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Abstract: Locating and identifying viruses in in-vitro optical measurements is desirable for disease control; 
however, the sub-diffraction-limit dimensions and low refractive index contrast of viruses make this challenging. 
Here, we introduce a 3D positional nanometrology for a virus-like 100 nm polystyrene sphere, that can reveal the 
position of the nanoparticle with deeply sub-wavelength accuracy using topologically structured light illumination 
and machine learning. Scattering of topologically structured light is highly sensitive to the position of a nano-
object. Exploiting this, our experiments demonstrate deeply sub-wavelength (λ) precision reaching 5 nm (λ/91). 
Our findings indicate a route towards label-free in-vitro nanometrology of viruses and similar nano-objects with 
precision far beyond the Abbe-Rayleigh diffraction limit. 

 

In optical nanoimaging and metrology applications, the acquisition of accurate object information—
morphology, size, and position—beyond the Abbe-Rayleigh diffraction limit of conventional microscopy remains 
a long-standing barrier to overcome. In the last ten years, there has been a remarkable enhancement in the spatial 
resolution of far-field optical imaging and metrology, surpassing the conventional ~λ/2 limit, where λ represents 
the wavelength of light. Today, a multitude of advanced techniques, including fluorescent and structured-
illumination-based methodologies, both deterministic and stochastic, as well as single-molecule localization 
microscopies, have become standard in biological imaging. These techniques consistently achieve resolutions of 
a few tens of nanometers, or better than λ/10 1-4. One of the most challenging tasks in bioimaging is to observe 
viruses since they are small and have low refractive index contrast with their surroundings to be seen in a 
conventional optical microscope. Viruses can be imaged with atomic-force microscopy (AFM) and cryo-electron 
microscopy (cryo-EM), but AFM is slow and invasive while cryo-EM is invasive and only reconstructs samples 
in matrices at low temperatures 5-7. The localization of viruses is crucial for disease control: How a virus settles 
and persists on surfaces of different types of materials is key information for the development of disease control 
strategies and monitoring of anti-microbial agents 8. 

Topologically structured light fields, in particular super-oscillatory illumination, generated through 
multi-wave interference by purposely designed intensity and phase masks, can contain highly localized intensity 
hotspots, phase singularities, zones of energy backflow and high phase gradients at dimensional scales orders of 
magnitude smaller than the wavelength of light 9-11. Recently such fields have resolved the position of a 
macroscopic object—a nanowire—with subatomic precision 12. Such super-oscillatory illumination fields also 
have been used in label-free biological tissue and nanoparticle imaging applications 9-11, where the resolution 
improvement does not depend on the intensity of the illuminating laser in contrast to luminescence-based 
techniques, meaning that living cells can be imaged in real-time with minimal perturbation. Such investigations 
suggest that interaction with rapid spatial variations of topological fields will enable in-vitro metrology of viruses 
at the nanometer scale. 

In recent years, artificial intelligence and deep learning have shown superiority over some task-specific 
algorithms in various applications. More specifically, deep learning based on artificial neural network training has 
considerably improved precision in image segmentation 13-15, face recognition 16-18, object detection 19, 20, and 
dimension prediction 21, 22. 

Here, we show that topological light fields—specifically super-oscillatory fields—can be used to 
precisely measure the three-dimensional position of a subwavelength dielectric nanoparticle, with a similar size 
and refractive index of a typical influenza virus 23, achieved by a deep learning-enabled analysis of the particle’s 
scattering intensity patterns. We demonstrate nanometer-level positional measurement precision, which reaches 
λ/91 and significantly exceeds the diffraction limit (~λ/2). 
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The principle of the proposed nanometrology scheme is shown in Fig. 1, where a pair of spatial light 
modulators 24, 25 is used to create a topologically structured super-oscillatory field (Fig. 1a, d), enabling us to 
control, optimize the hotspot, and scan across the nanoparticle. The phase profile of such a field (Fig. 1a) has 
singularities (indicated by circles) which can interact with a virus-like nanoparticle (drawn as a gray virus) 
resulting in changes of the transmission scattering pattern. A deep learning process with a neural network trained 
on a-priori known positions of a nanoparticle is used to analyze scattering patterns for the determination of 
unknown positions of the nanoparticle. 

