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Abstract— This research evaluated 10 different empirical models designed for predicting Photosynthetically Active Radiation (PAR) at 

higher latitudes, addressing atmospheric conditions specific to these regions. The research introduces the Musleh-Rahman (MR) model, 

which substitutes Diffuse Horizontal Irradiance (DHI) with Clear Direct Normal Irradiance (DNI), Ozone and Aerosol Optical Depth at 

550nm (AOD550) sourced for satellite reanalysis data, achieving a Mean Bias Deviation (MBD) of 0.19% and Root Mean Square Error 

(RMSE) of 12.42 W/m2. Furthermore, when applied to six untested locations, results demonstrate that the MR model outperformed the 

best performing empirical model with an MBD improvement of 3.68% and an RMSE of 4.28 W/m2 , whereas, when compared to machine 

learning models, the Light Gradient Boost Model (LGBM), had an MBD of -3.85%. The MR model also maintained consistency across 

seasonal and density evaluations, attaining an R2 value as high as 0.9709, thereby highlighting the significant benefits of integrating 

satellite-sourced atmospheric data into PAR prediction models. Moreover, the research illustrated that substituting DHI with Clear DNI, 

Ozone, and AOD550 not only reduces MBD and boosts R2 values but also amplifies the model's applicability and accuracy in capturing 

early PAR peaks and reducing overestimations through precise adjustments in Ozone and AOD550 levels. This highlights the benefits 

of incorporating satellite-derived atmospheric data into PAR prediction models. 
 

Keywords — Solar irradiance, Temperate Climates, Photosynthetic Active Radiation, Empirical Modelling, Regression Modelling, 

Machine Learning 

1. INTRODUCTION 

The concept of the food-energy-water nexus underscores the interconnectedness of water, energy, and food security, emphasizing 

the urgent need for beneficial strategies that align agricultural and energy policies [1]. AgriPhotovoltaics (AgriPV) presents a 

notable solution, allowing for both crop cultivation and energy production to occur on the same piece of land simultaneously [2]. 

This coexistence potentially enhances crop yields through the shared use of sunlight, depending on climatic conditions [3] and 

crop varieties [4]. In certain instances, this arrangement proves mutually advantageous, as the evaporation from crops can lower 

the operating temperatures of PV modules [5][6]. While AgriPV has garnered increasing interest [7][8], challenges persist due to 

the lack of comprehensive parameters and models. Despite its potential, the AgriPV sector remains niche, constrained by scarce 

data and installations that could broaden its impact. Moreover, the growing interest in PV systems has led to land competition, 

prompting investigations into land dual-use as a solution, especially in regions where land is at a premium [7]. Precise calculation 

of available irradiance for crops is essential to determine the viability of AgriPV, utilizing metrics such as Levelized Cost of 

Electricity (LCOE) or Land Equivalent Ratios (LER). Consequently, this necessitates modeling, which hinges on accurate 

assessments or predictions of irradiance components relevant to photovoltaics and agriculture [9][10]. 

 

Tackling the task of accurate AgriPV potential requires accurate modelling of Photosynthetically Active Radiation (PAR). PAR 

constitutes a key component of incoming Global Horizontal Irradiance (GHI), reaching the Earth's surface, spanning wavelengths 

from 400 - 700 nm. The integration of PV panels into agricultural lands necessitates ensuring that crop yields do not fall below 

acceptable thresholds, thus underlining the importance PAR estimations [11]. Photosynthesis rates hinge on the energy accessible 

to plants and are expressed either in terms of flux density (i.e., µml photons/m2/s) or in terms of flux density (i.e., irradiance W/m2) 

[12]. Photodetectors are used to record PAR, though these measurements are less prevalent compared to GHI data collection, where 

the latter is gathered either using pyranometers at meteorological stations or may be estimated through satellite imagery [13]. 

 

The comprehensive analysis by Nwokolo et al provides a detailed examination of empirical approaches for predicting PAR [14]. 

Following said publication, progress has been made in forecasting PAR by utilizing GHI along with various parameters. Wang 

demonstrated the impact of sky clarity on PAR across China, introducing a validated model in two central locations [15]. Similarly, 

Peng et. al developed a versatile PAR model suitable for temperate climates in China [16]. Wang further elaborated on this by 

incorporating solar geometry into their research, covering 39 different locations on both hourly and daily scales [17]. Furthermore, 

Aguiar ventured into modeling PAR in Southwest Amazonia, employing methods ranging from simple ratios to complex formulas 

integrating sky clarity and precipitable water, suitable for all sky conditions [18]. Ferrera-Cobos explored 22 models for estimating 

daily PAR in oceanic and Mediterranean climates, employing site adaptation techniques and variables like relative humidity, 

temperature, and extraterrestrial irradiance [19]. Their research compared regression models and a machine learning (ML) 

approach, finding negligible differences in performance. Similarly, Proutsos et al examined a high-altitude Mediterranean forest 

in Greece, developing models for estimating Ultraviolet radiation and PAR based on hourly data, highlighting the importance of 

optical thickness and temperature [20]. Similarly,  Escobedo et al differentiated parts of the electromagnetic spectrum, in Brazilian 

climates using daily observations [21]. Furthermore, Akitsu et al explored models incorporating GHI, precipitable water, and 

pressure alongside sky clarity under all sky conditions to demonstrate the interplay between said parameters and PAR [22]. These 
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models, however, showed reduced accuracy during winter and in aerosol-dense atmospheres; a common feature in European 

temperate climates. 

 

Predictive models are crucial for estimating outcomes across various forecasting methodologies, whether in regression modeling 

or ML [61][62]. Rogers et al. utilized PAR measurements to derive leaf area index via four distinct methodologies, noting issues 

with irregular temporal intervals in data collection, which included linear, logistic regression, and least squares regression methods 

[53]. Yildiz et al. provided an overview of various regression and machine learning models, such as regression trees, support vector 

regression, and artificial neural networks [54]. Furthermore, Junior et al. explored four machine learning techniques, including k-

Nearest Neighbors (kNN), XGBoost (XGB), and Light Gradient Boosting Machine (LGBM), both individually and in a stacked 

configuration, emphasizing the importance of hyperparameter tuning to prevent overfitting [55]. Murphy et al. applied several ML 

and regression models, including logistic and linear regression [56]. Building on that, the use of Artificial Neural Networks (ANN) 

in modeling different parameters in an agricultural setting was discussed as a superior method to address non-linearity and time 

variance in greenhouse systems [57]. Expanding on ANN, Long Short-term Memory (LSTM) neural networks have been 

implemented in various forecasting disciplines to support different United Nations Sustainability Development Goals, from PV 

[58][59] to freshwater accessibility [60]. 

