as a Taylor series and solve, where possible, for the unknown coefficients
of h, term by term. Thus, let h(u) = h(2)(u) + h(3)(u) + h(4)(u) + · · · , where each h(k) is a sum of
homogeneous monomial terms of degree k. That is, the ith component of h(k) takes the form

h(k)
i =

∑
mk

h(k)
i,mk

p∏
j=1

u
mj

j , (2.7)

where we use a vector notation for multi-indices such that mk = (m1, m2, m3, . . .mp), where mj is a
whole number in the range 0 ≤ mj ≤ k with the additional condition that

∑p
j=1 mj = k and the sum

in (2.7) is over the set of all such indices. So, for example, for p = 2 and k = 2, we have mk = (2, 0),
(1, 1) or (0, 2) such that

h(2)
i = h(2)

i,2,0u2
1 + h(2)

i,1,1u1u2 + h(2)
i,0,2u2

2.

Now we are in a position to simplify (2.6). Suppose that coordinate transformations have taken
place to remove all non-resonant terms up to k − 1. Then, at O(k), (2.6) reads

Λu +Λh(k)(u) + N(k)
q (u) =Λu + Dh(k)(u)Λu + N(k)

u (u) + h.o.t.,

where again a superscript (k) on Nq and Nu indicates terms that are homogeneous polynomials
of degree k and the terms involve (k + 1)-powers and higher. This expression can be rearranged
to read

N(k)
u (u) − N(k)

q (u) =Λh(k)(u) − Dh(k)(u)Λu := [Λ, h(k)](u), (2.8)

which is known as the homological equation associated with the linear operator Λ. The operator
[·, ·] on the right-hand side is known as the Lie bracket between Λ and h (which is closely related
to the so-called Poisson bracket in the case that the system is Hamiltonian).

It might be worthwhile to remind ourselves what we are trying to do. We want to choose the
coefficients of all the terms in h(k) to make N(k)

u as simple as possible. Note that the Lie bracket can
be thought of as a linear operator acting on the set of homogeneous polynomials of degree k. If this
linear operator is invertible, then the homological equation will have a unique solution for any
choice of N(k)

u . In particular, we are free to choose N(k)
u ≡ 0, and then we will have found a unique

solution for the coefficients of h(k) to make all the kth power terms disappear in the simplified
system. Terms that cannot be removed in N(k)

u , the resonant terms, arise precisely when the Lie
bracket is non-invertible.

Note that the Lie bracket as an operator depends on the matrix Λ, hence this matrix
must contain all information necessary to define which terms, in the space of homogeneous
polynomials of degree k, are resonant. To spell out which these terms are, it is most convenient to
look at the homological equation (2.8) term by term to end up with an indicial form of the equation
in terms of the indices mj.
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The indicial equation can be derived in complete generality for any Jordan canonical form
of the matrix Λ [6]. But for ease of explanation, we shall treat the simplified case where the
eigenvalues of A are semi-simple. That is, the geometric multiplicity of each eigenvalue is equal
to its algebraic multiplicity, and hence Λ is diagonalizable so that

Λ= diag {λ1, λ2, . . . λp}, (2.9)

where λi ∈ C are the eigenvalues of Λ allowing for multiplicity. Note how the unforced general
vibration system (2.3) can be transformed using eigenvectors into (2.4) with Λ of the form (2.9)
with (λ2i−1, λ2i) = (+ωi, −ωi), for i = 1, . . .n.

Under the assumption (2.9), the indicial form of the homological equation reads

N(k)
u,i,mk

p∏
j=1

u
mj

j − N(k)
q,i,mk

p∏
j=1

u
mj

j = λih
(k)
i,mk

p∏
j=1

u
mj

j − h(k)
i,mk

p∑
l=1

∂

∂ul

⎛
⎝ p∏

j=1

u
mj

j

⎞
⎠ λlul

= h(k)
i,mk

(
λi −

p∑
l=1

mlλl

) p∏
j=1

u
mj

j , (2.10)

where a subscript (i, mk) on Nq and Nu represents the corresponding coefficient of the kth power
term with vector index mk.

Looking at the form of equation (2.10), we find that we are free to choose N(k)
u,i,mk

= 0 and

h(k)
i,mk

=
N(k)

q,i,mk

(λi − ∑p
l=1 mlλl)

, (2.11)

thus removing the
∏

j u
mj

j term from the simplified equation (the normal form), unless

λi −
p∑

l=1

mlλl = 0. (2.12)

The condition (2.12) is thus precisely the condition for
∏p

j=1 u
mj

j to be a resonant term of the ith

equation. For resonant terms, we instead choose h(k)
i,mk

= 0 and then N(k)
u,i,mk

= N(k)
q,i,mk

and this term
remains in the simplified normal form.

The normal form method then carries out the above procedure successively for each value
of k, starting with k = 2. For each k-value, we step over all possible indices {i, mk} and choose the
coefficient h(k)

i,mk
to satisfy (2.11), unless {i, mk} satisfies the resonance condition (2.12) in which case

we choose h(k)
i,mk

= 0. Note that at each level k, the near-identity transformations used to remove
the non-resonant terms introduces new terms with powers greater than k, so before proceeding
to level k + 1, the new system must be fully calculated. The value of k> 2 at which we stop this
process is called the degree of the normal form. Such normal forms are also sometimes called
truncated normal forms.

(c) Unfolding, truncation and dynamics of the normal forms
The notion of a normal form is often applied to situations where there is a local bifurcation of the
equilibrium point q = 0 (e.g. [19] or [4]). In this case, we think of the system (2.4) as depending
on parameters μ ∈ C

r (typically the parameters are real, but they need not be) and r corresponds
to the codimension of the bifurcation which occurs at μ= 0. We then define an extended set of
unknowns q̃ = (x,μ) ∈ C

p+r with the additional r trivial equations μ̇= 0. Thus, we get

˙̃q = Λ̃q̃ + Ñq̃(q̃), where Λ̃ ∈ C
(p+r)×(p+r) =

(
Λ 0
0 0

)
(2.13)
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and all μ-dependence appears inside the first p components of the new nonlinear term Ñq̃. The
final r components of Ñq̃ are precisely zero. The normal form method now proceeds exactly as
defined above with p everywhere replaced by p + r.

We can then apply the normal form method as outlined above to the system (2.13). The
resulting normal form is called an unfolded normal form. Sometimes judicious choices can be made
for certain coefficients of a normal form, or by scaling arguments certain coefficients can be set to
unity or zero. Such systems are sometimes called hyper-normal forms [6].

