Suspended liquid particle disturbance on laser-induced blast wave and low density distribution
Suspended liquid particle disturbance on laser-induced blast wave and low density distribution
The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency.
Ukai, Takahiro
fed67f9f-395d-417b-8808-80e37ae27355
Zare-Behtash, Hossein
74be9b97-cb09-49c6-9f75-7ec58c0dd16c
Kontis, Konstantinos
8e534eab-6495-4dcb-ab48-e2a8906bcd8a
13 December 2017
Ukai, Takahiro
fed67f9f-395d-417b-8808-80e37ae27355
Zare-Behtash, Hossein
74be9b97-cb09-49c6-9f75-7ec58c0dd16c
Kontis, Konstantinos
8e534eab-6495-4dcb-ab48-e2a8906bcd8a
Ukai, Takahiro, Zare-Behtash, Hossein and Kontis, Konstantinos
(2017)
Suspended liquid particle disturbance on laser-induced blast wave and low density distribution.
Physics of Fluids, 29 (12), [126104].
(doi:10.1063/1.4999042).
Abstract
The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency.
This record has no associated files available for download.
More information
Accepted/In Press date: 19 November 2017
Published date: 13 December 2017
Identifiers
Local EPrints ID: 490885
URI: http://eprints.soton.ac.uk/id/eprint/490885
ISSN: 1070-6631
PURE UUID: fa754591-a8e5-426c-907a-0396b3c8db54
Catalogue record
Date deposited: 07 Jun 2024 17:30
Last modified: 08 Jun 2024 02:11
Export record
Altmetrics
Contributors
Author:
Takahiro Ukai
Author:
Hossein Zare-Behtash
Author:
Konstantinos Kontis
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics