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A B S T R A C T   

This research evaluated 10 different empirical models designed for predicting Photosynthetically Active Radi-
ation (PAR) at higher latitudes, addressing atmospheric conditions specific to these regions. The research in-
troduces the Musleh-Rahman (MR) model, which substitutes Diffuse Horziontal Irradiance (DHI) with Clear 
Direct Normal Irradiance (DNI), Ozone and Aerosol Optical Depth at 550 nm (AOD550) sourced for satellite 
reanalysis data, achieving a Mean Bias Deviation (MBD) of 0.19 % and Root Mean Square Error (RMSE) of 12.42 
W/m2. Furthermore, when applied to six untested locations, results demonstrate that the MR model out-
performed the best performing empirical model with an MBD improvement of 3.68 % and an RMSE of 4.28 W/ 
m2, whereas, when compared to machine learning models, the Light Gradient Boost Model (LGBM), had an MBD 
of − 3.85 %. The MR model also maintained consistency across seasonal and density evaluations, attaining an R2 

value as high as 0.9709, thereby highlighting the significant benefits of integrating satellite-sourced atmospheric 
data into PAR prediction models. Moreover, the research illustrated that substituting DHI with Clear DNI, Ozone, 
and AOD550 not only reduces MBD and boosts R2 values but also amplifies the model’s applicability and ac-
curacy in capturing early PAR peaks and reducing overestimations through precise adjustments in Ozone and 
AOD550 levels. This highlights the benefits of incorporating satellite-derived atmospheric data into PAR pre-
dictions models.   

1. Introduction 

The concept of the food-energy-water nexus underscores the inter-
connectedness of water, energy, and food security, emphasizing the 
urgent need for beneficial strategies that align agricultural and energy 
policies [1]. AgriPhotovoltaics (AgriPV) presents a notable solution, 
allowing for both crop cultivation and energy production to occur on the 
same piece of land simultaneously [2]. This coexistence potentially 
enhances crop yields through the shared use of sunlight, depending on 
climatic conditions [3] and crop varieties [4]. In certain instances, this 
arrangement proves mutually advantageous, as the evaporation from 
crops can lower the operating temperatures of PV modules [5,6]. While 
AgriPV has garnered increasing interest [7,8], challenges persist due to 
the lack of comprehensive parameters and models. Despite its potential, 
the AgriPV sector remains niche, constrained by scarce data and in-
stallations that could broaden its impact. Moreover, the growing interest 
in PV systems has led to land competition, prompting investigations into 
land dual-use as a solution, especially in regions where land is at a 
premium [7]. Precise calculation of available irradiance for crops is 

essential to determine the viability of AgriPV, utilizing metrics such as 
Levelized Cost of Electricity (LCOE) or Land Equivalent Ratios (LER). 
Consequently, this necessitates modeling, which hinges on accurate 
assessments or predictions of irradiance components relevant to pho-
tovoltaics and agriculture [9,10]. 

Tackling the task of accurate AgriPV potential requires accurate 
modelling of Photosynthetically Active Radiation (PAR). PAR consti-
tutes a key component of incoming Global Horizontal Irradiance (GHI), 
reaching the Earth’s surface, spanning wavelengths from 400 to 700 nm. 
The integration of PV panels into agricultural lands necessitates 
ensuring that crop yields do not fall below acceptable thresholds, thus 
underlining the importance PAR estimations [11]. Photosynthesis rates 
hinge on the energy accessible to plants and are expressed either in 
terms of flux density (i.e., μml photons/m2/s) or in terms of flux density 
(i.e., irradiance W/m2) [12]. Photodetectors are used to record PAR, 
though these measurements are less prevalent compared to GHI data 
collection, where the latter is gathered either using pyranometers at 
meteorological stations or may be estimated through satellite imagery 
[13]. 
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The comprehensive analysis by Nwokolo et al. provides a detailed 
examination of empirical approaches for predicting PAR [14]. Following 
said publication, progress has been made in forecasting PAR by utilizing 
GHI along with various parameters. Wang demonstrated the impact of 
sky clarity on PAR across China, introducing a validated model in two 
central locations [15]. Similarly, Peng et al. developed a versatile PAR 
model suitable for temperate climates in China [16]. Wang further 
elaborated on this by incorporating solar geometry into their research, 
covering 39 different locations on both hourly and daily scales [17]. 
Furthermore, Aguiar ventured into modeling PAR in Southwest Ama-
zonia, employing methods ranging from simple ratios to complex for-
mulas integrating sky clarity and precipitable water, suitable for all sky 
conditions [18]. Ferrera-Cobos explored 22 models for estimating daily 
PAR in oceanic and Mediterranean climates, employing site adaptation 
techniques and variables like relative humidity, temperature, and 
extraterrestrial irradiance [19]. Their research compared regression 
models and a machine learning (ML) approach, finding negligible dif-
ferences in performance. Similarly, Proutsos et al. examined a 
high-altitude Mediterranean forest in Greece, developing models for 
estimating Ultraviolet radiation and PAR based on hourly data, high-
lighting the importance of optical thickness and temperature [20]. 
Similarly, Escobedo et al. differentiated parts of the electromagnetic 
spectrum, in Brazilian climates using daily observations [21]. Further-
more, Akitsu et al. explored models incorporating GHI, precipitable 
water, and pressure alongside sky clarity under all sky conditions to 
demonstrate the interplay between said parameters and PAR [22]. These 
models, however, showed reduced accuracy during winter and in 
aerosol-dense atmospheres; a common feature in European temperate 
climates. 