The normal form provides a way of simplifying the dynamics of a system near a non-
hyperbolic equilibrium, and to classify the dynamics as belonging to one of a few pre-analysed
cases according to the sign of certain critical coefficients in the normal form. One of the problems
with using normal forms to provide more precise details is that, in general, they represent an
asymptotic expansion only. Hence, regardless to which degree k they are truncated, they ignore
the beyond-all-orders terms which can lead, for example, to transverse homoclinic and heteroclinic
tangles. These will never be captured by the normal form, see, for example, Champneys & Kirk
[20] and references therein for the case of the normal form of the codimension-two saddle-
node/Hopf bifurcation (also known as the Gavrilov–Guckenheimer bifurcation). Occasionally
(roughly speaking, when the dynamics of the normal form does not include any structurally
unstable homo-/heteroclinic connections), an unfolded, truncated (hyper)-normal form can be
shown to contain dynamics that are topologically equivalent to all possible structurally stable
dynamics that can occur in a neighbourhood of the bifurcation point. Such a normal form is called
a versal unfolding [21] or a topological normal form [19], an example of which is the normal form of
a Hopf bifurcation, truncated after third-degree terms.

Consider the damped Duffing equation

ẍ + cẋ + ω2x + αx3 = 0. (2.14)

We can include this in the normal form via an additional equation ċ = 0. Carrying out the above
steps, we first diagonalize the linear part by writing

q1 = 1
2ω

(ωx − iẋ), q2 = 1
2ω

(ωx + iẋ) and q3 = c.

Then, we end up with a system of the form (2.13) for q = [q1, q2, q3]T with

Λ=

⎡
⎢⎣iω 0 0

0 −iω 0
0 0 0

⎤
⎥⎦ and Nq =

⎡
⎢⎢⎢⎢⎢⎣

iα
2ω

(q1 + q2)3 − q3

2
(q1 − q2)

− iα
2ω

(q1 + q2)3 + q3

2
(q1 − q2)

0

⎤
⎥⎥⎥⎥⎥⎦ .

Now, from the form of the linearization of the extended system up to O(3), we see from (2.12)
that quadratic terms of the form q3qi are resonant, as are cubic terms of the form αq2

1q2 in the q̇1
equation or of the form αq1q2

2 in the q̇2 one. We can remove all non-resonant cubic terms with a
transformation of the form

q1 = α

8ω
(−2u3

1 + 3u1u2
2 + u3

2) and q2 = α

8ω
(u3

1 + 3u2u2
1 − 2u3

2).

Hence, the third-degree normal form of the damped, unforced Duffing equation can be written as

u̇1 = iωu1 + 3αi
2ω

u2
1u2 − c

2
(u1 − u2) and u̇2 = −iωu2 − 3αi

2ω
u1u2

2 + c
2

(u1 − u2), ċ = 0, (2.15)

cf. Jezequel & Lamarque [7].
Jezequel & Lamarque [7] extended this normal form method in combination with the harmonic

balance method to consider forced vibration problems of the form (1.1). This enabled them to
predict resonant responses in the case that the forcing frequency Ω is close to one of the natural
frequencies of the system. There remains a philosophical weakness that their method does not
produce an approximation to the system itself, as Poincaré’s envisaged, it simply uses the normal
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form method to predict resonant (periodic) responses within a harmonic balance framework. This
does not allow the complete dynamics close to certain multiple resonances to be explored, which
in general will include quasi-periodic and possibly chaotic motion.

3. Normal forms for second-order mechanical systems
One of the weaknesses of using the general normal form method for vibration problems, as in
Jezequel & Lamarque [7], is that this does not use the specific structure of the matrix A in (2.3). In
view of this, Neild & Wagg [8] produced an extension to the method that can be applied directly to
second-order differential equations of the form (1.1), preserving the decomposition into velocity
and position variables. We term this the second-order normal forms, referring to the order of the
differential equations rather than the level of accuracy achieved. As shown in §3c, this can lead
to more accurate predictions of resonant amplitudes. However, their method still relies on the
harmonic balance method and so one cannot appeal directly to the mathematical theory of normal
forms. The key contribution of this paper then is to show this second-order normal form method
can be re-derived in a similar spirit to the analysis of the previous section.

(a) Theoretical development
Consider a system of the form (1.1). We shall specifically treat the case where r(t) = eiΩt for some
fixed forcing frequency Ω , although the method is easily generalizable to quasi-periodic forcing.
The first step is to diagonalize the system as much as possible. To do this, we set x =Φq, where
Φ is a matrix of eigenvectors of M−1K, giving

q̈ +Λq + Nq(q, q̇) = −δ1D̂q̇ + δ2(P̂r(t) + c.c.), with: Λ= diag{ω2
1,ω2

2, . . . ω2
n},

and where D̂, P̂ and Nq are the transformed damping matrix, forcing vector and nonlinearity,
respectively, and ωi are the linear frequencies of the system. Here, we have introduced two small
parameters δ1 and δ2 which will play the role of unfolding parameters. Furthermore, we shall be
interested in the critical situation where there is a resonance between the forcing frequency and
one of the natural, undamped frequencies of the system, without loss of generality, ω1. That is, we
assume that Ω =ω1 + δ3, where δ3 is a third unfolding parameter. Finally, we suppose that there
are no other linear resonances when δ = (δ1, δ2, δ3) = 0; that is Ω �=ωi for i = 2, . . .n. Then, we can
perform a further linear change of variables to remove the non-resonant forcing terms by writing

q̈ +Λq +
∑

k

N(k)
q (q, q̇) = Pqr(t)

q = v + er−−−−−−−−→ v̈ +Λv +
∑

k

N(k)
v (v, v̇, r) = Pvr(t), (3.1)

where e1 = 0 and ek = Pk/(ω2
k −Ω2) so that the forcing term is in the first, resonant equation only.

Here, nonlinear terms have been expressed in monomial form.
We shall now use a tilde to represent an extended variable, so that ṽ ∈ C

n+4 is the vector (v, r, δ)
and write the complete system in the form

¨̃v + Λ̃ũ +
∑

k

Ñ(k)
v (ṽ, ˙̃v) = P̃vr(t), (3.2)

where the first n components of ¨̃v are given by the transformed equation in (3.1) and the last four
components by r̈ = −Ω2r and δ̈ = 0. Here, the first n components of Ñv ∈ C

n+4 are equal to the
nonlinearity Nv and the last four components are zero. Also,

Λ̃ ∈ C
n+4 × C

n+4 = diag{ω2
1,ω2

2, . . . ω2
n,Ω2, 0, 0, 0}. (3.3)

Note that forcing, damping and frequency mismatch are all now thought of as nonlinear terms,
because they contain terms that involve an unfolding parameter δi times a state variable u or r
or their derivatives, and we think of the δs as state variables too. Observe how the system (3.2)
looks remarkably similar to the unfolded first-order normal form (2.13) apart from the second

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 J

un
e 

20
24

 



9

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140404

.........................................................

derivatives on the left-hand side. This difference will be important when we try to compute the
normal form for such a system.

