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The objective of this thesis is the development of new methods for exploiting multi-
level approximations in statistical modelling and design using hierarchical Gaussian 
processes. 

An important application is in multi-level approximations of intractable likelihood 
problems, where a hierarchy of likelihood approximations is available, each having 
different accuracy and cost. For example, in generalised linear mixed models, quadra-
ture methods may be used to approximate the likelihood, and by varying the num-
ber of quadrature points used we may trade off accuracy against computational cost. 
Multi-level Gaussian processes methods have been established and implemented to 
emulate the highest level of accuracy available, using data from all stages of the hier-
archy. Moreover, Gaussian process emulated likelihoods are used to conduct inference 
about the model parameters and to address uncertainty. 

There exists a general design problem for hierarchical Gaussian process: to decide how 
many times to evaluate each level of approximation, and at which parameter values, in 
order to fnd an accurate approximation to the point maximising that function, given a 
limited computational budget. A decision-theoretic approach, called expected gain in 
utility, based on Bayesian optimisation has been developed and demonstrated through 
examples. 

This thesis is focused on likelihood approximations and the aim is to compute an ac-
curate approximation to the likelihood and to the maximum likelihood estimate (the 
maximiser of the high-level likelihood approximation) at minimal cost. The method-
ology is demonstrated on generalised linear mixed model and Ising model examples 
throughout the thesis. While this thesis in mainly focused on likelihood approximation, 
the expected gain in utility methodology for choosing the experimental design could 
also be used on other applications of multi-level Gaussian processes. 
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Chapter 1 

Introduction 

1.1 Overview 

Understanding and exploiting hierarchical differences in the accuracy and cost of sys-
tems and approximations across different (physical or computational) scales is an im-
portant topic in many areas of statistical research. In general, accuracy and cost will 
be inversely related, with economically or computationally expensive “evaluations”, 
physical observations or computational approximations, giving highly accurate results. 

The example of approximations across different computational scales, which will focus 
on this thesis, is the approximation of the likelihood function for models where the 
likelihood is intractable or computationally expensive by combining existing likelihood 
approximations, each with different cost and accuracy, to obtain statistically valid and 
effcient inferences for the model parameters. 

Generalised linear mixed model (GLMM) is an example model with intractable like-
lihood. Figure 1.1 shows approximations of the log-likelihood of a two-level random 
intercept GLMM. The approximations are obtained using the Laplace approximation 
(LA) method and the adaptive Gaussian quadrature (AGQ) approximation method 
with nAGQ quadrature points for multiple quadrature points, where nAGQ is the 
number of quadrature points. 

Figure 1.1 also includes a highly accurate approximation of the log-likelihood which is 
available for this example calculates using AGQ with 10 quadrature points. As can be 
seen, the shape of the log-likelihood approximated using different methods is similar, 
therefore the different approximations are related which is important for the hierar-
chical structure of the multi-level Gaussian process method we implement. However, 
the less accurate approximations to the log-likelihood, such as the Laplace approxima-
tion, which is a special case of the AGQ with nAGQ = 1, and the AGQ with nAGQ = 2, 
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considerably underestimate the log-likelihood for large values of σ, where σ is the stan-
dard deviation of the random effects. The location of the maximum differs for each ap-
proximation and the maximum value of the log-likelihood decreases for smaller nAGQ 
numbers. For cases where we are not able to compute an accurate approximation to the 
likelihood, this problem would have been overlooked. More details on the examples 
are given in the following chapters. 
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FIGURE 1.1: Log-likelihood approximations for the GLMM example using different 
approximation methods for varying values of the standard deviation parameter along 

with an accurate approximation. 

Complex approximations can generally provide more accurate approximations to real 
systems when compared with simpler approximations. However, the complexity of the 
approximation can turn into a problem when lots of evaluations are needed to obtain 
the required accuracy. Complex computer approximations are usually computationally 
expensive meaning that obtaining a single evaluation requires a signifcant amount of 
time and cost (Le Gratiet, 2012). Most of the time, budgets will be insuffcient to al-
low statistical modelling and inference to rely solely on results from these evaluations. 
However, using only lower level computer approximations and evaluations with lower 
cost, which are available in much greater quantities, will result to lower accuracy and, 
potentially, misleading conclusions about quantities such as the location of the maxi-
mum likelihood estimate. 

In this thesis, we are interested in combining evaluations of likelihood approximations 
from different levels of complexity and accuracy to achieve higher accuracy with lower 
cost. The methodology can also be adapted and used for problems which do not in-
volve likelihood approximations. 
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In most statistical situations, inference methodology based on the likelihood function 
is widely used. However, such methods are not always easy to apply. For instance, for 
models where the likelihood is intractable, and cannot be computed analytically, com-
putational expensive approximations may be available. Within a statistical framework, 
there is a broad class of methods to handle an intractable likelihood including methods 
that rely on numerical approximations to the likelihood. 

The aim of this thesis is to develop new statistical methods for statistical design, mod-
elling and inference where there is a hierarchy of approximations available, each having 
different cost and accuracy. The methodology is applied to compute likelihood approx-
imations for models where the likelihood is intractable or computationally expensive 
to compute. We work with cases where various approximation methods are already 
available, each having different computational cost and accuracy. We use Gaussian 
process (GP) models and we combine evaluations from multiple hierarchical scales of 
approximation to obtain an accurate and effcient approximation to the intractable or 
too expensive to compute quantity. 

Gaussian processes are commonly used for non-parametric modelling of unknown 
functions (O’Hagan, 1978; Schulz et al., 2018) and have a long history in various felds 
such as geostatistics, meteorology, computer experiments and machine learning. Gaus-
sian processes can be used in a Bayesian setting where the Gaussian process is a prior 
on the function. Gaussian processes are commonly used to compute a cheap approxi-
mation, or emulator, of an expensive to evaluate computer simulator. They are partic-
ularly useful when the evaluation of a function is expensive. GPs are a useful tool, for 
this thesis, since the type of function we are interested in is an intractable likelihood, 
and the whole likelihood or log-likelihood function is required to be able to conduct 
inference for the model parameter. 

A computer model, or simulator, can be regarded as a function which takes inputs and 
returns outputs. Gaussian process models can be used as a surrogate for the simulator 
output (Perdikaris et al., 2017). Multi-level Gaussian process model-based approxima-
tions are applied where multiple levels of approximations are available, some more 
complex and accurate than other. 

In this thesis, we treat the likelihood approximation as a multi-level simulator and we 
use GP approximation as the surrogate. We have multiple-level approximations and we 
want to approximate the most complex approximation using evaluations from lower 
level approximations as well. Using a Bayesian approach, we compute the Gaussian 
process posterior distribution for a multi-level approximation. The resulting posterior 
mean function of the GP posterior can be used as an approximation for the output of the 
complex approximation as well as a prediction for new inputs (Kennedy and O’Hagan, 
2000). Therefore, a good approximation of the complex approximation can be achieved 
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with a suffcient number of evaluations of simpler (lower level) approximations and a 
limited number of evaluations of the complex approximation (higher level). 

Assuming that we have managed to compute a good approximation of the likelihood, 
using multi-level GP approximation, we aim to estimate the unknown model param-
eters from the observed data and quantify the uncertainty in these estimates. One ap-
proach is to use Bayesian inference and compute the posterior distribution of the model 
parameters. The posterior distribution of the model parameter can be deduced from the 
likelihood and a prior distribution describing the prior knowledge of the model param-
eters. 

In most cases, the posterior cannot be expressed analytically due to the complexity of 
the likelihood or the computation of the normalising constant which involves high di-
mensional integrals. Samples from the posterior distribution can be used to obtain an 
approximated posterior distribution for the model parameters. Therefore, using the 
mean of the Gaussian process posterior density as an approximation to the likelihood 
we can obtain likelihood samples. Each of these likelihood samples can be then used to 
compute a posterior sample as an approximation to the posterior. To achieve that we 
sample from the multi-level GP approximation of the likelihood or log-likelihood and 
we multiply it with a predefned prior of the model parameter. Doing this we obtain a 
sample from the posterior. Repeating this procedure for a large number of samples we 
manage to compute an approximated posterior given approximated likelihood evalu-
ations from the multi-level GP. Hence, we can conduct inference for the model param-
eters and combine the underlying uncertainty about the model parameters given the 
data with the uncertainty from using the multi-level Gaussian process model as an ap-
proximation to the likelihood rather than the true likelihood itself, which is not always 
available. 

Bayesian optimisation (BO) is a particularly well-suited tool to global optimisation 
problems where the function we want to optimise is a computationally expensive func-
tion (Jones et al., 1998). The goal is to choose an experimental design (set of training 
points) for the Gaussian Process emulator of the likelihood, the function of interest, 
with the aim of fnding the point maximising the likelihood. To do this, we frst defne 
a utility function which is the maximum of the emulated high-level function given the 
current data. 

In this thesis, we work with multi-level approximations each with different cost. Given 
some initial design and corresponding approximate function evaluations for each level 
used, we need to choose a new point to add to the existing design without further eval-
uations of the function approximations and decide at which level of approximation we 
will add the new point based on the relative cost of each level. We have developed a 
method for multi-level BO using expected gain in utility (EGU). We choose the point 
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to add to the design and the level which gives the largest expected gain in utility rela-
tive to the cost of evaluating each level of function approximation. Low values of the 
EGU show that there is no further beneft for adding any new points to the design. The 
search for new points stops when the maximum value of the EGU falls below a prede-
fned threshold. 

