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ABSTRACT
The virtual bass system (VBS) leverages a psychoacoustic
phenomenon known as the “missing fundamental” to trick
listeners into perceiving the fundamental frequency from its
higher harmonics. The VBS finds common use in consumer
electronic devices where miniature and flat panel loudspeak-
ers are integrated, as they cannot reproduce satisfactory low-
frequency components. The additional harmonics introduced
by the VBS can lead to perceptual distortion. Therefore,
evaluating the perceptual quality of the VBS necessitates
subjective listening tests. Previous studies have attempted to
derive objective metrics and identify combinations of model
output variables to predict the perceptual quality of the VBS.
However, due to the limited number of subjective test results
used to obtain the combination coefficients, inconsistencies
may arise in predictions. This paper proposes to adopt self-
supervised deep learning models to predict the mean opinion
score (MOS) of the VBS. Experiment results demonstrate
a strong linear correlation between the model outputs and
the human-rated MOS, indicating that a linear mapping is
sufficient to convert a model output into an accurate MOS
prediction.

Index Terms— Virtual bass system, phase vocoder, self-
supervised learning, mean opinion score prediction

I. INTRODUCTION

Small-sized loudspeakers in consumer electronic devices
are often criticised for their limited bass reproduction ca-
pabilities, due to both the constraints of their physical size
and cost considerations. The VBS is introduced to address
this concern by leveraging a psychoacoustic phenomenon
known as the “missing fundamental”. It suggests that higher-
order harmonics of a fundamental frequency can simulate
the perceptual experience of the fundamental frequency
[1]. Fig. 1 illustrates a general framework of the VBS,
where the harmonic generator can be implemented using
a nonlinear device (NLD) [2], [3], [4], the phase vocoder
(PV) [5], or a hybrid combination of both [6], [7]. In [6],
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Fig. 1. Comparing subjective listening tests to automatic
predictions for perceptual quality assessment of the VBS.

Hill and Hawksford also emphasise the importance of a
delay for synchronizing the original audio with the generated
harmonics.

In addition to choosing appropriate harmonic generators,
tuning the VBS parameters is crucial for achieving optimal
perceptual quality [8]. For instance, most of VBS implemen-
tations involve a harmonic gain. A higher gain introduces
more harmonics, but it can lead to more noticeable distortion.
There is no automatic method to set this gain. Consequently,
evaluating the perceptual quality of the VBS typically in-
volves subjective listening tests that demand careful choice
of method, hours of careful listening, and proof of statistical
significance [5].

Simple objective scores quantifying bass enhancement
and harmonic distortion were demonstrated to have a weak
correlation with subjective test results [9]. To tackle this
issue, Oo and Gan initially explored the GedLee metric,
incorporating an objective model of masking [10], [11], but
it failed to accurately predict the perceived distortion of
the VBS. Subsequently, Oo et al. investigated the Rnonlin
distortion model [12] and conducted nonlinear regression
to fit the outputs of the Rnonlin model with subjective test
results. They claimed that the Rnonlin model could reliably
predict the perceived distortion of the NLD-based VBS [9].

On the other hand, Mu et al. examined the audio spectrum
centroid (ASC) and the increment ratio of ASC to evaluate
the unnatural timbre sharpness effect resulting from addi-
tional harmonics [13]. However, there was no reliable cor-
relation between those metrics and the perceptual quality of



the VBS [14]. Therefore, they explored various combinations
of model output variables from the ITU Recommendation
ITU-R BS.1387 and developed a linear regression model
using subjective test results. Their final findings suggested
that steady-state and transient stimuli, as well as single
instrument and polyphonic music stimuli, could be predicted
by separate combinations of model output variables [15]. It
should be noted that the aforementioned attempts to predict
the perceptual quality of the VBS have always relied on
subjective test results as prior information. This is likely to
raise a suspicion of circular reasoning.