Now we focus on transforming the equations of motion to the form

¨̃v + Λ̃ũ +
∑

k

Ñ(k)
v (ṽ, ˙̃v) = P̃vr

ṽ = ũ +
∑

k
h̃

(k)
(ũ, ˙̃u, r)

−−−−−−−−−−−−−−−−−−→ ¨̃u + Λ̃ũ +
∑

k

Ñ(k)
u (ũ, ˙̃u, r) = P̃ur, (3.4)

where, as with ṽ, ũ = (u, r, δ). As before, we suppose that all non-resonant nonlinear terms have
been removed up to degree k − 1 using the transformation to remove terms at O(k). Eliminating
ṽ leads to the O(k) equation

Ñ(k)
u (ũ, ˙̃u) − Ñ(k)

v (ũ, ˙̃u) = Λ̃h̃
(k)

(ũ, ˙̃u) + d2

dt2 h̃
(k)

(ũ, ˙̃u). (3.5)

To proceed, we next complexify the system by writing

ui = ui + ūi, u̇i = iωi(ui − ūi) and r = r + r̄, (3.6)

where ui and ui are the ith elements in u and u, respectively, and the bar indicates the complex

conjugate. This results in 2n + 5 arguments for h̃
(k)

, Ñu and Ñv which we temporarily call z such
that z = (u, ū, r, r̄, δ1, δ2, δ3). As with the first-order case, we wish to write (3.5) in indicial form
and solve the corresponding homological equation. To do this, we again assume a particular
component for the pre- and post-transformed nonlinear terms and the transform term of

Ñ(k)
v,i,m̃k

2n+5∏
j=1

z
m̃j

j , Ñ(k)
u,i,m̃k

2n+5∏
j=1

z
m̃j

j and h̃(k)
i,m̃k

2n+5∏
j=1

z
m̃j

j , (3.7)

respectively. Here, we define the augmented vector m̃k of length 2n + 5, corresponding
to the 2n + 5 arguments, z, and may be written using the notation m̃ =
(m1, . . .mn, m−1, . . .m−n, mr, m−r, mδ1, mδ2, mδ3), with the jth element referred to as m̃j. Using

this indicial representation of the n + 4 element vectors Ñ(k)
v , Ñ(k)

u and h̃(k), (3.5) may be written in
homological form as

Ñ(k)
u,i,m̃k

2n+5∏
j=1

z
m̃j

j − Ñ(k)
v,i,m̃k

2n+5∏
j=1

z
m̃j

j = λ̃ih̃
(k)
i,m̃k

2n+5∏
j=1

z
m̃j

j + h̃(k)
i,m̃k

2n+5∑
l=1

∂

∂zl

⎛
⎝2n+5∑

l=1

∂

∂zl

⎛
⎝2n+5∏

j=1

z
m̃j

j

⎞
⎠ γlzl

⎞
⎠ γlzl

= h̃(k)
i,m̃k

⎛
⎜⎝λi +

⎡
⎣2n+5∑

j=1

m̃jγj

⎤
⎦

2
⎞
⎟⎠ 2n+5∏

j=1

z
m̃j

j . (3.8)

Here, λ̃i is the ith diagonal element in Λ̃, see (3.3), and żi = γizi such that γi is given by

γi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

iωi for: 1 ≤ i ≤ n,

−iωi−n for: n + 1 ≤ i ≤ 2n,

iΩ for: i = 2n + 1,

−iΩ for: i = 2n + 2,

0 for: 2n + 3 ≤ i ≤ 2n + 5.

(3.9)

By considering the form of Λ̃ and γi, equation (3.8) can be simplified to give for 1 ≤ i ≤ n

N(k)
u,i,m̃k

2n+5∏
j=1

z
m̃j

j − N(k)
v,i,m̃k

2n+5∏
j=1

z
m̃j

j = h(k)
i,m̃k

⎛
⎜⎝ω2

i −
⎡
⎣(mr − m−r)Ω +

n∑
j=1

(mj − m−j)ωj

⎤
⎦

2
⎞
⎟⎠ 2n+5∏

j=1

z
m̃j

j ,

(3.10)
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where, for these values of i, N(k)
v,i,m̃k

= Ñ(k)
v,i,m̃k

and we define N(k)
u,i,m̃k

= Ñ(k)
u,i,m̃k

and h(k)
u,i,m̃k

= h̃(k)
u,i,m̃k

.

For n + 1 ≤ i ≤ n + 4, Ñ(k)
v,i,m̃k

= 0, so we set Ñ(k)
u,i,m̃k

= h̃(k)
i,m̃k

= 0.

The homological equation can be inverted and solved for h(k)
i,m̃k

provided we avoid the resonant
terms for which

ω2
i =

⎡
⎣(mr − m−r)Ω +

n∑
j=1

(mj − m−j)ωj

⎤
⎦

2

. (3.11)

Note that mr or m−r = 1 with mδ,1 = 1 and i = 1 automatically leads to resonance because of the
fundamental resonance we have assumed between the forcing and natural frequency ω1; that is,
ω1 =Ω . But there will in general be other resonances; for example, whenever mi = m−i + 1 as with
the normal form of the Duffing equation. As we shall see in later examples, there can be further
internal resonances if kωi = lωj for some integers i, j, k and l.

(b) Practical implementation
Having shown in principle that a second-order version of the normal form can be derived for
structural vibration systems, we now turn to a practical implementation of it, as discussed in
detail in Neild & Wagg [8] and Neild [22]. This implementation avoids the need to explicitly
form the extended 2n + 5 dimensional state vectors. The key difference in this implementation is
that, rather than seeking a specific normal form, we seek to project the system onto a nonlinear
equivalent of normal modes, in a harmonic-balance-like approach. As we shall see this approach
relies on computation of exactly the same normal-form coefficients as in the previous subsection.
So, we specifically suppose that in the complexification step (3.6), we seek a solution of the form

ui = ui + ūi, with ui = (Ui e−iφi/2) eiωri ,

where ωri is the response frequency in the ith modal coordinate direction. Here, ωri is, in general,
a nonlinear function of the variables u that must be determined as part of the calculation. It
corresponds, for an unforced system to the nonlinear natural frequency for moderate amplitude
periodic orbits. This concept can be made precise using the Liapunov centre theorem ωri = 2π/T,
where T is the period for a given amplitude periodic orbit in the NNM invariant manifold (in the
sense of Shaw & Pierre [9]) tangent to the ωi eigenspaces. In the presence of forcing, the response
frequency of a resonant mode is taken to be ωri =Ω .