Predictive models are crucial for estimating outcomes across various 
forecasting methodologies, whether in regression modeling or ML [61, 
62]. Rogers et al. utilized PAR measurements to derive leaf area index 
via four distinct methodologies, noting issues with irregular temporal 
intervals in data collection, which included linear, logistic regression, 
and least squares regression methods [53]. Yildiz et al. provided an 
overview of various regression and machine learning models, such as 
regression trees, support vector regression, and artificial neural net-
works [54]. Furthermore, Junior et al. explored four machine learning 
techniques, including k-Nearest Neighbors (kNN), XGBoost (XGB), and 
Light Gradient Boosting Machine (LGBM), both individually and in a 
stacked configuration, emphasizing the importance of hyperparameter 
tuning to prevent overfitting [55]. Murphy et al. applied several ML and 
regression models, including logistic and linear regression [56]. Build-
ing on that, the use of Artificial Neural Networks (ANN) in modeling 
different parameters in an agricultural setting was discussed as a supe-
rior method to address non-linearity and time variance in greenhouse 
systems [57]. Expanding on ANN, Long Short-term Memory (LSTM) 
neural networks have been implemented in various forecasting disci-
plines to support different United Nations Sustainability Development 
Goals, from PV [58,59] to freshwater accessibility [60]. 

Research indicates that models incorporating Diffuse Horizontal 
Irradiance (DHI) or employing Perez coefficients [23], which modify 
DHI application, tend to show enhanced performance [24–27]. 
Garcia-Rodriguez et al. incorporated meteorological indices for PAR 
modeling, using the International Commission on Illumination (CIE) 
[28] standard sky classification alongside Perez brightness and clearness 
coefficients for all sky conditions [29]. Dependence on DHI and related 
metrics introduces complications due to their infrequent measurement. 
In cases of unavailability, the requirement for specialized decomposition 
models becomes apparent, as these models significantly vary based on 
temporal resolution and geographic location. Lu et al. emphasize the 
importance of advancing PAR prediction methodologies across various 
global climates [11]. 

Consequently, there is an imperative need to derive PAR estimates 
from GHI and other available parameters. Conversion ratios from GHI to 
PAR under clear skies reveal dependencies on the sky’s optical path, but 

this relationship grows complex under overcast conditions or varying 
weather, involving numerous parameters for accurate PAR conversion. 
Numerous investigations across diverse climatic conditions have delved 
into the conversion of GHI to PAR, however, the applicability of these 
models to different environments, especially within temperate climates, 
has been minimally examined [30]. Furthermore, these models are 
needed to be used to predict its diffuse component [11]. This gap is 
notable because models tested in diverse climates may not account for 
the distinct sun path effects critical for model accuracy in higher lati-
tude, temperate European climates. These latitudinal differences 
significantly impact sun angles, affecting model precision. Additionally, 
atmospheric variations, including aerosol optical depth, differ by loca-
tion, influencing the scattering and absorption of solar radiation [31] 
and, by extension, PAR values. Furthermore, the effect of cloud cover on 
GHI and subsequently PAR is significant, with models often neglecting 
regional variations in cloudiness caused by local weather patterns. This 
leads to potential inaccuracies in predicting solar irradiance [32]. 
Moreover, the reliance on limited datasets, focusing mainly on daily or 
hourly solar irradiance for specific climates, underscores the need for 
more comprehensive models that consider the diverse factors influ-
encing PAR in a sub-hourly context. 

This work embarks on a detailed evaluation of 10 recent empirical 
models designed for PAR irradiance prediction and introduces a new 
model for PAR prediction tailored to temperate climates. This innova-
tive approach does not rely on the conventional use of DHI, instead, it 
leverages new inputs such as Clear-sky irradiance, Aerosol Optical 
Depth, and Ozone profile estimations from satellite imagery. Further-
more, the work explores the use of 4 ML models for PAR estimation, that 
are tuned with optimized hyperparameters using 9 locations. A detailed 
statistical analysis is conducted to evaluate the prediction accuracy and 
scalability of all models across 6 unseen locations. Attention centers on 
their precision in accurately predicting unfamiliar locales, underscoring 
scalability, and applicability across diverse European contexts [33]. This 
enhances the accessibility of PAR estimations, thereby supporting the 
market expansion of AgriPV, where PAR data can be integrated into 
LCOE or LER calculations. 

2. Methodology  

1. Data 

The Integrated Carbon Observation System (ICOS) network [34], a 
European research infrastructure, encompasses multiple stations across 
Europe, each adhering to strict protocols and standards for data mea-
surement. For GHI measurements, these stations employ Spectrally Flat 
Class A pyranometers, in accordance with the International Organiza-
tion for Standardization (ISO) 9060:1990 [35]. PAR measurements are 
conducted using photodetectors to measure PPF, adhering to specific 
requirements as outlined in Carra et al. [36]. The measurement of PAR 
utilizes a conversion factor of 4.57 μ mol/m2/s to translate these mea-
surements into watts per square meter (W/m2), aligning with method-
ologies established in previous studies [6,11]. 

A total of 14 locations from ICOS were selected. One additional 
location from the Baseline Surface Radiation Network (BSRN) in 
Tõravere is included [37], resulting in 15 locations altogether as per 
Fig. 1 and Table 1. Given the scarcity of simultaneous measurements of 
PAR and GHI, these specific weather stations that record both parame-
ters concurrently and adhere to the aforementioned standards were 
chosen. The open-source dataset was selected for its reliability and 
relevance to the study of PAR. All data was recorded minutely but 
averaged over a 30-min period. For model training and validation, 9 of 
the 15 locations are highlighted, with the remaining 6 reserved exclu-
sively for model testing. This distinction ensures a thorough evaluation 
of model performance on unseen data, particularly focusing on their 
applicability and scalability within European climates. Such an 
approach underscores the importance of a rigorous evaluation process, 
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considering the models’ robustness, which is critical [32]. However, the 
independence of some locations was limited due to proximity, poten-
tially introducing bias in the development of ML models and mathe-
matical regression analyses. Therefore, the dataset was partitioned 
based on randomly sampled days, with an 80–20 percentage split for 
training and validation, respectively, following practices as recom-
mended in the literature [38]. 

Data from locations in Table 1 were synchronized to Coordinated 
Universal Time (UTC), incorporating the solar zenith angle (referred to 

as SZA) and extraterrestrial irradiance (Ea), alongside the solar constant, 
established at 1361.1 W/m2 according to Ref. [40]. This information 
was obtained using the updated Solar Position Algorithm (SPA) [41], 
which demonstrates a minimal uncertainty of only 0.0003◦ spanning 
from the year 2000–6000. Consequently, this allows for the quantifi-
cation of sky clarity through the sky clearness index, Kt, as outlined in 
equation (1). 

Kt =
GHI
Ea

(1) 

Although definitive quality control protocols for GHI and DHI mea-
surements have not been established, let alone PAR, insights from the 
operation of the BSRN [36] have led to proposing a comprehensive set of 
guidelines to identify unreliable data [42]. These guidelines serve as the 
foundation for filtering solar irradiance data prior to analysis or model 
development, outlined as follows.  

1. GHI > 0,DHI > 0 & PAR > 0  
2. GHI > PAR  
3. GHI ≤ 1.05 Ea cos1.2(SZA)+ 100  
4. DHI ≤ 0.95 Ea cos1.2(SZA)+ 50  
5. GHI > DHI  
6. SZA < 85◦

2. Present Models 

Recent advancements in PAR estimation models have introduced a 
variety of approaches and parameters, as detailed in Table 2. A consis-
tent feature across these models is their reliance on GHI, Kt, and, 
frequently, SZA. These elements are typically derived from SPA through 
calculations including GHI measurements; hence are easily attainable. 

Among the 10 models evaluated, the Tan-Ismail model stands out for 
its simplicity [43]. It proposes a straightforward conversion ratio over a 
one-year period in Singapore. Escobedo et al. crafted a model that cat-
egorizes Kt into distinct segments [14,21]. This technique draws inspi-
ration from the segmentation of DHI from GHI in numerous 
decomposition models, but it uniquely applies this strategy to extract 
PAR from GHI based on varied sky conditions over 4 years in Botucatu, 
Brazil. Akitsu et al. have contributed two models to the field [22]. The 
first, Akitsu1, integrates only GHI and vapor pressure, while the second, 
Akitsu2, also incorporates Kt. Similarly, Peng and Wang have developed 
models that utilize a piecewise mathematical function, with coefficients 
as functions of Kt [15,16]. These models also account for SZA, observing 
an exponential increase in hourly PAR for specific Kt intervals. Despite 
sharing a common equation (Equation (2)), the models diverge in their 
coefficient weighting systems (labeled as a - e), showcasing a tailored 

Fig. 1. The spatial layout of the 15 chosen locations includes 9 sites marked in 
yellow for the purpose of model training and validation, and 6 sites indicated in 
blue dedicated to evaluating the models against new data. Among these, 12 
sites are classified under Temperate Oceanic Climates (Cfb), while 3 sites fall 
within the Cool Summer Mediterranean Climate category (Csc) as per the 
Köppen–Geiger climate classification [39]. 

Table 1 
Details on the 15 sites selected for assessing PAR, with the first 10 sites are selected for the training and validation of models, whereas the remaining 5 sites serve the 
purpose of model testing. The provided average values of PAR and GHI pertain solely to data points deemed valid.  

Station Latitude Longitude Elevation Period Climate Mean PAR Mean GHI 

(o) (o) (m) Classification (W/m2) (W/m2) 

Brasschaat 51.307 4.520 16.0 2019–2023 Cfb 139.83 324.29 
Gebesee 51.100 10.915 161.5 2020–2023 Cfb 134.24 312.41 
Hainich 51.079 10.452 438.7 2019–2023 Cfb 137.75 317.46 
Hesse 48.674 7.065 310.0 2021–2023 Cfb 190.16 410.28 
Lamasquere 43.496 1.238 181.0 2020–2023 Cfb 213.13 449.92 
Lanzhot 48.682 16.946 150.0 2022–2023 Cfb 157.19 362.31 
Voulundgaard 56.038 9.161 67.7 2020–2023 Cfb 117.80 286.99 
Borgo Cioffi 40.524 14.957 10.0 2023 Csa 227.76 535.14 
Tõravere 58.264 26.462 70.0 2016–2019 Csa 115.92 279.47 
Aurade 43.550 1.106 250.0 2019–2023 Cfb 197.16 427.11 
Fontainebleau-Barbeau 48.476 2.781 103.0 2023 Cfb 178.77 368.97 
Hohes Holz 52.086 11.222 193.0 2019–2023 Cfb 123.19 299.17 
Lochristi 51.112 3.850 6.30 2019–2022 Cfb 152.92 340.86 
Maasmechelen 50.980 5.631 87.0 2020–2023 Cfb 166.61 352.02 
Castelporziano 41.704 12.357 19.0 2021–2023 Csa 244.28 481.57  
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approach to PAR estimation based on varying Kt values. 

PAR=
(
a+ bKt + cK2

t +Kd3
t
)
⋅cos (SZA)e (2) 

Table 2 reveals that the latter five models utilize DHI or Perez 
equations, with Equations (3) and (4) mathematically defining clearness 
and brightness coefficients, respectively. Direct Normal Irradiance 
(DNI), a crucial component in these models, can be directly measured 
with a Pyrheliometer or estimated through Equation (5), which employs 
a closure equation [44]. Additionally, the optical air mass is denoted as 
m. 

ε=
DHI+DNI

DHI + 1.041(SZA)3

1 + 1.041(SZA)3 (3)  

Δ=
m⋅DHI

Ea
(4)  

GHI=DHI + DNIcos(SZA) (5) 

The estimated dew point temperature (Td) was calculated utilizing 
Equation (6), which integrates relative humidity as a percentage (RH) 
and air temperature in ◦C (T). This method was adopted based on rec-
ommendations identified through a comprehensive review of the liter-
ature [45]. 

Td =

243.04
(

ln
(

RH
100

)

+ 17.625T
T+243.04

)

17.625 − ln
(

RH
100

)

− 17.625T
T+243.04

) (6)    

3. New parameters 

A clear objective of this research is to identify new parameters that 
directly influence PAR, with a focus on variables that are readily 
accessible and not derived empirically through decomposition models, 
such is the case if DHI measurements are missing. An integral part of this 
research involves leveraging clear sky irradiances, specifically GHI, DNI, 
and DHI under clear conditions. A key resource utilized in this investi-
gation is McClear [46,47], which is favored for its open accessibility, 
requiring only the input of latitude, longitude, and elevation. It provides 
irradiance that would be observed at any given location worldwide 
under cloud-free conditions, with data granularity ranging from 1 min to 
one month. This service offers comprehensive data from 2004 to two 
days before the current date. The Clear DNI was used as that will include 
both clear GHI, and clear DHI as per equation (5). 

