Pseudo-shock waves and their interactions in high-speed intakes
Pseudo-shock waves and their interactions in high-speed intakes
In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.
36-56
Gnani, F.
6001364a-f3ee-400e-9394-8adb273c044a
Zare-Behtash, H.
74be9b97-cb09-49c6-9f75-7ec58c0dd16c
Kontis, K.
8e534eab-6495-4dcb-ab48-e2a8906bcd8a
28 March 2016
Gnani, F.
6001364a-f3ee-400e-9394-8adb273c044a
Zare-Behtash, H.
74be9b97-cb09-49c6-9f75-7ec58c0dd16c
Kontis, K.
8e534eab-6495-4dcb-ab48-e2a8906bcd8a
Gnani, F., Zare-Behtash, H. and Kontis, K.
(2016)
Pseudo-shock waves and their interactions in high-speed intakes.
Progress in Aerospace Sciences, 82, .
(doi:10.1016/j.paerosci.2016.02.001).
Abstract
In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.
This record has no associated files available for download.
More information
Accepted/In Press date: 15 February 2016
e-pub ahead of print date: 7 March 2016
Published date: 28 March 2016
Identifiers
Local EPrints ID: 490891
URI: http://eprints.soton.ac.uk/id/eprint/490891
ISSN: 0376-0421
PURE UUID: 90ae5fbd-fba9-4cc6-9f03-c46504855d24
Catalogue record
Date deposited: 07 Jun 2024 17:42
Last modified: 08 Jun 2024 02:11
Export record
Altmetrics
Contributors
Author:
F. Gnani
Author:
H. Zare-Behtash
Author:
K. Kontis
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics