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Abstract

We consider a type of routing problems common in defence and security, in which we control a fleet
of unmanned aerial vehicles (UAVs) that have to reach one or more target locations without being
detected by an adversary. Detection can be carried out by a variety of sensors (radio receivers, cameras,
personnel, etc) placed by the adversary around the target sites. We model the act of detecting a UAV
from first principles by noting that sensors work by monitoring frequencies in the electromagnetic
spectrum for signals or noise emitted. By this, we are able to provide a flexible and versatile nonlinear
optimisation framework in which the problem is modeled as a novel trajectory optimisation problem
with paths of the UAVs as continuous arcs in an Euclidean space. The flexibility of our approach is
exhibited by the fact that we can easily consider various relevant objectives, among them minimising
the overall probability of detection and maximising the location error that the adversary experiences
when trying to locate our UAVs. Our model is also versatile enough to consider the act of jamming, in
which one or more of our UAVs intentionally send out signals to interfere with the operations of the
adversary’s sensors. Numerical results show the flexibility of our framework, and that we can solve
realistic instances of this problem type.

Keywords: Nonlinear Programming, OR in Defence, trajectory optimisation

1 Introduction

We consider the problem of one or more intruders that have to reach a certain site or number of sites
without being detected. In this problem, sensors of various types (e. g. motion detectors, antenna,
cameras, or personnel) are often used to surround the sites of interest to detect incoming vehicles or
personnel. In this article we focus on unmanned aerial vehicles (UAVs) as intruders and will provide
a novel mathematical programming model that is computationally tractable using state of the art
optimisation tools. In particular, we will provide a novel model for the problem at hand by way of a
trajectory optimisation problem in which the path used by any UAV is modelled by a continuous arc in
two- or three-dimensional space.

We model the detection of a UAV from first principles by considering sensors monitoring particular
frequencies in the electromagnetic domain for a potential signal emitted by the UAV. (Here, we consider
both actual communication signals as well as noise from the UAV as a signal that a sensor might pick
up.) In particular, we consider both the probability of detection and an error measure on the location of
a UAV as well-defined quantities, the former to be minimised and the latter to be maximised by the UAV
operator. We also allow particular UAVs to act as jammers, i. e. they temporarily degrade some sensor
capabilities by creating noise and interference in relevant parts of the electromagnetic spectrum. As far
as we are aware, this is the first time corresponding trajectory optimisation problems of this form have
been considered.

We further allow UAVs to temporarily reduce the signal they are emitting. Accordingly, our model allows
to jointly optimise not only trajectories but other relevant operational decisions as well. Furthermore, we
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Figure 1: Choice of optimal path with respect to area of error ellipse. Solid line depicts path of minimal
cumulative area of error ellipse where sensors have poorly approximated agent position. Dashed line
depicts path where the sensors have obtained good triangulation of the agent position along its path,
resulting in a small cumulative area of error ellipse.

investigate how to incorporate uncertainty into our computational framework under realistic conditions
and provide numerical results illustrating the efficacy of our approach.

Finding optimal UAV trajectories under the risk of detection or location has recently garnered significant
attention. Ruz et al. [23] describe a mixed-integer linear formulation for a trajectory optimization
problem with path constraints that exclude zones of high risk of detection by radar. Pelosi et al. [21]
consider a similar setup in which the UAV maximises any terrain-masking opportunities to avoid detection,
while Zhang et al. [30, 31] minimises the cumulative radar cross section of the UAV. A more general
approach is taken by Jun and D’Andrea [16], who use a map of the probability of threats for their path
planning algorithm. All of these formulations have all nonlinear terms fully linearized, and the magnitude
of the linearization error is not discussed.

Kabamba et al. [17] derive optimality conditions for a trajectory optimization problem in which one seeks
to minimise the probability of being tracked by a radar. Hui et al. [15] provide a framework of joint
optimization of target tracking and threat avoidance. Avoiding adversary sensors can also be seen as a
case of an obstacle avoidance problem, see e. g. [7, 9, 24]. Joint optimization of trajectories and other
decision has been considered only very recently; trajectories and signal strengths are considered by Zhou
et al. [34], while joint strategies for trajectory optimization and jamming resp. anti-jamming have been
investigated by a number of authors, see e. g. [10, 28, 29, 32, 33].

The rest of this article is structured as follows.

Section 2 describes the basic setting for the infinite-dimensional optimisation problem: we provide the
underlying notation, the decision variables, the underlying vector space of the variables, and some basic
constraints. Several objective functions that are relevant to the decision maker are then derived in
Section 2.1. In particular, we provide complete model as an example in Section 2.4. We then discuss a
variety of extensions to the basic model template in Section 3: jamming (both isotropic and anisotropic)
in Section 3.1, intermittent communication in Section 3.2, and the case of several agents in Section 3.3.

In Section 4, we provide means for a numerical solution for the problem described in Sections 2–3. Note
that the model template and all its extensions discussed in Section 2 is an infinite-dimensional one (we
seek solutions x(t) for an infinite number of times t). How to appropriately discretize a given problem of
this form to make it amenable to standard optimisation tools is discussed in Section 4.1. In Section 4.2
we depict various two-dimensional ‘landscapes’ in which the UAV(s) has to move. This provides for an
intuitive understanding of the problem at hand. Trade-offs between different objectives are visualised
in Section 4.3, while various model extensions and variants are discussed and visualised in Section 4.4.
We conclude the numerical experiments with Section 4.5 where we present a numerical solution to a
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simplified version of a possibly real-world scenario of an agent traversing an adversary environment with
a multitude of sensors, one of which is mobile. More specifically, we also provide an example solution
where the rolling horizon approach is used to take into account uncertain environment information, such
as the position of sensors.

We finish this article with our conclusions, see Section 5.

2 Model development

Consider a set of sensors surrounding a site of interest, called the target, and a collection of UAVs or
agents that wish to reach said target in a certain period of time. We will show from first principles that
each sensor can detect a UAV with a certain probability depending on the electromagnetic emissions of
the UAV and the distance between sensor and vehicle. The identification of the agent is contingent on a
sufficient level of detection by one or more sensors. Furthermore, we allow for some agents to be able to
perform disabling/disrupting interventions to sensors along their path to the target, whereby an agent is
able to disrupt sensors for a period of time, and performing such an intervention incurs an equipment
and time cost to the agent concerned.

In this section we outline an infinite-dimensional mathematical optimisation model that can be used to
obtain a solution to the optimal path problem described in Section 1.

In most of what follows, we assume that the working domain is two dimensional. Considering the
two-dimensional case is appropriate if all sensors are near the surface of the Earth and the UAVs stay
close enough to the surface that the curvature of the Earth’s surface can be neglected. It will be seen in
the below that it is straightforward to extend the problem to the three-dimensional case.

For ease of notation, we will start by introducing constraints, decision variables, and objectives for the
single-UAV case first. It will be seen that extending the problem formulation to the case of multiple
UAVs is straightforward. Throughout this article, we fix the following notation and basic assumptions:

• Let τ > 0 denote the time of flight of the agent and T > 0 representing the maximum time of flight,
i. e. 0 ≤ τ ≤ T ;

• For the given UAV, prescribe to it a parametrisation of its path via a continuous mapping
x : [0, τ ] → R2 where [0, τ ] with τ ≤ T denotes the time interval through which the UAV is
travelling;

• We assume that the UAV start from a given starting point x(0) = x0;

• Assume that all flight paths are restricted to lie within a bounded domain Ω ⊂ R2, i. e. such that
x(t) ∈ Ω for all t ∈ [0, τ ];

• We have been given a target location X ∈ Ω;

• Denote yi : ST → R2 for i = 1, . . . , n the locations of a collection of n sensors over a bounded time
interval ST ⊂ R with [0, T ] ⊂ ST . In the case where the sensors are stationary, we simply write
yi = yi(t) for all t ∈ ST .

The aim is to obtain optimal flight paths for the given UAV from the initial position to the target position
whilst minimising one or more objectives functions. For a given UAV, we aim to determine an optimal
path x : [0, τ ] → R2 such that x(0) = x0 and x(τ) = X, where, τ > 0 denotes the time of flight of the
agent. We assume throughout that τ is a decision variable that satisfies the maximum time of flight
constraint τ ≤ T .

For a given τ ∈ [0, T ], define by Aτ (x0;X) the space of twice continuously differentiable admissible paths
x : [0, τ ] → R2 with x(0) = x0 and x(τ) = X, i. e.,

Aτ (x0;X) :=

 x : [0, τ ] → Ω

∣∣∣∣∣∣∣
x(0) = x0

x(τ) = X

x ∈ C2([0, τ ])

 .
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Furthermore, for x ∈ Aτ , we have given bounds for the velocity

∥x′∥∞ ≤ vmax

and acceleration

∥x′′∥∞ ≤ amax

via some user defined constants vmax > 0 and amax > 0, repectively, that depend on the characteristics
of the engine of the UAV.

Then, the set of all our decision variables associated with a particular UAV can be written as

D :=
⋃

τ∈[0,T ]

Aτ (x0, X). (1)

This decision space is expanded upon in Sections 3.1, 3.2, and 3.3 where we introduce jamming, intermittent
communication, and multiple agents, respectively.

For brevity, throughout this article we will use the notation x := x ∈ D, with x : [0, τ ] → R2, and
y := (y1, . . . , yn) : [0, τ ] → R2.

Our aim is to obtain a path for our UAV which attempts to optimally evade detection when travelling
through an adversary environment of sensors. In addition, we also want to minimize the flight time to
the target.

In particular, given a collection of sensors y = (y1, . . . , yn) : ST → R2n, we want to consider some
objective F that represents how well the agent ”avoids” the sensors, and in the most basic scenario we
want to solve a problem of the form

min
x∈D

F (x,y) (2)

to determine an optimal path x ∈ D. In more complicated scenarios we also want to decide on possible
jamming procedures, and variable intervals of active lines of communication. We will discuss corresponding
extensions in Section 3.

2.1 General objective function framework

In what follows we will derive several novel choices of such an objective F that can all serve to compute
flight paths for our UAVs that avoid being detected. Thus, in essence, our setting is one of multiobjective
optimization. Note however that it will turn out that not all our objectives are ’in conflict’ with each other;
some will simply measure slightly different characteristics of a given flight path or the way sensors try to
detect a UAV. It is also important to note here that for all times t, we know the location of our UAV x(t)
and we also know all the locations of the adversary sensors yj(t) (j = 1, . . . , n). The first assumption
is not necessarily a strong one: many UAVs are equipped with GPS or inertial navigation devices, or
provide a direct camera feed to the operator so that we can identify its location via landscape features
observed. As for potentially unknown sensor locations, we provide a model extension in Subsection 3.5.
Our numerical experiments use a rolling horizon or model predictive control (MPC) framework to alleviate
for potentially unknown sensor locations or mobile sensors.

One key insight for modeling various objectives F is the fact that the act of trying to locate an agent
or just determining the existence of an agent through receiving a signal is a process with uncertainty,
as any signal is affected by some random background noise [9]. Thus, whenever a sensor measures e. g.
the distance of a UAV to the sensor, the sensor realises a random variable. Correspondingly, further
computations of the sensors to provide for an estimate of the location of the UAV need to be treated as
an estimator of a random variable. We will use this as follows. For any given time t ∈ [0, T ] and given
sensor locations y(t), we are interested in two scenarios:
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(A) The sensor operator is aware that there is a UAV somewhere in Ω, but does not know where it
is. The operator subsequently wants to locate the UAV. Given that all measurements and all
subsequent estimates of position come with a stochastic error, we are interested in having the
UAV at a location x(t) with a large error of position. We consider three expressions Ei(x(t),y(t))
(i = 1, 2, 3) that measure this positional error: considering the position estimate as a random
variable, we define

E1: the Circular Error Probable (CEP) as the radius of the circle that contains half the realisations
of this random variable;

E2: the Area of Error Ellipse (AEE) as the area of the ellipse which contains 95% of the realisations
of this random variable;

E3: the Geometric Dilution of Position (GDOP), which can be seen as the first derivative of CEP,
i. e. as the sensitivity with respect to errors in measurements.

(B) The sensor operator is not yet aware that there is a UAV somewhere in Ω. Consequently, we are
interested in locations x(t) such that

(a) the probability of detection, p(x(t),y(t)), is small;

(b) the probability of false alarms that the sensor operator experiences, q(x(t),y(t)), is large.

Let x ∈ D denote a decision parameter. If scenario (A) holds for all mission times t ∈ [0, T ], a typical
example for an objective function would be

F (x,y) = −
∫ τ

0
Ei(x(t),y(t))dt (3)

for a choice of i = 1, 2, 3, representing the maximisation of a cumulative positional error. An alternative
objective would be

F (x,y) = − min
t∈[0,τ ]

Ei(x(t),y(t)), (4)

representing the maximisation of the worst-case (smallest) positional error, for i = 1, 2, 3.

In scenario (B), the corresponding objectives would be

F (x,y) =

∫ τ

0
p(x(t),y(t))dt (5)

and

F (x,y) = max
t∈[0,τ ]

p(x(t),y(t)),

where one can replace p with −q in any such objective.

This approach allows one to ”switch” between objectives, i. e. at the start of a mission one might want to
consider objective (5) first. After a certain amount of time has elapsed, one might then assume that the
UAV has been detected, and an objective of the form (3) should be used from then on. We believe that
from a user’s perspective, this dynamic switch from one objective to another is more important than
modelling the problem as, say, a bi-objective optimisation problem.

Finally, we will also consider time flown to target as an objective, in order to penalise flight paths that
let the UAV loiter for a long time in regions in which it is relatively safe from detection.

For estimators of random variables, the variance of the estimator can be used to see how well measurements
can be used to deduce something about the random variable. Our aim is thus to find decision variables
(mainly, paths for the UAVs) that provide for large variances in the sensor’s measurements. Indeed,
moving along this vein of thought, we develop our model by first providing lower bounds on the variances
of various estimators of quantities of interest that the sensors may detect. Such bounds are usually called
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Cramér-Rao bounds in the literature. All these lower bounds will be derived directly from properties of
the electromagnetic spectrum in which the agent emits signals and noise. Taking a worst-case view, we
then use these lower bounds of variances as approximations for these variances in the construction of the
objectives. More specifically, we assume that the sensor operators are able to make realisations of our
position with the lowest possible variance allowed by our model.

In particular, in the following we provide measures of probability of detection (to be minimised, both in
the cumulative and the worst-case sense), a measure of error in position (to be maximised, likewise in the
cumulative and the worst-case sense), as well as cost of equipment usage and the time of flight.

2.2 Cramér-Rao lower bounds on variances

The sensor operator will attempt to compute various estimators of certain quantities of interest, in
particular the probability of existence of the UAV if existence has not yet been established, the distance to
the UAV, or location of the UAV, etc. These estimators will depend on various measurements of physical
quantities that the sensors might perform, for example received signal strength (RSS), angle-of-arrival
(AOA), time-of-arrival (TOA), or time-difference-of-arrival (TDOA). One of the key quantities here,
occurring in estimates of the quality of those estimators, is the variance of the given measurements.
Cramér-Rao lower bounds (CRLBs) are bounds from below for those variances. We refer to [25] for an
introduction into the subject.

In the following, we consider a sensor at location yj and a UAV at position x ∈ R2 which is emitting an
electromagnetic signal that the sensor can detect. We provide Cramér-Rao lower bounds for distance
estimators from sensors to the UAV to be used in the construction of appropriate objective functions F .

Distance estimator using RSS
For the distance estimator ds = ds(x) of the distance ∥x− yj∥ based on the received signal strength RSS
at the sensor from the the agent, according to [13, Equation 3] we have that

Var(ds) ≥
(ln 10)2

100γ2
∥x− yj∥2Var(RSS), (6)

where γ > 0 is a pathloss coefficient, typically taking values between 1 and 5.

Remark 2.1. From equation (6), once can see that a larger pathloss, γ, results in a smaller lower bound,
as the average power becomes more sensitive to the distance for larger γ. On the contrary, as the true
distance between the sensor and agent, ∥x− yj∥ increases, the CRLB increases with it, thus deteriorating
the accuracy of measurements.

We now need to express the received signal strength in terms of our decision variable, which is x. The
received signal strength is a stochastic process that can be expressed as

RSS =
cAGPTF

∥x− yj∥γ
, (7)

where cAG is the average multiplicative gain constant, PT is the power transmitted by the agent, and F
is the stochastic process that represents fading, modelled as a zero mean Gaussian random variable with
variance Var(F ). (Here, the fading variables F between different sensors are assumed to be uncorrelated.)
See [25] for details. Accordingly,

Var(RSS) =
c2AGP

2
TVar(F )

∥x− yj∥2γ

and

Var(ds) ≥
(ln 10)2c2AGP

2
TVar(F )

100γ2
∥x− yj∥2−2γ . (8)

Distance estimator using TOA
A slightly different Cramér-Rao bound can be derived for the variance of any estimator dt = dt(x) for the
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distance ∥x − yj∥ based on the TOA of a signal. Indeed, for this estimator, one is able to obtain the
Cramér-Rao bound

Var(dt) ≥
c2

4π2β2

1

tSβSNR

(
1 +

1

tSβSNR

)
with c the signal velocity (often the speed of light), β the effective bandwidth, tS the signal duration,
and SNR the signal-to-noise ratio, see [20, Equation 3].

Indeed, the SNR follows the same distance law as the RSS, i. e. for some constant ĉ > 0,

SNR =
1

ĉ∥x− yj∥γ
. (9)

Furthermore, in many common signals, the effective bandwidth and duration of a signal are related such
that tSβ ≈ 1. Using this approximation along with (9) leads to

Var(dt) ≥
c2ĉ

4π2β2
∥x− yj∥γ (1 + ĉ∥x− yj∥γ) . (10)

2.3 Some specific objective functions of interest

It is clear that we are considering a problem with several objective functions, and in the following we will
derive a number of the most important ones.

In the following, and throughout this article, for x, y ∈ R2, let σ(x, y) denote the standard deviation of
the distance estimator that a sensor at position y computes for an agent at position x. For brevity, for
position x ∈ R2, let σj(x) := σ(x, yj) (j = 1, . . . , n) denote the variance that the sensor at position yj
computes for the distance estimator for an agent being in position x.

2.3.1 Error on position

We want to prevent the sensor operator from computing a good estimate of the agent’s position at any
time. As such, for any t ∈ [0, τ ], denote by E(x(t),y(t)) > 0 a measure for the position error that the
sensors at locations y(t) encounter when the agent is at position x(t). Then we can aim to maximise the
cumulative error on position or the smallest error on position respectively by setting F (x,y) in (2) as
one of (3) or (4).

To arrive at computationally tractable expressions of the function E, we will use results from Torrieri [25]
and derive three different proxies for the location error that the sensors are experiencing: the circular
error probable (CEP), the area of error ellipses (AEE), and the geometric dilution of position (GDOP),
denotes by E1, E2, E3, respectively.

Circular error probable
We first consider the CEP. Assume that a two-dimensional Gaussian random vector describes the estimate
of the location of the agent produced by the sensors. The CEP is defined as the radius of the circle that
has its centre at the mean of the random vector and contains half the realisations of the random vector.
It can thus serve as a one-dimensional measure of uncertainty that the sensor operator experiences when
trying to calculate the location of the agent, and we are thus interested in using it as a possible proxy
E(x(t),y(t)). For ease of notation, we drop the dependency on y(t) in the remainder of this section.

By [25, Equations 89–90], if the agent is at position x = x(t) for some t ∈ [0, τ ], the CEP is given by

CEP(x) =
√

trace(P (x)), (11)

where P (x) is the 2× 2 covariance matrix of the linear estimator of the agent location that the sensors
have at their disposal. In particular, by [25, Equations 85, 87],

P (x) = c2(F⊤H⊤N−1(x)HF )−1 (12)

= c2(F⊤H⊤(HNϵ(x)H
⊤)−1HF )−1, (13)
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where c is the signal velocity (often the speed of light), H is the constant (n− 1)× n matrix given by [25,
Equation 82], F ∈ Rn×2 is a matrix where row vector j is r⊤0 − y⊤j /∥r0 − yj∥ given by [25, Equation 78],
where r0 is a reference point near x, and Nϵ(x) is the n× n covariance matrix of measurement errors of
the sensors.

Remark 2.2. Note that the reference point r0 is the point around which a Taylor expansion of the
measured signals is used to derive (11) and (12). The actual reference point in use within the sensor
equipment might not be known (not even to the operator of the sensor), and it might or might not be
possible to change the reference point during the course of a measurement campaign. In our numerical
experiments we have taken a ‘worst case’ approach and assumed that the r0 is allowed to change over
time and will always be the last best known estimate of the agent location x(t). That is, if we discretise
the time interval [0, τ ] into discrete time steps t0, t1, . . . ,∈ [0, τ ], ti−1 < ti, then at time ti we will use
r0 := x(ti−1). For the agent trying to avoid location, this is, in a certain sense, the worst possible choice,
as it keeps the Taylor reminder that contributes further to the location error as small as possible.

Assume that the measurements of different sensors are uncorrelated, i. e. Nϵ(x) = diag(σ2
1(x), . . . , σ

2
n(x)).

ThenHNϵ(x)H
⊤ is a tridiagonal symmetric positive definite matrix with main diagonal (σ2

1+σ2
2, . . . , σ

2
n−1+

σ2
n) and subdiagonals (−σ2

2, . . . ,−σ2
n−1). The corresponding inverse can then be explicitly constructed,

see [8], and the computation of trace(P (x)) is then simple numerical exercise, given the σj . Using a
worst-case approach, we replace the variances σj with lower-bounds, as a smaller variance of measurements
inevitably will lead to a smaller position error. For this, we replace each σj with the right-hand side of
(8). We thus arrive at a computationally tractable expression for CEP when the sensors measure the
location of the agent x(t).

If instead the sensors measure arrival times, we can further assume that at time t ∈ [0, τ ], when the agent
is at location x(t), we have (10). Using the worst-case approach again, by (10) we thus have

σ2
j = c1∥x(t)− yj∥γj (1 + c2∥x(t)− yj∥γj ) ,

where σ2
j = σj(x(t))

2 represents the variance for each sensor j, for some constants c1, c2 > 0 and path-loss
coefficients γj > 0 corresponding to sensor j.

To avoid difficulties in numerical gradient calculations, we propose to use as a proxy for the error in
measurement

E1(x(t)) = CEP(x(t))2.

This objective is evidently sensible in terms of maximising the location error, as the square of the CEP is
proportional to the radius of the ball, where 50% of the realisations of the estimate of the location reside.

Remark 2.3. If one wants to avoid implicit matrix inversion routines in the formulation of these objective
functions, one can proceed as follows. As above, for x(t) we consider the matrix-valued function Nϵ(x(t))
and now introduce a matrix of variables M ∈ Rn×n as well as the constant identity matrices Ik ∈ Rk×k.
We then couple Nϵ(x(t)) and M with the constraint

HNϵ(x(t))H
⊤M = In−1. (14)

(Due to symmetry, this matrix constraint is equivalent to n(n− 1)/2 standard nonlinear constraints.) In
other words, a feasible M must fulfil M−1 = HNϵH

⊤. Treating P ∈ R2×2 as a matrix of variables, we
introduce further the constraint

c2(F⊤H⊤MHF )P = I2 (15)

using the same idea as above. These two matrix constraints now ensure that any feasible P has the
form (12). With this, trace(P ) is readily available.

Error ellipses
As above, let P be the 2 × 2 covariance matrix of the linear estimator of the agent location that the
sensors have computed, based on their measurements. Let λ1, λ2 > 0 be the eigenvalues of P , dependent
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on x(t) and y(t). For a 2-dimensional normal distribution with covariance P , 95% of the mass of the
distribution will reside in an ellipse with half axes 2

√
5.991λ1 and 2

√
5.991λ2. Accordingly, the AEE is

AEE(x(t)) := 23.964π
√
det(P (x(t)), (16)

which is perhaps a less crude measurement for the location error, and can likewise be used as an objective
function to be maximised. We would then use as a proxy

E2(x(t)) = AEE(x(t)). (17)

Remark 2.4. We note that, ignoring proportionality constants, we always have√
λ1 + λ2 ≥

√
λ1λ2

for 0 ≤ λ1, λ2 ≤ 1, with the maximum difference occurring for λ1 = λ2 = 1. As such, in the case of small
eigenvalues λj ≤ 1 the CEP will overestimate the area of the error ellipse, by at worse 41% in case the
ellipse is a circle.

Geometric dilution of position
The GDOP can be interpreted as a scalar measure of the first derivative of the location estimate that the
sensors construct, where the derivative is taken with respect to the measurement data. It thus provides a
measure of sensitivity to measurements, a quantity that we would like to maximise in order to increase
any error the sensors suffer. The change in measurement is given by c

∑n
j=1 σ

2
j . Following [25, Equations

88, 89], we can then define the GDOP as

GDOP(x(t)) =

√
trace(P (x(t))

c
∑n

j=1 σj(x(t))
2
. (18)

and we can use the same derivations as above to first express the matrix P in terms of the variances σj ,
and then use lower bounds for the variances to express GDOP in terms of ∥x(t)− yj∥. Indeed, we would
then use as a proxy for the error in measurement

E3(x(t)) = GDOP(x(t)).

Summary
In summary, for x ∈ D and sensor positions y, the error proxies Ei derived are given by

E1(x(t),y(t)) = trace(P (x(t))),

E2(x(t),y(t)) =
√

det(P (x(t))),

E3(x(t),y(t)) =

√
trace(P (x(t),y(t))

c
∑n

j=1 σj(x(t),y(t))
2
.

2.3.2 Probability of detection

Suppose that for each sensor j = 1, . . . , n we have a function pj(·) = pj(·, yj) : R2 → [0, 1] such
that pj(x) indicates the probability that sensor j detects an agent at location x ∈ R2. Denote by
p(·) = p(·,y(t)) : R2 → [0, 1] the combined probability of detection with respect to all the sensors, i. e.

p(x) := 1−
n∏

j=1

(1− pj(x)) . (19)

We derive now explicit formulation for the probabilities pj in the scenario that the sensor j treats the
signal emitted by the agent as a zero mean Gaussian random process with variance σ2(x), in the presence
of white Gaussian background noise with known variance σ2

bg. We further assume that the sensor uses a
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likelihood ratio to decide if a signal has been detected, i. e. the sensor confirms the existence of the agent
if, for the received signal r, we have

P[r | r carries a signal]

P[r | r carries no signal]
> γ (20)

for some likelihood threshold γ > 0, and a probability measure P.