Additionally, to explore further variables potentially affecting PAR 
estimations, this work incorporates satellite data from the Modern-Era 
Retrospective Analysis for Research and Applications Version 2 
(MERRA-2), courtesy of NASA’s Global Modeling and Assimilation Of-
fice [48,49] as outlined in Table 3. This data source is pivotal in main-
taining the work’s standards for integrity and analytical performance. 
For intricate details on computational approaches and methodologies, 

readers are encouraged to refer to the specified literature [50]. The data 
utilized, with an hourly temporal resolution and up to recent date with a 
lag time of <2 months, is carefully selected to align with the temporal 
resolution and period of measured PAR data. Notably, this work employs 
Aerosol Optical Depth at 550 nm (AOD550) data, chosen for its mea-
surement within the spectral range of PAR. Additionally, total ozone 
column measurements, referred to as Ozone, are analyzed to assess their 
impact on the Fraunhofer lines and early wavelengths that coincide with 
the PAR spectral range.  

4. Machine Learning Models 

The master dataset incorporates the identical quantity of inputs for 
the MR model to ensure an equitable comparison among various ML 
models. These models utilize readily accessible input parameters, free 
from constraints or measurement difficulties associated with external 
parameters. The process involves training the model with a designated 
dataset, followed by testing with validated data as outlined earlier. The 
selection of the model entails evaluating parameters, choosing an 
optimal hyperparameter tuning method, applying cross-validation, and 
reviewing validation outcomes. This research analyzes 4 ML algorithms, 
utilizing their default hyperparameters except as specified in Table 4, 
which presents the selected optimized hyperparameters. 

Utilizing the k-Nearest Neighbors (kNN) algorithm, useful in varied 
data landscapes, XGB and LGBM, leveraging their strengths in optimi-
zation and efficiency were used. As seen in Table 4, with 257 trees for 
LGBM and 163 for XGB, the models are finely tuned to avoid overfitting 
while capturing essential data nuances. Deep learning via ANN, with a 
0.0068 learning rate and two hidden layers containing 100 and 50 
neurons respectively, tackles complex nonlinear relationships effec-
tively. The model’s design, including a minimal alpha value of 0.0002, 
ensures a strategic balance between model simplicity and the ability to 
capture detailed patterns in data, particularly in the context of 
parameter-PAR dynamics.  

5. Model Evaluation Metrics 

In reviewing the literature, it becomes evident that a wide array of 
evaluation techniques exists, underscoring the importance of choosing 
an apt performance indicator. This work, drawing from prior research, 
adopts the Mean Bias Deviation (MBD) as outlined in equation (7) as its 
primary metric for assessment [51,52]. The MBD serves as a critical tool 
for quantifying the variance between observed data and predictions 
made by PAR models, thereby providing an index of the model’s accu-
racy in mirroring real-world observations. This metric is particularly 
valuable for identifying the degree to which the model’s estimations 
diverge from actual measurements, either through underestimations, 
which impacts the direct and diffuse components of PAR, or over-
estimations, which affects these components inversely. By favoring 
metrics expressed in percentages over those in W/m2, the work sim-
plifies interpretation and enhances comparability, as these 

Table 2 
Details on the parameters used across the 10 PAR models under evaluation. 
Alados refers to Model 1 in Ref. [24].  

Model GHI Kt Pressure SZA Δ ε Td 

Tan-Ismail ✓       
Escobedo ✓ ✓      
Akitsu 1 ✓ ✓      
Akitsu 2 ✓ ✓ ✓     
Peng ✓ ✓  ✓    
Wang ✓ ✓  ✓    
Hu ✓   ✓ ✓   
Jacovides  ✓   ✓ ✓  
Garcia-Rodriguez ✓ ✓  ✓ ✓ ✓  
Alados ✓   ✓ ✓ ✓ ✓  

Table 3 
The summary of Variables with Sources and Methods to be used in PAR 
prediction.  

Variable Source Method 

Clear DNI (W/ 
m2) 

McClear – 

AOD 550 nm Collection “M21TNXAER” 
with Parameter Code 
“TOTEXTTAU" 

Data for the half-hour was 
computed by averaging the 
lead and lag hour. 

Total Ozone 
Amount 
(atm-cm) 

Collection “M2T1NXSLV” with 
Parameter Code “TO3″ 

Data for the half-hour was 
computed by averaging the 
lead and lag hour. 
Raw data divided by 1000 to 
get in atm-cm  
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percentage-based measures remain unaffected by changes in solar 
elevation that could skew the data. 

MBD=
1
x
∑n

i=1

(
PARModelled − PARMeasured

PARMeasured

)

× 100 (7) 

PARModelled represents the PAR value from the specific model for the i- 
th data point and PARMeasured conveys the measured PAR value from 
quantum sensor for the i-th data point. The number of data points is 
depicted as n. The PARʹ

Measured represents the mean of the measured PAR 
values. 

R2 =1 −

∑
(PARMeasured − PARModelled)

∑
(PARMeasured − PARʹMeasured)

(8) 

Furthermore, this analysis incorporates the coefficient of determi-
nation, denoted as R2 as per equation (8), to evaluate the predictive 
accuracy of various PAR models. This coefficient compares the variance 
in measured PAR values with the model predictions, with values nearing 
1 indicating a high level of predictive accuracy. 

In order to evaluate the performance of the different models, it is 
crucial to assess the average discrepancy between the model’s pre-
dictions and the observed PAR value. This is achieved using the Root 
Mean Square Error (RMSE), outlined in equation (9), where the metric is 
presented in W/m2. The statistical analysis (as per Fig. 2), combined 
with MBD and R2, facilitates a comprehensive diagnosis of model ac-
curacy as class A indicators of dispersion [51]. Specifically, MBD iden-
tifies bias in a particular direction, while RMSE quantifies the general 

Table 4 
Optimized hyperparameters for the 4 machine learning models underway, the rest of the hyperparameters are kept at default values unless stated.  