1.2 Examples 

Throughout the thesis, we illustrate the methodology using three running examples. 
We work with a simple linear regression model (SLR), a GLMM and an Ising model. 
Refer to Section 3.4 where the models and the data used will be presented in more 
detail. 

1.2.1 Simple linear regression 

The frst example is a simple linear regression model which is used to illustrate how 
the Gaussian process can be used as an approximation to the likelihood. This is a toy 
example where the analytic form of the likelihood and the posterior distribution is 
given in closed form so that we can compare and validate the results obtained using 
GP approximation. For this example, we work with the simple case of a single-level 
Gaussian process to emulate the likelihood surface given a small number of evaluations 
of the true likelihood. 

1.2.2 Generalised linear mixed models 

The second example is a generalised linear mixed model which works as an example 
of model with intractable likelihood. GLMMs are a fexible class of models for non-
normally distributed response data which include additional random effects in their 
linear predictor (McCulloch and Searle, 2004). The main problem arising when using 
GLMMs is that the likelihood has no analytic expression for most cases (Pinheiro and 
Chao, 2006). The integral defning the likelihood function is intractable and its dimen-
sion depends on the structure of the random effects. This problem motivated the appli-
cation of numerical approximations to the likelihood such as Laplace approximation, 
adaptive Gaussian quadrature, or Bayesian approaches implementing Markov Chain 
Monte Carlo (MCMC) techniques. 

We work with multiple levels of approximation of the log-likelihood for the GLMM 
example, the Laplace approximation as the lower level of our hierarchy and adaptive 
Gaussian quadrature, with different choices of the number of quadrature points nAGQ, 
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as the higher levels. Figure 1.1 shows the different levels of log-likelihood approxima-
tion as a function of the standard deviation of the random effects for the GLMM. For 
each level of approximation used we get a different value of the maximum each at a 
different location. Explicitly, we have that the maximum for the Laplace approxima-
tion is at σ = 0.75, for nAGQ = 2 at σ = 0.94, for nAGQ = 5 at σ = 1.03 and lastly 
for the most accurate approximation is at σ = 1.03. As can be seen, as we increase the 
number of quadrature points used for computing the AGQ approximation method we 
get a more accurate approximation which is closer to the accurate log-likelihood func-
tion. 

1.2.3 Ising models 

For our third and last example we work with Ising models (Ising, 1925). The Ising 
model is a mathematical model of ferromagnetism in statistical mechanics. It can be 
used as a theoretical model of empirical phenomena and as a data analytic model 
that provides a statistical likelihood model for dependencies between binary variables 
(Finnemann et al., 2021). It consists of variables that represent spins that can take the 
values +1 or −1 and the spins are arranged in a lattice (grid) giving the ability to each 
spin to interact with its neighbors. 

The likelihood of an Ising model given the model parameters is usually computation-
ally expensive depending on the size of the grid because of the computation of the nor-
malising constant. To obtain likelihood approximations for the multi-level GP approx-
imation we aim to use the reduced-dependence approximation (RDA) method (Friel 
et al., 2009), which can be computed in different levels of accuracy depending on a tun-
ing parameter k. We replace the expensive to compute normalising constant with an 
approximation obtained using the hierarchical experiments approach combining eval-
uations from multi-level approximations. 

Figure 1.2 shows the log-likelihood approximations of the Ising model for a simu-
lated example with a 10 × 10 grid. As can be seen, the shape of the approximated 
log-likelihood is similar the different methods which is required for the hierarchical 
approximation method. For this example, the exact log-likelihood is available in closed 
form and is shown in red in the fgure. We have chosen to work with this case so that 
we will be able to use the exact log-likelihood as a measure of comparison for the calcu-
lations. However, for larger grids computing the closed exact form of the normalising 
constant and consequently the log-likelihood is computationally expensive. 

The log-likelihood approximations are given as functions of the parameter of inter-
est β using the reduced-dependence approximation method for various values of k, 
where k = {2, 3, 4, 6}. The parameter β of the Ising model is a scalar indicating the 
inverse temperature. As shown, as we increase the value of k the approximation of 
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the log-likelihood is closer to the exact log-likelihood of the model. Clearly, the maxi-
mum value of the log-likelihood and its location are different for each approximation 
as presented in the Figure 1.2. More explicitly, we have that the maximum of the ap-
proximation obtained using k = 2 is at β = 0.27, for k = 3 at β = 0.29, for k = 4 at 
β = 0.28, for k = 6 at β = 0.26 and lastly for the exact log-likelihood at β = 0.25. It is 
obvious that as we increase the value of k in the RDA method we get a more accurate 
approximation of the log-likelihood which is closer to the exact log-likelihood function. 
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FIGURE 1.2: Log-likelihood approximations for the Ising model example using dif-
ferent values of the tuning parameter k of the RDA method for varying values of the 

parameter β along with the exact log-likelihood. 

1.3 Thesis outline 

The structure of the remainder of the thesis is as follows. 

Chapter 2 introduces some preliminary material on the thesis running examples: sim-
ple linear regression, generalised linear mixed models and Ising models. It also gives 
an overview of approximation methods for GLMM and Ising models. 

Chapter 3 focuses on Gaussian process regression and hierarchical computer exper-
iments. It demonstrates through examples how Gaussian processes can be used to 
approximate the whole likelihood or log-likelihood surface based on evaluations of 
the likelihood from multiple approximation levels at a certain set of parameter values. 
Also, the extension of the GP regression for multi-dimensions is described and an ex-
ample illustrates how it can be incorporated with multi-level GP approximations. 
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After obtaining a good approximation of the likelihood surface we conduct inference 
for the model parameters and combine the uncertainty arising from the Gaussian pro-
cess approximation to the likelihood and the underlying uncertainty of the model pa-
rameters given the data. This is achieved using Bayesian inference and obtaining pos-
terior samples by computing an approximated posterior distribution of the model pa-
rameters. The methodology is explained and implemented in Chapter 4. 

Chapter 5 introduces the concept of expected gain in utility where we use Bayesian op-
timisation to choose the experimental design of multi-level GP approximation relative 
to the cost of each level. 

For the purpose of this thesis, we have developed an R package called hela, which 
stands for hierarchical experiments and likelihood approximations, to apply the 
methodology developed for computing hierarchical likelihood approximations. The R
functions included in the package are presented and described through an example in 
Chapter 6. 

We conclude with some discussion in Chapter 7 of the main ideas and methods pre-
sented in this thesis. We also give suggestions for potential directions and future work 
to expand the methodology by assessing the accuracy of the GP approximation using 
cross validation, extend the EGU for more dimensions and investigate the choice of 
the experimental area of the parameters and how hierarchical experiments can be inte-
grated into optimal designs. 

For better understanding, a glossary of notation is available in the list of symbols and 
abbreviations are given in the list of abbreviations. The items are ordered according to 
context. Figures, tables and algorithms are also summarised in the list of fgures, the list 
of tables and the list of algorithms respectively. Any supplementary work is available 
as appendices at the end of the thesis. 
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Chapter 2 

Preliminaries 

2.1 Overview 

This chapter introduces the preliminary materials which will be used in the thesis. 
Throughout the thesis the ideas and methodology are demonstrated using three exam-
ple models: simple linear regression model, generalised linear mixed model and Ising 
model. For the simple linear regression example the likelihood can be given in analyt-
ical form. Hence, we use this as an example to validate our methods. The GLMM and 
the Ising model are examples of models with intractable or computationally expensive 
likelihoods due to the computation of an intractable or computationally costly quantity. 

Generalised linear mixed models are described in detail, explaining the likelihood ap-
proximation problem along with some existing methods of likelihood approximation 
such as the Laplace and the adaptive Gaussian quadrature methods. We also introduce 
the Ising model, describing the issue arising when computing the normalising constant 
of the likelihood. As an approximation method of the normalising constant of the Ising 
model, we present the reduced-dependence approximation method which is a class of 
approximations which can be computed in various levels each with different cost and 
accuracy based on a tuning parameter. 

2.2 Simple linear regression model 

Simple linear regression is a statistical method that allows us to establish a relationship 
between two continuous variables. The simple linear model can be expressed as 

yi = α0 + α1xi + ϵi, ϵi ∼ N (0, σr 
2), (2.1) 
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where yi is the response value for each observation i for i = 1, . . . , n, α0 is the intercept, 
α1 is the slope, xi is the predictor value for each observation i and ϵi is the error term 
which is normally distributed with zero mean and variance σ2 with ϵi and ϵj assumedr 

to be independent for i ̸= j. 

The likelihood function for the SLR model is available in closed form and is given by  
n 

L(α0, α1, σr 
2; x1, . . . , xn) = (2πσr 

2)n/2 exp 
2

1 
σ2 ∑(yj − (α0 + α1xj))

2 . (2.2) 
r j=1 

2.3 Generalised linear mixed model 

2.3.1 Introduction 

Generalised linear mixed models are an important and commonly used model class 
for statistical analysis. They are appropriate for the analysis of grouped data when 
the responses depend on a set of covariates and are correlated due to the presence of 
clusters or groups. In practice, the implementation of GLMMs is not easy due to the 
complexity of the likelihood function (McCulloch and Searle, 2004). GLMMs are an 
example of models with intractable likelihood, the type of models we are interested in 
this thesis. 

Multilevel modelling using GLMMs enables researchers to investigate the nature of 
between-group variability, and the effects of group-level characteristics on individual 
outcomes. For example, when individuals form groups or clusters it might be ex-
pected that two randomly selected individuals from the same group will tend to be 
more alike than two individuals selected from different groups. Measurements taken 
on the same individual at different occasions will tend to be more highly correlated 
than two measurements from different individuals. When the clustering is ignored the 
standard errors of the regression coeffcients will generally be underestimated (Browne 
and Rasbash, 2004). Consequently, the confdence intervals will not be accurate leading 
to wrong interpretations, such as claiming that a predictor has a signifcant effect on the 
outcome when in fact the effect could be due to chance. 