Recently, self-supervised models have demonstrated their
effectiveness in automatically predicting the MOS for syn-
thesised speech [16] and perceptual similarity for trans-
former noise [17]. Deep learning-based methods hold
promise in learning features from extensive audio data, elim-
inating the need for manual design and selection of objective
metrics and thereby reducing the influence of human bias.
Therefore, this paper proposes a self-supervised method for
predicting the perceptual quality of the VBS. This self-
supervised method eliminates the need for prior subjective
test results. Neural network models are trained for audio
artifact detection, outputting an artifact score. Experiment
results demonstrate a strong linear correlation between this
artifact score and the human-rated MOS. Hence, a simple
linear mapping can be employed to convert the artifact score
into a reliable MOS prediction.

II. PV-BASED VBS AND SUBJECTIVE TEST
A PV-based VBS is implemented for the subjective test,

where the exponential attenuation scheme is adopted as

Wi = exp(−α · i), (1)

where Wi is the gain of the ith harmonic, and α determines
the attenuation rate. Each testing audio clip in the dataset
is processed by the PV-based VBS using α of 0.1, 0.3, 0.5,
0.7, and 0.9. The NLD-based VBS is not considered, for the
same reason as elaborated in [15].

Two types of musical recordings: “Violin Solo” and
“Vocal and Drum Mix”, abbreviated as “Solo” and “Mix”
for brevity, were used for the subjective test. Moreover, 4
“Solo” and 4 “Mix” clips were processed by the PV-based
VBS using α of 0.1, 0.3, 0.5, 0.7, and 0.9, resulting in a
total of 40 stimuli. We recruited 11 males and 10 females
with normal hearing, aged between 22 and 33 years old, for
the subjective test. The test was conducted in a quiet room,
and participants took it individually without time constraints.
They were allowed to adjust the volume of the headphone
according to their listening preferences. Participants listened
to every stimulus in a randomised order and rated both the
perceived bass intensity and the overall sound quality using
the absolute category rating scale [18].

The human-rated MOSs were then examined using one-
way analysis of variance (ANOVA). The p-values of bass
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Fig. 2. Subjective test results: (a)-(d) for “Solo” Clip 1-4
and (e)-(g) for “Mix” Clip 1-4, respectively

intensity and sound quality yielded 5e−5 and 1e−4 for
stimuli of “Solo” and 6e−6 and 1e−7 for stimuli of “Mix”,
respectively. They were much less than 0.01, demonstrating
the statistical significance [19].

Fig. 2 illustrates the human-rated MOSs for each original
audio clips in the subjective test. The bars indicate 95%
confidence intervals, the dots represent mean values, and
the dashed trend lines depict the linear regressions with
respect to α. It is noted that the linear correlation between
α and the human-rated MOS of bass intensity exceeds 99%.
In contrast, the correlation between α and the human-rated
MOS of sound quality is hardly linear.
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Fig. 3. Block diagrams of self-supervised models using (a)
AE, (b) IDNN, and optional (c) residual blocks.

III. SELF-SUPERVISED MODELS FOR MOS
PREDICTION

As depicted in Fig. 3, self-supervised models, such as
the autoencoder (AE) [20] and the interpolation deep neural
network (IDNN) [21], are well-suited for detecting anoma-
lies in audio clips. In this paper, we employ both models
and incorporate residual blocks to augment the extraction of
localised time-frequency information. It should be noted that
the network architecture design is beyond the scope of this
paper.

Table I and Table II present the detailed architectures of
the AE and IDNN models, both equipped with the residual
blocks. Initially, an audio clip undergoes transformation
into a log-mel spectrogram and is subsequently partitioned
into a series of five-frame segments. In the case of AE, a
five-frame output is reconstructed based on each five-frame
input segment. The training loss is designed to optimise the
accuracy of this reconstruction, which is expressed as

LAE = ∥x1,2,3,4,5 −AE (x1,2,3,4,5)∥22 , (2)

where x1,2,3,4,5 represents the five-frame input segment and
the subscript indicates the frame number. Conversely, in the
case of IDNN, the centre frame of each five-frame segment