Model n_neighbors weights    

kNN 11 distance    
Model learning_rate max_depth n_estimators num_leaves  
LGBM 0.2040 10 257 25  
Model learning_rate max_depth n_estimators colsample_bytree subsample 
XGB 0.0499 9 163 0.8926 0.7334 
Model learning_rate_init hidden_layer_sizes alpha   
ANN 0.0068 (100, 50) 0.0002    

Fig. 2. The evaluation approach involves comparing empirical models with the newly developed Musleh-Rahman model, using open-source PAR measurement data.  
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magnitude of the errors. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(PARModelled − PARMeasured)
2

n

√

(9)    

6. Limitations of the Present Work 

This research primarily assesses the empirical foundation of mathe-
matical equations for estimating PAR using accessible data sources. 
However, focusing on machine learning approaches may yield richer 
insights. This sector is rapidly expanding, and not all model types, 
including stacked models, have been fully explored. While the LGBM 
model outperformed the Musleh-Rahman model, more nuanced hyper-
parameter tuning could enhance model performance further. 

Additionally, the dataset used was limited to 30-min intervals. Given 
the volatility of sky conditions in temperate European climates, 
exploring higher temporal resolutions could be beneficial, particularly 
to understand the impact of cloud dynamics, such as accumulation and 
cloud enhancement (Kt > 1), on model performance. However, the 
primary constraint remains the limited dataset size and its 30-min 
temporal resolution. 

3. Results and discussion  

1. Interplay of Different Parameters and PAR 

Previous studies have highlighted the multifaceted influences on 
PAR, suggesting no single factor can solely affect it. However, Figs. 3 and 
4 demonstrate how individual parameter values can be linked to a range 
of PAR outcomes. Both figures present a detailed visualization of how 
various parameters interact with measured PAR, offering a nuanced 
understanding of their relationships and dependencies. Fig. 3a and b 

shows a logistic growth concerning the cosine of SZA and Kt relative to 
measured PAR, illustrating an initial swift escalation that tapers off due 
to a limiting factor, embodying a sigmoidal curve that nears an 
asymptote. Conversely, Fig. 3c introduces a weighted function depicting 
dew point temperatures starting from 0 to 35 ◦C, where the data points 
exhibit a positive linear growth. Additionally, Fig. 3d suggests that 
lower Δ may inversely correlates with higher PAR values, evidenced by 
a denser concentration of points, indicating a potential inverse rela-
tionship between these variables. 

Incorporating new variables into a new PAR model, alongside vari-
ables outlined in Fig. 3a-c, becomes essential due to the identified robust 
correlation among Clear DNI, AOD550, and Ozone levels as per Fig. 4. 
These parameters are crucial for PAR modeling because they influence 
the sunlight’s path through the Earth’s atmosphere, affecting its ab-
sorption and scattering potential. This, in turn, is influenced by molec-
ular and aerosol interactions, as captured by AOD and ozone 
concentration metrics. 

Analysis beginning with Fig. 4a reveals densification of data points at 
elevated DNI values, suggesting a potential exponential relationship 
where PAR escalates with rising DNI. This correlation is logical, given 
that increased solar irradiance directly translates to enhanced irradiance 
within PAR wavelengths. Furthermore, DNI is influenced by solar ge-
ometry, encompassing SZA and the Earth-sun distance. Higher solar 
positions correlate with increased DNI due to the reduced atmospheric 
path, minimizing scattering and absorption phenomena. Contrastingly, 
Fig. 4b illustrates a dense vertical aggregation, indicating a significant 
concentration of data points around a specific AOD 550 value. AOD 550, 
quantifying solar radiation extinction by atmospheric aerosols, is a 
unitless measure indicating the extent to which aerosols hinder sunlight 
from reaching the ground. Elevated AOD values suggest increased 
aerosol presence, which can scatter and absorb sunlight, diminishing the 
PAR reaching the Earth’s surface. Since AOD measurements at 550 nm 
align with the PAR spectrum, it directly affects the light available for 

Fig. 3. The relationship of different parameters with regards to the measured PAR using data from both the training and testing segments across the 9 afore-
mentioned sites. The concept of point density is employed to gauge the frequency of data point convergence within a scatter plot, specifically concerning the 
parameter and PAR, across a grid formation in increments of 0.01. 
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photosynthesis. The impact of AOD on PAR is further modulated by solar 
geometry; for instance, lower solar positions result in sunlight traversing 
more of the atmosphere, thereby encountering more aerosols and 
amplifying AOD’s effect on PAR. Moreover, Fig. 4c displays a concen-
trated vertical distribution of PAR measurements around specific ozone 
concentrations, ranging between 0.2 and 0.3. Ozone predominantly 
absorbs sunlight in the UV spectrum, having a less immediate impact on 
PAR. Nonetheless, ozone can indirectly influence PAR through its effects 
on atmospheric thermal structure and composition, which can alter 
cloud formation and other atmospheric conditions affecting PAR levels 
at the surface. In this context, the relevance of Fraunhofer lines emerges, 
given the potential overlap of ozone absorption with these lines. How-
ever, the primary consideration for PAR remains the broader absorption 
characteristics of ozone, rather than the specific Fraunhofer lines.  

3. Performance of recent Models and the Development of the new 
Regression Model 

It can be highlighted that the performance of 10 models for esti-
mating PAR, had MBD values in a wide exceeding range, ranging from 
3.27 % to 33.51 % in Fig. 5. The Akitus1 and Tan-Ismail models, which 
utilize fewer parameters, demonstrate superior accuracy, indicating the 
significance of GHI and Kt in PAR estimation. This is further 

corroborated by Fig. 3b. However, the addition of atmospheric pressure 
in the Akitsu2 model may lead to overfitting, as suggested by its high 
MBD. The Escobedo models, which attempt to differentiate strategies 
based on Kt, do not align well nor conform strictly to the Cfb or Cfc 
Köppen-Geiger classifications. Models that incorporate DHI or Perez 
coefficients, such as those by Jacovides and Garcia-Rodriguez, show 
promise in more closely matching European temperate climates. Inter-
estingly, the Alados model, validated in Spain (a location similar to 
Garcia-Rodriguez’s), exhibits a significant increase in MBD (16.89 %) 
when substituting Kt with Td, highlighting the critical role of Kt in PAR 
estimation and the unsuitability of the weighted Td coefficient it em-
ploys in diverse European climates. 