Generalised linear mixed models are an extension of linear mixed models to non-
normal responses. Therefore, let us introduce linear mixed models frst. 

2.3.2 Linear mixed models 

Linear mixed models are considered as an extension of linear models allowing for both 
fxed and random effects (McCulloch and Searle, 2004). A linear model in vector form 
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can be written as 

y = Xβ + ϵ, 

where y is a n × 1 vector of the response; X is a n × p known design matrix of the p pre-
dictor variables; β is a p × 1 column vector of the fxed-effects regression coeffcients 
and ϵ is a n × 1 column vector of the errors which gives the part of y that is not ex-
plained by the model, with ϵi ∼ N(0, σ2), and σr is an unknown parameter. This model r 

can be extended to include random effects resulting to the linear mixed model written 
in vector form as 

y = Xβ + Zu + ϵ, 

where Z is the n × q known design matrix for the q random effects and u is a q × 1 vector 
of the random effects, where u follows a normal distribution, u ∼ N (0, G) where G is 
the variance-covariance matrix of the random effects. 

Adding a random effect to the linear model is applicable to any class of regression 
models. Therefore, generalised linear mixed models can be regarded as an extension 
of the linear mixed models. However, the normality assumption is no longer needed 
for the errors; u is still assumed normal, and the mean does not need to be a linear 
combination of the parameters. 

2.3.3 Generalised linear mixed models 

In a generalised linear model the response variable can follow a non-Gaussian distri-
bution. Let the linear predictor η given by 

η = Xβ, 

for a known design matrix X. A generic link function g(.) is usually applied for mod-
elling the responses. The link function defnes the relation of the mean response y with 
the linear predictor η. We assume that the distribution of the response has an exponen-
tial family form with mean 

µ = E[y|η] = g−1(η). 

The linear predictor η of the generalised linear mixed model is given by the combina-
tion of the fxed and random effects excluding the residuals. That is, 

η = Xβ + Zu, (2.3) 
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where X and Z are known design matrices and the random effects component u =

(u1, . . . , uq)T is a sample from a distribution known up to a parameter vector ϕ (Mc-
Culloch and Searle, 2004). Usually, it is assumed that u follows a multivariate nor-
mal distribution with zero mean and covariance matrix G defned via ϕ, where ϕ is a 
known vector of length q containing the variance components. 

2.3.4 Likelihood for generalised linear mixed models 

The likelihood is one of the key ingredients in inference and is generally used to gen-
erate estimators such as the maximum likelihood estimator and to perform hypothesis 
testing. The likelihood function is defned on the parameter space while the data is 
considered fxed. 

The likelihood for the generalised linear mixed model described in Section 2.3.3 is given 
by  n 

T TL(β, ϕ) = ∏ f (yi|ηi = xi β + zi u)ϕq(u, 0, G(ϕ))du, (2.4) 
i=1 

where f (.|η) is the probability function or probability density function for y, for a 
given value of the linear predictor η, and ϕd(., µ, Σ) is the Nd(µ, Σ) density function, 
where µ is the mean and Σ is the covariance matrix, and the integration is over the 
q-dimensional distribution of u. 

Therefore, is not easy to compute the likelihood in the general case since the integral is 
usually at least as high dimensional as the number of random effects of the model and 
it is intractable. Hence, approximation methods are needed to solve the integral (2.4) 
to compute the likelihood of the GLMM and are described in Section 2.3.5. 

For this thesis, we use the example of a two-level hierarchical generalised linear mixed 
model. As a general framework, the lowest level of observation in the hierarchy is 
denoted by j, and the group or cluster of the level two unit with i. There are j =
1, . . . , mi level one units within the ith level two unit, and i = 1, . . . , m level two units 
and let the total sample size be mt = ∑m

i=1 mi. 

Let us introduce the two-level random intercept model, which is one of the simplest 
multi-level models. Assume that the data is clustered, so that we have yij observations 
for i = 1, . . . , m and j = 1, . . . , mi, where the jth observation from the ith cluster is given 
by yij and let xij be the corresponding explanatory variable. For this two-level random 
intercept model, the distribution of yij is controlled by the linear predictor ηij, defned 
as 

Tηij = xij β + ui, 

where ui ∼ N(0, σ2) and σ2 is the variance of the random effects. 
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The likelihood for a two-level structure GLMM can be written as  m mi 

∏∏ = xL(β, σ) =
Rn

i=1 j=1 
f (yij|ηij 

T 
ijβ + ui)ϕ(ui, 0, σ2)dui. (2.5) 

The two-level GLMM is a special case due to its nested structure. Each observation 
is contained within one cluster and the likelihood can be simplifed by swapping the 
product and the integration of the likelihood in (2.5) 

m mi 

L(β, σ) = ∏∏ f (yij|ηij = xT 
ijβ + ui)ϕ(ui, 0, σ2)dui. (2.6) 

i=1 R j=1 

We use this simplifcation so that we will be able to use the AGQ approximation as 
one of the approximation methods of the likelihood as described in section 2.3.5. For a 
GLMM in a general form this simplifcation is not applicable. 

In our demonstrations, we will use a two-level random intercept model with binary 
response. Suppose that we have binary responses, thus each response yij follows a 
Bernoulli distribution with parameter pij, that is yij ∼ Bernoulli(pij). The two-level 
random intercept logistic model is given by  

log 
pij 

1 − pij 
= β0 + β1xij + ui, (2.7) 

where ui ∼ N (0, σ2). The model parameters are given by θ = (β0, β1, σ)T where β0 

is the intercept, β1 is the slope which is the same for each group and σ is the standard 
deviation of the random effects. We would like to make inference about the model 
parameters θ. 

2.3.5 Likelihood approximation methods 

A common approach of calculating the likelihood for a GLMM is by using an approx-
imation method. However, the choice of the approximation method may infuence the 
resulting inference. Some of the main likelihood approximation methods based on the 
literature are the Laplace approximation, Gauss-Hermite quadrature, adaptive Gaus-
sian quadrature and penalised quasi-likelihood. Each method has a different degree of 
accuracy and computational complexity. These methods are widely used and can be 
implemented in most software like the lme4 package (Bates et al., 2015) or the glmmPQL
function (Venables and Ripley, 2002) in R. However, with the lme4 package the AGQ 
method can only be used for simple two-level models. We mainly focus on the AGQ 
approximation and LA methods, where the LA method can be considered as a special 
case of the AGQ method. 
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Laplace approximation 

The Laplace approximation method (Tierney and Kadane, 1986) approximates the inte-
grand with a function which is proportional to a Gaussian density. In general, the LA 
method uses Taylor series expansion of the log-likelihood function to give a numerical 
approximation to the log-likelihood. 

Suppose we want to evaluate the intractable integral 
g(u)du, 

U 

where g is some function and u has dimension κ. 

The second-order Taylor series expansion of log g(u) around the value that maximises 
g(u), given by û, is 

log g(u) ≈ log g(û) + (u− û)T(log g)′(û) +
1 
(u− û)T(log g)′′(û)(u− û)

2 

= log g(û) +
1 
(u− û)T(log g)′′(û)(u− û),

2 

where T is the transpose, 

∂ log g(u)
(log g)′(û) =

∂u
= 0, 

u=û 

and 

∂2 log g(u)
(log g)′′(û) =

∂u∂uT 


u=û 

is the Hessian evaluated at û. 

Writing He = (log g)′′(û) we have 
g(u) ≈ g(û) exp −1 

(u− û)T He(u− û) .
2 

Therefore, the Laplace approximation of the intractable integral is given by 
g(u)du ≈ g(û)(2π) 2 

κ |He| 2
1 
. 

U 

Using the LA method, the maximum likelihood estimate (MLE) of the fxed effects and 
the standard deviation of the random effects can be calculated by maximising numer-
ically the approximate likelihood. The accuracy of the LA method can be increased 
using a higher order of Taylor expansion. However, when the variance of the random 
effect is large, the LA method is less accurate (Handayani et al., 2017). It can be shown 
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that the LA method is a special case of the adaptive Gaussian quadrature approxima-
tion method with one iteration. 

Adaptive Gaussian Quadrature 

Quadrature is another method for numerical integration which uses weighted sums, 
that is 

 b nq 

I = f (x)dx ≈ ∑ wi f (xi), 
a i=1 

where nq denotes the number of quadrature points, wi are the quadrature weights and 
xi are the evaluation or quadrature points. For notation purposes, let nAGQ denote the 
number of quadrature point of the AGQ method. 

The complexity of AGQ increases with the dimension of random effect. Handayani 
et al. (2017) noted that the AGQ method becomes computationally more expensive 
when the dimension of random effects is greater than two. The complexity depends 
on the structure of the integral since the method is limited in the factorisation of high-
dimensional integrals into some integrals with low-dimension, which is one of the main 
reasons why we have chosen to work with the two-level random intercept model where 
the likelihood can be simplifed. The AGQ method can provide an accurate approxi-
mation if the number of quadrature points is large enough, but this may increase com-
putational cost. Note that for one quadrature point the AGQ reduces to the Laplace 
approximation method. 

