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Abstract—We study data-driven analysis and control of 2D
Fornasini-Marchesini second models. We give necessary and suf-
ficient conditions for the data to be informative for identification,
and state a 2D “fundamental lemma”. We propose a data-driven
approach for stability verification and state-feedback stabilization
via LMIs.

I. INTRODUCTION

Data-driven control is a fast-growing area of theoretical
research in control with important practical applications.
Research has almost exclusively been focused on systems
evolving over the independent variable ‘time’ (called ‘1D
systems’ in the following). Research in data-driven control
for systems evolving over n ą 1 independent variables (called
‘nD systems’ in the following) has been much less intensive.

Of central importance in 1D data-driven control is “suffi-
cient informativity” and parametrizations of system trajectories
from a “sufficiently informative” data. Such concepts are
related to “persistency of excitation” and the “fundamental
lemma” and its generalizations (see [10], [12], [13], [9]).
One of the reasons for the lack of progress in nD data-
driven control research may be that similar concepts and
results are missing. We started to fill this gap in [8], where
a “fundamental lemma” for autonomous (no inputs) quarter-
plane causal systems was stated. In this paper we consider
2D open systems (i.e. with inputs) in the Fornasini-Marchesini
(FM) second representation. Every “quarter-plane causal” 2D
system is representable by such models (see [4]), so our results
are not overly restrictive. We assume that input and state are
directly measurable; this is a standard assumption in 1D data-
driven control (see [2]). Our contributions are the following:

‚ In Section III we provide necessary and sufficient condi-
tions for the data to be informative for identification;

‚ In Section IV we prove a 2D version of the “fundamental
lemma”;

‚ In Section V we show how to obtain a system represen-
tation from sufficiently informative data;

‚ In Section VI we give data-based sufficient conditions to
verify the stability of a FM second model;
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‚ In Section VII we provide a data-based design procedure
to stabilize FM second models by state-feedback.

We summarize some preliminary material on FM models and
their stability in Section II. In Section VIII we discuss the
limitations of our work and current research directions.

Notation

We denote by N, Z and R respectively the set of natural,
integer and real numbers, and by Z2 :“ Z ˆ Z. Rn denotes
the space of n-dimensional vectors with real entries. Rnˆm

denotes the set of n ˆ m matrices with real entries; Rnˆ8

the set of real matrices with n rows and an infinite number
of columns; and Rnˆ‚ the set of matrices with n rows and
a finite (unspecified) number of columns. The transpose of a
matrix M is denoted by MJ and its pseudoinverse by M :;
the image of M is denoted by impMq. If A,B P R‚ˆm we
define colpA,Bq :“

“

AJ BJ
‰J

. The spectral radius of M
is denoted by ρpMq. Positive- and negative-definiteness of
matrices are denoted by ą 0 and ă 0, respectively. Given
a subspace V , its orthogonal subspace is denoted by VK.
Rrz1, z2s is the ring of polynomials with real coefficients in

the indeterminates zi, i “ 1, 2, and Rnˆmrz1, z2s the ring of
nˆm matrices with entries in Rrz1, z2s. Given S Ă Rrz1, z2s,
we denote by xSy the module generated by the elements
of S. The same notation is used for modules of the ring
R1ˆmrz1, z2s of polynomial row vectors with m entries.

We denote by pRqq
Z2

the set of q-real valued doubly-
indexed sequences: pRqq

Z2

:“
␣

w : Z2 Ñ Rq
(

. We denote by
σi, i “ 1, 2, the shifts on pRqq

Z2

:

pσ1wqpi, jq :“ wpi ` 1, jq , pi, jq P Z2 ,

and analogously for σ2. We define the reverse shifts σ´1
i , i “

1, 2 on pRqq
Z2

by
`

σ´1
1 w

˘

pi, jq :“ wpi´1, jq and
`

σ´1
2 w

˘

pi, jq :“ wpi, j´1q .

We denote the composition of σ1 and σ´1
2 by σ :“ σ1 ˝σ´1

2 .