Now the analysis is the same as before using (3.2) and then the equivalent to (3.1), but without
using the extended states. The equivalent of the expression (3.5) for the k = 1 case reads

N(1)
v (u, u̇, r) + ḧ

(1)
(u, u̇, r) + Γ h(1)(u, u̇, r) = N(1)

u (u, u̇, r). (3.12)

Here, we have introduced diagonal matrix Γ with the ith diagonal element being ω2
ri. To first

approximation, k = 1, this equals Λ as ω2
ri ≈ω2

i . Making this substitution has no algebraic effect
on the lowest degree approximation to the normal form, but results in more accurate prediction
of the harmonics of the responses [23]. As a consequence, the k> 1 equations contain Γ −Λ

correction terms (although an acceptable approximation is normally achieved without evaluating
these equations).

As before, after complexification of the equations, we now seek to solve (3.12). This can be for
each of the terms in the O(k) nonlinearity N(k)

u . Now, instead of introducing multi-indices {i, mk},
we simply place all the combinations of states that exist in N(k) into vector u∗ (of length �) and
introduce coefficient matrices h∗, n∗ and n∗

u in C
n×�, so that

N(1)
v (u, u̇, r) = n∗u∗(u, ū, r, r̄), h(1)(u, u̇, r) = h∗u∗(u, ū, r, r̄)

and N(1)
u (u, u̇, r) = n∗

uu∗(u, ū, r, r̄).

⎫⎬
⎭ (3.13)
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This is an alternative to the arbitrary product notation used earlier, see (3.7) for the indicial form
of this. Using the new representation, (3.12) may be rewritten as

n∗
u − n∗ = h̃

∗
where, in indicial form: h̃∗

i,� = −β∗
i,�h

∗
i,�. (3.14)

Considering the indicial form, it can be shown that

β∗
i,� =

⎛
⎝[mr − m−r]Ω +

n∑
j=1

[(mj − m−j)ωrj]

⎞
⎠

2

− ω2
ri, (3.15)

where the form of the �th term in u∗ is given by

u∗
� = rmrrm−r

n∏
j=1

(umk
k ū

m−k
k ). (3.16)

Noting the minus sign in (3.14), introduced to maintain consistency of the definition of β∗ with
previous publications, (3.15) is exactly equivalent to (3.10). The appearance of ωri rather than ωi is
due to the introduction of Γ .

Considering the indicial version of (3.14), n∗
u,i,� + β∗

i,�h
∗
i,� = n∗

i,�, if β∗
i,� is zero, it is resonant and

must be retained in the post-transformed nonlinear vector, otherwise the nonlinear term can be
removed using the transform such that

if β∗
i,� = 0: n∗

u,i,� = n∗
i,�, h∗

i,� = 0 (a resonant term)

and otherwise: n∗
u,i,� = 0, h∗

i,� =
n∗

i,�

β∗
i,�

(a non-resonant term).

⎫⎪⎪⎬
⎪⎪⎭ (3.17)

Having identified h∗ and n∗
u, and hence h(1) and N(1)

u using (3.13), we can approximate the
transform and transformed dynamic equations to

v = u + h(1)(r, r̄, r), ü +Λũ + N(1)
u (r, r̄, r) = P̃ur. (3.18)

The approximation here is that we have used only the k = 1 terms, h(1) and N(1)
u rather than a

summation over all k as was used in (3.4). To refine these expressions, the higher k terms can be
included using a similar approach (e.g. [23]), however this is not normally necessary.

In the case of forced systems, when the forcing is close to resonance for all the modes, the
forcing transform (3.1) reduces to q = v and the nonlinear transform v → u remains the same
as the unforced case, this is discussed further in the example that follows. When non-resonant
forcing occurs in any mode then additional terms appear in u∗ due to the forcing transform—
for examples which include non-resonant forcing, see Wagg & Neild [24] and Neild & Wagg [8],
in which a two-mode forced system is assessed. Wagg & Neild [24] also contains a discussion
and comparison of the second-order normal forms alongside the harmonic balance, averaging
and multiple scales techniques for the vibration of a forced single mode system. The relationship
between the forced response and the NNMs of the unforced system is discussed in Hill et al. [25].

Two examples are now considered, the first is the Duffing oscillator which will be used to
compare results from the first-order, state-space, variant of the normal forms with the second-
order, oscillator equation, variant. Both responses will be considered using just the k = 1 terms.
This example will also be used to demonstrate the forced and damped case. The second example
considers the NNMs for a two-mode model of a cable under free vibration. Both the resonant and
the harmonic responses are calculated to yield the response frequencies and NNM mode-shapes.
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(c) Example: the Duffing equation
Let us consider the unforced, undamped Duffing equation

ẍ + ωnx + αx3 = 0. (3.19)

As this system has one degree-of-freedom x = x = q = v. Using the matrix formulation, we keep
the cubic term αx3, so that N(3)

v (u) = αu3
1. Using (3.13), n∗ and u∗ may be defined, then β∗ can be

calculated using (3.15) and from this the transformed nonlinear terms and the transform can be
found using (3.17). This gives

n∗ =

⎡
⎢⎢⎢⎣
α

3α
3α
α

⎤
⎥⎥⎥⎦

T

, u∗ =

⎡
⎢⎢⎢⎣

u3
1

u2
1ū1

u1ū
2
1

ū3
1

⎤
⎥⎥⎥⎦→ β∗ =ω2

r1

⎡
⎢⎢⎢⎣

8
0
0
8

⎤
⎥⎥⎥⎦

T

→ n∗
u =

⎡
⎢⎢⎢⎣

0
3α
3α
0

⎤
⎥⎥⎥⎦

T

, h∗ = α

8ω2
r1

⎡
⎢⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎥⎦

T

,

Using (3.1), (3.4) and (3.13) allows the transformed equation of motion along with the transform
to be written as

ü1 + ω2
n1u1 + 3α(u2

1ū1 + u1ū
2
1) = 0, x = q1 = u1 + α

8ω2
r1

(u3
1 + ū3

1),

respectively. As the response for the ith mode will just be at the resonant frequency ωri, we can
write the steady-state solution

ui = ui + ūi =
(

Ui

2
e−iφi

)
eiωrit +

(
Ui

2
eiφi

)
e−iωrit. (3.20)

Hence,

x = U1 cos(ωr1t) + α

32ω2
r1

U3
1 cos(3ωr1t), with: ω2

r1 =ω2
1 + 3α

4
U2

1, (3.21)

where we have defined t such that φ1 = 0. Note that as the harmonic terms were removed using
the near-identify transform, U1 conveniently represents the amplitude of the resonant response.