For the purposes of this thesis we are only going to present the AGQ mathematically in 
one dimension, but extensions to higher dimensions are possible, but their application 
is expensive. In general, suppose we are interested in approximating in an integral 

f (x)ϕ(x)dx, (2.8) 

where ϕ(.) is the standard normal density function. Gaussian quadrature approximates 
this integral by a weighted sum: 

 L 
f (x)ϕ(x)dx ≈ ∑ wl f (xl) (2.9) 

l=1 

where L is the number of quadrature points xl , wl is a weight constant and xl is an 
evaluation points that is solution for the Lth order Hermite polynomial. They are de-
signed to provide an accurate approximation when the function f (.) is a polynomial 
up to degree (2L − 1) or less. Nodes xl and weight wl can be found in Gauss-Hermite 
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quadrature table from Abramowitz and Stegun (1965) for different values of L. Alter-
natively, they can be calculated as: 

xl = ith zero of Hn(x)
√

2n−1n! π
wl = n2[Hn−1(xi)]2

, 

where Hn(x) is the Hermite polynomial of degree n (Liu and Pierce, 1994). 

In Gaussian quadrature, the nodes xl and weight wl are fxed and independent of the 
integrand. However, for the AGQ xl and wl are adapted to the support of the integrand. 
The AGQ is called adaptive since it refers to the integrand which is scaling by using 
Hessian at optimum point similar to the Laplace method. 
In general, suppose we are interested in approximating the interval g(u)du. By the 
Laplace approximation given above, we may approximate the integrand as propor-
tional to a normal distribution density, N (û, −H−1). Writing µ = û and σ2 = −H−1, 
we have  

g(u)du =
g(u)

ϕ(u, µ, σ2)du 
ϕ(u, µ, σ2)

= h(u)ϕ(u, µ, σ2)du, 

where h(u) = g(u)/ϕ(u, µ, σ2) and ϕ(., µ, σ2) is the N (µ, σ2) probability density func-
tion. 

u−µBy a change of variable x = , we haveσ 
g(u)du = h(µ + σx)ϕ(x)dx, 

which is of the form (2.8), for f (x) = h(µ + σx). We can then approximate the integral 
using the Gaussian quadrature weighted sum (2.9). 

The AGQ method increases effciency by selecting the nodes in a more suitable way 
(Handayani et al., 2017). AGQ centers the nodes with respect to the mode of the func-
tion being integrated and scales them according to the estimated curvature at the mode. 
This results in a reduction of quadrature points needed to approximate the integrals ef-
fectively. Despite the need of additional computing time for the computation of the 
mode and curvature for each unique cluster, many fewer quadrature points are needed 
to obtain the same degree of accuracy (Hartzel et al., 2001). 

The AGQ method is more time consuming compared to the LA method and it can only 
be used with a single scalar random effect in most software. The AGQ method gives 
accurate approximations for models with only one random effect or for two nested 
random effects. In a situation where a model has a nested structure, like the two-level 
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random intercept model in (2.6) the AGQ method can be used for likelihood approxi-
mation (Handayani et al., 2017). 

2.4 Ising models 

2.4.1 Introduction 

The Ising model (or Lenz-Ising model, named after Ernest Ising (Ising, 1925) and Wil-
helm Lenz (Lenz, 1920)) has attracted scientifc attention for multiple purposes. It can 
be used as a theoretical model of empirical phenomena and as a data analytic model 
that provides a statistical likelihood model for dependencies between binary variables 
(Finnemann et al., 2021). It is an example of a thermodynamic system and it can be 
used to model systems for understanding phase transitions. 

The model consists of discrete variables that can be in one of two states (+1 or −1). 
In the original problem from physics, these can be magnetic dipole moments of atomic 
spins which can be arranged in a graph, usually a grid giving the ability to each spin to 
interact with its neighbours but there are other possible uses as well. 

The likelihood of an Ising model given the model parameters is usually computation-
ally expensive because it involves a computationally expensive normalising constant. 
There are various approaches in the literature tackling the approximation of the likeli-
hood of Ising models. We aim to use reduced-dependence approximation (RDA) (Friel 
et al., 2009) to obtain likelihood approximations of the Ising model with multiple levels 
of accuracy. 

2.4.2 Likelihood of the Ising model 

We consider a simple Ising model for v = nm variables yi ∈ {−1, 1}, for i = 1, . . . v, 
arranged on an n ×m lattice, with parameters θ = (α, β), so that 

pr(Y = y; θ) = Zn,m(θ)
−1 exp(αV0(y) + βV1(y)), (2.10) 

where V0(y) = ∑i yi and V1(y) = ∑i∼j yiyj. The notation i ∼ j indicates that there is an 
edge between i and j in the lattice, and 

Zn,m(θ) = ∑ exp{αV0(y) + βV1(y)} (2.11) 
y∈{−1,1}v 

is the normalising constant. The likelihood function L(θ; y) = pr(Y = y; θ) depends 
on Zn,m(θ). The computation of the normalising constant makes the evaluation of the 
likelihood function challenging and very expensive for large values of v. This is another 
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kind of problem we want to deal with using the multi-level GP approximation of the 
likelihood. There are different methods for approximating the normalising constant 
in the literature such as using Monte Carlo approach (Geyer and Thompson, 1992) or 
using stochastic approximation expectation algorithm (Zhu et al., 2007). We will use 
the RDA method described in Section 2.4.4. 

The model parameter α of the Ising model controls how likely the state of the variable 
will be +1 or −1. More specifcally, for positive values of α it is more likely that the 
variable will be +1, a negative α indicates that it is more likely that the variable will 
be −1 and α = 0 means that there is equal probability of being positive or negative. 
Considering the second model parameter, β, it indicates how similar the neighbour 
vertices could be. For positive β the neighbours are likely to be similar, for negative β
it is more likely to be different and for β = 0 the neighbour vertices are independent. 

We will focus on a simple special case of an Ising model for which it is possible to 
compute the normalising constant analytically, to enable comparison of approximate 
likelihood methods with the true likelihood. The lattice for this special case is shown 
in Figure 2.1 for n = m = 3. We set α = 0 in (2.10) and the top row of variables is joined 
to the bottom row and the left is joined to the right, so that the lattice has periodic 
boundaries. We have an m ×m grid where the vertices are connected as described. 

0

1

2

3

4

0 1 2 3 4

FIGURE 2.1: Lattice with periodic boundary for the special case of Ising model for 
n = m = 3 and α = 0. 
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2.4.3 Normalising constant and log-likelihood 

Based on Kaufman (1949), for the special case of the Ising model where α = 0 we have 
a periodic boundary and we can compute the normalising constant Zn,m(0, β) for the 
Ising model exactly. The likelihood can be computed exactly even for larger lattices 
however it is computationally expensive as the lattice gets bigger. The exact formulas 
for computing the normalising constant given by Kaufman (1949) are: 

Zn×m(0, β) = {2 sinh(2β)}nm/2 Ā n,m(β)/2, 

where: 

Ā n,m(β) = A(
n 
1
,m 
)
(β) + An 

(2
,m 
)
(β) + A(

n 
3
,m 
)
(β) + An 

(4
,m 
)
(β), 

with 

n n 
A(1)

n,m(β) = ∏
q=0 

2 cosh{ma2q+1,n(β)/2}, A(2)
n,m(β) = ∏

q=0 
2 sinh{ma2q+1,n(β)/2}, 

n n 
A(3)

n,m(β) = ∏
0q=

2 cosh{ma2q,n(β)/2}, A(4)
n,m(β) = ∏

q=0 
2 sinh{ma2q,n(β)/2}. 

Also, 

al,n(β) = cosh−1{cosh(2β)2/ sinh(2β)− cos(πl/n)}, 

for l ≥ 1 and a0,n(β) = a0(β) = 2β + log{tanh(β)}. 

We use a special case of the Ising models where the calculation of the normalising con-
stant is given in closed form. The exact computation is not particularly time consuming 
for the lattice we use for the example. However, in other cases where we do not have a 
periodic boundary and α ̸= 0, the calculation would be very time consuming or even 
impossible especially for large lattices. Therefore, there is a need for an approxima-
tion method. We choose this case so that the likelihood can be computed exactly to 
compare it with the approximation obtained using multi-level GP approximations. We 
assume that the computationally expensive cases (no periodic boundary and α ̸= 0) 
would behave similar with the special case we work with, so that we could use the 
same methods to deal with the computation of the likelihood. 

2.4.4 Reduced-dependence approximation method 

The reduced-dependence approximation method was developed by Friel et al. (2009) 
and we will use it to compute approximations of the normalising constant of the Ising 
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model. Friel et al. (2009) extended a recursion method by Reeves and Pettitt (2004) 
which is an exact method for calculating the normalising constant for an un-normalised 
distribution expressible as a product of factors. The idea of the RDA method is that the 
likelihood is approximated as a product of factors each of which is defned on sub-
lattices whose normalising constant can be calculated using the recursion method. 

The reduced-dependence approximation method is a family of approximations con-
trolled by a tuning parameter k which is a positive integer. Larger values of the pa-
rameter k provide a more accurate approximation at a higher cost. The parameter k 
represents the number of rows used in the smaller grid when we compute the approxi-
mation. The number of columns, m, remains the same. The tuning parameter k can take 
any integer value greater or equal to 2. The approximation of the normalising constant 
of the Ising model for fxed k using the RDA method is given by 

Z(k)˜ n,m(θ) = Zn−k+1(θ)/Zn−k (θ).k,m k−1,m 

In general, for any case of Ising model, using the RDA method at level k, with n = m =
c, the likelihood can be written as 

L̃ (c
k)
(β) = Z̃ c 

(
, 
k
c 
)
(θ)−1 exp{αV0(y) + βV1(y)}. 