In response to these findings, this work proposes shifting away from 
DHI towards a new set of variables outlined in Fig. 4. These are inte-
grated with Kt, GHI, SZA, and Td based on their demonstrated correla-
tion with PAR in literature and observations. The resulting Musleh- 
Rahman (MR) model incorporates the new variables in a weighted 
exponential formula. The model’s coefficients, as per equation (10), are 
determined through nonlinear regression using least squares fit [53], a 
method chosen for its statistical consistency and relevance to reducing 
MBD. This iterative fitting process starts with initial values derived from 
the Alados and Garcia-Rodriguez models for Kt, GHI, and SZA while for 
Td and the new variables are initially set to 0.1, ensuring a robust 
foundation for accurate PAR estimation. 

PAR=GHI⋅
(

1.386+lnK− 0.059
t +1.06×10− 3⋅Td+0.185⋅cos(SZA)

e(6.60×10− 5 ⋅ClearDNI+2.384⋅Ozone+0.135⋅AOD550)

)

(10) 

The MR model demonstrates enhanced performance in predicting 
PAR values for European temperate climates, as evidenced in Fig. 6. It 
achieves a notable decrease in MBD by 3.08 % when compared to the 
best performing PAR estimations (i.e., the Garcia-Rodriguez model). 
This improvement is expected, given that the MR model is specifically 
calibrated using data from European climates, tailoring its coefficients to 
this particular environmental context. Fig. 6 reveals that, unlike its 
counterpart, the MR model exhibits a more diverse point density across 
the spectrum of irradiance levels, noted by its improved R2 approaching 
one. It not only maintains accuracy at the initial irradiance levels but 
also extends this accuracy to higher levels of irradiance. This charac-
teristic is crucial for enabling more precise estimations of PAR during 
critical periods, such as the harvesting season for certain crops, by 
providing insights into the required irradiance levels under different sky 
conditions. Consequently, the MR model’s applicability extends beyond 
the limitations of data availability from stations measuring DHI, pro-
moting its broader use in various applications. Additionally, Fig. 6 
highlights a denser overlap between modelled and measured PAR across 
the entire range of PAR values, indicating a more robust and versatile 

Fig. 4. Data from both the training and testing segments of the 9 aforementioned sites were used to investigate the relationship between the new parameters and the 
measured PAR. Data points in a scatter plot can be gauged by their density in increments of 0.01 using the point density concept, specifically concerning the 
parameter and PAR. 

Fig. 5. In evaluating the efficacy of the 10 models and the newly introduced 
MR model across 9 distinct locations, the analysis specifically focuses on the 
RMSE and absolute MBD values. Among these, only the Escobedo model ex-
hibits a negative MBD. 
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performance compared to the DHI-dependent Garcia-Rodriguez model.  

4. Machine Learning Models 

Fig. 7 demonstrates the superiority of the 4 examined ML algorithms 
over the 10 PAR empirical models mentioned in the earlier section in 
Fig. 5. Among these, ANN shows the most significant MBD at − 2.32 % 
and RMSE of 22.91 W/m2, with the kNN following at MBD of − 0.25 %. 
The XGB and LGBM models exhibit near identical performance levels, 
each achieving MBD of − 0.16 % and − 0.15 %, respectively. Moreover, 
when considering the RMSE, slight differences emerge. The XGB model 
records a lower RMSE at 20.10 W/m2, compared to the LGBM model at 
20.55 W/m2. This similarity in performance can be attributed to their 
gradient boosting methodology and the incorporation of regularization 
techniques, which mitigate overfitting by imposing penalties on coeffi-
cient magnitude. Such techniques are especially advantageous when 
dealing with training data that is susceptible to noise, a common 
occurrence in the variable weather conditions of European temperate 
climates. LGBM, kNN, and XGB exhibit MBD values below 1 % and 
RMSE values differing by a maximum of 3.50 W/m2, indicating their 
high accuracy in predicting PAR. Both LGBM and XGB ensure effective 
handling of complex, nonlinear relationships, a feature bolstered by 
their sophisticated implementations and optimizations for large-scale, 
high-dimensional data analysis. 

Although the ANN surpasses the conventional PAR models in 

performance, its interpretability remains a challenge. In contrast, XGB 
and LGBM not only deliver powerful predictive capabilities but also 
enhance interpretability through features like importance scores. 
Notably, the MR model introduced in this work closely approaches the 
performance of the XGB and LGBM models, with only a slight MBD 
difference of 0.03 % and 0.04 %, respectively. It is important to highlight 
that both the MR and ML models were trained and validated on data 
from 9 European climate sites, emphasizing the need to assess them in 
unseen dataset to determine their applicability, scalability and robust-
ness in these settings.  

5. Evaluation under Unseen Sites 

Table 5 reveals that the performance of the 10 empirical models 
under has a significant MBD range from − 8.41 % to 39.47 % and Table 6 
shows RMSE ranging between 7.66 W/m2 and 97.24 W/m2. Among 
these, the Peng and Wang models remain notably inferior outcomes due 
to their empirical development within China, failing to account for the 
significant SZA encountered at higher latitudes; explaining their similar 
performance in MBD and RMSE values. Furthermore, employing a 
simple ratio conversion, exemplified by the Tan-Ismail method, results 
in an RMSE spread from 20.31W/m2 to 51.96 W/m2, with its MBD 
values being positive indicating overestimations throughout. The higher 
numerical value occurring under a Csa climate close to the sea, which 
implies elevated humidity, thus, varying precipitation and temperature 
conditions. This suggests that a straightforward arithmetic trans-
formation may not be sufficiently accurate. 