Finally, we assume that the sensor takes N signals to decide if the agent is present, i. e. r ∈ RN . (In
practice, the number N is often dependent on the hardware in use and cannot always be easily changed.
The optimal choice of N depends on the time interval over which signals are taken, background noise,
and other environmental factors. Typical values range from N = 100 to N = 40960, see [11, 26] for
details.) Under these assumptions, we take the logarithm in (20) and rearrange terms to arrive at a
scaled threshold γ̂. Then [18, Equations 5.1 – 5.3] shows that with

γ̂(x) :=
2σ2

bg

(
σ2(x) + σ2

bg

)
σ2(x)

(
log γ − N

2
log

(
σ2
bg

σ2(x) + σ2
bg

))
, (21)

we arrive at

pj(x) = QN

(
γ̂(x)

σ2(x) + σ2
bg

)
, (22)

where

QN (t) :=



2Q(
√
t) if N = 1,

2Q
(√

t
)
+ e−t/2

√
π

∑N−1
2

k=1
(k−1)!(2t)k−

1
2

(2k−1)! if N odd,

e−t/2

N/2−1∑
k=0

(t/2)k

k!
if N even,

(23)

where Q denotes the complementary cumulative distribution function of a Gaussian random variable:

Q(s) :=
1√
2π

∫ ∞

s
e−u2/2 du. (24)

Finally, we note that by (7) we can substitute

σ2(x) = const∥x− yj∥−2γj . (25)

with the pathloss coefficient γj associated with the sensor j.

These results generalise to the case where the signal is seen as a vector of uncorrelated Gaussian variables,
i. e. if the sensors pool the signals received before hypothesis testing is carried out. See [18, Example 5.2].
The matter is much more complicated in the case of correlated Gaussian variables. Here, the cumulative
distribution that needs to be computed belongs to the random variable x⊤Ax, where x is the vector of
Gaussian signals and A is a positive definite matrix, dependent on the correlation matrix of x. See [18,
p. 144–146] for a corresponding derivation.

Asymptotically, all functions QN are of the form e−tq(t) for some polynomial q. Setting q = 1, approxi-
mating the exponential via a Taylor expansion and eliminating the constant zeroth order term results in
the approximation

pj(x) ≈
cj

ϵ+ ∥x− yj∥γj
(26)

with a constant cj > 0, path loss exponent γj (j = 1, . . . , n), and a small constant ϵ > 0 introduced to
avoid numerical difficulties when x is near y. This provides a rough approximation of the model derived
by Kay [18] and as explained above provides for the same qualitative behaviour of pj(x) with respect to
changes in ∥x− yj∥. Typical values of path–loss exponents range between 1.5 and 5.
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2.3.3 Probability of false alarms

To misdirect the operator of the sensors, we want to maximise the probability of false alarms that the
sensor operators experience; that is a sufficiently large test statistic is achieved in (20) given that r carries
no real signal. If pFA,j(x) is the probability that sensor j raises a false alarm if the agent is at location x,
the overall probability that at least one false alarm is raised is then

q(x) = 1−
n∏

j=1

(1− pFA,j(x)). (27)

As before, consider the case that each sensor j treats the signal emitted by the agent as a zero mean
Gaussian random process with variance σ2(x), in the presence of white Gaussian background noise with
known variance σ2

bg. Assume also that the sensors take N signals to decide if the agent is present, and
that the sensors use a likelihood ratio to decide if a signal has been detected, that is we follow (20). Then,
by [18, Equation 5.2], we can model the probability of false alarms via

pFA,j(x) = QN (γ̂(x)/σ2
bg), (28)

where γ̂(x) and QN are given by (21) and (23), respectively.

2.3.4 Time to target

We will usually also want to reach our target as soon as possible, or at a specified time tF ∈ (0, T ]. This
gives rise to the objective

max{0, (τ − tF )}2, (29)

where treating tF = 0 will simply encourage paths to be shorter in time.

We recommend treating this objective as a “soft penalty”, i. e. multiply it with a reasonably large M > 0
and add it to the actual objective under consideration. This allows for sufficient flexibility in treating
target times tF .

2.4 Example of a complete model formulation

Here we provide an example formulation of our UAV path planning problem, using the tools developed in
the previous subsections:

min
x,τ

−
∫ τ

0
E2(x(t),y(t))dt+M max{0, (τ − tF )}2 (30a)

s.t. x ∈ D =
⋃

τ∈[0,T ]

Aτ (x0, X), (30b)

∥x′∥∞ ≤ vmax, (30c)

∥x′′∥∞ ≤ amax, (30d)

where

E2(x(t),y(t)) =
√

det(P (x(t))), (31)

P (x(t)) = c2(F⊤H⊤(HNϵ(x(t))H
⊤)−1HF )−1, (32)

Nϵ(x(t)) = diag(σ1(x(t)), . . . , σn(x(t))), (33)

σj(x(t)) = const∥x(t)− yj∥2−2γ . (34)

It can be seen that we are maximising the average area of the error ellipse whilst taking care of mission
times with a penalty term, and ignore all probabilities of detection. We assume that the sensors use the
received signal strength of the signal emitted by the UAV to estimate the distance between sensor and
UAV. Constraints (31)–(34) are meant to hold for all t ∈ [0, T ] and show how the distances ∥x(t)− yj∥
ultimately determine the value of E2. In particular, (31)–(34) can be substituted consecutively out
of the problem formulation, leaving only the constraints (30b)–(30d) and a highly nonlinear objective.
Constraint (34) is also meant to hold for all j = 1, . . . , n. The constant in (34) is the constant factor
in (8).
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3 Extensions to the basic model

In this section we will consider several extensions to the basic model, notably jamming, an electronic
countermeasure in which a UAV sends out a signal in order to saturate sensors with noise; intermittent
communication, in which a UAV stops communicating with it’s command centre, the case of several UAVs,
and regional constraints. These extensions showcase the flexibility of our basic model: the necessary
modifications are relatively straightforward, consisting of simple substitutions and the introduction of
some uncomplicated constraints.

3.1 Jamming

We now discuss how jamming can be included in our model.

Let τ ∈ [0, T ] and x ∈ Aτ denote the path of an agent. We assume that the agent in question is able
to interfere with the detection capabilities of the sensors (y1, . . . , yn) whilst travelling along its path x
through the action of a limited device described by j(t) for t ∈ [0, τ ].

To account for jamming action along the path in the optimisation problem (2), we introduce the space of
admissible jamming functions acting over an interval [0, τ ] by Jτ , i.e.,

Jτ := { t ∈ [0, τ ] 7→ j(t) } . (35)

Through this, we can replace the previous decision space D in (1) by

D :=
⋃

τ∈[0,T ]

Aτ × Jτ . (36)

3.1.1 Isotropic jamming

First, we assume that jamming occurs only isotropically and discuss the effects that this has on the
various objectives and parameters.

Under isotropic action, we can define

Jτ := { z | z : [0, τ ] → [0, 1] } , (37)

where z : [0, τ ] → [0, 1] acts as a measure of energy usage of the jamming device along the path.

Error on position
Let t ∈ [0, τ ] and assume E(x(t),y(t)) measures the positional error encountered by the sensors positioned
at y(t) = (y1(t), . . . , yn(t)) when measuring the location of the agent that is at x(t).

If σ2
j (x) = σ2

j (x, yj) is the variance of the measurement error of sensor j when the agent is at location x,
then we further consider the case in which we have

E(x(t),y(t)) = Ẽ(σ2
1(x(t)), . . . , σ

2
n(x(t)),y(t)) (38)

with a smooth function Ẽ. This holds for all previously considered positional error functions. If we have
energy for jamming at our disposal, we can then replace each occurrence of σ2

j with(
1 +

cjz(t)

∥x(t)− yj∥ρj

)
σ2
j , (39)

where the term 1 + cjz(t)/∥x(t) − yj∥ρj measures the increase in the measurement error due to the
strength of our jamming signal, with cj > 0 being a multiplicative factor and ρj > 0 a constant.

This straightforward modification covers changes to the circular error probability CEP, the GDOP, as
well as the area of the error ellipse, according to the strength of our jamming attempts.

This approach corresponds to a linear model 1 + const · z for the relative increase in variance, in case of a
stationary agent. Indeed, results for direction of arrival models. see [27], based on Cramér-Rao bounds
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indicate that the CEP itself exhibits an inverse proportional relationship with the SNR. According to
this result, we have

CEP ≈ c1 +
c2

SNR
= c1 +

c3z(t)

∥x(t)− yj∥γ
(40)

for suitable constants and the relevant path loss coefficient γ.

Probability of detection
Naturally, the probabilities of detection pj(x(t)) increase when jamming is utilised. We can, for example,
model this by replacing each occurrence of pj(x(t)) by

((pj(x(t)))
q + (z(t))q)1/q ≈ max{pj(x(t)), z(t)} (41)

for some reasonably large parameter q > 1. The smooth approximation (left) of the max term on the
right facilitates the use of high-performance optimisation routines that rely on differentiable functions
everywhere; the error introduced is ca. 4.7% for q = 15 and ca. 3.5% for q = 20. A more realistic model
though is obtained by replacing each occurrence of pj(x(t)) by

min

{
1, pj(x(t))

(
1 +

ĉjz(t)

∥x(t)− yj∥µj

)}
(42)

with some coefficients µj > 0 and constants ĉj > 0. Note that here the increase in detection probability is
modelled as an affine-linear function 1+const ·z with cutoff at 1, for static agents. Models of higher fidelity
can instead be constructed by using sigmoid functions, i. e. functions of the form S(z) = 1/(1 + e−z) for
the increase in probability, see [2, 6].