The cost of computing the true likelihood is O(c22c) and the reduced-dependence ap-
proximation at level k is O(c2 + kc2k) (Ogden, 2017), where the Big-O, O(.), determines 
the rate of growth-order of the function. It is helpful to know the computational cost 
of each level of approximation since we will use it when we would like to choose the 
experimental design of the multi-level GP approximation in Chapter 5. 

2.5 Summary 

This chapter was an introduction to the main preliminary materials used in this thesis. 
We introduced the background of the example models that will be used throughout this 
thesis as an illustration of the ideas and methodology. We reviewed some basic aspects 
of generalised linear mixed models and compared numerical approximate methods of 
the likelihood of the GLMM. We presented the Ising model and highlighted the is-
sue arising with the computation of the normalising constant of the likelihood and a 
method to approximate it. 
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Chapter 3 

Gaussian Processes and Hierarchical 
Experiments 

3.1 Overview 

In this chapter we present an overview of Gaussian process and Gaussian process re-
gression. We introduce the idea of hierarchical computer experiments, where our goal 
is to obtain information about the highest level, which is more “expensive” but the most 
accurate one, by combining evaluations from lower levels, which are “cheap” and less 
accurate, with the highest level. 

Using a hierarchical computer experiment we aim to reduce the evaluations of high-
level approximation required so that we can decrease the computational cost. We 
also expand the GP regression for multi-dimensional model parameter space of the 
log-likelihood and how the covariance function can be altered to adjust for multi-
dimensions. The running examples of the thesis are presented and demonstrate how 
the methodology can be used to compute approximation of likelihood functions using 
multiple levels of approximation. 

3.2 Gaussian processes 

3.2.1 Introduction 

Gaussian processes are commonly used to model unknown functions (O’Hagan, 1978; 
Schulz et al., 2018). They have being applied in areas such as the design and analysis 
of computer experiments (Sacks et al., 1989) and in machine learning. Further details 
and explanation of Gaussian process models can be found in Rasmussen and Williams 
(2005). 
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Gaussian processes are particularly useful when it is expensive to evaluate a function 
f (.) and they can be used to optimise expensive functions. We will focus on situations 
where f (.) is an intractable likelihood and we need access to the whole likelihood or 
log-likelihood function to be able to conduct inference. We will study this example in 
depth in this thesis. 

Assuming that the response of a point xi is y(xi) = yi, where xi = (xi1, . . . , xip)
T ∈ Xp 

are the vectors of p input points, then, the relation between the response and the inputs 
can be described by 

yi = f (xi) + ϵi, (3.1) 

where ϵi is the measurement error with ϵi ∼ N(0, σϵ
2) being independent and σϵ be-

ing the standard deviation of the measurement error. The function f (.) describes an 
unspecifed function which gives an approximation of the mean relation between the 
point and the response. Our aim is to estimate the unknown function f (.) using Gaus-
sian processes. 

Defnition 3.1 (Gaussian process). Suppose that Xp is a fxed subset of IRd having pos-
itive d-dimensional volume; f (xi) with xi ∈ Xp, i = 1, . . . , n, is a Gaussian process 
provided that for any fnite integer n ≥ 1 and any choice of x1, . . . , xn in Xp, the vector 
F = ( f (x1), . . . , f (xn))T has a multivariate Gaussian distribution given by 

F ∼ N (µ, Σ), 

where µ is the n × 1 mean vector and Σ is the n × n covariance matrix (Santner et al., 
2018). 

In general, Gaussian processes extend multivariate Gaussian distributions to infnite 
dimensionality (Rasmussen and Williams, 2005). They can be used in order to express 
distributions over functions. 

A Gaussian process is a stochastic process which is completely determined by its mean 
function, µ(.) and by its covariance function, K(., .). The mean and the covariance 
functions encode the assumptions and prior beliefs of the form of the function which 
we want to learn about. The mean function µ(x) of a real process f (x) indicates the 
expected function value and is given by 

µ(x) = E[ f (x)], 

and the covariance function K(x, x′) of a real process f (x) is defned by 

K(x, x′) ≡ cov( f (x), f (x′)) = E[( f (x)− µ(x))( f (x′)− µ(x′))], 
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for any position x and x′ in an input domain Xp. Hence, the Gaussian process can be 
written as 

f (x) ∼ GP(µ(x), K(x, x′)). 

The Gaussian process is a non-parametric model which has an infnite dimensional 
parameter space. Non-parametric methods are useful when we cannot assume the 
explicit form of a function (Orbanz and Teh, 2010). 

For modelling the behaviour of an unknown mathematical function f (.) we use Gaus-
sian processes and we adopt a non-parametric Bayesian approach. Assume the Gaus-
sian process prior 

f (x) ∼ GP(h(x)Tb, K(x, x′)), (3.2) 

where h(x) = (h0(x), h1(x), . . . , hk−1(x))T is a k-vector of known regression functions 
giving the prior mean structure and b = (b0, b1, . . . , bk−1)

T ∈ B is a k-vector of unknown 
trend parameters. K(x, x′) = τ2R(x, x′), where R(x, x′) represents the correlation func-
tion for any input x and x′ in the domain and τ2 is the constant variance. Based on 
Defnition 3.1, the Gaussian process prior (3.2) implies a normal prior on function val-
ues at any given inputs points x1, . . . , xn, of 

F ∼ N (Hb, K), (3.3) 

where H = (h(x1), h(x2), . . . , h(xn))T is the n × k model matrix and K is the n × n 
covariance matrix (Rasmussen and Williams, 2005). 

3.2.2 Covariance function 

The covariance function of the Gaussian process determines how the model generalises 
or extrapolates to new data. The covariance function can determine the stationarity 
and smoothness of the function. Therefore, it must be chosen carefully to achieve a 
good ft to the training data and to produce more reliable posterior distributions and 
predictions. 

Properties of the Gaussian process associated with the covariance function 

Stationarity 

A general stochastic process f (.) is strongly stationary when for any separation vector 
d ∈ IRd, any given n ≥ 1 and any set of points x1, . . . , xn in Xp having x1 + d, . . . , xn + d
in Xp, the joint distributions of f (x1), . . . , f (xn) and f (x1 + d), . . . , f (xn + d) are the 
same. This establishes that the relation between f (x) and f (x′) is entirely determined 
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by the difference between x and x′. A stochastic process is second-order stationary, 
if the covariance function depends only on the separation vector d = x − x′, i.e. it 
satisfes cov[ f (x), f (x′)] = K(d) (Santner et al., 2018). For a stationary process the 
distribution is invariant with time. Therefore, parameters such as mean and variance 
are invariant under any translation in the input space (Le Gratiet, 2013). When the 
requirements described above are not valid the Gaussian process can be characterised 
as non-stationary. 

For a Gaussian process, strong stationarity and second order stationarity are equiva-
lent. This is a result of the fact that the mean and covariance characterise completely 
the fnite-dimensional distributions of a Gaussian process. 

Choice of the covariance function 

Most of the times is useful to express covariance functions as 

K(x, x′) = τ2R(x, x′), 

where τ2 is the variance parameter and R(x, x′) is the correlation function for x, x′ ∈ Xp. 
The correlation function is also a function of the separation vector, R(x, x′) = R(d). 

The covariance and correlation functions should be chosen carefully since they must 
have certain properties in order to be valid. They must be positive defnite to make sure 
that the resulting covariance matrix is also positive semi-defnite and non-singular. 

Moreover, the covariance and correlation functions must be symmetric, that is K(d) =
K(−d) and R(d) = R(−d). The correlation function must also satisfy the condition 
R(0) = 1 (Santner et al., 2018). Another assumption that needs to be taken into con-
sideration is the smoothness of the function being modelled. It is required that input 
values that are similar, close to each other, must correspond to output values that are 
close as well. 

There are many different families of covariance functions that can be used when mod-
elling a Gaussian process such as the Gaussian correlation function, the power expo-
nential family and the Matérn correlation family (Santner et al., 2018). However, we do 
not examine them further here since it is beyond the scope of the current thesis. For the 
examples of this thesis, we choose to use the squared exponential covariance function 
because it is a smooth stationary covariance function. 

The squared exponential covariance function is a commonly used choice of the covari-
ance function. It provides smooth sample functions which are infnitely differentiable 
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which are applicable for modelling smooth functions (Damianou, 2015). It is given by  
||x− x′||2 

K(x, x′) = τ2 exp − , (3.4)
2l2 

where τ2 is the signal variance parameter and l is the characteristic length-scale param-
eter. In this thesis, we are focusing on log-likelihood approximations and we expect 
them to be smooth and well behaved. Hence, the squared exponential covariance func-
tion is a reasonable choice. When applying the methods presented in the thesis for 
other examples, the choice of the covariance function could be different and should be 
based on the specifc application. 

The parameters ζ = (τ2, l)T are the two hyperparameters of the covariance function of 
the Gaussian process. The hyperparameter τ2 controls the amplitude of the function 
and the variation of function values from their mean and l controls the length-scale of 
variation. The values of the hyperparameters have to be determined. 

More details about the hyperparameters are given in Section 3.2.7, which illustrates 
how the variation of the values of the hyperparameters affects the covariance function 
and subsequently the posterior distribution. Also, Section 3.2.8 deals with the case 
where the hyperparameters are not fxed and provides a hyperparameter estimation 
method. 