Considering the case where the system is damped and forced at a frequency close to resonance,
such that ẍ + 2ζωnẋ + ωnx + αx3 = R cos(Ωt), the forcing transform is q = u. As the forcing is near-
resonant, the response frequency is set as ωr1 =Ω and the near-identity transform is the same as
that derived above, it is unaffected by the introduction of the forcing or the damping (which can
be thought of as a resonant term). The resulting resonant dynamics and transform are

ü1 + 2ζωn1u1 + ω2
n1u1 + 3α(u2

1ū1 + u1ū
2
1) = R cos(Ωt) and x = q1 = u1 + α

8ω2
r1

(u3
1 + ū3

1),

respectively. Using the steady-state solution (3.20) and balancing the complex exponential terms
allows the amplitude relationship [(ω2

n −Ω2)U1 + (3α/4)U3
1]2 + [2ζωnΩU1]2 = R2 and phase

relationship tan(φ1) = 2ζωnΩ/(ω2
n −Ω2 + (3α/4)U2

1) to be found. Once U1 and φ1 have been
found for a given forcing, then the response, including harmonics, can be calculated using the
transform equation and (3.20).

The unforced solution can be compared with the solution derived using the first-order version
of the normal form technique in which the state-space, rather than oscillator, form of the equations
are used. Here, the first step is to rewrite the equation of motion in state-space form using x = (x, ẋ)
and then to apply a linear transform giving

ẋ =
[

0 1
−ω2 0

]
x +

[
0

−αx3
1

]
→ q̇ =

[
iω 0
0 −iω

]
q + iα

2ω

[
(q1 + q2)3

−(q1 + q2)3

]
,

where, as the system is written in first-order form, we have

x =
[

1 1
iωn −iωn

]
q.
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(b)
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Figure 2. Duffing oscillator example with ω= 1 and α = 0.5: (a) backbone curves and (b) forced response curves when
ζ = 0.01 and R= 0.1. The solid line shows the exact computation using AUTO; the dashed line shows the result of the
second-order normal form calculation; and the dashed-dotted line the result of the first-order normal form.

Applying the normal form transformation in a similar way to the second-order matrix
formulation, now using u = [u ū]T gives

x = U1

(
1 − 3αU2

1

16ω2
n1

)
cos(ωr1t) + α

32ω2
n1

U3
1 cos(3ωr1t), with: ωr1 =ωn1 + 3α

8ωn1
U2

1 (3.22)

[7,12]. Note that here U1 does not fully represent the amplitude of the resonant response. This
is because, when identifying the transform, only the eiωr1t terms are kept in the first equation of
motion in U with e−iωr1t terms being represented in the transform and vice versa for the second
equation of motion [8].

The response (or backbone) curves for both the second- and the first-order variants of
the normal forms, (3.21) and (3.22), respectively, are shown in figure 2a. For comparison, the
solution derived using numerical continuation, using AUTO [26], in which no assumptions are
made regarding the smallness of terms, is also shown. It can be seen that at low amplitudes,
corresponding to weaker nonlinear terms, there is good agreement in the prediction of the
response frequency, however as the amplitude increases the higher power terms become
significant, firstly for the first-order normal form approximation at about 0.6 and then also for
the second-order version at about 1.8. Figure 2b compares the second-order normal form and the
AUTO predictions of a forced response, again it can be seen that good agreement is achieved.

4. Application to nonlinear normal modes
We now consider how the application of normal forms to unforced, undamped second-order
differential equations can be used to calculate the NNMs of a system. Second-order normal forms
can be used to derive the backbone curves of a system via the resonant responses (e.g. Wagg &
Neild [24] or Hill et al. [27]). Here, we extend this to finding the NNM mode shapes, which
requires both the resonant response and also the harmonics captured in h. While the technique is
general, to facilitate the discussion we apply it to a well-known nonlinear system—the dynamics
of a taut cable. Specifically, we will consider the interactions between the first out-of- and in-plane
modes (we use mode to indicate the modes of the linearized system). In doing this, to calculate the
associated NNMs, we will derive the harmonics excited in all modes due to resonant responses in
the first out-of- and in-plane modes.

To examine the dynamics of a taut cable, we use the modal equations of motion derived
by Warnitchai et al. [28] and discussed in detail in Wagg & Neild [24], which accounts for
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gravitational sag and tension effects. The motion of the cable out-of- and in-plane (where in-plane
relates to the plane in which gravitational sag occurs) are represented as

v(x, t) =
∑

n
φn(x)yn(t) and w(x, t) = ws(x) +

∑
n
ψn(x)zn(t), (4.1)

where x is the distance from one of the supports and the other support is positioned at x = �. Here,
φn(x) and ψn(x) are the nth out-of- and in-plane linear mode shapes, respectively, yn(t) and zn(t)
represent the modal contributions for the nth modes and ws(x) captures the static sag in the cable
(noting that v and w are defined as zero on the chord line between the supports). The dynamics
for the nth out-of- and in-plane modes may be expressed as

ÿn + ω2
ynyn +

∑
k

νnk

m
yn(y2

k + z2
k) +

∑
k

2
βnk

m
ynzk = 0

and z̈n + ω2
znzn +

∑
k

νnk

m
zn(y2

k + z2
k) +

∑
k

2
βnk

m
znzk +

∑
k

βkn

m
(y2

k + z2
k ) = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.2)

respectively. Here, modal damping and external forcing terms have been removed from the
original derivation in line with investigating the backbone curves of the system. Parameters m,
βij and νij are given in Warnitchai et al. [28] and Gonzalez-Buelga et al. [29], but importantly βij is
zero for even j. The natural frequencies of the out-of-plane modes are proportional to the mode
number n, and for even n, natural frequencies for the in-plane modes match those of the out-of-
plane ones. For odd n, the in-plane natural frequencies are slightly higher than the out-of-plane
ones, again see [28,29]. The in-plane axis is defined as positive down, and so gravitational sag
is positive.

Gonzalez-Buelga et al. [29] considered these equations in terms of internal resonance showing
that 1 : 1 resonance occurs between the second out-of- and in-plane modes and Macdonald et al.
[30] generalized this for the nth out-of- and in-plane modes. In addition, they both show that 2 : 1
resonance can occur, but only for the case where the cable is inclined. Hill et al. [27] identified
the backbone curves when the system is reduced to the first out-of- and in-plane modes. Here,
we build on this work by deriving algebraic expressions for the NNMs associated with these
backbone curves, which requires not only the resonant responses of the two modes but also the
harmonic response in all modes. To do this, we first calculate the backbone curves along with
expressions that capture the harmonics contained in the response. These are then used to find the
NNMs in terms of just the two first modes and finally the additional modal contribution due to
harmonics in other modes is added to give the full NNM expressions.