 

Research indicates that models incorporating Diffuse Horizontal Irradiance (DHI) or employing Perez coefficients [23], which 

modify DHI application, tend to show enhanced performance [24][25][26][27]. Garcia-Rodriguez et al incorporated meteorological 

indices for PAR modeling, using the International Commission on Illumination (CIE) [28] standard sky classification alongside 

Perez brightness and clearness coefficients for all sky conditions [29]. Dependence on DHI and related metrics introduces 

complications due to their infrequent measurement. In cases of unavailability, the requirement for specialized decomposition 

models becomes apparent, as these models significantly vary based on temporal resolution and geographic location. Lu et al. 

emphasize the importance of advancing PAR prediction methodologies across various global climates [11].  

 

Consequently, there is an imperative need to derive PAR estimates from GHI and other available parameters. Conversion ratios 

from GHI to PAR under clear skies reveal dependencies on the sky's optical path, but this relationship grows complex under 

overcast conditions or varying weather, involving numerous parameters for accurate PAR conversion. Numerous investigations 

across diverse climatic conditions have delved into the conversion of GHI to PAR, however, the applicability of these models to 

different environments, especially within temperate climates, has been minimally examined [30]. Furthermore, these models are 

needed to be used to predict its diffuse component [11].  This gap is notable because models tested in diverse climates may not 

account for the distinct sun path effects critical for model accuracy in higher latitude, temperate European climates. These 

latitudinal differences significantly impact sun angles, affecting model precision. Additionally, atmospheric variations, including 

aerosol optical depth, differ by location, influencing the scattering and absorption of solar radiation [31] and, by extension, PAR 

values. Furthermore, the effect of cloud cover on GHI and subsequently PAR is significant, with models often neglecting regional 

variations in cloudiness caused by local weather patterns. This leads to potential inaccuracies in predicting solar irradiance [32]. 

Moreover, the reliance on limited datasets, focusing mainly on daily or hourly solar irradiance for specific climates, underscores 

the need for more comprehensive models that consider the diverse factors influencing PAR in a sub-hourly context. 

 

This work embarks on a detailed evaluation of 10 recent empirical models designed for PAR irradiance prediction and introduces 

a new model for PAR prediction tailored to temperate climates. This innovative approach does not rely on the conventional use of 

DHI, instead, it leverages new inputs such as Clear-sky irradiance, Aerosol Optical Depth, and Ozone profile estimations from 

satellite imagery. Furthermore, the work explores the use of 4 ML models for PAR estimation, that are tuned with optimized 

hyperparameters using 9 locations. A detailed statistical analysis is conducted to evaluate the prediction accuracy and scalability 

of all models across 6 unseen locations. Attention centers on their precision in accurately predicting unfamiliar locales, 

underscoring scalability, and applicability across diverse European contexts [33]. This enhances the accessibility of PAR 

estimations, thereby supporting the market expansion of AgriPV, where PAR data can be integrated into LCOE or LER 

calculations. 

2. METHODOLOGY 

1. Data 

The Integrated Carbon Observation System (ICOS) network [34], a European research infrastructure, encompasses multiple 

stations across Europe, each adhering to strict protocols and standards for data measurement. For GHI measurements, these 

stations employ Spectrally Flat Class A pyranometers, in accordance with the International Organization for Standardization 

(ISO) 9060:1990 [35]. PAR measurements are conducted using photodetectors to measure PPF, adhering to specific 

requirements as outlined in Carra et al [36]. The measurement of PAR utilizes a conversion factor of 4.57 𝜇mol/m2/s to translate 

these measurements into watts per square meter (W/m2), aligning with methodologies established in previous studies [6][11]. 
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A total of 14 locations from ICOS were selected.  One additional location from the Baseline Surface Radiation Network (BSRN) 

in Tõravere is included [37], resulting in 15 locations altogether as per Figure 1 and Table 1. Given the scarcity of simultaneous 

measurements of PAR and GHI, these specific weather stations that record both parameters concurrently and adhere to the 

aforementioned standards were chosen. The open-source dataset was selected for its reliability and relevance to the study of 

PAR. All data was recorded minutely but averaged over a 30-minute period. For model training and validation, 9 of the 15 

locations are highlighted, with the remaining 6 reserved exclusively for model testing. This distinction ensures a thorough 

evaluation of model performance on unseen data, particularly focusing on their applicability and scalability within European 

climates. Such an approach underscores the importance of a rigorous evaluation process, considering the models' robustness, 

which is critical [32]. However, the independence of some locations was limited due to proximity, potentially introducing bias in 

the development of ML models and mathematical regression analyses. Therefore, the dataset was partitioned based on randomly 

sampled days, with an 80-20 percentage split for training and validation, respectively, following practices as recommended in the 

literature [38]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data from locations in Table 1 were synchronized to Coordinated Universal Time (UTC), incorporating the solar zenith angle 

(referred to as SZA) and extraterrestrial irradiance (Ea), alongside the solar constant, established at 1361.1 W/m2 according to 

[40]. This information was obtained using the updated Solar Position Algorithm (SPA) [41], which demonstrates a minimal 

uncertainty of only 0.0003° spanning from the year 2000 to 6000. Consequently, this allows for the quantification of sky clarity 

through the sky clearness index, Kt, as outlined in equation 1. 

 

 𝐾𝑡 =
𝐺𝐻𝐼

𝐸𝑎
 (1) 

 

Although definitive quality control protocols for GHI and DHI measurements have not been established, let alone PAR, insights 

from the operation of the BSRN [36] have led to proposing a comprehensive set of guidelines to identify unreliable data [42]. 