The Gaussian process for values at some particular set of inputs or test points using the 
equations (3.1), (3.3) and conditioning on the hyperparameters can be written 

y|b, τ2, l ∼ N (Hb, K(x, x′)). (3.5) 

Figure 3.1 illustrates random samples from the Gaussian process prior with zero mean 
given by the green line. The covariance function used is the squared exponential co-
variance function. It can be seen that the samples are very smooth which vary around 
the zero mean. This is due to the smoothness of the squared exponential covariance 
function. Looking at the covariance function (3.4), the points which are close to each 
other are anticipated to operate more alike, since their correlation is approximately 
unity, compared with points which are further away from each other, where their co-
variance gets smaller as the distance between them increases. Hence, training points 
which are close to points we want to make predictions at, the test points, are going to 
be more informative in terms of the predictions. 

3.2.3 Training points 

The choice of the number and location of the training points used to estimate the func-
tion is important. The experimental design consists of the choice of the x values, the 
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FIGURE 3.1: Random sampling from the Gaussian process prior with zero mean given 
by the green line and squared exponential covariance function. 

inputs, in the experimental region at which we compute the output of a computer ex-
periment and collect the data. We would like to have a design which is space-flling, 
meaning that the inputs are evenly spread in the experimental region. Designs which 
are not space-flling may result to predictions performing quite poorly in some areas of 
the experimental region that are sparsely observed (Santner et al., 2018). 

There are various methods and statistical strategies used to choose the experimental 
design and subsequently the training points that can be found in the literature of the 
design of computer experiments (Santner et al., 2018). For the examples presented in 
this thesis we use random Latin hypercube sampling (LHS) (McKay et al., 1979) to gen-
erate the initial design, training points, of the GP. Latin hypercube designs (LHD) are 
space-flling designs which are often used to generate the training points for computer 
experiments or for Monte Carlo (MC) integration. In principle, the methodology can 
be used with any space-flling design. In Chapter 5 we investigate how we can choose 
the experimental design including points that will beneft the approximation based on 
Bayesian optimisation and the expected gain in utility method. 

3.2.4 Multivariate normal distribution 

The multivariate normal distribution and its conditional distribution will be used to 
compute the posterior predictive distribution in the Gaussian process regression in Sec-
tion 3.2.5. Therefore, in this section we introduce the equations and the notation of the 
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multivariate normal distribution. 

The multivariate normal distribution or joint normal distribution can be considered 
as a generalisation of the univariate normal distribution to higher dimensions. The 
multivariate normal distribution for a p-dimensional random vector y = (y1, . . . , yp)T 

is given by 

y ∼ Np(µ, Σ)

with components the p-dimensional mean vector 

µ = E[y] = (E[y1], E[y2], . . . , E[yp])
T, 

and the p × p covariance matrix which has ij entries 

Σij = E[(yi − µi)(yj − µj)] = cov[yi, yj], 

where 1 ≤ i ≤ p and 1 ≤ j ≤ p. 

Conditional distribution 

We can partition the p-dimensional vector y into two subsets y1 and y2 such that    y1 q × 1 
y = with sizes   , 

y2 (p − q)× 1 

and respectively µ and Σ can be partitioned as    µ1 q × 1 
µ = with sizes   , 

µ2 (p − q)× 1 

and    Σ11 
Σ =

Σ12 with sizes 
q × 1 q × (p − q)  . 

Σ21 Σ22 (p − q)× q (p − q)× (p − q)

The conditional distribution of y2 given y1 = y1, f (y2|y1 = y1) is a multivariate normal 
distribution with 

¯f (y2|y1 = y1) ∼ N (µ̄, Σ), 

where the mean vector is given by 

µ̄ = µ2 + Σ21Σ−11
1(y1 − µ1), (3.6) 
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and the covariance matrix by 

¯ Σ = Σ22 − Σ21Σ11 
−1Σ12. (3.7) 

3.2.5 Gaussian process regression 

Introduction 

This section will demonstrate how the Gaussian process framework can be used to 
conduct inferences for functions given some training data. We will derive two types of 
Gaussian process regression based on the multivariate normal distribution and more 
specifcally its conditional distribution given in Section 3.2.4. For the frst type, we 
consider that the observations are noise free and for the second type we assume that 
the observations include some noise. 

Often, for simplicity a zero mean function for the GP process prior is assumed. How-
ever, we choose a non zero mean since including a simple mean function makes the 
model more interpretable and it is more convenient to express prior information. When 
using a zero mean function the computations associated with the covariance function 
are easier, however, predictions far away from the training data may be less accurate. 
Therefore, it is useful to specify some fxed basis functions h(.) whose coeffcients b
will be inferred from the data as described in equation (3.9). 

We are interested in combining the information from the training data with the prior to 
compute the posterior distribution. In order to do that and to be able to make predic-
tions for a new point one has to calculate frst the joint distribution of the training obser-
vations y and the function evaluations, test outputs, f∗ where f∗ = ( f (x1 

∗), . . . , f (x∗ ))T 
n∗

and x1 
∗, . . . , x∗ are the test inputs. Using the results for the conditional distribution de-n∗

rived in Section 3.2.4, we can compute the conditional distribution of f∗|y. 

Noise free observations 

Considering the no noise case, the observations y(xi) are expressed by the Gaussian 
process model given by 

y(xi) = f (xi), for i = 1, . . . , n. 

The joint distribution of y and f∗ for noise free observations under the Gaussian process 
prior with non zero mean function is given by      

K(x, x∗) y m  K(x, x) ∼ N   ,  , (3.8) 
f∗ m∗ K(x∗, x) K(x∗, x∗)
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where x represents the n training points and x∗ the n∗ test points. Also, K(x, x) is the 
n × n covariance matrix between the training points, K(x∗, x∗) is the n∗ × n∗ covariance 
matrix between the test points, K(x, x∗) is the n × n∗ covariance matrix between the 
training points and test points and K(x, x∗)T = K(x∗, x), where T is the transpose. 
Consider the mean vectors m = HTb and m∗ = H∗Tb where the matrix H collects the 
h(xi) vectors for all training points and H∗ for the test points. 

The parameter b can be characterised as a compromise between the data term and the 
prior and describes the mean of the global linear model parameters and is estimated 
using (3.9). We estimate b based on the training data. The parameter b will be estimated 
when we ft the model along with the hyperparameters of the covariance function using 
the relation 

b̂ = (HK(x, x)−1 HT)−1(HK(x, x)−1y). (3.9) 

After estimating b we consider it fxed. 

The posterior provides the updated beliefs in the light of the observations. It can be 
calculated by conditioning the joint Gaussian prior (3.8) on the observations using stan-
dard results of the normal distribution given in Section 3.2.4. Therefore, the posterior-
predictive distribution for noise free observations is a Gaussian process with predictive 
mean vector 

∗m̄ = m∗ + K(x , x)K(x, x)−1(y−m), 

and covariance matrix 

K̄ = cov( f∗) + QT(HK(x, x)−1 HT)−1Q, 

where 

Q = H∗ − HK(x, x)−1K(x, x∗)

and 

∗ ∗cov( f∗) = K(x , x∗)− K(x , x)K(x, x)−1K(x, x∗). 

Hence, the posterior distribution is given by 

∗ ¯f∗|x, y, x ∼ N (m̄, K). 

Looking at the major components of the Gaussian process, the predictive mean m̄ is 
given by the sum of the mean linear output and the prediction of the Gaussian process 
from the residuals. The covariance is described by the covariance for the zero mean 
case plus a non negative term due to the prior mean structure. 
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Nevertheless, the case where there is no noise in the observation is not always applica-
ble. 

Observations with noise 

In some cases, observations are often tainted by measurement noise. Hence, the obser-
vations y(xi) are expressed by the Gaussian process model given by 

y(xi) = f (xi) + ϵ(xi), for i = 1, . . . , n, (3.10) 

where ϵ(xi) denotes the Gaussian noise related to the observations. We assume that 
ϵ(xi) is additive and independent identically distributed with zero mean and variance 
σϵ

2, that is ϵ(xi) ∼ N (0, σϵ
2) for i = 1, . . . , n (Rasmussen and Williams, 2005). 

Therefore, using the Gaussian process model (3.10) for “noisy” observed values the 
joint distribution of the observed values y and the function values f∗ under the Gaus-
sian process prior with non zero mean is now given by      K(x, x) + σϵ

2 I K(x, x∗) y  ∼ N m  ,  , 
f∗ m∗ K(x∗, x) K(x∗, x∗)

where σϵ
2 is the noise variance and I is the n × n identity matrix. 

Similarly to the noise free observations, the Gaussian process posterior over functions 
for observations with noise has mean vector 

∗m̄ = m∗ + K(x , x)(K(x, x) + σϵ
2 I)−1(y−m), (3.11) 

and covariance function given by 

K̄ = cov( f∗) + QT(H(K(x, x) + σϵ
2 I)−1HT)−1Q, (3.12) 

where 

Q = H∗ − H(K(x, x) + σϵ
2 I)−1K(x, x∗)

and 

∗ ∗cov( f∗) = K(x , x∗)− K(x , x)(K(x, x) + σϵ
2 I)−1K(x, x∗). 

From (3.12) it can be seen that the variance of the Gaussian process posterior, given by 
the diagonal entries of the covariance matrix, is equal to the variance of the Gaussian 
process prior minus a positive term depending on the observations. Thus, the variance 



31 3.2. Gaussian processes

of the Gaussian process posterior is always less than the variance of the prior due to 
the fact that the training data provide additional information. 

3.2.6 Nugget effect 

A simulator is deterministic indicating that repeating inputs produce the same outputs 
and therefore the data are observed with no error; that is if x = x′ then ft(x) = ft(x′). 
Hence, in a deterministic simulator, the nugget effect σϵ

2 of the Gaussian process model 
is set equal to zero. 