3.1.2 Anisotropic Jamming

We introduce here a directional model for jamming. As such, alongside the jamming energy usage function
z, we define a function α : [0.τ ] → [0, 2π], where for t ∈ [0, τ ], α(t) indicates the direction the agent
attempts to jam the sensors (where we have fixed the coordinate system arbitrarily).

Indeed, to include anisotropic jamming in the above model and to treat the directionality of jamming as
a variable, we can set Jτ in (35) to be

Jτ = { (α, z) | (α, z) : [0, τ ] → [0, 2π]× [0, 1] } .

where for t ∈ [0, τ ], α(t) indicates the direction the agent attempts to jam sensors, while z(t) indicates
the energy expenditure. In this situation, the agent employs e. g. beamforming techniques to generate a
jamming signal. In the below we discuss only the scenario of one beam being formed.

Error on position
Exactly as in the isotropic case, recall that σ2

j = const× ∥x(t)− yj∥2 is the variance of the measurement
error of sensor j of an agent at position x(t). In the same vein as before, we then replace each occurrence
of σ2

j with

σ2
j

(
1 +

cjz(t)

∥x(t)− yj∥ρj

)
× (cosα(t), sinα(t)) · yj − x(t)

∥yj − x(t)∥
. (43)

Again, the term 1 + cjz(t)/∥x(t)− yj∥ρj measures the increase in variance of measurement error by the
strength of our jamming signal, while the inner product (cosα(t), sinα(t)) · (yj − x(t))/∥yj − x(t)∥ is
equal to one if and only if we ‘point’ our jamming device in direction (yj − x(t))/∥yj − x(t)∥. Note
that for (cosα(t), sinα(t)) · (yk − x(t)) < 0, i. e. for sensors with an angle of more than 90 degrees from
our jamming direction, the measurement error decreases: for these sensors, it has become easier to
collect information on the agent’s location. If the latter effect is not intended, we can replace each each
occurrence of σ2

j instead with

σ2
j

(
1 +

cjz(t)

∥x(t)− yj∥ρj

)
aj(α(t), x(t), yj), (44)
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where the function aj is a function that measures the decay of our jamming signal away from the direction
(cosα(t), sinα(t)). A simple example would be

aj(α, x, y) := max

{
0, (cosα, sinα) · y − x

∥y − x∥

}2

.

The max term here is squared in order to make the function a differentiable when a(α, x) = 0. With
this, the jamming signal is only strengthened in the direction (cosα(t), sinα(t)), and all direction that
have at most a 90◦ angle with this vector. This approach can easily be generalised to the case where
beamforming is used to form a cone with apex x = x(t) in which jamming takes place. As we consider
here the two-dimensional case, let the cone angle be given by β ∈ [−π/2, π/2]. We then replace the
function aj above by

aj,β(α, x, y) :=
1

(1− cos(β/2))2
× max

{
0, (cosα, sinα) · y − x

∥y − x∥
− cos(β/2)

}2

.

This approach can be used to modify the calculation of CEP, GDOP, as well as the area of the concentration
ellipse.

Probability of detection
Exactly as in the isotropic case, recall that σ2

j = const× ∥x(t)− yj∥2 is the variance of the measurement

error of sensor j. In the same vein as before, we then replace each occurrence of σ2
j with

σ2
j

(
1 +

cjz(t)

∥x(t)− yj∥ρj

)
× (cosα(t), sinα(t)) · yj − x(t)

∥yj − x(t)∥
. (45)

Again, the term 1 + cjz(t)/∥x(t)− yj∥ρj measures the increase in variance of measurement error by the
strength of our jamming signal, while the inner product (cosα(t), sinα(t)) · (yj − x(t))/∥yj − x(t)∥ is
equal to one if and only if we ’point’ our jamming device in direction (cosα(t), sinα(t)).

Remark 3.1. Jamming means that an agent spends additional energy, which is not only a limited resource,
but the use of which will usually lead to increase in probability of detection. Naturally we should thus
constrain the total energy usage by adding an additional constraint of the form∫ τ

0
z(t) dt ≤ zmax (46)

with a scenario-dependent parameter zmax.

3.2 Intermittent communication

We now allow for intermittent communication between the agent and some central command centre. In
this scenario, the agent is allowed to lower it’s transmission power to zero for a certain amount of time.
We slightly relax this notion and allow the agent to lower it’s transmission power anywhere from 0%
to 100%, for a certain amount of time. For a flight time τ ∈ [0, T ], we model this reduction by a new
decision variable

θ : [0, τ ] → [0, 1] (47)

where θ(t) is a multiplicative factor applied to the transmission power at time t. Consequently, we
consider the variables

Iτ := { θ | θ : [0, τ ] → [0, 1] } , (48)

and as such replace the previous decision space D in either (1) or (36) with

D :=
⋃

τ∈[0,T ]

Aτ × Iτ

14



or

D :=
⋃

τ∈[0,T ]

Aτ × Jτ × Iτ , (49)

respectively.

The factor θ(t) can now be introduced into the modelling of the error on position and probabilities of
detection in the following way.

Error on position
To update errors on positions observed by sensor operators when transmission power of agent communi-
cations is reduced, we scale the variances of measurement errors σ2

j by

1

(1− θ(t))2
σ2
j (50)

for j = 1, . . . , n. In particular, as transmission power is reduced, i.e. θ(t) → 1, the variance of the agent
position estimator calculated by the sensor operators gets larger, as does the corresponding measure of
error on position.

Probability of detection
In the non- logarithmic gain model we employ, we can simply replace each occurrence of pj(x(t)) by
θ(t)pj(x(t)). Thus, (19) becomes

p(x(t), θ(t)) := 1−
n∏

j=1

(1− (1− θ(t))pj(x(t))). (51)

Remark 3.2. Operators of an agent will want to keep in contact with the agent for a certain period of
time; they will thus allow the total reduction of signal energy emitted by the agent by at most a value
of θallow, which we assume to be fixed. This gives rise to the additional constraint∫ τ

0
θ(t)dt ≤ θallow. (52)

3.3 Several agents

The model described above and all its features can be extended to the case of several agents in a
straightforward manner. Consider for example the case of m agents, following paths

x(1), . . . , x(m) : [0, τ ] → R2 (53)

with various starting points

x(k)(0) = x0,k (k = 1, . . . ,m) (54)

(some of which of course can be identical) and targets

x(k)(T ) = Xk (k = 1, . . . ,m). (55)

We likewise introduce jamming variables

(α(1), z(1)), . . . , (α(k), z(k)) : [0, T ] → [0, 2π]× [0, 1]

and other variables per agent as necessary. Likewise, each agent has their own objective function (to be
minimised). We will associate to each objective a weight ωk > 0 (k = 1, . . . ,m), signifying it’s importance,
and will sum up all those objectives to one.

To include this in the optimisation problem, we replace the decision space D in (1) or more generally (49)
with

D =
m∏
k=1

⋃
τ∈[0,τk]

(Aτk(x0,k, Xk)× Jτk × Iτk) . (56)
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3.4 Regional constraints

One may also wish to prescribe regions which the agent(s) should avoid. We write such a region in R2 as
a generic set of the form

R := {x ∈ R2 | ρj(x) ≤ 0, j = 1, . . . , r} (57)

with functions ρj : R2 → R (j = 1, . . . , r), and employ it to our optimisation problem as an inequality
constraint for the agent(s) path, x : [0, τ ] → R2, to satisfy at each time t ∈ [0, τ ]. Note that it is
straightforward to modify this constraint in case such a restriction to movement should only hold at
certain times, e. g. at the start of the mission: we then consider constraint functions ρj(x, t) depending
also on time.

A special case of such forbidden regions are areas in which the probability of detection is larger than some
prespecified bound pU , 0 < pU < 1, or areas in which the location error is smaller than some prespecified
bound EL > 0. This gives rise to the constraints

p(x(t)) ≤ pU t ∈ [0, τ ] (58)

and

E(x(t),y(t)) ≥ EL t ∈ [0, τ ]. (59)

Some care has to be taken in choosing the values of pU and EL to construct R; a too small pU , or too
large EL could result in a Ω\R that is no longer path-connected, and consequently it may not be possible
for the target to be reached by the agent.