Segmenting the analysis based on sky clarity yielded a modest 
improvement of 1.94 % in absolute MBD terms, yet the overall perfor-
mance remains unsatisfactory when using the Escobedo model. How-
ever, incorporating DHI through Perez coefficients offers some 
enhancement in model accuracy. Among the 10 models, Garcia- 
Rodriguez still remaining the better model, standing out with a 
comparatively better MBD of 7.71 % and the lowest RMSE of 24.11 W/ 
m2, with the lowest drop to − 1.99 % observed in the Hohes-Holz sce-
nario, likely due to the alignment of GHI and PAR within the validated 
climate conditions it has. 

Fig. 8 highlights for Hohes Holz, the Garcia-Rodriguez’s model 
fluctuating monthly, influenced by seasonal PAR and irradiance 
changes. Its efficacy is high during June to September, with MBD values 
under 1 %, but drops markedly in winter, notably in January and 
December, due to unsuitable coefficients for high-latitude climates and 
inability to handle winter’s steep solar zenith angles. This points to the 
need for models like MR, which sidesteps DHI derivatives, showing 
improved accuracy across six locations, with reasonable achievements 
in Aurade and Lochristi. The MR model benefits from incorporating new 

Fig. 6. A side-by-side comparison of measured versus modelled PAR using two distinct models: the Garcia-Rodriguez model is depicted on the left, while the MR 
model is featured on the right. The comparison aims to illustrate the accuracy of each model in replicating observed PAR data across 9 validation sites. 

Fig. 7. Based on the same data input as the MR model, the RMSE and MBD 
values are specifically examined in evaluating the performance of the 4 ML 
models using the validation dataset. 
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variables, enhancing precision and suggesting effectiveness in ML con-
texts. In comparison, ML models trained in temperate climates surpass 
all models, with LGBM leading and MR closely following in 
performance. 

While ML models, as depicted in Fig. 8, exhibit better stability than 
Garcia-Rodriguez, they nonetheless show less variability than the MR 
model. This observation suggests that future research could explore the 
classification of ML models by climate or seasonal attributes to further 
refine their performance. The location of Castelporziano was identified 
as the least accurately modelled by ML methods, likely due to the pre-
dominance of training and validation data from higher latitudes within 
Cfb climate classifications, indicating a potential area for adjustment. 
Nonetheless, ML models still outshine their counterparts across the 
board. 

Exploring the performance nuances of the Garcia-Rodriguez, MR, 
and LGBM models against different PAR irradiance levels, Fig. 9 shows 
kernel density estimations shed light on their efficacy. These estimations 
reveal a bell-shaped distribution for PAR values, highlighting a peak 
around 50 W/m2. The Garcia-Rodriguez model aligns well with 
observed PAR levels but tends to slightly overestimate at the peak as per 
Fig. 9a, predominantly covering lower irradiance values below 200 W/ 
m2, reflective of most dataset observations. From Fig. 9e, the MR model, 
through its integration of McClear DNI, avoids the peak overestimation 
seen in Garcia-Rodriguez, providing a more consistent density across the 
0–100 W/m2range. It exhibits a broader and more even distribution of 
predicted PAR values, particularly reducing bias towards higher or 
lower extremes as seen in Fig. 9b. This balanced approach aligns the MR 
model more closely with the actual distribution of PAR values within the 

dataset, improving its accuracy for a wider range of conditions. 
Conversely, the LGBM, while similar to MR in avoiding peak biases, 
demonstrates a slight increase in density within the moderate PAR range 
(201–300 W/m2), suggesting it is more attuned to capturing these mid- 
range values noted in Fig. 9f. This slight shift in prediction density may 
give the LGBM a marginal advantage in accuracy for datasets with a 
moderate PAR value prevalence. Moreover, its performance across the 
entire PAR spectrum indicates a versatile capability to accurately fore-
cast across diverse irradiance levels. The LGBM model’s nuanced dis-
tribution suggests it might offer the most comprehensive and balanced 
performance among the three, especially in contexts requiring accurate 
predictions across a broad spectrum of PAR irradiance. 

Through examining Fig. 10, it becomes evident that the Garcia- 
Rodriguez model’s point density is predominantly concentrated within 
the initial 100 PAR irradiance values. This observation aligns with 
previous discussions, highlighting a decrease in modeling performance, 
in terms of point density, as PAR values escalate. Specifically, the den-
sity of grid interactions diminishes, elucidated by an MBD of 7.71 % 
demonstrates the model’s inclination to overestimate actual measured 
PAR values by an RMSE of 24.11 W/m2. Despite this tendency for 
overestimation, the model significantly elucidates the variance observed 
in measured PAR data, as reflected by an R2 value of 0.9463. This in-
dicates that although the model exhibits a consistent bias towards higher 
estimates, its predictions align closely with the trends observed in actual 
measurements, reinforcing insights presented in Fig. 10. In contrast, the 
MR model exhibits a reduction in performance at unseen sites by 4.28 
W/m2 in terms of RMSE and MBD of 3.68 % relative to the Garcia- 
Rodriguez model, yielding an MBD of 4.03 % and an RMSE of 19.83 

Table 5 
An analysis of the MBD percentage was conducted to assess the estimation accuracy of PAR at new testing sites. This comparison involved both empirical and machine 
learning models. The model achieving the lowest (thus, most accurate) MBD value is distinguished with a bold highlight.  