Table I. Architecture of AE with residual blocks.
Layers Output Dimension Activation

Input 128×5×1 -
Residual Block 128×5×8 ReLU
Residual Block 128×5×16 ReLU
Residual Block 128×5×32 ReLU

Adaptive Average Pooling 20×1×32 -
Flatten 640 -

Fully Connected 128 ReLU
Fully Connected 96 ReLU
Fully Connected 64 ReLU
Fully Connected 96 ReLU

Fully Connected (Output) 640 -

Table II. Architecture of IDNN with residual blocks.
Layers Output Dimension Activation

Input 128×4×1 -
Residual Block 128×4×8 ReLU
Residual Block 128×4×16 ReLU
Residual Block 128×4×32 ReLU

Adaptive Average Pooling 16×1×32 -
Flatten 512 -

Fully Connected 128 ReLU
Fully Connected 96 ReLU
Fully Connected 64 ReLU
Fully Connected 96 ReLU

Fully Connected (Output) 128 -

is extracted and, as the name implies, predicted through
interpolation using the remaining four frames. The training
loss is tailored to enhance prediction accuracy, specifically
by minimising

LIDNN = ∥x3 − IDNN (x1,2,4,5)∥22 . (3)

After a model is fully trained, the loss values are averaged
across the entire set of five-frame segments to generate the
artifact score.

Training of the AE and IDNN models requires only a
number of “normal” audio clips, commonly referred to as
original audio clips in the context of VBS studies. Thus, a
dataset is created, comprising 1800 training audio clips, 200
validation audio clips, and 78 testing audio clips. None of
them have been presented in the subjective test. Each audio
clip has a duration of 10 seconds, is monaural, and sampled
at 22.05 Hz. The dataset includes two equally represented
types of “Solo” and “Mix”.

More specifically, with a window size of 1024 and a 50%
overlap, each 10-second audio clip consists of 430 frames,
further divided into 86 consecutive five-frame segments. The
number of mel bands used is 128. Training in PyTorch is
carried out using the adaptive moment estimation (Adam)
optimiser on a single NVIDIA GeForce RTX 2080Ti graph-
ics card, employing 300 training epochs, a batch size of
8196, and a learning rate of 0.002.

Four self-supervised models, including the AE with and
without residual blocks, and the IDNN with and without
residual blocks, are first compared by their AUCs. AUC



Table III. AUCs of four self-supervised models tested with
two types of musical recordings and five harmonic gains.

Model Type α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

AE Solo 95.99% 90.66% 84.09% 77.71% 70.41%
Mix 89.68% 82.45% 75.02% 69.03% 64.56%

+ Residual
Blocks

Solo 99.93% 99.67% 99.15% 97.50% 95.40%
Mix 97.11% 96.19% 94.35% 92.11% 88.95%

IDNN Solo 99.93% 99.41% 97.44% 93.29% 86.98%
Mix 88.30% 82.64% 76.33% 70.74% 67.52%

+ Residual
Blocks

Solo 100.00% 100.00% 100.00% 99.74% 99.15%
Mix 98.16% 96.98% 95.60% 94.15% 91.98%

stands for the area under the receiver operating characteristic
(ROC) curve when the self-supervised model is used to
discriminate whether VBS processing has been applied. The
testing results are listed in Table III. A model with a high
AUC can be interpreted as having a high standard for sound
quality, since it has been trained to identify even trivial
changes as artifacts.

IV. MOS PREDICTION RESULTS
Thereafter, the four self-supervised models are examined

for their abilities to predict the MOS of sound quality. It
is worth emphasising that the self-supervised models have
been trained exclusively on “normal” audio clips in the
aforementioned dataset, and they are independently from the
subjective test.

In Table IV, the linear correlations between the model
outputs and the human-rated MOS for sound quality are
detailed for each original audio clip and for every group
of clips with the same musical type in the subjective test.
The model outputs exhibit stronger linear correlations with
the human-rated MOS than the trend lines in Fig. 2. The
overall score indicates the linear correlation for a group of
clips, which is not a simple average of the linear correlations
for individual clips. The IDNN with residual blocks demon-
strates the highest consistency across different clips, which
aligns with the observation that it also achieves the highest
AUCs in Table III.