These guidelines serve as the foundation for filtering solar irradiance data prior to analysis or model development, outlined as 

follows: 

 

1. 𝐺𝐻𝐼 > 0, 𝐷𝐻𝐼 > 0  & 𝑃𝐴𝑅 > 0  

2. 𝐺𝐻𝐼 > 𝑃𝐴𝑅  

3. 𝐺𝐻𝐼 ≤ 1.05 𝐸𝑎 cos1.2(𝑆𝑍𝐴) + 100 

 
Figure 1: The spatial layout of the 15 chosen locations includes 9 sites marked in yellow for the purpose of model training and validation, 

and 6 sites indicated in blue dedicated to evaluating the models against new data. Among these, 12 sites are classified under Temperate 

Oceanic Climates (Cfb), while 3 sites fall within the Cool Summer Mediterranean Climate category (Csc) as per the Köppen–Geiger climate 

classification [39]. 
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4. 𝐷𝐻𝐼 ≤ 0.95 𝐸𝑎 cos1.2(𝑆𝑍𝐴) + 50 

5. 𝐺𝐻𝐼 > 𝐷𝐻𝐼 

6. 𝑆𝑍𝐴 < 85° 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.  Present Models 

Recent advancements in PAR estimation models have introduced a variety of approaches and parameters, as detailed in Table 2. 

A consistent feature across these models is their reliance on GHI, Kt, and, frequently, SZA. These elements are typically derived 

from SPA through calculations including GHI measurements; hence are easily attainable. 

 

Among the 10 models evaluated, the Tan-Ismail model stands out for its simplicity [43]. It proposes a straightforward conversion 

ratio over a one-year period in Singapore. Escobedo et al. crafted a model that categorizes Kt into distinct segments [14][21]. 

This technique draws inspiration from the segmentation of DHI from GHI in numerous decomposition models, but it uniquely 

applies this strategy to extract PAR from GHI based on varied sky conditions over 4 years in Botucatu, Brazil. Akitsu et al. have 

contributed two models to the field [22]. The first, Akitsu1, integrates only GHI and vapor pressure, while the second, Akitsu2, 

also incorporates Kt. Similarly, Peng and Wang have developed models that utilize a piecewise mathematical function, with 

coefficients as functions of Kt [15][16]. These models also account for SZA, observing an exponential increase in hourly PAR 

for specific Kt intervals. Despite sharing a common equation (Equation 2), the models diverge in their coefficient weighting 

systems (labeled as a - e), showcasing a tailored approach to PAR estimation based on varying Kt values. 

 

 𝑃𝐴𝑅 = (𝑎 + 𝑏𝐾𝑡 + 𝑐𝐾𝑡
2 + 𝐾𝑑𝑡

3) ∙ cos (𝑆𝑍𝐴)𝑒 (2) 

 

 

Table 2 reveals that the latter five models utilize DHI or Perez equations, with Equations 3 and 4 mathematically defining clearness 

and brightness coefficients, respectively. Direct Normal Irradiance (DNI), a crucial component in these models, can be directly 

measured with a Pyrheliometer or estimated through Equation 5, which employs a closure equation [44]. Additionally, the optical 

air mass is denoted as m. 

 𝜀 =

𝐷𝐻𝐼 + 𝐷𝑁𝐼
𝐷𝐻𝐼

+ 1.041(𝑆𝑍𝐴)3

1 + 1.041(𝑆𝑍𝐴)3  (3) 

 

Table 1: Details on the 15 sites selected for assessing PAR, with the first 10 sites are selected for the training and validation of models, 

whereas the remaining 5 sites serve the purpose of model testing. The provided average values of PAR and GHI pertain solely to data points 

deemed valid. 

 

Station 
Latitude Longitude Elevation 

Period 
Climate Mean PAR Mean GHI 

(o) (o) (m) Classification (W/m2) (W/m2) 

Brasschaat 51.307 4.520 16.0 2019 - 2023 Cfb 139.83 324.29 

Gebesee 51.100 10.915 161.5 2020 - 2023 Cfb 134.24 312.41 

Hainich 51.079 10.452 438.7 2019 - 2023 Cfb 137.75 317.46 

Hesse 48.674 7.065 310.0 2021 - 2023 Cfb 190.16 410.28 

Lamasquere 43.496 1.238 181.0 2020 - 2023 Cfb 213.13 449.92 

Lanzhot 48.682 16.946 150.0 2022 - 2023 Cfb 157.19 362.31 

Voulundgaard 56.038 9.161 67.7 2020 - 2023 Cfb 117.80 286.99 

Borgo Cioffi 40.524 14.957 10.0 2023 Csa 227.76 535.14 

Tõravere 58.264 26.462 70.0 2016 - 2019 Csa 115.92 279.47 

Aurade 43.550 1.106 250.0 2019 - 2023 Cfb 197.16 427.11 

Fontainebleau-Barbeau 48.476 2.781 103.0 2023 Cfb 178.77 368.97 

Hohes Holz 52.086 11.222 193.0 2019 - 2023 Cfb 123.19 299.17 

Lochristi 51.112 3.850 6.30 2019 - 2022 Cfb 152.92 340.86 

Maasmechelen 50.980 5.631 87.0 2020 - 2023 Cfb 166.61 352.02 

Castelporziano 41.704 12.357 19.0 2021 - 2023 Csa 244.28 481.57 
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 ∆ =
𝑚 ∙ 𝐷𝐻𝐼

𝐸𝑎
 (4) 

 

 𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼𝑐𝑜𝑠(𝑆𝑍𝐴) (5) 

 

The estimated dew point temperature (Td) was calculated utilizing Equation 6, which integrates relative humidity as a percentage 

(RH) and air temperature in ◦C (T). This method was adopted based on recommendations identified through a comprehensive 

review of the literature [45]. 

 𝑇𝑑 =
243.04(ln (

𝑅𝐻
100

) +
17.625𝑇

𝑇 + 243.04
)

17.625 − ln (
𝑅𝐻
100

) −
17.625𝑇

𝑇 + 243.04
)
 (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. New parameters 

A clear objective of this research is to identify new parameters that directly influence PAR, with a focus on variables that are 

readily accessible and not derived empirically through decomposition models, such is the case if DHI measurements are missing. 