However, Ababou et al. (1994) recommended the addition of the nugget term in the 
Gaussian process model, since it improves the condition number of the covariance 
matrix by reducing it. The condition number can be defned as the ratio of the largest 
eigenvalue of the covariance matrix to its smaller eigenvalue (Press et al., 2007). The 
small eigenvalues of the covariance matrix make the matrix close to a singular matrix 
and numerical problems are arising when the matrix needs to be inverted, which is a 
common calculation involved in ftting a Gaussian process to data. The problem of the 
condition number comes from a lack of linear independence in the training set (Andri-
anakis and Challenor, 2012). Radford (1997) characterised desirable the addition of a 
small amount of error to the covariance function and mentioned that it is not going to 
result a signifcant alteration of the statistical properties of the Gaussian process model. 
Therefore, we include a small nugget effect due to the computational issues arising 
when inverting the covariance matrix. 

A nugget term could be specifed, and does not necessarily need estimating. But in the 
noisy case, we would need to estimate the noise variance. For this thesis we do not 
work with noisy observations. 

3.2.7 Hyperparameters 

The squared exponential covariance function (3.4) has two hyperparameters given by 
the signal variance parameter τ2 and the characteristic length-scale parameter l, that 
is ζ = (τ2, l)T. The length-scale parameter indicates the fall-off rate of the correlation 
and the signal variance parameter establishes the variation of the distance between the 
function and the mean. We examine how the variation of the hyperparameters affects 
different elements of the related prior distribution and subsequently the posterior dis-
tribution. Figures 3.2 and 3.3 illustrate random samples from the prior Gaussian pro-
cess with zero mean, given by the green line, for different values of hyperparameters 
showing the effect of each hyperparameter on the prior. 
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Signal variance parameter 

Figure 3.2 shows the effect of the signal variance parameter τ2 on the prior keeping 
the length-scale parameter l constant. As τ2 increases the amplitude of the intervals 
increases as well. Small values of τ2 characterise functions that stay close to their mean 
value compared to larger values that allow more variation. This indicates that τ2 is 
related with the amount of variation of the Gaussian process (Le Gratiet, 2013). 
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FIGURE 3.2: Random samples from the Gaussian process prior with zero mean, given 
by the green line, and squared exponential covariance function. The signal variance 

parameter τ2 varies and the length-scale parameter remains constant, l = 1. 

Length-scale parameter 

Similarly, Figure 3.3 shows the effect of the length-scale parameter l on the prior keep-
ing τ2 constant. As can be seen, when the length-scale parameter decreases the cor-
relation falls off more quickly. That is, for small values of the length-scale parameter 
the points which are further away are less correlated (Rasmussen and Williams, 2005) 
demonstrating that l affects the oscillation frequencies. Specifcally, for small values of 
l the function oscillates rapidly and for large values of l the function oscillates slowly. 

3.2.8 Hyperparameter estimation 

The hyperparameters of the covariance function can be estimated directly from the 
training data. In many cases, we are not able to determine all the elements that spec-
ify the covariance function such as the hyperparameters ζ = (τ2, l)T and we have to 
estimate them. The choice of the hyperparameters is important since the covariance 
function has a serious impact on the effectiveness of the Gaussian process regression 
model. Unsuitable choices of hyperparameters result in over-ftting the approximation 
as well as in signifcant effect on credible intervals. 
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FIGURE 3.3: Random samples from the Gaussian process prior with zero mean, given 
by the green line, and squared exponential covariance function. The length scale pa-

rameter l varies and the signal variance parameter remains constant, τ2 = 1. 

The hyperparameters provide fexible customisation of the Gaussian process in multi-
ple practical applications. The optimisation procedure used is called the training of the 
Gaussian process (Blum and Riedmiller, 2013). There are several estimation criteria in 
the literature that can be followed for the hyperparameter estimation. 

The approach we take for hyperparameter estimation is based on the idea that we 
would like to make predictions for new data using the Gaussian process regression 
model. Hence, we require to know the coeffcient vector b of the fxed basis functions 
given in (3.9) and to be able to evaluate the covariance function for any input points 
given the hyperparameters ζ. Therefore, we need to estimate b and ζ from the data. 

We approach the hyperparameter estimation problem using maximum likelihood tech-
niques. Another method that could be used is the Bayes approach which is useful when 
we want to take into consideration prior information about the parameters. 

A method of estimating these parameters it to maximise the likelihood given in (3.5) as 
a function of b and ζ, that is 

b̂, l̂, τ̂2 = arg max log P(y|x, b, l, τ2), 
b,l,τ2 

where b̂, l̂, τ̂2 are estimates of b, l and τ2 respectively. The marginal log-likelihood func-
tion is obtained from a multivariate normal distribution 

1
log P(y|x, b, l, τ2) = − (y− Hb)T[K(x, x) + σϵ

2 In]
−1(y− Hb)

2 
n 1 − log 2π − log |K(x, x) + σϵ

2 In|.2 2 

To estimate the parameters we compute frst b̂(l, τ2) which maximises the log-
likelihood function with respect to b for given l and τ2. Then we estimate the b-profle 
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log-likelihood over l and τ2: 

ˆlog P(y|x, b(l, τ2), l, τ2). 

The estimate of b for given l and τ2 is 

b̂(l, τ2) = (H[K(x, x) + σϵ
2 In]

−1 HT)−1 H[K(x, x) + σϵ
2 In]

−1y. 

Then, the b-profle log-likelihood is given by 

1
log P(y|x, b̂(l, τ2), l, τ2) = − (y− Hb̂(l, τ2))T[K(x, x) + σϵ

2 In]
−1(y− Hb̂(l, τ2))

2 
n 1 − log 2π − log |K(x, x) + σϵ

2 In|.2 2 

We maximise the b-profle log-likelihood over l and τ2 to fnd their estimates. Bayesian 
inference can also be used to estimate the hyperparameters analytically using appro-
priate prior distributions (Oakley and O’Hagan, 2002). 

3.3 Hierarchical computer experiments 

3.3.1 Introduction 

Complex approximations can provide a better approximation to reality when compar-
ing with a simpler approximation. However, complex approximations are often com-
putationally expensive due to the large number of equations that need to be solved, 
or the high resolution of the approximation. Occasionally, an evaluation of a complex 
approximation could take a few hours or even days to run. 

A simulator can be usually run at various levels of complexity each with different ac-
curacy. Kennedy and O’Hagan (2000) explored numerous ways in which evaluations 
from different levels of approximations could be used for predicting the output of the 
most complex approximation. The objective of the current section is to illustrate how 
we can obtain information about the highest level approximation, which is the most 
“expensive” and accurate one by combining evaluations of lower level approximations, 
which are “cheaper” but less accurate. The aim is to reduce the evaluations of the high 
level approximation and decrease the computational cost. 

3.3.2 Regression for multilevel simulators 

The main object of interest here is the calculation of the posterior distribution of the 
expensive approximation given the observations from evaluations of the expensive and 
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cheaper approximations. The posterior distribution can be then used for predictions. In 
this section, we present a Bayesian approach of constructing an approximation which is 
based on the hierarchy of the levels of the simulator in line with Kennedy and O’Hagan 
(2000). Our aim is to apply this approach to approximate intractable or computationally 
expensive likelihoods using various existing levels of likelihood approximation. 

Firstly, we have to look at some assumptions. Smoothness of the function being mod-
elled is a crucial assumption that needs to be taken into consideration when building 
an approximation for a simulator. Kennedy et al. (2006) mentioned that the output of a 
simulator has to be a smooth function of its inputs. That is, for similar input values the 
corresponding output values have to be close. We assume that we can assign a Gaus-
sian process prior to each level of the approximation and that each simulator output is 
scalar. It is also assumed that there is some correlation between the different levels of 
the same approximation and they contain information about one another. 

For modeling the relation between the levels of the approximation Kennedy and 
O’Hagan (2000) suggested that an autoregressive model could be used. Autoregres-
sive models assume that observations obtained from previous steps in approximation 
hierarchy are useful for the prediction of the value at the next step. When working 
with autoregressive models observations from previous steps are used in a regression 
equation as inputs to predict the output of the next step. 

Let us introduce some mathematical notation that we will use for the multi-level regres-
sion. Consider that we have s levels of simulators given by f1(x), . . . , fs(x) for x ∈ IRd , 
where s is a positive integer. Let ft(.) be a simulator indexed by a p-dimensional input 
vector x for the levels t = 1, . . . , s. 

(t) (t)For each level of simulator, t = 1, . . . , s, let Dt = {x , . . . , x } be the experimental 1 nt 

design at level t consisting of nt design points. Let f T be the column vector of responses 
given by f T = ( f1

T, . . . , f T), where f T is the vector of outputs for the level t simulators t 
(t) (t)and can be written as f T = ( ft(x ), . . . , ft(x )), where T is the transpose. Let fs(.)t 1 nt 

be the highest level. We aim to compute the posterior distribution of fs(.) given the 
outputs at training points at all levels 1, . . . s. Kennedy and O’Hagan (2000) assume 
that the design points at different levels are nested. We generalise their results so that 
this assumption is not required. 