3.5 Unknown sensor locations

In case the sensor locations y(t) are not known by the operator of the UAV, we instead make the relaxed
assumption that we believe that individual sensors lie in certain known uncertainty sets; for example we
assume that at time t the location yj(t) of sensor j lies in a ball of radius rj(t) around a fixed guess ŷj of
the sensor location,

yj(t) ∈ Bj(t) := {y ∈ R2 | ∥y − ŷj∥ ≤ rj(t)}. (60)

This gives rise to the uncertainty set

U(t) =
n∏

j=1

Bj(t) (61)

and a corresponding robust reformulation of our problem

max
x

min
y(t)∈U(t)

F (x,y). (62)

In the general case, it is not clear what appropriate solution approaches for problems of the form (62)
are. However, in the case in which we want to minimise the overall probability of detection we note that
the worst case occurs when yj(t) is as close as possible to x(t), i. e. for

yj(t) = yj(x(t)) := ŷj + rj
x(t)− ŷj

∥x(t)− ŷj∥
(63)

as long as x(t) /∈ Bj(t). As such, the inner min-operator in (62) can be resolved explicitly if we also
add constraints of the form ∥x(t) − ŷj∥ ≥ rj(t), which appears to be quite reasonable in a worst-case
framework. More complicated sets of uncertainty Bj(t) can, at least in principle, be treated in a likewise
fashion by setting yj(t) = projBj(t)(x(t)) for x(t) /∈ Bj(t), thus trading the min-operator against a certain
amount of nonsmoothness.
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3.6 Handling future uncertainty

We now briefly describe how one can use a rolling horizon approach to handle uncertain information
present in the environment over which the UAV(s) traverse, whereby optimal paths and equipment
usage is updated as new information is received. Due to its simplicity, the rolling horizon approach to
optimisation is one of the preferred modelling approaches (see, e. g. [14]) if further information about
uncertainties in the problem becomes available over the course of the solution process. The rolling
horizon approach is essentially a nonlinear single-stage model predictive control (MPC) framework [12, 22],
widely deployed in chemical engineering and related areas, but here used for trajectory optimisation.

We apply the rolling horizon approach with respect to the maximal time of flight interval of the UAV(s),
[0, T ], over which we optimise and subsequently also solve optimisation problems over its subintervals. In
particular, we propose the following rolling horizon approach to solve the optimisaiton problem (2) in
the presence of uncertainties in the environment. Begin by first choosing the scheduling horizon [0, T ],
and construct both the prediction horizons [Ti, T ] with Ti < Ti+1 for i = 0, 1, . . . where T0 = 0, and the
control horizons [Ti, Ci] with Ci = Ti+1 for i = 0, 1, . . .. At the ith step, beginning with i = 0, obtain
a solution to the optimal path problem (2), x(i) over the ith prediction horizon, [Ti, T ], making sure
to update the boundary conditions of the problem with the change in the prediction horizon, e.g. the
starting and ending positions of the agent. Within the ith control horizon, [Ti, Ci], the UAV(s) move
along the path x(i). During movement within the control horizon, the UAV(s) can update their current
estimate of uncertainties of their environment. Once the UAVs have reached the end of their control
horizon, and thus the beginning of the next prediction horizon, make use of this updated information
when computing an optimal path over the next prediction horizon, x(i+1). Repeat this process until the
target for the UAV(s) is reached within the ith control horizon.

Remark 3.3. In the rolling horizon approach algorithm outlined above, we have left several parts
deliberately ambiguous, comments on which we provide below.

1. The choice of the lengths of the control horizons, i. e. at which the agent stops and updates
uncertainty parameters and then solves a new optimisation problem is up to the user. An ad-
hoc procedure would simply choose a fixed number J of control horizons and use Ci := iT/K
(i = 1, . . . ,K). More sophisticated approaches would couple the choice of Ci with changes in
the observable environment. Indeed, large changes in the environment between control horizons
indicate a dynamic environment that might warrant some further care in path planning, and
thus immediately proceeding control horizons [Ti+1, Ci+1] should not be too large. If, on the
other hand the overall environment does not seem to have changed much between time Ti and
time Ci, computation time can be saved by using a comparatively large interval [Ti+1, Ci+1] for an
immediately proceeding control horizon.

2. In each step of the rolling horizon algorithm, we are free to choose an appropriate objective function
to use within the optimisation problem (2) over the proceeding prediction horizon [Ti, T ].

3. Finally, we note that the actual path taken by the agent x : [0, τ ] → R2 is ’stitched’ together
from the paths x(i) : [Ti, Ci] → R2 where the intervals [Ti, Ci] only overlap at their endpoints, i. e.
Ti+1 = Ci. We ensure continuity of x by ensuring x(i)(Ci) = x(i+1)(Ti+1), but no further smoothness
conditions are ensured. These can however easy be included into the overall approach by ensuring
that corresponding constraints are added when defining the proceeding optimisation problem.

4. The rolling horizon approach can be used to account for any changes in environment, for example,
newly discovered sensors, or updating the positions of moving sensors.

4 Numerical solution

In this chapter, we provide a number of illustrative results to showcase the flexibility and versatility
of the mathematical model and its variants discussed in the previous chapters. More specifically, we
provide means to solve the optimisation problem described by (2). Models in this chapter have been
implemented both in MATLAB and the optimisation modelling language AMPL to verify the correctness
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of the implementation.

Computation times appear to be very modest; on a Dell laptop with intel i5 CPU at 2.6GHz, MATLAB’s
fmincon optimisation function was able to solve every optimisation problem provided in less than a
minute, even with standard options. Solving the same or very similar problems in an AMPL formulation
and the state-of-the-art solver KNITRO [19] resulted in seconds of computation time on the same
hardware platform. Further improvements can also be achieved by appropriate code optimisation. As we
aim mainly to provide illustrative results, certain parameters have been chosen arbitrarily irrespective of
physical assumptions.

4.1 Discretisation

The optimisation problem (2) with various choices of decision space and objective function as described
in previous sections is infinite dimensional, i.e. the vector space of variables D does not have a finite
basis and thus no finite representation. Even more, various constraints are also infinite dimensional. To
arrive at a computationally tractable formulation with a finite number of variables and a finite number of
constraints, we will need to discretise the problem. For demonstration purposes, we propose the following
simple approach.

Assume that x ∈ D provides a solution to (2), where x : [0, τ ] → R2 denotes the path component of x
with travel time τ > 0. Next, choose an integer N ∈ N and discretise the interval [0, τ ], describing the
period in which the UAV is in motion, into a finite number of points

0 =: t0 < t1 < · · · < tN−1 < tN := τ,

where, for simplicity, we choose ti := t0 + ih for i = 1, . . . , N , with grid length h := τ/N . We refer to
t0, . . . , tN the discretisation mesh of [0, τ ].

Remark 4.1. In practice, one should choose an adaptive grid based on progress within the optimisation
process and estimates of local discretisation errors to improve the performance of any optimisation scheme
as well as the accuracy of the solution.

To discretise the time dependent parameters in the decision space of our choosing x = (x, z, α, θ) ∈ D, we
introduce up to 4(N + 1) real-valued variables

xi := x(ti), αi := α(ti),

zi := z(ti), θi := θ(ti),

for i = 0, . . . , N , which will be the variables of our finite-dimensional optimisation problem. As such, we
denote by Dh the space of h-discretised optimisation parameters.

To arrive at corresponding objective functions, we naturally replace each integral with its Riemann sum
approximation, partitioned under the same discretisation mesh of [0, τ ], via∫ τ

0
f(t)dt → h

N∑
i=1

f(ti),

where we note that higher-order integral discretisations schemes can be considered as necessary.

To replace and approximate derivates, we opt for a simple Euler discretisation scheme. In particular, we
replace the velocity and acceleration values at ti for appropriate i = 1, . . . , N with

v(ti) → vhi :=
1

h
(xi − xi−1),

a(ti) → ahi :=
1

h2
(xi+1 − 2xi + xi−1). (64)

We would like to emphasize here that such a straightforward discretization scheme like the explicit Euler
method deployed as above can often lead to large numerical errors over time, although in our experiments
described below we have not encountered any particular blowup of errors. Nevertheless, we would in
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general advise to use higher order schemes (see e. g. [5]), as well as appropriate modeling tools that
facilitate their usage [1, 4].

In summary, we arrive at a new discrete optimisation problem of the form

min
x∈Dh

F (x,y) (65)

along with both the equivalent discretised, and user-defined constraints, to determine an optimal path
and equipment usage x ∈ Dh. Furthermore, F here denotes a combination of the various metrics that
can be used by the UAV to evade detection by the sensor operator, including the probability of detection
(19), probability of false alarms (27), CEP (11), AEE (17), and GDOP (18), as described by Section 2.1.

4.2 Landscapes

Following the definitions of the various metrics that can be used to measure detection, or lack thereof, by
the UAV(s) in determining an optimal path, in this section, we provide a description of the landscapes,
colourised contour plots, formed by each metric described in Section 2.3 and observe the similarities and
differences between them.

We investigate the landscapes under an example eight sensor configuration on a square grid, which we
shall use for the majority of this section. Figure 2 depict the landscapes of a number of functions of
interest; the probability of detection (19), probability of false alarms (27), CEP (11), AEE (17), and
GDOP (18). In these figures, yellow depicts high, and blue depicts low values for the metrics. We note
that, the error metrics CEP, AEE, and GDOP have very large variations, where details on their respective
landscape plots can be obscured. Furthermore, such large variations can be difficult for some numerical
optimisers to handle, as small variations in variables can lead to large and drastic variations in objective
values. To remedy both of these flaws, in these plots and the remaining parts of this article, we replace
all instances of CEP, AEE, and GDOP with their logarithm.