An integral part of this research involves leveraging clear sky irradiances, specifically GHI, DNI, and DHI under clear 

conditions. A key resource utilized in this investigation is McClear [46][47], which is favored for its open accessibility, requiring 

only the input of latitude, longitude, and elevation. It provides irradiance that would be observed at any given location worldwide 

under cloud-free conditions, with data granularity ranging from one minute to one month. This service offers comprehensive data 

from 2004 to two days before the current date. The Clear DNI was used as that will include both clear GHI, and clear DHI as per 

equation 5. 

 

Additionally, to explore further variables potentially affecting PAR estimations, this work incorporates satellite data from the 

Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), courtesy of NASA's Global 

Modeling and Assimilation Office [48][49] as outlined in Table 3. This data source is pivotal in maintaining the work's standards 

for integrity and analytical performance. For intricate details on computational approaches and methodologies, readers are 

encouraged to refer to the specified literature [50]. The data utilized, with an hourly temporal resolution and up to recent date 

with a lag time of <2 months, is carefully selected to align with the temporal resolution and period of measured PAR data. 

Notably, this work employs Aerosol Optical Depth at 550nm (AOD550) data, chosen for its measurement within the spectral 

Table 2: Details on the parameters used across the 10 PAR models under evaluation. Alados refers to Model 1 in [24]. 

 

Model GHI Kt Pressure SZA ∆ 𝜺 Td 

Tan-Ismail ✓ 
      

Escobedo ✓ ✓ 
     

Akitsu 1 ✓ ✓ 
     

Akitsu 2 ✓ ✓ ✓ 
    

Peng ✓ ✓ 
 

✓ 
   

Wang ✓ ✓ 
 

✓ 
   

Hu ✓ 
  

✓ ✓ 
  

Jacovides  
✓ 

  
✓ ✓ 

 

Garcia-Rodriguez ✓ ✓ 
 

✓ ✓ ✓ 
 

Alados ✓ 
  

✓ ✓ ✓ ✓ 

 
 

 

Table 3: The summary of Variables with Sources and Methods to be used in PAR prediction. 

 

Variable Source Method 

Clear DNI 

(W/m2) 
McClear - 

AOD 550nm 
Collection "M21TNXAER" with 

Parameter Code "TOTEXTTAU" 

Data for the half-hour was computed by  

averaging the lead and lag hour. 

Total Ozone 

Amount 

(atm-cm) 

Collection "M2T1NXSLV" with 

Parameter Code "TO3" 

Data for the half-hour was computed by  

averaging the lead and lag hour. 

Raw data divided by 1000 to get in atm-cm 
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range of PAR. Additionally, total ozone column measurements, referred to as Ozone, are analyzed to assess their impact on the 

Fraunhofer lines and early wavelengths that coincide with the PAR spectral range. 

4. Machine Learning Models 

 

The master dataset incorporates the identical quantity of inputs for the MR model to ensure an equitable comparison among various 

ML models. These models utilize readily accessible input parameters, free from constraints or measurement difficulties associated 

with external parameters. The process involves training the model with a designated dataset, followed by testing with validated 

data as outlined earlier. The selection of the model entails evaluating parameters, choosing an optimal hyperparameter tuning 

method, applying cross-validation, and reviewing validation outcomes. This research analyzes 4 ML algorithms, utilizing their 

default hyperparameters except as specified in Table 4, which presents the selected optimized hyperparameters. 

 

Utilizing the k-Nearest Neighbors (kNN) algorithm, useful in varied data landscapes, XGB and LGBM, leveraging their strengths 

in optimization and efficiency were used. As seen in Table 4, with 257 trees for LGBM and 163 for XGB, the models are finely 

tuned to avoid overfitting while capturing essential data nuances. Deep learning via ANN, with a 0.0068 learning rate and two 

hidden layers containing 100 and 50 neurons respectively, tackles complex nonlinear relationships effectively. The model's design, 

including a minimal alpha value of 0.0002, ensures a strategic balance between model simplicity and the ability to capture detailed 

patterns in data, particularly in the context of parameter-PAR dynamics. 

 

5. Model Evaluation Metrics 

 

In reviewing the literature, it becomes evident that a wide array of evaluation techniques exists, underscoring the importance of 

choosing an apt performance indicator. This work, drawing from prior research, adopts the Mean Bias Deviation (MBD) as outlined 

in equation 7 as its primary metric for assessment [51][52]. The MBD serves as a critical tool for quantifying the variance between 

observed data and predictions made by PAR models, thereby providing an index of the model's accuracy in mirroring real-world 

observations. This metric is particularly valuable for identifying the degree to which the model's estimations diverge from actual 

measurements, either through underestimations, which impacts the direct and diffuse components of PAR, or overestimations, 

which affects these components inversely. By favoring metrics expressed in percentages over those in W/m2, the work simplifies 

interpretation and enhances comparability, as these percentage-based measures remain unaffected by changes in solar elevation 

that could skew the data. 

 

 𝑀𝐵𝐷 =
1

x
∑ (

𝑃𝐴𝑅𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑 − 𝑃𝐴𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑃𝐴𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑛

𝑖=1
) × 100 (7) 

 

𝑃𝐴𝑅𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑 represents the PAR value from the specific model for the i-th data point and 𝑃𝐴𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑  conveys the measured 

PAR value from quantum sensor for the i-th data point. The number of data points is depicted as 𝑛. The 𝑃𝐴𝑅′𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑  represents 

the mean of the measured PAR values. 

 

 𝑅2 = 1 −
∑(𝑃𝐴𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑃𝐴𝑅𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑)

∑(𝑃𝐴𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑃𝐴𝑅′𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)
 (8) 

 

Table 4: Optimized hyperparameters for the 4 machine learning models underway, the rest of the hyperparameters are kept at default 

values unless stated. 