(a) Resonant equation of motion and harmonic response
Letting q = (y1 z1)T the modal equation of motion for the reduced two-mode model may be
written in the form q̈ +Λq + Nq(q) = 0, an unforced version of the left-hand expression in (3.1),
where

q =
(

q1
q2

)
, Λ =

[
ccω2

y1 0
0 ω2

z1

]
and N(1)

q =

⎛
⎜⎜⎝

c
(ν11

m

)
(q3

1 + q1q2
2) + 2

(
β11

m

)
(q1q2)(ν11

m

)
(q3

2 + q2
1q2) +

(
β11

m

)
(q2

1 + 3q2
2)

⎞
⎟⎟⎠ .

Here, taking Nq(q) =∑
k N(k)

q (q), all the nonlinear terms have been placed in N(1)
q . As there is

no forcing, v = q and so N(1)
v (v) = N(1)

q (q). To calculate the nonlinear transform, see (3.4), N(1)
v (u)

is considered. Rewriting this nonlinear vector in terms of u, where, for the kth coordinate uk =
uk + ūk, gives

N(1)
v (u) = ν11

m

⎛
⎝(u1 + ū1)3 + (u1 + ū1)(u2 + ū2)2

(u2 + ū2)3 + (u1 + ū1)2(u2 + ū2)

⎞
⎠ + β11

m

⎛
⎝ 2(u1 + ū1)(u2 + ū2)

(u1 + ū1)2 + 3(u2 + ū2)2

⎞
⎠ .
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This can now be expressed in matrix form n∗
vu∗(u, ū, r, r̄), see (3.13) along with (3.6), and the matrix

β∗ can be derived using (3.15), where it can be assumed that, due to the closeness of the natural
frequencies, we can write the response frequencies as ωr1 =ωr2. Using (3.17), the nonlinear vector
in the transformed equation of motion and the transformation vector can be written as

N(1)
u = ν11

m

⎛
⎝3u1ū1u1 + 2u2ū2u1 + u1ū

2
2 + ū1u

2
2

3u2ū2u2 + 2u1ū1u2 + u2
1ū2 + ū2

1u2

⎞
⎠ (4.3)

and

h(1) = ν11

8mω2
r1

⎛
⎝u3

1 + ū3
1 + u1u

2
2 + ū1ū

2
2

u3
2 + ū3

2 + u2
1u2 + ū2

1ū2

⎞
⎠ + β11

3mω2
r1

⎛
⎝ 2(u1u2 + ū1ū2) − 6(u1ū2 + ū1u2)

u2
1 + ū2

1 + 3(u2
2 + ū2

2) − 6u1ū1 − 18u2ū2

⎞
⎠ ,

(4.4)

respectively. The modal response of the system can now be written as q = v = u + h(1), where h(1)

captures the harmonic content of the response.
Using the steady-state solution (3.20), the transformed equations of motion, ü +Λu + N(1)

u = 0,
can be written as {

ω2
y1 − ω2

r1 + ν11

4m
[3U2

1 + (2 + p)U2
2]
}

U1 = 0 (4.5)

and {
ω2

z1 − ω2
r1 + ν11

4m
[(2 + p)U2

1 + 3U2
2]
}

U2 = 0, (4.6)

where p = cos(2(φ1 − φ2)) with the condition sin(2(φ1 − φ2)) = 0 to ensure (4.3) is real. This allows
possible solutions p = ±1. It can be shown that only p = −1 gives physically meaningful solutions
(as ωz1 �=ωy1) which means that when both linear modes are present, they are ±90◦ out-of-phase,
see Hill et al. [27] for a more detailed discussion of this.

(b) Backbone curves and modal response
Taking the physically meaningful p = −1 case, there are two semi-trivial solutions for (4.5) and
(4.6) in which only one of the two linear modes is resonant

S1 : ω2
r1 =ω2

y1 + 3ν11

4m
U2

1, U2 = 0 (4.7)

and

S2 : ω2
r1 =ω2

z1 + 3ν11

4m
U2

2, U1 = 0, (4.8)

and two further solutions exist in which both linear modes are resonant

S3± : ω2
r1 =ω2

y1 + ν11

4m
(3U2

1 + U2
2), U2

2 = U2
1 − 2m

ν11
(ω2

z1 − ω2
y1). (4.9)

As ωz1 >ωy1, it can be seen that valid solutions for S3 only exist if U1 ≥ 2m(ω2
z1 − ω2

y1)/ν11. The

point at which U1 = 2m(ω2
z1 − ω2

y1)/ν11 results in U2 = 0 and lies on backbone curve S1, see (4.8).
Hence these S3 solutions (there are two solutions relating to the relative phase of the two linear
modes being ±90◦, solutions S3±) are branches from S1 following a bifurcation at U2 = 0. This
bifurcation from the S1 solution is shown in figure 3 using the parameters defined in Gonzalez-
Buelga et al. [29]. Note that the S3± backbone curves lie on top of each other in this projection.
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Figure 3. Backbone curves S1 and S3± for a cable with inset panels showing the motion in projection q1 = y1 versus q2 = z1.
The inset panel for the response near the bifurcation contains two responses; the response line (a) corresponding to a point on
S1s just below the bifurcation and the response loop (b) corresponding to a point on S3+ just above the bifurcation. Subscripts
s and u indicate that backbone curve S1 is stable below and unstable above the bifurcation.

Using the transform equation, q = v = u + h(1), and the steady-state solution (3.20) gives the
response of the modal coordinates

y1 = U1 cos(ωr1t) + ν11

32mω2
r1

U1(U2
1 − U2

2) cos(3ωr1t)

+ β11

3mω2
r1

U1U2 sin(2ωr1t)

and z1 = U2 sin(ωr1t) + ν11

32mω2
r1

U2(U2
1 − U2

2) sin(3ωr1t)

+ β11

6mω2
r1

(U2
1 − 3U2

2) cos(2ωr1t) − β11

2mω2
r1

(U2
1 + 3U2

2),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

when the phase difference is φ2 − φ1 = 90◦ and φ1 has been set to zero.
The S2 solution consists of purely in-plane resonant motion as U1 = 0. In this case, the

response given by (4.10) reduces to purely in-plane motion. Harmonics exist in this motion
including a static displacement which, as it is negative, reduces the apparent sag of the cable
during resonance. For the S1 solution, which is resonant purely in the out-of-plane direction as
U2 = 0, there are also harmonic components in the out-of-plane response. In addition, there is an
amplitude-dependent in-plane non-resonant response. For the S1 solution example of the motion
of the mid-span of the cable (where the mode shapes are unity) in the y1 versus z1 plane are shown
as in figure 3 as inset plots. Note that in contrast to Hill et al. [27], these inset panels include the
harmonic components as well as the resonant ones. Examples of the more complex motion of the
S3 solution, in which there is 90◦ out-of-phase resonant motion in both planes, are also shown in
figure 3. Here, it can be seen that away from the bifurcation (indicated with a dot), the cable is

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 J

un
e 

20
24

 



17

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140404

.........................................................

whirling in a near elliptical shape—it would be exactly circular if ωy1 =ωz1, albeit offset from the
origin in the vertical direction.