We demonstrate, both in experiments and simulations, 3D positional measurements for a 100 nm 
spherical polystyrene particle—resembling, by size and refractive index, an influenza virus 23. The sample is 
prepared by drop-casting polystyrene particles with a diameter of 100 nm onto a glass substrate. An isolated 
particle is then located by scanning electron microscopy, as shown in Fig. 1c. We utilize a pair of spatial light 
modulators (Meadowlark P512) to convert the Gaussian, y-polarized input laser beam at wavelength λ = 488 nm 
into the balanced superposition of two circular prolate spheroidal wavefunctions (S1 and S2) to achieve a super-
oscillatory hotspot (𝐸(𝑟/𝜆) = 0.1206 S1 (𝑟/𝜆) + S2 (𝑟/𝜆), where 𝑟 is radial distance from the beam axis, following 
references 9, 26) with a field of view of λ and a full width at half maximum of 0.42λ, as shown in Fig. 1d. The 
experimental setup is illustrated in Fig. 1b, where the virus-like nanoparticle is illuminated by the super-oscillatory 
light and the scattered light is collected in transmission via a pair of 100×, NA = 0.9 microscope objectives (L1 
and L2). The nanoparticle sample mounted on a piezoelectric translation stage is scanned relative to the super-
oscillatory hotspot over a 400 (~0.82λ) × 400 × 400 nm3 volume with an interval of 20 nm, acquiring 9261 
diffraction images with a 16-bit camera at the height of 1.6 μm relative to the hotspot plane. 

 

Fig. 1: (a) The cross-sectional phase profile (φ(Ey)) of a super-oscillatory, topologically structured, coherent 
optical field. Singularities are indicated by circles (black/white for anticlockwise increasing/decreasing phase). 
A virus particle depiction, to scale, is overlaid. (b) Experimental setup schematic for positional nanometrology 
as reported here. The virus-like nanoparticle is illuminated by super-oscillatory light, and its diffraction pattern 

is recorded at the distance of 1.6 µm from the plane of the super-oscillatory hotspot. (c) SEM of a virus-like 
nanoparticle with a diameter of 100 nm indicated by a red dotted circle. (d) Super-oscillatory intensity 

distribution in the plane of the super-oscillatory hotspot. 

Deep learning, based on linear regression followed by nonlinear activation functions, uses a hierarchy of 
training layers between the input and the output. Each training layer transforms the output of the previous layer 
into more abstract representations which are ultimately aggregated in the output layer to achieve the prediction. 
In general, learning more complex features requires more layers. However, the training accuracy saturates and 
then degrades rapidly with increasing depth in plain networks 27, 28. To avoid such a problem, we adopt a deep 
residual network, with the advantages of easier optimization and considerably more accuracy from deeper layers, 
in training and predicting the 3D positions of the nanoparticle from scattering patterns. The approach involves 
explicitly redefining the layers as learning residual functions based on the layer inputs, rather than learning 
functions without any references 27, 28. 
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Here, we use a 34-layer residual network (ResNet34), with the same architecture as in reference 27. The 
first convolutional layer is a 7×7 kernel convolutional layer with 64 output channels with a stride of 2 followed 
by a 3×3 max pooling layer with a stride of 2. It is further structured into 4 stages with different numbers of 
residual blocks – specifically 3, 4, 6, and 3 blocks, sequentially. Within these stages, each block contains multiple 
residual units, and each unit consists of 3 convolutional layers, culminating in an identity connection (shortcut 
connection) that bypasses one or more layers, helping preserve information flow and alleviating the vanishing 
gradient problem. The activation function employed throughout the network is the rectified linear unit (ReLU), 
except for the final operation within each block. The learned features on the final residual layer are extracted by 
an average pooling layer, followed by a 512 fully connected layer and 3 output neurons layer, where the output 
neurons retrieve the x, y and z coordinates of the nanoparticle respectively. The network is trained using the Adam 
stochastic optimization method 29, and the neural network is optimized by minimizing the mean absolute error 
loss function. 

From the full library of 9261 diffraction images of a virus-like nanoparticle, 7408 images (80%) are 
selected at random for the training of the neural network, 926 (10%) images as the validation dataset, and 927 
(10%) images for testing—i.e., retrieving unknown 3D positions of the nanoparticle via the pre-trained network. 
After completion of the training using 7408 scattering patterns of the nanoparticle with a-priori known positions, 
the network is ready for predicting the unknown 3D positions. To learn the data without overfitting and guided by 
the training and validation loss, we repeat the training process 500 times, using a random training order of images 
with each time. 

To illustrate the significance of the super-oscillatory field in such optical metrology, we compare the 
measuring error under two different illuminations, i.e., super-oscillatory and tightly focused Gaussian 
illuminations. Figure 2 demonstrates the discrepancy between optically measured and ground-truth positions of 
the nanoparticle in experiments with super-oscillatory illumination (Fig. 2a) and tightly focused Gaussian 
illumination (Fig. 2b). Here, 927 measurements are completed, and each dot represents the 3D absolute error 
between predicted and actual position for one testing measurement, calculated by: ∆𝑖= |𝑅𝑖 − 𝑇𝑖| (1) 
where i is x, y, or z. Ri denotes the retrieved 3D coordinate value offered by the neural network and Ti is the true 
position of the nanoparticle. In the experiment, the displacement of the piezoelectric stage loaded with the sample 
is used to record the true position of the nanoparticle. The input for the neural network is the scattered light pattern 
collected by the camera with a field of view of 6.3 μm and 12.6 nm effective pixel size. To quantify the precision 
of this optical metrology, we calculate the standard deviation σi between retrieved and actual positions according 
to: 