Model n_neighbors weights       

kNN 11 distance    

Model learning_rate max_depth n_estimators num_leaves   

LGBM 0.2040 10 257 25   

Model learning_rate max_depth n_estimators colsample_bytree subsample 

XGB 0.0499 9 163 0.8926 0.7334 

Model learning_rate_init hidden_layer_sizes alpha     

ANN 0.0068 (100, 50) 0.0002     
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Furthermore, this analysis incorporates the coefficient of determination, denoted as R2 as per equation 8, to evaluate the predictive 

accuracy of various PAR models. This coefficient compares the variance in measured PAR values with the model predictions, with 

values nearing 1 indicating a high level of predictive accuracy.  

 

In order to evaluate the performance of the different models, it is crucial to assess the average discrepancy between the model’s 

predictions and the observed PAR value. This is achieved using the Root Mean Square Error (RMSE), outlined in equation 9, 

where the metric is presented in W/m2. The statistical analysis (as per Figure 2), combined with MBD and R2, facilitates a 

comprehensive diagnosis of model accuracy as class A indicators of dispersion [51]. Specifically, MBD identifies bias in a 

particular direction, while RMSE quantifies the general magnitude of the errors. 

 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝐴𝑅𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑  − 𝑃𝐴𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2𝑛

𝑖=1

𝑛
 (9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Limitations of the Present Work 

 

This research primarily assesses the empirical foundation of mathematical equations for estimating PAR using accessible data 

sources. However, focusing on machine learning approaches may yield richer insights. This sector is rapidly expanding, and not 

all model types, including stacked models, have been fully explored. While the LGBM model outperformed the Musleh-Rahman 

model, more nuanced hyperparameter tuning could enhance model performance further. 

 

 
 

Figure 2: The evaluation approach involves comparing empirical models with the newly developed Musleh-Rahman model, using open-

source PAR measurement data. 



8 

 

Additionally, the dataset used was limited to 30-minute intervals. Given the volatility of sky conditions in temperate European 

climates, exploring higher temporal resolutions could be beneficial, particularly to understand the impact of cloud dynamics, 

such as accumulation and cloud enhancement (Kt > 1), on model performance. However, the primary constraint remains the 

limited dataset size and its 30-minute temporal resolution. 

3. RESULTS AND DISCUSSION  

1. Interplay of Different Parameters and PAR 

2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Previous studies have highlighted the multifaceted influences on PAR, suggesting no single factor can solely affect it. However, 

Figures 3 and 4 demonstrate how individual parameter values can be linked to a range of PAR outcomes. Both figures present a 

detailed visualization of how various parameters interact with measured PAR, offering a nuanced understanding of their 

relationships and dependencies. Figures 3a and 3b show a logistic growth concerning the cosine of SZA and Kt relative to 

measured PAR, illustrating an initial swift escalation that tapers off due to a limiting factor, embodying a sigmoidal curve that 

nears an asymptote. Conversely, Figure 3c introduces a weighted function depicting dew point temperatures starting from 0 to 

35◦C, where the data points exhibit a positive linear growth. Additionally, Figure 3d suggests that lower ∆ may inversely 

correlates with higher PAR values, evidenced by a denser concentration of points, indicating a potential inverse relationship 

between these variables. 

 

 

 

 

 

 

 

 

 
 

Figure 3: The relationship of different parameters with regards to the measured PAR using data from both the training and testing segments 

across the 9 aforementioned sites. The concept of point density is employed to gauge the frequency of data point convergence within a 

scatter plot, specifically concerning the parameter and PAR, across a grid formation in increments of 0.01. 
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Incorporating new variables into a new PAR model, alongside variables outlined in Figures 3a-3c, becomes essential due to the 

identified robust correlation among Clear DNI, AOD550, and Ozone levels as per Figure 4. These parameters are crucial for PAR 

modeling because they influence the sunlight's path through the Earth's atmosphere, affecting its absorption and scattering 

potential. This, in turn, is influenced by molecular and aerosol interactions, as captured by AOD and ozone concentration metrics.  

 

Analysis beginning with Figure 4a reveals densification of data points at elevated DNI values, suggesting a potential exponential 

relationship where PAR escalates with rising DNI. This correlation is logical, given that increased solar irradiance directly 

translates to enhanced irradiance within PAR wavelengths. Furthermore, DNI is influenced by solar geometry, encompassing SZA 

and the Earth-sun distance. Higher solar positions correlate with increased DNI due to the reduced atmospheric path, minimizing 

scattering and absorption phenomena. Contrastingly, Figure 4b illustrates a dense vertical aggregation, indicating a significant 

concentration of data points around a specific AOD 550 value. AOD 550, quantifying solar radiation extinction by atmospheric 

aerosols, is a unitless measure indicating the extent to which aerosols hinder sunlight from reaching the ground. Elevated AOD 

values suggest increased aerosol presence, which can scatter and absorb sunlight, diminishing the PAR reaching the Earth's surface. 

Since AOD measurements at 550 nm align with the PAR spectrum, it directly affects the light available for photosynthesis. The 

impact of AOD on PAR is further modulated by solar geometry; for instance, lower solar positions result in sunlight traversing 

more of the atmosphere, thereby encountering more aerosols and amplifying AOD's effect on PAR. Moreover, Figure 4c displays 

a concentrated vertical distribution of PAR measurements around specific ozone concentrations, ranging between 0.2 and 0.3. 

Ozone predominantly absorbs sunlight in the UV spectrum, having a less immediate impact on PAR. Nonetheless, ozone can 

indirectly influence PAR through its effects on atmospheric thermal structure and composition, which can alter cloud formation 

and other atmospheric conditions affecting PAR levels at the surface. In this context, the relevance of Fraunhofer lines emerges, 

given the potential overlap of ozone absorption with these lines. However, the primary consideration for PAR remains the broader 

absorption characteristics of ozone, rather than the specific Fraunhofer lines. 