These inset panels show the motion at the mid-span assuming that the harmonics of the cable
response are limited to the first out-of- and in-plane modes. Once additional harmonics from
other modes are included in the response, the full NNM response can be derived. This is done in
§4c for the NNMs that contain resonant responses solely in either or in both the first out-of- or
in-plane modes.

(c) Additional modal contributions
In the previous analysis, only the first out-of- and in-plane modes have been considered. It has
been shown that in-plane motion is present throughout (figure 3), even for the S1 solution, where
there is no resonant in-plane response, but there are twice- and zero-frequency components.
By inspection of (4.2), it can be seen that this is due to the term β11y2

1/m that arises from the∑
k(βkn/m)(y2

k + z2
k) term which is due to the variation in tension in the cable during oscillations.

For the S1 solution, where the first in-plane mode is non-resonant, this term may loosely be
thought of as a non-resonant ‘forcing’ of the in-plane mode giving rise to twice- and zero-
frequency response components—being non-resonant components they appear in h(1), (4.4), as
β11(u2

1 + ū2
1 − 6u1ū1)/(3mω2

r1).
We now assess whether non-resonant response terms can occur in higher modes of the cable

due to the resonant response of the first out-of- and in-plane modes. For the nth out-of-plane
mode, all the terms in the equation of motion (4.2) are multiples of yn, hence there can only be a
response if the mode is resonant. For the in-plane modes, a response is possible due to the βn1(y2

1 +
z2

1)/m terms from the summation
∑

k(βkn/m)(y2
k + z2

k). These terms can result in a non-zero h(1),
even with zero resonant response in the nth in-plane mode, that is captured by

non-resonant nth

in-plane mode

}
h(1)

non-res = βn1

3mω2
r1

[u2
1 + ū2

1 + u2
2 + ū2

2 − 6(u1ū1 + u2ū2)], (4.11)

following the same approach as was used to calculate (4.4) and then setting un = 0. Applying
the resonant response solution for the first in- and out-of-plane modes using (3.20), noting that
β1n = β11/n for odd n and zero for even n, and applying the phase condition that φ2 − φ1 = 90◦,
and φ1 = 0, gives the response for the nth in-plane mode

zn =

⎧⎪⎪⎨
⎪⎪⎩

− β11

2n(4 − n2)mω2
r1

U2
1 cos(2ωr1t) − β11

2n3mω2
r1

U2
1 odd n with n> 1

0 even n

. (4.12)

Here, we have noted that, when n> 1, zn = h(1)
non-res if only the resonant response of the first-in-

and out-of-plane modes are considered.

(d) Nonlinear normal modes
These modal contributions can be added to those from the first-in- and out-of-plane modes, (4.10).
Using (4.1), along with the mode shapes, the NNMs can be identified in terms of the lateral
displacement v(x, y) and the vertical displacement w(x, y). By approximating the in-plane modes
as sinusoidal, an acceptable approximation if the cable is taut [24], the response may be written
in terms of amplitude of the resonant responses U1 and U2 as

v(x, t) = sin
(πx
�

)[
U1 cos(ωr1t) + ν11

32mω2
r1

U1(U2
1 − U2

2) cos(3ωr1t) + β11

3mω2
r1

U1U2 sin(2ωr1t)

]
,

(4.13)
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in the out-of-plane direction and

w(x, t) = ws(x) + sin
(πx
�

)

×
[

U2 sin(ωr1t) + ν11

32mω2
r1

U2(U2
1 − U2

2) sin(3ωr1t) − β11

3mω2
r1

U2
2 cos(2ωr1t) − β11

mω2
r1

U2
2

]

− β11

2mω2
r1

(U2
1 − U2

2) cos(2ωr1t)
∞∑

n̄=1

1
(2n̄ − 1)(4 − (2n̄ − 1)2)

sin
(

(2n̄ − 1)
πx
�

)

− β11

2mω2
r1

(U2
1 + U2

2)
∞∑

n̄=1

1
(2n̄ − 1)3 sin

(
(2n̄ − 1)

πx
�

)
, (4.14)

in the in-plane direction. These expressions along with the response frequency and resonant
amplitude relationships, (4.7), (4.8) and (4.9), define the NNMs.

In the out-of-plane direction, the NNM mode shape is straightforward, a half sine wave
matching the linear mode shape; however, the response contains not only the response frequency
but also harmonics. In the in-plane direction, the NNM is more complex with modal components
from all the odd in-plane modes. This expression can be significantly simplified using the Fourier
series expansions

∞∑
n̄=1

1
(2n̄ − 1)(4 − (2n̄ − 1)2)

sin
(

(2n̄ − 1)
πx
�

)
= π

8
sin2

(πx
�

)
,

∞∑
n̄=1

1
(2n̄ − 1)3 sin

(
(2n̄ − 1)

πx
�

)
= π3

8�2 (x�− x2),

such that

w(x, t) = ws(x) + sin
(πx
�

)

×
[

U2 sin(ωr1t) + ν11

32mω2
r1

U2(U2
1 − U2

2) sin(3ωr1t) − β11

3mω2
r1

U2
2 cos(2ωr1t) − β11

mω2
r1

U2
2

]

− β11π

16mω2
r1

(U2
1 − U2

2) cos(2ωr1t) sin2
(πx
�

)
− β11π

3

16mω2
r1

(U2
1 + U2

2)
[

x
�

−
(x
�

)2
]

. (4.15)

It is, perhaps, interesting to note that the last term, which is not a function of time, takes the same
shape along the cable as the static sag (ws(x) ∝ (�x − x2) from [24]). It can therefore be seen as
reducing the sag effect due to the increased average dynamic tension in the cable as it oscillates.
The in-plane NNM response, at the level of accuracy of the normal form transformation, therefore
consists of the linear mode shape oscillating at three frequencies along with a dynamically
corrected static sag and a further term in the shape of the square of the linear mode shape. Due to
this final term, the shape of the NNM in the in-plane direction is dependent on the amplitudes of
the resonant responses in the first-in- and out-of-plane modes and varies over each oscillation.