II. BACKGROUND MATERIAL

A. Fornasini-Marchesini second models

The state equation of a Fornasini-Marchesini second model
(abbreviated FM in the rest of the paper)

σ1σ2x “ A1σ2x ` A2σ1x ` B1σ2u ` B2σ1u ,

can equivalently be written as

σ1x “ A1x ` A2σx ` B1u ` B2σu . (1)



We associate with (1) the set of trajectories

B :“
␣

colpx, uq : Z2 Ñ Rn`m | colpx, uq satisfies (1)
(

.
(2)

We associate with (1) the n ˆ pn ` mq polynomial matrix in
the indeterminates z1, z “ z1z

´1
2 defined by

Rpz1, zq :“
“

z1In ´ A1 ´ zA2 B1 ` zB2

‰

. (3)

The highest degree in z1 in (3), denoted by ℓpBq, is ℓpBq “ 1.
We also consider the system (1) without inputs:

σ1x “ A1x ` A2σx . (4)

B. Stability of FM second models

An exhaustive review of stability results for 2D systems
is given in [1]. We recall here two results concerning FM
second models (see Sections 4.1, 4.2 and 4.4 ibid.); while
only sufficient conditions, they are often used for the design
of stabilizing controllers, since they are easier to work with
than necessary and sufficient conditions (see [5]).

Proposition 1. If D Qi “ QJ
i P Rnˆn, i “ 1, 2 such that

0 ă Qi , i “ 1, 2 (5)

0 ą

„

A1 pQ1 ` Q2qAJ
1 ´ Q1 A1 pQ1 ` Q2qAJ

2

A2 pQ1 ` Q2qAJ
1 A2 pQ1 ` Q2qAJ

2 ´ Q2

ȷ

then the FM second model (4) is stable.

Proof. This is Corollary 1 p. 5 of [1], from [3].

We give another sufficient condition for stability of (4).

Proposition 2. If D X “ XJ, Y “ Y J P Rnˆn such that

0 ă X , 0 ă Y

0 ą

»

–

´X 0 Y AJ
1

0 X ´ Y Y AJ
2

A1Y A2Y ´Y

fi

fl (6)

then the FM second model (4) is stable.

Proof. This is Theorem 2 p. 5 of [1], from [11].

III. INFORMATIVITY FOR IDENTIFICATION FOR FM
SECOND MODELS

We denote by Lk the k-th diagonal line in Z ˆ Z:

Lk :“ tpi, jq P Z2 | i ` j “ ku , k “ 0, . . . , N ,

and by L0:N the N ` 1 consecutive diagonal lines

L0:N :“ tpi, jq P Z2 | 0 ď i ` j ď Nu .

We measure a (state,input) trajectory colppx, puq P B; we denote
by colppx, puq|Lk

the restriction of colppx, puq : ZˆZ Ñ Rn`m to
Lk and by colppx, puq|L0:N

the restriction of colppx, puq to L0:N .
We call colppx, puq|L0:N

the data; from them we define the data
set D0:N pcolppx, puqq by

D0:N pcolppx, puqq :“ colppx, puq|L0:N
. (7)

Given j P N, we denote by Hjpcolppx, puq|Lk
q the block-

Hankel matrix defined by

Hjpcolppx, puq|Lk
q :“ (8)

»

—

—

—

—

—

–

. . . colppx, puqk´1,1 colppx, puqk,0 . . .

. . . colppx, puqk,0 colppx, puqk`1,´1 . . .

. . . colppx, puqk`1,´1 colppx, puqk`2,´2 . . .
...

...
...

...
. . . colppx, puqk`j´1,´j`1 colppx, puqk`j,´j . . .