However, the self-supervised model outputs exhibit dis-
tinct dynamic ranges as compared to that of MOS. A linear
mapping is therefore considered, where the mapping matrix
P is expressed as

P =

(
δ̄audio 1
δ̄noise 1

)−1

×
(

σmax

σmin

)
. (4)

In (4), δ̄audio and δ̄noise represent the averaged audio artifact
scores of a range of training audio clips and pure noise
clips, respectively. They are treated as the lower and upper
bounds of the artifact score and are associated with the MOS
range from σmin = 1 to σmax = 5. These settings ensure
that the linear mapping is independent from the subjective
test. Hence, a model output δ can be converted to a model-
predicted MOS by (δ, 1)× P .

Table IV. Linear correlations between self-supervised model
outputs and human-rated MOSs.

Model Type Clip 1 Clip 2 Clip 3 Clip 4 Overall

Trend Line
(α)

Solo 81.28% 84.56% 79.20% 71.56% 76.42%
Mix 79.51% 91.61% 76.84% 82.43% 86.85%

AE Solo 94.69% 88.84% 97.68% 90.25% 91.26%
Mix 96.84% 99.44% 88.03% 95.55% 94.94%

+ Residual
Blocks

Solo 94.45% 88.37% 97.28% 89.86% 91.60%
Mix 96.68% 99.59% 88.95% 99.28% 97.21%

IDNN Solo 91.75% 89.69% 97.15% 85.73% 90.23%
Mix 91.13% 99.15% 86.14% 95.54% 92.70%

+ Residual
Blocks

Solo 95.85% 86.03% 95.75% 89.99% 93.60%
Mix 97.81% 99.89% 98.12% 98.08% 99.24%

Table V. MAEs between model-predicted MOSs and
human-rated MOSs.

Model Type Clip 1 Clip 2 Clip 3 Clip 4 Overall

Trend Line
(α)

Solo 0.361 0.121 0.278 0.277 0.162
Mix 0.134 0.127 0.172 0.361 0.130

AE Solo 0.162 0.072 0.153 0.118 0.092
Mix 0.070 0.073 0.121 0.265 0.087

+ Residual
Blocks

Solo 0.155 0.075 0.148 0.112 0.089
Mix 0.112 0.057 0.073 0.365 0.052

IDNN Solo 0.181 0.071 0.166 0.133 0.098
Mix 0.071 0.091 0.139 0.229 0.103

+ Residual
Blocks

Solo 0.111 0.084 0.118 0.078 0.074
Mix 0.077 0.026 0.049 0.305 0.025

Table V shows the mean absolute error (MAE) between
the model-predicted MOS and the human-rated MOS. The
mean squared error is not presented because it closely aligns
with the trend observed in the linear correlation in Table IV.
Both Tables V and IV demonstrate that the IDNN with
residual blocks is able to provide a reliable MOS prediction.

V. CONCLUSIONS
This paper proposes using self-supervised models to pre-

dict the MOS of PV-based VBS. The self-supervised learning
strategy uses a dataset of original audio clips without VBS
processing, eliminating the need for prior subjective test re-
sults and thereby reducing inconsistencies caused by human
bias. These self-supervised models are specifically designed
for audio artifact detection, and their outputs are artifact
scores, which have a different dynamic range compared to
the MOS. Therefore, we conducted experiments to show a
strong linear correlation between the artifact scores and the
human-rated MOS for the sound quality of the PV-based
VBS. Among the four self-supervised models investigated,
the IDNN with residual blocks leads to the highest AUC,
and accordingly, its output shows the strongest and most
consistent linear correlation with the human-rated MOS.
Moreover, it is also demonstrated that a linear mapping is
sufficient to convert the artifact score into an accurate MOS
prediction.
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