The probability of detection metric(s) (see Figure 2aand Figure 2b) depict high values about each sensor
position which rapidly decline to low values between them. Between neighbouring sensors, one can discern
ridge-like structures of relatively high probability of detection. To attain a small cumulative probability
of detection, for example as in scenario (B), a UAV will wish to stay in regions of low probability of
detection, i.e. in the blue shaded valleys.

In contrast, the CEP, similarly the AEE landscapes (see Figure 2d and Figure 2e) consist of a roughly
polygonal valley, shaped by the outermost sensors, and with a rather flat valley floor in the inner most ring
of sensors. High values of CEP and AEE are encountered near the boundary of the domain considered,
seemingly where the sensors do not well triangulate those points. In addition, we observe relatively high
CEP and AEE values along splines pointing away from the barycentre of the sensors, and along lines of
colinearity between sensors. In the CEP and AEE environments, a UAV will wish to adhere to regions
where high values can be attained to best spoof the sensor operators, as one would with in scenario (A).

It is clear that the probability of detection and error in position objectives are in some conflict with each
other: paths of low overall probability need to navigate with some care between different sensors, staying
away from all of them, while paths that maximise overall errors should hug the sensors and follow splines
with relatively high CEP/AEE values connecting adjacent sensors. The task of finding an optimal path
with either the objective minimise probability of detection or maximise error can thus be visualised as
finding optimal paths in one of the two landscapes. In the following Section 4.3, we provide example
numerical solutions to optimal paths along each of these environments.

It is also easy to see that the error metrics Ei are not wholly in opposition with one another, unlike with
the probability of detection metric(s). Although they do present with different properties. The CEP
and the AEE the most similar to one another amongst the error metrics, providing a similar landscape
profile, although, we notice that the variation in the CEP occurs on slightly shorter scales, as can be
seen by the balloon like regions about each sensor. Furthermore, due to the faster variation in the CEP,
we observe much more clearly the splines of relatively high error along lines connecting sensors. The
GDOP, although being somewhat similar to the CEP and AEE along the boundary of the sensors, is very

19



(a) (b)

(c) (d)

(e) (f)

Figure 2: Landscape plots for an example sensor configuration (a) probability of detection (proxy), (b)
probability of detection (physics based), (c) probability of false alarms, (d) CEP, (e) AEE, (f) GDOP.
The value of each point in the plot corresponds to the value of the metric experienced by an agent at
that point. Sensors are depicted as black dots.
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(a) (b)

(c) (d)

Figure 3: Optimal paths from (0.8, 1) to target location (8.5, 6.7) in (a) probability of detection, (b)
CEP, (c) AEE, (d) GDOP landscapes. Optimal path is depicted as a black line, and sensors are depicted
as black dots.
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different at near the barycentre of the sensors. The GDOP exhibits very high values at the barycentre
compared to relatively low valued in the CEP and AEE. By construction, the behaviour of the GDOP
makes sense. Along regions of constant variance, the GDOP will scale very much like the CEP, although
in regions of high or low variance in measurement, the GDOP relation to the CEP will be reduced, or
increased, respectively. Since there is a relatively low variance at the barycentre of the sensors, due to
good triangulation of position by the sensors, the GDOP will be high in this region.

4.3 Tradeoffs between different objectives

We now compute the optimal paths for a UAV under the various described landscapes; CEP, AEE, GDOP
and the probability of detection. In particular, we depict solutions to the following optimisation problem

min
x∈Dh

F (x,y)

s.t. vhi ,≤ vmax i = 1, . . . , N, (66)

ahi ≤ amax, i = 1, . . . , N, (67)

x0 = (0.8, 1), xN+1 = (8.5, 6.7), (68)

where F describes the cumulative cost objective(s) given by (3) and (5), Dh denoting the space of
real-valued variables (xi)

N+1
i=0 ⊂ [0, 10]2, and y being the positions of the eight stationary sensors in the

square. Figure 3 depicts solutions to this problem under different choices of objective function.

Figure 3a provides a solution to the optimisation problem when F is chosen to denote the cumulative
probability of detection, as described in (5), whereas Figure 3b, Figure 3c, and Figure 3d depict solutions
under F given by (3) with error proxies chosen to be E1, E2, E3, respectively.

In the case of minimising the cumulative probability of detection, the UAV avoids sensors as much as
possible whilst crossing low lying ridges instead of higher terrain features. In contrast, when maximising
the CEP, AEE, and GDOP cumulative cost, the agent hugs the sensors as much as possible to utilise the
large errors present directly next to the sensors.

4.4 Model variants

In this section, we extend numerical experiments and investigate the effect of setting target times,
implementing jamming, and considering multiple UAVs working together to accomplish a common task.

Varied target times
Consider the same set up as before, and instead optimise over cumulative probability of detection along
with an additional target time cost introduces as a penalty to the objective of the form

max{0, (τ − tF )}2, (69)

where τ denotes the time of flight of the variable path, and τF denotes a target time. The UAV will
now be encouraged to reach the target by the target time tF . Indeed, the penalty can be added as
a soft penalty with a large coefficient by summing with the original objective, or be included in the
time constraint for the optimal paths by replacing the search space for the time of flight from [0, T ] to
[tF − ε, tF + ε] for some chosen (sufficiently small) slack parameter ε > 0.

For simplicity, we consider target arrival times to be scaled versions of the minimal possible arrival
time tM (minimal arrival time computed as the shortest distance divided by the maximum prescribed
velocity of the UAV). In particular, we consider tF = tM , 1.05tM , 1.1tM , 1.15tM ; Figure 4b shows the
corresponding optimal trajectories. In all four cases, the targeted arrival time is met, i.e. we have τ = tF
at the computed optima. When tF = tM , the optimal path is, as expected, a straight line from the start
to finish, due to the velocity constraint. Indeed, it can be observed that increasing the target time allows
the agent to maximise its distance to the sensors and enter valleys of low probability of detection for
longer periods of time. This effect is seen more and more with larger target times.

Figure 4b shows the corresponding probability of detection along each path. The segment of the paths
with the highest probability of detection can be clearly identified by the peaks, corresponding to moments
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(a) (b)

Figure 4: (a) Optimal paths (lowest cumulative probability objective) between the starting point (0.8, 1)
and the target location (8.5, 6.7) in a scenario with eight sensors and subsequent increments of target
time as percentages of minimal flight time. (b) Probability of detection over time for each of the optimal
paths.

along the paths where the agent is close to a sensor. Also observable is the increase in the probability of
detection near the target for all optimal paths. Furthermore, it can be seen that a path with a larger
budget/target time spends more time in regions of low probability of detection.

Effect of jamming
We now investigate the effect of jamming action on the choice of optimal path for a sole UAV under the
same conditions as described above, although with the objective being chosen as (3) with E2 (AEE) plus
a rescaled target time cost. The results of this set up are provided Figure 5.

We notice that without jamming, the optimal path hugs splines about sensors where a relative high AEE
is observed. Although with jamming, the UAV is instructed to take a much more direct path through the
low AEE valleys as allowed by the jamming action, which overall results in a smaller objective cost.

Regarding jamming, we observe that the optimal jamming action occurs where it is most needed. Indeed,
from Figure 5, in regions of high AEE, jamming action is very small, and conversely, jamming action is
high in regions of low AEE.

Multiple agents
Considering again the same sensor configuration as before, we now introduce a secondary UAV with
jamming capabilities, but with the first UAV not being able to jam. We assume that both UAVs start
from the same point, although the new second UAV is set to finish at a different point to the first. The
aim is to determine how the two UAVs interact as to both reach their respective targets. We choose as
the objective a sum of four terms, two of which relate to the cumulative AEE for each agent via (3), and
another two being rescaled versions of the target time penalties, set to be at equal times. We observe the
resulting optimal paths for this problem in Figure 5a and the value of the chosen error function along the
path in Figure 5b.

It is easy from Figure 5b to see that the presence of a secondary agent “far” from the field within a region
of high AEE can have a substantial effect on the AEE environment of an agent trying to reach a target
within an adversary environment. Furthermore, it can be seen that the secondary agent enacts the most
jamming when the primary agent (with no jamming capabilities) enters the lowest region of AEE, in an
effort to aid the agent in spoofing the sensor operators.

Intermittent communications
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(a) (b)

Figure 5: (a) Computed optimal paths (lowest cumulative AEE) between the starting point (0.8, 1) and
the target locations (8.5, 6.7) and (5, 9.5) in a scenario with eight sensors and two agents with one having
jamming capabilities (b) AEE along the optimal path(s) as a solid line, and the jamming action as a
dashed line. Lighter coloured lines represent the AEE of the agents in the absence of jamming.

In this section we consider four sensors at positions (-4,10), (2, 18), (6, 8), and (1, 5) and investigate the
effect of intermittent communications on the optimal paths, i. e. where the UAV reduces their emission
by a certain amount for a certain amount of time; see Section 3.2 for details.

In our numerical experiments, it was always the case that the emission of the agent was reduced fully to
0% for an interval of time. We did not observe reductions of less than the full amount, nor was the time
over which the reduction occurred split into more than one interval.