𝜎𝑖 = √∑ (∆𝑖)2𝑗=927𝑗=1927 (2) 
where i is x, y, or z and j refers to measurements from the 1st to the 927th. With super-oscillatory illumination, 
we experimentally achieve measurement standard deviations of 7.4 nm (λ/66) and 5.3 nm (λ/91) in the x and y 
directions respectively, and 17.6 nm (λ/28) in the light propagating direction z (Fig. 2a). That measuring precision 
in the x-y plane is superior to that in the light propagating direction is attributed to larger mechanical noise of the 
piezoelectric translation stage due to environmental instability in the light propagation direction than in the lateral 
directions. 

In addition to the assistance of the neural network, the precision of positional measurement of the 
nanoparticle indeed benefits from the introduction of topologically structured light. Here, using the same 
nanoparticle, we also experimentally compare to the case of Gaussian illumination with the same wavelength and 
a full width at half maximum of λ (same size as the field of view of the hotspot in the case of the super-oscillatory 
illumination), shown in Fig. 2b. In all directions, the measurement precision is inferior to that with super-
oscillatory illumination. For Gaussian illumination, the standard deviations are 24.9 nm (λ/20), 10.2 nm (λ/48), 
and 45.2 nm (λ/11) along the x, y, and z-axis respectively.  In conclusion, our results indicate that the interaction 
of a sub-wavelength-size particle with rapid spatial variations of topologically structured light pushes positional 
nanometrology further beyond the diffraction limit. 
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Fig. 2: Absolute errors of 3D positions of the virus-like nanoparticle measured with (a) super-oscillatory and (b) 
Gaussian illumination. Each dot indicates the absolute difference between the predicted and ground-truth 

positions of the nanoparticle. The incident light propagates along the z-axis. 

For optical metrology as presented here, a sufficient field of view of the diffraction images is essential 
to include the necessary information concerning the object under assessment, playing a critical role in ensuring 
measuring precision. However, images with a large field of view necessitate the use of high-performance camera 
for image capture and substantial computational resources for neural network training. In metrology methods, 
utilizing images with a restricted field of view frequently results in compromised precision. Figure 3 shows the 
dependence of metrological precision on the field of view of training images in our setup, where there is a gradual 
enhancement in measuring precision (i.e., σx, σy, and σz from 0.0574λ, 0.0301λ, and 0.1155λ to 0.0152λ, 0.0109λ, 
and 0.0362λ) as the field of view of images expands from 1.26 μm to 6.3 μm (i.e., from left to right). Notably, 
even training images with the smallest field of view of only 1.26 μm are sufficient to achieve 0.1155λ positional 
measuring precision, which is still far beyond the Abbe–Rayleigh diffraction limit. 

 

Fig. 3: Dependence of metrological precision on the field of view of training images, where the squares, dots, 
and triangles denote the positional measuring precision in the x, y, and z directions respectively. 

To explore the limits of achievable precision and to gain insight into experimental limitations discussed 
above, we conduct numerical modelling, which avoids any mechanical drift and environmental instability and 
mimics the experiment under a number of idealized assumptions. We acquire 9261 numerical diffraction images 
with the same 6.3 μm field of view as in the experiment and subsequently split them at random as training (7408 
images, 80%), validation (926 images, 10%), and testing (927 images, 10%) datasets for the same neural network 
processing. After training with the computed intensity patterns scattered by the polystyrene particle, the above 
constructed neural network was ready to retrieve unknown positional information about this particle. As 
demonstrated in Fig. 4b, the retrieved precisions in all three directions in the simulation are significantly improved 
compared with the experimental results, the standard deviations are 6.4 nm (λ/76), 4.9 nm (λ/100), and 1.5 nm 
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(λ/325) along the x, y, and z-axis respectively. Our simulations indicate that a hypothetical ideal experiment that 
is not affected by environmental effects and instabilities could achieve a considerable improvement of measuring 
precision compared to our experiment. In particular, they indicate that positional measurements in the light 
propagation direction with a precision that is at least as good as for measurements of lateral positions should be 
possible. 

 

Fig. 4: Absolute errors of positions of the virus-like nanoparticle, achieved by training scattered images of 
super-oscillatory light collected in (a) experiment and (b) numerical modelling. 

In summary, we have demonstrated 3D positional nanometrology with a deeply sub-wavelength 
precision which uses a neural network to retrieve the position of a virus-like particle from its scattering intensity 
patterns upon topological illumination. This technique can locate the virus-like nanoparticle within milliseconds, 
which is determined by the exposure time of a single image taken by a camera. Importantly, it has no requirement 
of fluorescent labelling thus avoiding photodamage effects. We see potential applications in in-vitro imaging, 
metrology, and tracing of viruses and nano-objects. 
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