Model Aurade Fontainebleau-Barbeau Hohes Holz Lochristi Maasmechelen Castelporziano Overall 

Tan-Ismail 12.99 18.60 8.00 9.82 15.85 24.17 10.35 
Escobedo − 6.07 10.05 − 16.42 − 8.88 10.45 15.88 − 8.41 
Akitsu 1 12.84 18.44 − 4.49 9.68 15.71 24.00 10.20 
Akitsu 2 28.39 33.95 13.68 24.01 30.78 40.57 24.69 
Peng 44.61 49.39 26.74 38.97 46.08 57.21 39.47 
Wang 38.72 43.28 21.87 33.43 40.17 50.31 33.84 
Hu 14.41 20.42 7.56 15.93 21.53 21.76 14.42 
Jacovides 11.34 16.28 − 0.89 7.99 13.89 22.53 8.60 
Garcia-Rodriguez 10.74 15.92 − 1.99 7.21 13.10 21.71 7.71 
Alados 20.01 25.73 16.08 24.21 29.92 25.51 21.44 
MR 6.04 ¡1.54 0.67 4.08 ¡3.88 3.22 4.03 
ANN − 5.82 − 9.66 4.41 − 4.30 − 9.76 − 14.11 − 6.00 
LGBM ¡5.35 − 9.24 4.79 ¡3.90 − 9.34 − 13.87 ¡3.85 
XGB − 5.52 − 9.34 4.79 − 3.94 − 9.40 − 14.07 − 3.93 
kNN − 6.07 − 9.49 4.56 − 4.42 − 9.75 − 13.32 − 4.02  

Table 6 
An evaluation of the RMSE (in W/m2) to assess the PAR of the MBD percentage was conducted to assess the accuracy of PAR at the unseen test sites. This comparison 
involved both empirical and machine learning models. Models that recorded the lowest RMSE values in the given location are marked in bold.  

Model Aurade Fontainebleau-Barbeau Hohes Holz Lochristi Maasmechelen Castelporziano Overall 

Tan-Ismail 29.24 31.61 23.09 20.31 27.08 51.96 26.21 
Escobedo 17.67 18.94 33.32 22.19 18.78 36.70 25.92 
Akitsu 1 28.98 31.39 11.37 20.14 26.87 51.67 26.05 
Akitsu 2 54.46 52.42 20.65 37.22 47.65 77.59 43.98 
Peng 73.62 68.60 34.74 53.79 63.39 97.24 59.17 
Wang 66.72 62.36 29.39 47.99 57.35 89.27 53.22 
Hu 29.72 34.32 12.59 26.53 34.74 47.22 27.42 
Jacovides 26.91 28.37 8.88 18.41 24.64 49.28 24.76 
Garcia-Rodriguez 26.42 28.56 7.79 17.93 24.15 48.20 24.11 
Alados 39.33 41.88 23.09 38.73 46.11 54.68 36.27 
MR 18.81 8.25 7.66 13.75 12.29 12.72 19.83 
ANN 19.79 19.52 12.00 13.67 18.93 40.58 22.01 
LGBM 18.47 19.74 11.48 13.12 19.46 38.33 18.67 
XGB 18.54 19.69 11.29 13.61 19.47 38.69 18.69 
kNN 21.02 21.85 11.81 15.36 21.43 38.05 20.27  
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W/m2. This reduced deviation suggests a narrower average error margin 
compared to the findings in Fig. 9a. Furthermore, an enhanced R2 value 
signifies a superior model fit to the measured data, implying not only an 
accurate trend prediction but also greater precision on average. The 
density of points near the 1:1 line is notably high for lower PAR values, 
with no distinct peak value as indicated in Fig. 9b, pointing towards 
numerous accurate predictions. The LGBM boasts the highest R2 value 
among the models, signifying the most accurate overall predictive 
capability. The negative MBD highlights the model’s reliability, albeit 
with a tendency towards conservative estimates. 

It becomes apparent that eliminating DHI and incorporating McClear 
DNI, Ozone, and AOD550 not only reduces MBD and improves the R2 

value but also enhances the model’s robustness, making it applicable 
beyond sites equipped to measure DHI. Specifically, the inclusion of 
McClear DNI addresses the issue of early PAR values, while Ozone and 
AOD550 adjustments rectify overestimations beyond 200 W/m2, facili-
tating more accurate representation of fluctuations. However, further 
exploration is necessary to refine estimates of clear irradiance and 
explore the potential for sky condition classification through parameters 
or monthly data analysis. This approach could mitigate seasonal vari-
ances and, by integrating ML with the MR model, tailor coefficients to 
suit various Köppen-Geiger climate classifications, thereby broadening 
the model’s applicability. 

4. Conclusion 

In conclusion, this work embarked on an evaluation of 10 empirical 
models designed for PAR prediction, with a subset of 4 models incor-
porating DHI across 15 temperate European environments, highlighting 
the need for diverse solar, atmospheric, and cloud cover variations at 
higher latitudes. This process culminated in the development of the 
Musleh-Rahman (MR) model. This approach eliminates the need for 

DHI, instead clear-sky DNI, as well as Ozone and AOD550nm data 
sourced from satellite observations. The MR model’s performance was 
then tested and confirmed across 9 European climates in conjunction 
with 4 ML models: kNN, ANN, LGBM, and XGB. The MR model 
demonstrated superior performance, particularly in a validation study 
across nine European climates where it reduced the Mean Bias Deviation 
(MBD) to 0.19 % from the 3.08 % observed in the Garcia-Rodriguez 
model and the Root Mean Square Error (RMSE) reduced by 4.28 W/ 
m2. After tuning the hyperparameters, 3 out of the 4 machine learning 
models demonstrated superior performance compared to the MR model. 
In further testing across 6 unseen European locations, the MR model 
showed MBD values ranging from − 3.88 % to 6.04 %. The MR model 
and the LGBM were particularly noted for their precision in lower PAR 
values, as evidenced by kernel density and scatter plot analyses, 
achieving R2 values of 0.9709 and 0.9712, respectively, with having 
RMSE values of The RMSE values of 19.83 W/m2 and 18.67 W/m2, 
though the LGBM had an absolute MBD improvement of 0.18 %. Future 
research should focus on evaluating additional weather variables within 
optimally hypertuned machine learning models, including the use of 
more diverse and stacked models. There is also interest in refining clear 
irradiance estimations for temperate climates, particularly at higher 
temporal resolutions such as minute–minute. 

Such advancements could mitigate seasonal variability and facilitate 
a deeper understanding of the interplay of PAR and cloud effects for 
various Köppen-Geiger climate classifications, further refining PAR 
prediction accuracy. 
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