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Each column of (8) consists of j ` 1 consecutive values of
colppx, puqLk

; the i-th column is the σ-shift of the pi´1q-th one.
Thus, the matrix (8) is a block-Hankel matrix corresponding
to the 1D-sequence colppx, puqLk

operated on with the shift σ.
We define the data matrix DN pcolppx, puqq by

DN pcolppx, puqq :“

»

—

—

—

–

HN pcolppx, puq|L0
q

HN´1pcolppx, puq|L1
q

...
H0pcolppx, puq|LN

q

fi

ffi

ffi

ffi

fl

. (9)

Example 1. We use the lattice depicted in Fig. 1 to show how
DN defined by (9) is constructed for the case N “ 2. Note the
color coding for the three lines L0 (green), L1 (blue) and L2

(red). The first column of the matrix in (10) corresponds to

1

2

3

Fig. 1. Construction of D2 for Example 1.
.

the “equilateral triangle” of Z2 indicated by “1” in the figure;
the second column, to the triangle indicated by “2”; the third
one, to that indicated by “‘3” in Figure 1.
»

—

—

—

—

—

—

—

—

—

—

—

–

. . . colppx, puq0,0 colppx, puq1,´1 colppx, puq2,´2 . . .

. . . colppx, puq1,´1 colppx, puq2,´2 colppx, puq3,´3 . . .

. . . colppx, puq2,´2 colppx, puq3,´3 colppx, puq4,´4 . . .

. . . colppx, puq1,0 colppx, puq2,´1 colppx, puq3,´2 . . .

. . . colppx, puq2,´1 colppx, puq3,´2 colppx, puq4,´3 . . .

. . . colppx, puq2,0 colppx, puq3,´1 colppx, puq4,´2 . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(10)

Each column of DN is built by “unfolding” colppx, puq on a
triangle with apex at pk`N,´kq and side length N `1.

The matrices (8) and (9) have an infinite number of columns
and a finite number of rows, respectively pj ` 1qpn ` mq and
pn ` mq

řN
j“0pj ` 1q “ pn ` mq

pN`1qpN`2q

2 .



We denote by N pD0:N pcolppx, puqqq the set of left-
annihilators of DN pcolppx, puqq, defined by
!

η P R1ˆpn`mq rz1, zs | ηpσ1, σq colppx, puq|L0:N
“ 0

)

, (11)

and by xN pD0:N pcolppx, puqqqy the module generated by its
elements. The module of annihilators of B is denoted by
N pBq; given a kernel representation (3) of B, N pBq consists
of all polynomial combination of the rows of Rpz1, z1z

´1
2 q:

N pBq “
␣

vR
`

z1, z1z
´1
2

˘

| v P R1ˆn
“

z1, z1z
´1
2

‰(

.

Every annihilator of B also annihilates colppx, puq; consequently
N pBq Ď xN pD0:N pcolppx, puqqqy. The issue of whether the
converse inclusion holds, i.e. whether the data colppx, puq is
“sufficiently rich” to allow the identification of all annihilators
of the system, is at the core of the following definition.

Definition 1. The data D0:N pcolppx, puqq are informative for
identification if xN pD0:N pcolppx, puqqqy “ N pBq.

The following result is analogous to the first part of Theo-
rem 2 in [8], and generalizes it to the case of open systems.

Theorem 1. Define B by (2). Let colppx, puq P B. Assume that
N ě ℓpBq “ 1. The following statements are equivalent:

1) The data are informative for system identification;
2) N pBq “ xN pD0:N pcolppx, puqqqy;
3) rankpDN pcolppx, puqqq “ npN ` 1q ` m pN`1qpN`2q

2 .

Proof. p1q ðñ p2q follows from Definition 1.
To prove p2q ùñ p3q, recall that N ě ℓpBq “ 1, and

write N “ 1 ` r, with r ě 0. Note that DN pcolppx, puqq has
d :“ pn`mq

pN`1qpN`2q

2 rows. Assume first that r “ 0; then

D1pcolppx, puqq “

„

H1pcolppx, puq|L0
q

H0pcolppx, puq|L1
q

ȷ

P R3pn`mqˆ8 .

By assumption the module of annihilators of B is isomorphic
to the left kernel of D1pcolppx, puqq; it follows that every left-
annihilator of D1pcolppx, puqq is a linear combination of the
linearly independent n rows of

“

A1 B1 A2 B2 ´In 0nˆm

‰

. (12)

Consequently rankpD1pcolppx, puqqq “ 3pn`mq´n “ 2n`3m
and the claim is verified. For r “ 1, D2pcolppx, puqq equals

»

–

H2pcolppx, puq|L0
q

H1pcolppx, puq|L1
q

H0pcolppx, puq|L2
q

fi

fl P R6pn`mqˆ8

“

»

—

—

—

—

—

—

–

. . . colppx, puq´1,1 colppx, puq0,0 . . .

. . . colppx, puq0,0 colppx, puq1,´1 . . .

. . . colppx, puq1,´1 colppx, puq2,´2 . . .

. . . colppx, puq0,1 colppx, puq1,0 . . .

. . . colppx, puq1,0 colppx, puq2,´1 . . .

. . . colppx, puq1,1 colppx, puq2,0 . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Given the assumption 2q, the structure of D2pcolppx, puqq and
the shift-invariance of B, each left annihilator of D2pcolppx, puqq

is a linear combination of the rows of the 3 matrices
“

A1 B1 A2 B2 0 ´In 0 0
‰

“

0 A1 B1 A2 B2 0 ´In 0
‰

(13)
“

0 0 0 A1 B1 A2 B2 ´In
‰

.

The last n annihilators in (13) are computed from those of
D1pcolppx, puqq by preceding them by 3pn ` mq zeros (the
number of rows of H2pcolppx, puq|L0

q); they are obtained from
the laws of the system (1) applied to samples of colppx, puq on
L1 and L2. The first 2n annihilators in (13) are due to the laws
of the system (1) applied to samples of colppx, puq on L0 and L1.
It follows that rankpDℓpBq`1pcolppx, puqqq “ 6pn ` mq ´ 3n “

3n ` 6m, verifying the claim for N “ 2, i.e. r “ 1.
This argument shows that for the cases r “ 0 and r “ 1

dim left ker Drpcolppx, puqq “ dim left ker Dr´1pcolppx, puqq

` pr ` 1qn , (14)

where we define dim left ker D´1pcolppx, puqq :“ 0.
We now show that (14) holds also for r ě 2 by constructing

a basis for the set of left annihilators of Dr`1 as follows.
Precede each basis element of the set of left annihilators of Dr

by pr`2qpn`mq zeroes; we obtain dim left ker Drpcolppx, puqq

linearly independent left annihilators of Dr`1. Additional
elements of left ker Dr`1pcolppx, puqq can be constructed from
the linear combination of σh colppx, puqL0

and σh`1 colppx, puqL0
,

h “ 0, . . . , r, with σh colppx, puqL1
, according to the dynamics

(1). There are pr`1qn linearly independent such annihilators.
Now denote Apσq :“ A1 `A2σ and Bpσq :“ B1 `AB2σ;

it follows from (1) that colppx, puq P B if and only if for every
k, p P N with k ą p it holds that

pxLk
“ Apσqk´p

pxLp
`

k´1
ÿ

j“p

Apσqk´1´jBpσqpuLj
.

Thus, every left annihilator of Dr`1pcolppx, puqq is a linear
combination of the elements constructed with the procedure
just described. We proved the equality (14) also for r ě 2.

Conclude that the number of linearly independent left anni-
hilators of DN pcolppx, puqq equals

řN´1
r“0 pr ` 1qn “ nNpN`1q

2
and consequently that rankpDN pcolppx, puqqq equals

pN ` 1qpN ` 2q

2
pn ` mq ´ n

NpN ` 1q

2
,

which is easily seen to be equal to npN `1q`m pN`1qpN`2q

2 ;
statement 3 of the Theorem is proved.

To prove the implication p3q ùñ p2q, note that colppx, puq

satisfies (1). Consequently left kerDN pcolppx, puqq contains all
constant vectors associated with linear combination of the rows
of the coefficient matrices of (3) and its shifts. That is, the
rows of (12) are contained in left kerD1pcolppx, puqq, those of
(13) are contained in left kerD2pcolppx, puqq, and so forth for
every N ě 1. Using assumption 3q we conclude that there are
no other left-annihilators of DN pcolppx, puqq. The polynomial
matrices associated with the bases (12), (13) and so forth
generate the module N pBq. Consequently,

N pBq Ě xleft kerDN pcolppx, puqqqy .

Statement 2 of the Theorem is proved.

Remark 1. If the data are informative, the rank of some finite
submatrix of DN pcolppx, puqq satisfies 3) in Theorem 1.

We illustrate the result of Theorem 1 with a numerical
example. In this and all other examples in this paper, we



generate (input, state) data for systems (1) as follows. We
randomly generate 98 values of xL0 , uL0 , uL1 and uL2 , and
compute the corresponding values of xLi , i “ 1, 2 using (1).

Example 2. We define

A1 :“

„

0 1
2 0

ȷ

, A2 :“

„

0 1
9 0

ȷ

, B1 :“

„

0
1

ȷ

, B2 :“

„

1
1

ȷ

.

The first 7 singular values of the matrix D1 are

713070, 7.7964, 3.4980, 3.0897, 2.8103, 2.6836, 2.3185 ,

and the last two are 1.1769 ¨ 10´15 and 8.6754 ¨ 10´16. As
stated in statement 3 of Theorem 1, rankpD1q “ 7.

D2 has 19 rows and its last 7 singular values have order
10´14 or smaller, while the 12th equals 1.6366. Consequently
rankpD2q “ 19 ´ 7 “ 12, as stated in Theorem 1.

Remark 2. Roesser models are an alternative class of rep-
resentations for quarter-plane causal 2D systems, equivalent
to FM ones (see Section 3 of [6]). An approach analogous to
that illustrated in this section can be developed also for such
representations. Details will be given elsewhere.

In the following sections we state some consequences of
Theorem 1 relevant for data-driven control applications.

IV. A ‘FUNDAMENTAL LEMMA’ FOR FM SECOND MODELS

Let N P N, N ě 1, and define d :“ pN`1qpN`2q

2 pn ` mq.
Given colppx, puq P B, we define its N -unfolding at pk,´kq by

fkpx, uq :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

colppx, puqk,´k

...
colppx, puqk`N,´k´N

colppx, puqk,´k`1

...
colppx, puqk`N,´k´N`1

...
colppx, puqk`N,´k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rd .

Note that every column of D0:N pcolppx, puqq is an unfolding.
We define the set of N -unfoldings of B (see Example 1) by

V :“
␣

v P Rd | D colppx, puq P B, k P Z s.t. v “ fkpcolppx, puqq
(

.
(15)

Since B is linear, V is a subspace of Rd.
We show that informativity for identification implies that

the image of the data matrix coincides with V .

Corollary 1. Define B by (2). Let colpx, uq P B. Assume that
N ě ℓpBq “ 1 and that the data are informative for system
identification. Define V by (15). Then

im pD0:N pcolpx, uqqq “ V . (16)

Proof. Since B is linear, the inclusion im pD0:N pcolpx, uqqq Ď

V is satisfied. To prove the claim we show that informativity
for identification implies the converse inclusion: any unfolding
of a trajectory of B belongs to im pD0:N pcolpx, uqqq.

Choose any colppx, puq P B and k P N, and construct the cor-
responding unfolding fk pcolppx, puqq. Since colppx, puq P B and

N ě 1, fk pcolppx, puqq is annihilated by the coefficient vector
of any element in N pBq. Because of the equivalence of state-
ments 1q and 2q in Theorem 1, fk pcolppx, puqq is annihilated
by every vector orthogonal to the columns of D0:N pcolpx, uqq.
Since im pD0:N pcolpx, uqqq “ pleft ker D0:N pcolpx, uqqq

K, we
conclude that fk pcolppx, puqq P im pD0:N pcolpx, uqqq.

V. A DATA-BASED OPEN LOOP SYSTEM REPRESENTATION

The following result is analogous to Theorem 1 of [2].

Corollary 2. Let colppx, puq P B. Assume that N ě ℓpBq “ 1.
Assume that the data are informative for system identification.
Then H1pcolppx, puq|L0

q has full row rank.
Denote by H´ P Rpn`mqˆ‚ a full rank submatrix

of H1pcolppx, puq|L0
q consisting of consecutive columns, and

by H` P Rpn`mqˆ‚ the corresponding submatrix of

H0pcolppx, puq|L1
q. Partition H` “:

„

H`,x

H`,u

ȷ

, with H`,x P

Rnˆ‚, H`,u P Rmˆ‚. Denote by H:
´ a right-inverse of H´;

then
H`,xH

:
´ “

“

A1 B1 A2 B2

‰

. (17)

Proof. We show that the data being sufficiently informative
implies that H1pcolppx, puq|L0

q has full rank. From statement
3q of Theorem 1 we know that

D1pcolppx, puqq “

»

–

colppx, puq|L0

σ colppx, puq|L0

colppx, puq|L1

fi

fl P R3pn`mqˆ8 ,

has rank 2n`3m. From the proof of the implication 2q ùñ 3q

we know that a basis for left ker D1pcolppx, puqq is given by the

rows of the matrices (13). Consequently,
„

colppx, puq|L0

σ colppx, puq|L0

ȷ

“

H1pcolppx, puq|L0
q has full row rank 2pn ` mq.

Use the equation (1) to conclude that

colppx, puq|L1
“
“

A1 B1 A2 B2

‰

H1pcolppx, puq|L0
q

and consequently that H`,x “
“

A1 B1 A2 B2

‰

H´. Now
postmultiply both sides of the last equation by H:

´. The fact
that Ai, Bi i “ 1, 2 are uniquely defined by these equations
follows from the fact that the data are sufficiently informative
and consequently the set of left-annihilators of B defined in
(2) is uniquely determined by the data.

Example 3. We apply (17) to the data generated in Example 2.
We obtain the model associated with

pA1 :“

„

1.6168 ¨ 10´15 1.0000
2.0000 ´8.7430 ¨ 10´15

ȷ

(18)

pA2 :“

„

´7.0777 ¨ 10´16 1.0000
9.0000 1.3600 ¨ 10´15

ȷ

pB1 :“

„

´3.4694 ¨ 10´16

1.0000

ȷ

and pB2 :“

„

1.0000
1.0000

ȷ

,

that coincides up to machine-precision with the data-
generating one, see Example 2.

As shown in Example 3, the state- and input matrices
obtained applying formula (17) to real data are only estimates
of the corresponding matrices in (1), since the system of linear



equations H`,x “
“

A1 B1 A2 B2

‰

H´ is numerically
solved only in a least-squares sense. In the following we use
the pAi, pBi, i “ 1, 2 symbols to distinguish such estimates
from the actual matrices Ai, Bi, i “ 1, 2 of the model.

VI. DATA-DRIVEN STABILITY ANALYSIS OF FM MODELS

We apply Proposition 1 and Proposition 2 to the model
obtained from the data using formula (17) and obtain two data-
driven sufficient conditions for the stability of FM models.

Proposition 3. Let colppx, puq P B. Assume that N ě ℓpBq “

1. Assume that the data are informative for system identifica-
tion. With the same notation as in Corollary 2, partition

H`,xH
:
´ “:

“

A1 B1 A2 B2

‰

.

If there exist Qi “ QJ
i P Rnˆn, Qi ą 0, i “ 1, 2 such that

0 ą

„

A1 pQ1 ` Q2qAJ
1 ´ Q1 A1 pQ1 ` Q2qAJ

2

A2 pQ1 ` Q2qAJ
1 A2 pQ1 ` Q2qAJ

2 ´ Q2

ȷ

(19)
then the data-generating model is stable.

Proof. Follows from Proposition 1 and Corollary 2.

Example 4. Consider the stable system described by

A1 :“

„

0 0.001
0.002 0

ȷ

, A2 :“

„

0 0.001
0.009 0

ȷ

B1 :“
“

0 1
‰J

, B2 :“
“

1 1
‰J

.

We generate data following the same procedure used in
Example 2. Using (17) we compute numerical estimates pAi

and pBi, i “ 1, 2 of the state- and input matrices:

pA1 :“

„

5.9674 ¨ 10´15 0.001
0.002 6.9389 ¨ 10´17

ȷ

(20)

pA2 :“

„

´3.3307 ¨ 10´16 0.001
0.009 ´3.6082 ¨ 10´16

ȷ

pB1 :“

„

9.7145 ¨ 10´17

1.0000

ȷ

and pB2 :“

„

1.0000
1.0000

ȷ

,

which equal Ai, Bi, i “ 1, 2 up to numerical precision. We
solve the LMIs (19) with Yalmip (see [7]), and obtain

Q1 “

„

0.5018 0
0 0.4982

ȷ

, Q2 “

„

0.5094 0
0 0.4096

ȷ

.

We conclude that the data-generating system is stable.

Proposition 4. Let colppx, puq P B. Assume that N ě

ℓpBq “ 1. Assume that the data are informative for system
identification. With the same notation as in Corollary 2,
partition H`,xH

:
´ “:

“

A1 B1 A2 B2

‰

. If there exist
X “ XJ, Y “ Y J P Rnˆn such that X ą 0, Y ą 0 and

0 ą

»

–

´X 0 Y AJ
1

0 X ´ Y Y AJ
2

A1Y A2Y ´Y

fi

fl (21)

then the data-generating model is stable.

Proof. Follows from Proposition 1 and Corollary 2.

Example 5. We consider the same data and matrices as in
the previous example and we apply the LMI test (21) with
Yalmip. We obtain

X “

„

35.3797 0
0 35.3809

ȷ

, Y “

„

58.9644 0
0 58.9681

ȷ

.

We conclude that the data-generating system is stable.

Remark 3. Necessary and sufficient LMI conditions for
stability of FM models are stated in [3]; such conditions can
also be cast in a data-driven framework, analogously to what
we did with Propositions 1 and 2. It is well known (see Remark
1 p. 1512 of [3]) that such conditions are not easy to apply
for controller synthesis. Since our aim is to provide effective
data-driven control design techniques, we do not investigate
any further LMI characterizations of stability.

VII. DATA-DRIVEN STATE-FEEDBACK STABILIZATION OF
FM MODELS

The problem of state-feedback stabilization of (1) consists
in finding a gain K P Rmˆn such that the closed-loop system

σ1x “ pA1 ´ B1Kqx ` pA2 ´ B2Kqσx , (22)

is stable (see Section 8 of [6]). We use Propositions 1 and 2
to compute a stabilizing gain K.

Proposition 5. If D Qi ą 0, i “ 1, 2 and F P Rmˆn such
that

»

–

Q1 0 A1pQ1 ` Q2q ´ B1F
0 Q2 A1pQ1 ` Q2q ´ B2F
‹ ‹ Q1 ` Q2

fi

fl ą 0 ;

then K :“ F pQ1 ` Q2q´1 stabilizes the system (22).

Proof. Substitute Ai,K :“ Ai ´ BiK for Ai, i “ 1, 2, in (5)
and rewrite it as

„

Q1 0
0 Q2

ȷ

´

„

A1,K

A2,K

ȷ

pQ1 ` Q2q
“

AJ
1,K AJ

2,K

‰

ą 0 .

Schur-complement and obtain the equivalent LMI
»

–

Q1 0 A1,KpQ1 ` Q2q

0 Q2 A2,KpQ1 ` Q2q

‹ ‹ Q1 ` Q2

fi

fl ą 0 .

The claim follows writing Ai,KpQ1 `Q2q “ AipQ1 `Q2q ´

BiKpQ1 `Q2q, i “ 1, 2 and defining F :“ KpQ1 `Q2q.

Proposition 6. If D X “ XJ ą 0, Y “ Y J ą 0 P Rnˆn and
F P Rmˆn such that
»

–

X 0 pA1Y ´ B1F q
J

0 X ´ Y pA2Y ´ B2F q
J

A1Y ´ B1F A2Y ´ B2F Y

fi

fl ą 0 ,

then K :“ FY ´1 is a stabilizing gain for (22).

Proof. Substitute Ai ´ BiK for Ai, i “ 1, 2, in (6). Rewrite
the expression as

0 ą

»

–

´X 0 ‹

0 X ´ Y ‹

A1Y ´ B1KY A2Y ´ B2KY ´Y

fi

fl .



Define F :“ KY ; the claim follows.

Example 6. Consider the system (1) defined by

A1 :“

„

0.3274 ´1.5873
0.6571 ´1.3715

ȷ

, A2 :“

„

´0.5735 2.0319
0.1638 ´0.3335

ȷ

B1 :“
“

´0.6504 0.3515
‰J

, B2 :“
“

0.7259 0.4319
‰J

.

This system is unstable since ρpA2q “ 1.0427 ą 1.
We generate informative data following the same procedure

as in Example 2. Using formula (17), we obtain a model Âi,
B̂i, i “ 1, 2, that coincides up to machine-precision with the
data generating one. We apply Proposition 5, and obtain the
following solution to the LMIs:

Q1 “

„

1.2433 0.4068
0.4068 0.1449

ȷ

, Q2 “

„

1.4361 0.3826
0.3826 0.1324

ȷ

,

F “
“

1.3250 0.3202
‰

, from which we compute

K “ F pQ1 ` Q2q´1 “
“

0.9554 ´1.5644
‰

.

It can be checked that ρpA1 ´ B1Kq “ 0.5678 and ρpA2 ´

B2Kq “ 0.9938.
Applying Proposition 6, we obtain

X “

„

0.7718 0.2052
0.2052 0.0707

ȷ

, Y “

„

2.4696 0.7348
0.7348 0.2673

ȷ

,

F “
“

1.2246 0.2939
‰

, from which we compute

K 1 “ FY ´1 “
“

0.9274 ´1.4501
‰

.

Then ρpA1 ´ B1K
1q “ 0.1895 and ρpA2 ´ B2K

1q “ 0.8214.

VIII. CONCLUSIONS AND FURTHER WORK

We investigated some issues relevant to 2D data-driven
control: the definition of “sufficient informativity”, establish-
ing a “fundamental lemma”, and data-based stability analysis
and state-feedback stabilization. Without loss of generality, we
worked with Fornasini-Marchesini second models of quarter-
plane causal 2D-systems.

The assumption that the state is measurable is a serious
limitation to the applicability of our approach to realistic
problems. While direct measurement of the state is a standard
premise in 1D data-driven control, it postulates an insight
into the system structure that is at odds with a truly data-
driven point of view, where control problems should be stated
and solved at the level of external variables. A pressing issue
of current research is extending the notions of informativity
and persistency of excitation, and proving an analogous of the
fundamental lemma, when only input-output data are available.

Notwithstanding the limitations due to the assumption of
state-measurability, the results presented in this paper are of
potential interest in several areas. FM and Roesser models
(see Remark 2) are also used in Iterative Learning Control
and in Repetitive Control (see [14], [15], [16]) and the results
presented in this paper may provide alternatives to current
data-driven approaches in those areas (see [17], [18]).

Corollary 1 provides a parametrization of all “unfoldings” of
system trajectories in terms of a basis for im pDN pcolppx, puqqq.
This result opens up the possibility of performing data-driven

simulation for 2D systems (on this see also Section V of
[8]). Moreover, such parametrization puts within reach the
data-driven solution of finite-horizon 2D quadratic control
problems and the data-driven solution of 2D model predictive
control problems. Ongoing research in these directions will be
presented elsewhere.
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