Figure 6 shows optimal paths for the problem of minimising detection probability for different budgets of
communication dropout. A reference solution where communication is not allowed to be intermittent is
depicted in blue. Parts of the path where emissions are reduced to zero are depicted in red. As it can
be seen, the blue path avoids the sensor at (1, 5) and the sensor at (0, 8) by about the same distance,
which is driven by the travel time budget (see earlier examples in this chapter). With a communication
reduction budget of 17%, the agent now gets closer to (1, 5) for a certain amount of time, which allows
keeping a wider distance to (0, 8) later. The effect is even more pronounced when the communication
reduction budget is increased to 35%.

4.5 An example scenario

We present now a simplified experiment that one might encounter in the real world, a form of Scenario
(B) as described in Section 2.1. In particular, we consider a UAV traversing a 14km × 10.5km region
within the Isle of Wight, on which we distribute 9 sensors (8 stationary and one mobile, denoted by y9).
We task the agent with reaching a target on the east coast of the Isle of Wight, having begun near its
centre whilst optimally evading and/or spoofing detection according to some cost F . The initial positions
of the sensors are known to the agent, although their future positions and any other changes in the
environment are not and will be handled via the use of a rolling horizon approach, as described in Section
3.6. Furthermore, we assume that within the Isle of Wight, there are regions which the UAV(s)/agents
need to avoid, such as the sea, as to depict either logistical or physical constrains; see Section 3.4.

More specifically, we assume that the agent wishes to optimise over the objective

F (x,y) = −λ

∫ τ

0
E2(x(t),y(t)) dt+M max{0, τ − tF }2,
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Figure 6: Optimal paths (minimise cumulative probability of detection) for intermittent communication
with different budgets of communication dropout (black) and reference solution with full communication
(blue). Parts of the path where emissions are reduced to zero are depicted in red.

where λ = 10−5,M = 10−2, and tF = 11076 seconds, i.e. we aim to maximise the cumulative AEE
(given by E2, see (17)) computed by the sensors whilst at the same time wishing to reach our target at a
specified time tF . Furthermore, we perform the optimisation over 18 equispaced control horizons Ti =

iT
18

for i = 1, . . . , 18 that span a maximal time of flight interval [0, T ] with T = 14000 seconds.

See Figure 7 for a depiction of the initial configuration of sensors; the start and target location of the
agent are shown in blue and green, respectively, the boundaries of the forbidden regions are shown in red,
sensor positions are shown as black dots. In Figure 7a, we show the initial AEE landscape of the domain,
the cumulative of which we will wish to optimise over. It is easy to see that the regions of small AEE (in
blue) correspond to areas where sensors can well triangulate the position of the UAV(s). On the contrary
regions showing high AEE (in yellow) occur where either the sensors have little coverage or along lines
where sensors are colinear; the effects of large errors due to colinearity can be seen clearly along the line
of sensors at y ≈ 8.

We perform an optimisation to determine optimal paths and equipment usage in both scenarios where
the agent is not able and is able to jam sensors.

Without jamming
The optimal path(s), when no jamming capabilities are in place, over a select set of prediction horizons
are depicted in Figure 8, and the corresponding probability of detection and AEE along this path is
shown in Figure 9.

In Figure 8a it is clear that the presence of the two forbidden regions provides a barrier for the optimal
path as it restricts access to a region of low sensor count and thus high AEE. Although, the computed
path makes use of the region between the two forbidden circles and arches southwards to spend as much
time as possible in an area of relatively large AEE. In Figure 8b, we observe sensor 9 reaching the region
between the two forbidden circles, thereby decreasing the local AEE values of a previously relatively high
AEE value region. The optimal path computed accounts for this intrusion at this prediction horizon and
now arches further southwards. As the moving sensor moves away from this region, the newly acquired
shape of the path remains, with minor adjustments for when sensor 9 is particularly close to the optimal
path, see Figure 8d.

Recall that the cost function used in this example solely considers the AEE of the agent and a time
penalty term. Therefore, high regions of probability of detection should not be unexpected. This is
precisely what is observed for this example in Figure 9a. The probability of detection of the agent peaks
twice throughout the journey, at 1000 and 4000 seconds, occurring when the agent is close to sensors at
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(a) (b)

Figure 7: Initial configuration of sensors (black), along with the starting and ending positions of the
agent (blue and green). Left: landscape plot of the logarithm of the area of error ellipse of the sensors.
Yellow corresponds to a large area of error ellipse and thus a large error in measurement at that position,
whereas blue corresponds to a small area of ellipse. Right: landscape plot of the probability of detection
in the domain. The red circles denote boundaries of forbidden regions, those being inside said circles.

(a) Time T = 0/18. (b) Time T = 3/18.

(c) Time T = 7/18. (d) Time T = 9/18.

Figure 8: Optimal path computations at each control horizon for example scenario situation.
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(a) (b)

Figure 9: Plots are of quantities along the path traversed by the agent without jamming capabilities.
(a) Probability of detection. (b) Logarithm of the AEE.

positions (2,4) and (6,4), respectively.

With jamming
The optimal path(s), when jamming capabilities are in place, over a select set of prediction horizons are
depicted in Figure 10, and the corresponding probability of detection and AEE along this path is shown
in Figure 11.

As expected jamming usage along the path allowed for a shorter and more direct trajectory of the UAV
to the target, see Figure 10a. This phenomenon continues until sensor 9 has moved to the region between
the two forbidden circles, where the trajectory bends southwards to avoid the newly created region of low
AEE, see Figure 10b. As sensor 9 moves further eastwards, the optimal path computed recovers from the
southward bend and bends northwards for a more direct path to the target, see Figure 10c, unlike the
path obtained when no jamming is utilised, compare Figure 8c.

Jamming availability has also allowed the agent to reach the target with a smaller cumulative probability
of detection and AEE, compared to when jamming was not in place. To achieve this, the total jamming
availability was fully utilised along the path, with peaks in usage at 1000 and 7000 seconds along the
path, corresponding to moments when the UAV was in regions of relatively low AEE.

5 Conclusions

In this article, we considered the problem of evading detection and/or location of one or more agents
that are tasked to traverse an adversary environment from prespecified starting and ending positions.
Distributed across the area under consideration are several sensors that aim to detect and locate the agents.
We have provided a flexible mathematical modelling framework by posing the problem as an optimisation
problem. The developed model rests on a precise mathematical framework that has previously been
developed in estimation theory and has widely been applied and further developed in statistical signal
processing. Optimisation provides a powerful modelling paradigm that is able to provide mathematical
models for a variety of situations, such as:

• One or more agents are under consideration, with possibly different start points and targets.

• Agents have different characteristics, e.g. different maximum velocity and capabilities.

• Several different objectives can be considered, e. g. minimise cumulative (average) probability of
detection, minimise worst (smallest) probability of detection, maximise cumulative location error
that the sensors experience when trying to measure the location of the agents, maximise worst
(smallest) location error, minimise travel time, and others.
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(a) Time T = 0/18. (b) Time T = 3/18.

(c) Time T = 7/18. (d) Time T = 9/18.

Figure 10: Optimal path computations at each control horizon for the example scenario. The area of
ellipse landscape shown in the background is constant in the absence of jamming.

(a) (b)

Figure 11: Final traversed path for agent with jamming capabilities. (a) Probability of detection. (b)
Logarithm of the AEE.
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• We also consider the case that these objectives can change over time.

• Our framework allows for various additional constraints like energy constraints (battery power),
regions forbidden to travel into, and others.

• The basic optimisation model developed can be readily extended to a number of important
scenarios, in particular moving sensors, jamming (both isotropic and anisotropic), and intermittent
communications.

Finally, we provide a variety of numerical test results based on a prototype implementation of the model
developed. These results do not only confer the flexibility of the chosen modelling approach, but also
show that the framework developed is computationally tractable and leads to realistic solutions.

We also note that several possible extensions to our work that can be made subject to further study:

• We might want to consider movement dynamics of the agents, beyond bounds on velocity and
acceleration. Modelling such dynamics might become important, depending on the spatial scale of
the problem.

• We might want to consider inhomogeneous terrain in which the speed of the agents in a particular
direction can differ from speeds in other directions, and in which different parts of the underlying
area possess different types of inhomogeneity.

• Likewise, we consider constant pathloss coefficients for the sensors only and do not model any
influence of the terrain on location error or probability of detection.

• Our continuous model considers locally optimal trajectories only. This is partly alleviated by
considering a hybridisation approach that merges a discrete approach with the continuous approach
here. However, more work is needed to better understand the interplay of the two approaches and
their advantages and disadvantages.

• In our framework, there are no actions the sensor operator can take while the agents move: for
example, all sensor movements are prespecified. A more appropriate framework would be a bilevel
optimisation setting, in which the sensor operator decides on the locations and action plans of the
sensors first, before the UAV operator decides on their actions.

• The study performed is two dimensional in nature and thus probability and error landscapes
considered are also two dimensional. Of course, extensions to the three dimensional case are
expected to be straightforward.

Nevertheless, based on encouraging numerical tests, we believe that the optimisation model developed is
generic, flexible, and versatile enough to warrant further investigations into its practical usage.
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