To examine these NNMs, first consider the S1 solution, in which U2 = 0. Figure 4 shows the
trajectory of the mid-span deflections v(�/2, t) and w(�/2, t) for a range of values of U1 up to
the bifurcation amplitude in the y versus −z (to account for the fact that z is defined positive
downwards) plane using (4.13) and (4.15). For each trajectory, the resonant frequency is different,
as shown in figure 3. The dashed line represents the maxima of the trajectories and corresponds
to the initial deflection points from which, provided the initial shape is imposed, the system can
be released into the pure S1 NNM. This initial shape is a half sine wave out-of-plane regardless
of the amplitude of U1 but is a more complex weakly amplitude-dependent shape in-plane. Note
that the in-plane deflection plotted here includes static sag—the value of which corresponds to
the minimum of the dashed line where the initial out-of-plane deflection is zero. Any deflection
along the NNM from this point results in the cable oscillating above the static sag position. For the
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Figure 4. Trajectory of mid-span deflections for a range of U1 values on the S1 solution up to the bifurcation amplitude (solid
lines) and the locus of points fromwhich a stationary cable can be released onto a pure S1 solution provided the deflected shape
along the length of the cable is appropriate (dashed line).
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Figure 5. Trajectory of the cable for the S3 solution (a) at the bifurcation point and for aU1 amplitude (b) 0.1%and (c) 1%greater
than that at which the bifurcation occurs. Vertical deflections are plotted relative to the static sag shape. Green lines show cable
locations at quarter time period points, magenta lines shown the eighth-span traces of the cable for all time, the red line shown
the sag shape and the blue line the chord between the two supports.

S2 solution, as U1 = 0, the motion is confined to the vertical plane such that both the trajectories
and the initial deflection points would lie on the vertical axis in the figure.

Considering the S3± solution, figure 5 shows the full cable response in space when U1 is (a)
at the bifurcation point and (b) at 0.1% greater than and (c) 1% greater than the amplitude at
which the bifurcation occurs. Here, the vertical displacements are plotted relative to the static sag
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and hence the sag equilibrium is the straight (red) line between the supports. The cable location
is shown at quarter time-period spacing as thick (green) curves and the trace of the cable over
all time at eighth-span locations are shown as thin (magenta) loops. The initial transition into
whirling, panel (b), is a solution that closely envelops the pre-whirling response, panel (a), as is
suggested by the responses (a) and (b) in figure 3. Figure 5a,b also shows that the motion over all
time occurs above the sag location. This is perhaps contrary to the expectation that whirling is
initiated when the vertical momentum becomes sufficient for the cable to wrap around the zero
deflection point rather like a pendulum going ‘over the top’ as it undergoes a transition from
swinging to rotating motion. Instead, the initial whirling motion, panel (b), envelops the pre-
whirling solution, and then rapidly becomes a near-elliptical orbit that encircles the sag equilibria
as can be seen in panel (c).

5. Concluding remarks
The purpose of this paper has been to review the method of normal forms in the context
of second-order mechanical vibration problems, to demonstrate its power, and to show how
recent developments fit with the historical account of the subject. To this end, the main novel
contribution is the re-derivation of the second-order normal form technique using the general
theory (§3). This shows that, provided forcing and damping are considered to be weak, then
forced-damped systems can be treated in a mathematically consistent way. Moreover, this
treatment provides insight into the region of validity of the method. Frequency detuning, forcing
amplitude and damping coefficients can be treated as unfolding terms of the same order of
magnitude as the nonlinear terms. While this assumption of weak forcing and damping may
appear restrictive, for smooth nonlinear systems close to resonance, one is usually dealing with
internal forces generated from structural stiffnesses that are much larger than excitation and
damping forces.

Other novelties of this work include a re-derivation of the homological equation (3.11) without
reference to harmonic balance or an artificial book-keeping parameter ε as was used in Neild &
Wagg [22]. Also, we have applied the method to the computation of the NNMs of a multiple-
degree-of-freedom model of a cable close to the resonance between in-phase and out-of-phase
fundamental modes. This has enabled a general expression for the responses, (4.13) and (4.15),
including contributions from arbitrarily many higher order modes to be derived. These fully
parametrized expressions have enabled us to draw novel insight into the mechanism of transition
from planar to whirling solutions in the problem.

As discussed elsewhere, the second-order normal form method keeps the transform
physically relevant. It could be argued that the concept of the normal form is the natural
generalization of linear modal analysis for finite degree of freedom systems. Linear modal
analysis essentially identifies eigenvectors and their associated natural frequencies and damping
constants. In addition, the normal form identifies the key nonlinear terms that must be included
for a complete description of the dynamics. Normal form analysis can be compared to other
methods for providing approximate solutions to weakly nonlinear vibration problems. There
are a wide class of perturbation methods; averaging, harmonic balance, multiple scales, etc.
(e.g. [31] or [32]). These have been applied successfully by many authors to produce approximate
solutions close to many different types of resonance. While the methods often give the same
algebraic solutions, for example for the prediction of backbone curves in the absence of forcing
and damping, it is often hard to predict the region of validity of the analysis, and they tend not
to explain the full dynamics including harmonics. The normal form is philosophically different;
the method works not by looking for specific kinds of solution, but by providing sequences of
approximations to the equations of motion themselves. Thus, one still has access to the complete
dynamics. Moreover, the method is algorithmic and can readily be carried out computationally.

It is also useful to compare normal form analysis with direct calculation of NNMs.
Our application to cable dynamics in §4 has shown that the normal form provides a natural
way to compute local (i.e. weak amplitude) approximations to NNMs in undamped systems.
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However, as argued in the caption to figure 1, NNMs are not uniquely defined in the presence of
damping, which provides both conceptual and computational problems. For example, in a recent
paper by Renson et al. [33], a finite-element method was proposed for computing NNMs directly.
In example 5.2 of that paper, a large-amplitude approximation to a NNM is computed under
two different assumptions on the magnitude of damping for a two-degree-of-freedom nonlinear
oscillator. Not only is it found that the NNM shape depends strongly on the damping coefficient,
but the NNM is only computed for the most strongly damped mode; it is not uniquely defined
for the other mode. Unfortunately, in reality, the least damped mode is the one that is most likely
to be excited in practice.

By contrast, the normal form method is not limited by restriction to the most heavily damped
mode. Indeed, normal form methods are routinely used in conjunction with Melnikov’s method
where the forcing and damping terms play the role of unfolding parameters. This enables the
complete dynamics (not just that restricted to putative NNMs) to be studied in the neighbourhood
of a resonance (e.g. [34]). Furthermore, in this paper, it has been shown that damping and forcing
can naturally be included as unfolding parameters in the second-order normal form. Examples
of the second-order normal form method applied to forced and damped vibration problems were
presented in Wagg & Neild [24].

Finally, we note that the second-order normal form method is naturally generalizable to higher
degrees of freedom, and to cases of multi-frequency excitation, parametric resonance and multiple
or internal resonances. These will simply result in different detuning parameters δ in the notation
of §3a. An exploration of such cases is left for future work, as is application of the method to
systems of higher degrees of freedom using computational methods.
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