3. Performance of recent Models and the Development of the new Regression Model 

It can be highlighted that the performance of 10 models for estimating PAR, had MBD values in a wide exceeding range, ranging 

from 3.27% to 33.51% in Figure 5. The Akitus1 and Tan-Ismail models, which utilize fewer parameters, demonstrate superior 

accuracy, indicating the significance of GHI and Kt in PAR estimation. This is further corroborated by Figure 3b. However, the 

addition of atmospheric pressure in the Akitsu2 model may lead to overfitting, as suggested by its high MBD. The Escobedo 

models, which attempt to differentiate strategies based on Kt, do not align well nor conform strictly to the Cfb or Cfc Köppen-

Geiger classifications. Models that incorporate DHI or Perez coefficients, such as those by Jacovides and Garcia-Rodriguez, 

show promise in more closely matching European temperate climates. Interestingly, the Alados model, validated in Spain (a 

location similar to Garcia-Rodriguez's), exhibits a significant increase in MBD (16.89%) when substituting Kt with Td, 

highlighting the critical role of Kt in PAR estimation and the unsuitability of the weighted Td coefficient it employs in diverse 

European climates. 

 

 

 

 

 

 
Figure 4: Data from both the training and testing segments of the 9 aforementioned sites were used to investigate the relationship between 

the new parameters and the measured PAR. Data points in a scatter plot can be gauged by their density in increments of 0.01 using the point 

density concept, specifically concerning the parameter and PAR. 
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In response to these findings, this work proposes shifting away from DHI towards a new set of variables outlined in Figure 4. 

These are integrated with Kt, GHI, SZA, and Td based on their demonstrated correlation with PAR in literature and observations. 

The resulting Musleh-Rahman (MR) model incorporates the new variables in a weighted exponential formula. The model's 

coefficients, as per equation 10, are determined through nonlinear regression using least squares fit [53], a method chosen for its 

statistical consistency and relevance to reducing MBD. This iterative fitting process starts with initial values derived from the 

Alados and Garcia-Rodriguez models for Kt, GHI, and SZA while for Td and the new variables are initially set to 0.1, ensuring a 

robust foundation for accurate PAR estimation. 

 

 𝑃𝐴𝑅 = GHI ∙  (
1.386 + ln Kt

−0.059 + 1.06×10−3∙T𝑑 + 0.185∙cos (SZA)

e(6.60 ×10−5∙Clear DNI + 2.384∙Ozone + 0.135∙AOD550)
) (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The MR model demonstrates enhanced performance in predicting PAR values for European temperate climates, as evidenced in 

Figure 6. It achieves a notable decrease in MBD by 3.08% when compared to the best performing PAR estimations (i.e., the 

Garcia-Rodriguez model). This improvement is expected, given that the MR model is specifically calibrated using data from 

European climates, tailoring its coefficients to this particular environmental context. Figure 6 reveals that, unlike its counterpart, 

 
Figure 6: A side-by-side comparison of measured versus modelled PAR using two distinct models: the Garcia-Rodriguez model is depicted 

on the left, while the MR model is featured on the right. The comparison aims to illustrate the accuracy of each model in replicating 

observed PAR data across 9 validation sites. 

 

 
Figure 5: In evaluating the efficacy of the 10 models and the newly introduced MR model across 9 distinct locations, the analysis 

specifically focuses on the RMSE and absolute MBD values. Among these, only the Escobedo model exhibits a negative MBD. 
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the MR model exhibits a more diverse point density across the spectrum of irradiance levels, noted by its improved R2 

approaching one. It not only maintains accuracy at the initial irradiance levels but also extends this accuracy to higher levels of 

irradiance. This characteristic is crucial for enabling more precise estimations of PAR during critical periods, such as the 

harvesting season for certain crops, by providing insights into the required irradiance levels under different sky conditions. 

Consequently, the MR model's applicability extends beyond the limitations of data availability from stations measuring DHI, 

promoting its broader use in various applications. Additionally, Figure 6 highlights a denser overlap between modelled and 

measured PAR across the entire range of PAR values, indicating a more robust and versatile performance compared to the DHI-

dependent Garcia-Rodriguez model. 

4. Machine Learning Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 demonstrates the superiority of the 4 examined ML algorithms over the 10 PAR empirical models mentioned in the earlier 

section in Figure 5. Among these, ANN shows the most significant MBD at -2.32% and RMSE of 22.91 W/m2, with the kNN 

following at MBD of -0.25%. The XGB and LGBM models exhibit near identical performance levels, each achieving MBD of -

0.16% and -0.15%, respectively. Moreover, when considering the RMSE, slight differences emerge. The XGB model records a 

lower RMSE at 20.10 W/m2, compared to the LGBM model at 20.55 W/m2.This similarity in performance can be attributed to 

their gradient boosting methodology and the incorporation of regularization techniques, which mitigate overfitting by imposing 

penalties on coefficient magnitude. Such techniques are especially advantageous when dealing with training data that is susceptible 

to noise, a common occurrence in the variable weather conditions of European temperate climates. LGBM, kNN, and XGB exhibit 

MBD values below 1% and RMSE values differing by a maximum of 3.50 W/m2, indicating their high accuracy in predicting PAR. 

Both LGBM and XGB ensure effective handling of complex, nonlinear relationships, a feature bolstered by their sophisticated 

implementations and optimizations for large-scale, high-dimensional data analysis. 

 

Although the ANN surpasses the conventional PAR models in performance, its interpretability remains a challenge. In contrast, 

XGB and LGBM not only deliver powerful predictive capabilities but also enhance interpretability through features like importance 

scores. Notably, the MR model introduced in this work closely approaches the performance of the XGB and LGBM models, with 

only a slight MBD difference of 0.03% and 0.04%, respectively. It is important to highlight that both the MR and ML models were 

trained and validated on data from 9 European climate sites, emphasizing the need to assess them in unseen dataset to determine 

their applicability, scalability and robustness in these settings. 

 

5. Evaluation under Unseen Sites 

Table 5 reveals that the performance of the 10 empirical models under has a significant MBD range from -8.41% to 39.47% and 

Table 6 shows RMSE ranging between 7.66 W/m2 and 97.24 W/m2. Among these, the Peng and Wang models remain notably 

inferior outcomes due to their empirical development within China, failing to account for the significant SZA encountered at higher 

latitudes; explaining their similar performance in MBD and RMSE values. Furthermore, employing a simple ratio conversion, 

exemplified by the Tan-Ismail method, results in an RMSE spread from 20.31W/m2 to 51.96 W/m2, with its MBD values being 

positive indicating overestimations throughout. The higher numerical value occurring under a Csa climate close to the sea, which 

implies elevated humidity, thus, varying precipitation and temperature conditions. This suggests that a straightforward arithmetic 

transformation may not be sufficiently accurate. 

 
Figure 7: Based on the same data input as the MR model, the RMSE and MBD values are specifically examined in evaluating the 

performance of the 4 ML models using the validation dataset. 
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Segmenting the analysis based on sky clarity yielded a modest improvement of 1.94% in absolute MBD terms, yet the overall 

performance remains unsatisfactory when using the Escobedo model. However, incorporating DHI through Perez coefficients 

offers some enhancement in model accuracy. Among the 10 models, Garcia-Rodriguez still remaining the better model, standing 

out with a comparatively better MBD of 7.71% and the lowest RMSE of 24.11 W/m2, with the lowest drop to -1.99% observed in 

the Hohes-Holz scenario, likely due to the alignment of GHI and PAR within the validated climate conditions it has.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: An analysis of the MBD percentage was conducted to assess the estimation accuracy of PAR at new testing sites. This 

comparison involved both empirical and machine learning models. The model achieving the lowest (thus, most accurate) MBD value is 

distinguished with a bold highlight. 

 

Model Aurade 
Fontainebleau- Hohes 

Lochristi Maasmechelen Castelporziano Overall 
Barbeau Holz 

Tan-Ismail 12.99 18.60 8.00 9.82 15.85 24.17 10.35 

Escobedo -6.07 10.05 -16.42 -8.88 10.45 15.88 -8.41 

Akitsu 1 12.84 18.44 -4.49 9.68 15.71 24.00 10.20 

Akitsu 2 28.39 33.95 13.68 24.01 30.78 40.57 24.69 

Peng 44.61 49.39 26.74 38.97 46.08 57.21 39.47 

Wang 38.72 43.28 21.87 33.43 40.17 50.31 33.84 

Hu 14.41 20.42 7.56 15.93 21.53 21.76 14.42 

Jacovides 11.34 16.28 -0.89 7.99 13.89 22.53 8.60 

Garcia-Rodriguez 10.74 15.92 -1.99 7.21 13.10 21.71 7.71 

Alados 20.01 25.73 16.08 24.21 29.92 25.51 21.44 

MR 6.04 -1.54 0.67 4.08 -3.88 3.22 4.03 

ANN -5.82 -9.66 4.41 -4.30 -9.76 -14.11 -6.00 

LGBM -5.35 -9.24 4.79 -3.90 -9.34 -13.87 -3.85 

XGB -5.52 -9.34 4.79 -3.94 -9.40 -14.07 -3.93 

kNN -6.07 -9.49 4.56 -4.42 -9.75 -13.32 -4.02 
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Figure 8: The heatmap illustrates the MBD expressed as a percentage, comparing the optimal empirical model, the MR model, and 4 

machine learning models, utilizing the hsv colour scheme, for the Hohez Holz dataset in the year 2022. A value closer to zero denotes 

superior accuracy. 

Table 6: An evaluation of the RMSE (in W/m2) to assess the PAR  of the MBD percentage was conducted to assess the accuracy of PAR 

at the unseen test sites. This comparison involved both empirical and machine learning models. Models that recorded the lowest RMSE 

values in the given location are marked in bold. 

 

Model Aurade 
Fontainebleau- Hohes 

Lochristi Maasmechelen Castelporziano Overall 
Barbeau Holz 

Tan-Ismail 29.24 31.61 23.09 20.31 27.08 51.96 26.21 

Escobedo 17.67 18.94 33.32 22.19 18.78 36.70 25.92 

Akitsu 1 28.98 31.39 11.37 20.14 26.87 51.67 26.05 

Akitsu 2 54.46 52.42 20.65 37.22 47.65 77.59 43.98 

Peng 73.62 68.60 34.74 53.79 63.39 97.24 59.17 

Wang 66.72 62.36 29.39 47.99 57.35 89.27 53.22 

Hu 29.72 34.32 12.59 26.53 34.74 47.22 27.42 

Jacovides 26.91 28.37 8.88 18.41 24.64 49.28 24.76 

Garcia-Rodriguez 26.42 28.56 7.79 17.93 24.15 48.20 24.11 

Alados 39.33 41.88 23.09 38.73 46.11 54.68 36.27 

MR 18.81 8.25 7.66 13.75 12.29 12.72 19.83 

ANN 19.79 19.52 12.00 13.67 18.93 40.58 22.01 

LGBM 18.47 19.74 11.48 13.12 19.46 38.33 18.67 

XGB 18.54 19.69 11.29 13.61 19.47 38.69 18.69 

kNN 21.02 21.85 11.81 15.36 21.43 38.05 20.27 
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Figure 8 highlights for Hohes Holz, the Garcia-Rodriguez's model fluctuating monthly, influenced by seasonal PAR and irradiance 

changes. Its efficacy is high during June to September, with MBD values under 1%, but drops markedly in winter, notably in 

January and December, due to unsuitable coefficients for high-latitude climates and inability to handle winter's steep solar zenith 

angles. This points to the need for models like MR, which sidesteps DHI derivatives, showing improved accuracy across six 

locations, with reasonable achievements in Aurade and Lochristi. The MR model benefits from incorporating new variables, 

enhancing precision and suggesting effectiveness in ML contexts. In comparison, ML models trained in temperate climates surpass 

all models, with LGBM leading and MR closely following in performance. 

 

While ML models, as depicted in Figure 8, exhibit better stability than Garcia-Rodriguez, they nonetheless show less variability 

than the MR model. This observation suggests that future research could explore the classification of ML models by climate or 

seasonal attributes to further refine their performance. The location of Castelporziano was identified as the least accurately modeled 

by ML methods, likely due to the predominance of training and validation data from higher latitudes within Cfb climate 

classifications, indicating a potential area for adjustment. Nonetheless, ML models still outshine their counterparts across the board. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exploring the performance nuances of the Garcia-Rodriguez, MR, and LGBM models against different PAR irradiance levels, 

Figure 9 shows kernel density estimations shed light on their efficacy. These estimations reveal a bell-shaped distribution for 

PAR values, highlighting a peak around 50 W/m2. The Garcia-Rodriguez model aligns well with observed PAR levels but tends 

to slightly overestimate at the peak as per Figure 9a, predominantly covering lower irradiance values below 200 W/m2, reflective 

of most dataset observations. From Figure 9e, the MR model, through its integration of McClear DNI, avoids the peak 

overestimation seen in Garcia-Rodriguez, providing a more consistent density across the 0 to 100 W/m2range. It exhibits a 

broader and more even distribution of predicted PAR values, particularly reducing bias towards higher or lower extremes as seen 

in Figure 9b. This balanced approach aligns the MR model more closely with the actual distribution of PAR values within the 

dataset, improving its accuracy for a wider range of conditions. Conversely, the LGBM, while similar to MR in avoiding peak 

biases, demonstrates a slight increase in density within the moderate PAR range (201-300 W/m2), suggesting it is more attuned 

to capturing these mid-range values noted in Figure 9f. This slight shift in prediction density may give the LGBM a marginal 

advantage in accuracy for datasets with a moderate PAR value prevalence. Moreover, its performance across the entire PAR 

spectrum indicates a versatile capability to accurately forecast across diverse irradiance levels. The LGBM model's nuanced 

distribution suggests it might offer the most comprehensive and balanced performance among the three, especially in contexts 

requiring accurate predictions across a broad spectrum of PAR irradiance. 

 

Through examining Figure 10, it becomes evident that the Garcia-Rodriguez model's point density is predominantly concentrated 

within the initial 100 PAR irradiance values. This observation aligns with previous discussions, highlighting a decrease in modeling 

 
Figure 9: Comparative performance of the best-performing models with the normalised density distributions (a-c) and the associated data 

density percentages within specific PAR intervals (d-f) for three key models: the Garcia-Rodriguez model (illustrated in green), the MR 

model (red), and the LGBM (blue). 
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performance, in terms of point density, as PAR values escalate. Specifically, the density of grid interactions diminishes, elucidated 

by an MBD of 7.71% demonstrates the model's inclination to overestimate actual measured PAR values by an RMSE of 24.11 

W/m2. Despite this tendency for overestimation, the model significantly elucidates the variance observed in measured PAR data, 

as reflected by an R² value of 0.9463. This indicates that although the model exhibits a consistent bias towards higher estimates, 

its predictions align closely with the trends observed in actual measurements, reinforcing insights presented in Figure 10. In 

contrast, the MR model exhibits a reduction in performance at unseen sites by 4.28 W/m2 in terms of RMSE and MBD of 3.68% 

relative to the Garcia-Rodriguez model, yielding an MBD of 4.03% and an RMSE of 19.83 W/m2. This reduced deviation suggests 

a narrower average error margin compared to the findings in Figure 9a. Furthermore, an enhanced R² value signifies a superior 

model fit to the measured data, implying not only an accurate trend prediction but also greater precision on average. The density 

of points near the 1:1 line is notably high for lower PAR values, with no distinct peak value as indicated in Figure 9b, pointing 

towards numerous accurate predictions. The LGBM boasts the highest R² value among the models, signifying the most accurate 

overall predictive capability. The negative MBD highlights the model's reliability, albeit with a tendency towards conservative 

estimates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It becomes apparent that eliminating DHI and incorporating McClear DNI, Ozone, and AOD550 not only reduces MBD and 

improves the R² value but also enhances the model's robustness, making it applicable beyond sites equipped to measure DHI. 

Specifically, the inclusion of McClear DNI addresses the issue of early PAR values, while Ozone and AOD550 adjustments rectify 

overestimations beyond 200 W/m², facilitating more accurate representation of fluctuations. However, further exploration is 

necessary to refine estimates of clear irradiance and explore the potential for sky condition classification through parameters or 

monthly data analysis. This approach could mitigate seasonal variances and, by integrating ML with the MR model, tailor 

coefficients to suit various Köppen-Geiger climate classifications, thereby broadening the model's applicability. 

4. CONCLUSION 

In conclusion, this work embarked on an evaluation of 10 empirical models designed for PAR prediction, with a subset of 4 models 

incorporating DHI across 15 temperate European environments, highlighting the need for diverse solar, atmospheric, and cloud 

cover variations at higher latitudes. This process culminated in the development of the Musleh-Rahman (MR) model. This approach 

eliminates the need for DHI, instead clear-sky DNI, as well as Ozone and AOD550nm data sourced from satellite observations. 

The MR model's performance was then tested and confirmed across 9 European climates in conjunction with 4 ML models: kNN, 

ANN, LGBM, and XGB. The MR model demonstrated superior performance, particularly in a validation study across nine 

European climates where it reduced the Mean Bias Deviation (MBD) to 0.19% from the 3.08% observed in the Garcia-Rodriguez 

model and the Root Mean Square Error (RMSE) reduced by 4.28 W/m2. After tuning the hyperparameters, 3 out of the 4 machine 

learning models demonstrated superior performance compared to the MR model. In further testing across 6 unseen European 

locations, the MR model showed MBD values ranging from -3.88% to 6.04%. The MR model and the LGBM were particularly 

noted for their precision in lower PAR values, as evidenced by kernel density and scatter plot analyses, achieving R2 values of 

0.9709 and 0.9712, respectively, with having RMSE values of  The RMSE values of 19.83 W/m2 and 18.67 W/m2, though the 

LGBM had an absolute MBD improvement of 0.18%. Future research should focus on evaluating additional weather variables 

within optimally hypertuned machine learning models, including the use of more diverse and stacked models. There is also interest 

in refining clear irradiance estimations for temperate climates, particularly at higher temporal resolutions such as minute–minute. 

Such advancements could mitigate seasonal variability and facilitate a deeper understanding of the interplay of PAR and cloud 

effects for various Köppen-Geiger climate classifications, further refining PAR prediction accuracy. 

 
Figure 10: Comparative scatter plots of measured PAR against the best-performing models with Garcia-Rodriguez (Left),  MR (Middle), and 

LGBM (Right) at 6 unseen European Temperate Locations. 
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