The Markov property indicates that if the nearest point ft−1(x) is given, there is noth-
ing else one can learn concerning ft(x) from any other run of ft−1(x′) for x ̸= x′, where 
x and x′ are input vectors. For all x ̸= x′ the Markov property can be written as 

cov{ ft(x), ft−1(x′)| ft−1(x)} = 0. (3.13) 

Using an autoregressive model we have a hierarchy of the s levels; from the least 
complicated and least accurate to the most complex one (Le Gratiet, 2011). Using the 
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Markov property from (3.13) along with the stationarity of ft(x) over the input space 
for each level t of the simulator the autoregressive model is given by 

ft(x) = ρt−1 ft−1(x) + δt(x) for t = 2, . . . , s, (3.14) 

where ρt−1 gives a kind of regression parameter between ft(.) and ft−1(.), called the au-
toregressive parameter, and δt(.) is a Gaussian process independent of ft−1(.), . . . , ft(.)
representing the difference between the levels of the model. Conditioning on the pa-
rameters lt and τt 

2, δt(.) can be modelled as a stationary Gaussian process with mean 
function h(.)Tbt and covariance function given by Kt(x, x′) = cov{δt(x), δt(x′)} for 
each t. The prior mean structure h(.) is a vector of q regression functions. 

Each level in hierarchy can be statistically modelled as a stationary Gaussian process 
with a particular mean function and covariance function. For example, it is assumed 
that the simplest model f1(.) has a stationary Gaussian process when conditioning on 
b1 and σ1

2 which is independent of the δt(.) (Kennedy and O’Hagan, 2000). 

The choice of the covariance function is crucial since it controls the smoothness of the 
model as described in Section 3.2.2. There are various forms of covariance functions 
that one can choose from. For the purpose of this thesis, for each level of computer 
model we assume that the covariance function will have a squared exponential form 
and is given by    

(x− x′)2 (x− x′)T(x− x′)
Kt(x, x′) = τt 

2 exp − = τt 
2 exp − , (3.15)

2lt 
2 2lt 

2 

where τ2 is the variance parameter and lt is the length-scale parameter for level t. Re-t 

call that the squared exponential form of the covariance function in (3.15) is infnitely 
differentiable indicating that the model has a high degree of smoothness. Considering 
the calculations related to the covariance, we denote Kt(Dk, Dl) the covariance matrix 
between points in Dk and Dl . The covariance matrix Kt(Dk, Dl) is a nk × nl matrix and 

(k) (l)for all xi ∈ Dk and xj ∈ Dl the ijth element is given by 

 
(k) (l) (k) (l)

(x − x )T(x − x )i j i j
[Kt(Dk, Dl)]i,j = τt 

2 exp −  . 
2l2 

t 

We also introduce the notation Kt(Dk) = Kt(Dk, Dk). 

3.3.3 Two-level simulator 

In this section, the case of a two-level simulator, s = 2, is described. The aim is to ap-
ply the GP emulation for multi-level simulators presented in Section 3.3.2 and compute 
the posterior distribution for a simulator which has two levels. Assume that there are 
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two levels: f1(.) representing the less accurate and cheaper model and f2(.) represent-
ing the more accurate and expensive model. In other words, we want to compute the 
conditional distribution of the output f2(.) given the hyperparameters and the obser-
vations from f1(.) which is the output from the lower level of the simulator. 

From the autoregressive model (3.14) we want to approximate the expensive approxi-
mation by multiplying the cheap model with a scalar factor ρ1 and adding a Gaussian 
process δ2(.), where δ2(.) gives the difference between ρ1 f1(.) and f2(.) (Alexander 
et al., 2007). Hence, we have that 

f2(x) = ρ1 f1(x) + δ2(x). 

For simplicity, we can assume that the regression parameter ρ1 represents a constant 
factor between f1(.) and f2(.). The hyperparameters of the Gaussian process are given 
by ζ = (τ1

2, τ2
2, l1, l2, ρ1) and b = (b1, b2)T. 

In order to calculate the required posterior distribution we need two sets of training 
points, one for the cheap model, D1, and a smaller one for the expensive model, D2. 
Let the number of points of the cheap and expensive approximations be n1 and n2 

respectively. 

Firstly, we have to compute f which is the joint distribution of f1 and f2, where f T =

( f1
T, f2

T). That is     f1 n1 × 1 
f = with sizes  . 

f2 n2 × 1 

We have that f1(.)|b1, τ1
2, l1 ∼ GP(h(.)Tb1, K1) with design points from D1 and 

δ2(.)|b2, τ2
2, l2 ∼ GP(h(.)Tb2, K2) with design points from D2. Note that both of the 

Gaussian processes are stationary and f1(.) is independent of δ2(.). Therefore, the joint 
distribution of f given ζ and b is a multivariate normal distribution and can be written 
as 

f ∼ N (m f , V f ), 

where the mean is given by   h(.)Tb
m f =  , (3.16)

ρ1h(.)Tb

and the covariance matrix can be obtained in block form using the function Vf (., .)
given by  

K1(D1) ρ1K1(D1, D2)
Vf (D1, D2) =   . (3.17)

ρ1K1(D1, D2) ρ1
2K1(D2) + K2(D2)
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The covariance matrix V f obtained from (3.17) includes the covariance matrix between 
the data points of the expensive model K2(D2), the cheap model K1(D1) and the cross-
covariance between the points for the cheap and expensive approximations K1(D1, D2). 
The entries of the covariance matrix V f are derived by 

cov{ f1(D1), f1(D1)} = K1(D1, D1), 

cov{ f1(D1), f2(D2)} = cov{ f1(D1), ρ1 f1(D2) + δ2(D2)}

= ρ1K1(D1, D2), 

cov{ f2(D2), f2(D2)} = cov{ρ1 f1(D2) + δ2(D2), ρ1 f1(D2) + δ2(D2)}

= ρ2
1cov{ f1(D2), f1(D2)}+ cov{δ2(D2), δ2(D2)}

= ρ2
1K1(D2) + K2(D2). 

For the examples presented in this thesis, we are using a variety of prior mean struc-
tures, h(.), based on each example such as constant, linear or quadratic prior mean 
functions, but any prior mean structure could be used as well. 

To compute the posterior distribution for f2 for a simulator with two levels we use the 
results from Section 3.2.4. Firstly, we fnd the joint distribution of training and test data. 
To achieve that, we extend the training points of the high-level D2 to include the test 
points x∗, that is D2 ∪ x∗. The function (3.17) which is used to compute the covariance 
matrix of the joint distribution can be written as  

K1(D1) ρ1K1(D1, D2 ∪ x∗)
Vf (D1, D2 ∪ x∗) =   . (3.18)

ρ1K1(D2 ∪ x∗, D1) ρ1
2K1(D2 ∪ x∗) + K2(D2 ∪ x∗)

Following standard results of the conditional distribution of the multivariate normal 
distribution given in Section 3.2.4 we partition Vf (D1, D2 ∪ x∗) into blocks given by    V11 V12 ntrain × ntrain ntrain × ntest

Vf (D1, D2 ∪ x∗) = with sizes  , (3.19) 
V21 V22 ntest × ntrain ntest × ntest 

where subscript 1 denotes the training data of the low-level, subscript 2 the training 
data of the high-level and the test data. ntrain and ntest are the number of training and 
test data respectively. The partition splits Vf (D1, D2 ∪ x∗) into blocks according to train-
ing and test data, so that V22 contains the last ntest rows and columns of the covariance 
matrix. The main purpose of this approach is that this can be generalised to s = k levels 
of approximation and the posterior distribution of the high-level approximation can be 
considered as a conditional distribution using the idea of adding the test data as an 
extension of the high-level data. 
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Following the conditional equations for multivariate normal distribution from Section 
3.2.4, we want to compute the conditional distribution 

¯Ytest|Ytrain = ytrain ∼ N (µ̄, V), (3.20) 

where 
µ̄ = µ2 + V21V11 

−1(ytrain − µ1), (3.21) 

µ1 = Hb̂ and µ2 = h ′(x∗)Tb̂, 

with 

h′(x)T = (ρ1h(x)T, h(x)T), 



H =



h(x(1))T 01 
. . . . . . 

h(xn 
(1

1 
)
)T 0 

(2) (2)
ρ1h(x )T h(x )T 

1 1 
. . . . . . 
(2) (2)

ρ1h(x )T h(x )T 
n2 n2 


, 

b̂ = (b̂1, b̂2)
T = (HTV11 

−1 H)−1 HTV11 
−1ytrain, (3.22) 

where htrain are the prior evaluations of each approximation level at the training points, 
ytrain are the evaluations of the approximation at the training points and b̂ is the poste-
rior mean of b. 

The covariance matrix is given by 

V̄ = V22 − V21V11 
−1V12. (3.23) 

Therefore, (3.20) can be considered as the posterior distribution of the high-level ap-
proximation for a simulator with two levels and it is a Gaussian process. The posterior 
mean function can be used as an approximation for the highest level of approximation 
and to predict the output of the simulator at untried inputs. In addition, the posterior 
mean function can be more accurate when an adequate number of evaluations of the 
cheap approximation are provided compared with using only evaluations of the ex-
pensive approximation (Kennedy and O’Hagan, 2000). This will be demonstrated with 
examples in later sections. The methodology presented in this section can be also ex-
tended for more than two levels of approximation. 
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3.3.4 Extending for more levels 

For situations were there are more than two levels of approximation, where s > 2, the 
normality of each level of simulator, given by fs(.), conditional on all the hyperparam-
eters and the observed runs is still valid. The resulting Gaussian process from using 
more than two levels of approximation will have the same format for the mean (3.21) 
and the covariance matrix (3.23) as in the two-level case following the conditional dis-
tribution results form Section 3.2.4. However, the forms for the function Vf , the vector 
h′(x) and the matrix H are different, and are given in equations (3.24), (3.25), (3.26) and 
(3.27) respectively. 

The covariance function Vf will have s blocks, where s is the number of levels used. 
The (1, 1) block of Vf will be V(1,1)

= K1(D1) and for k > 1, where k is an integer, thef 

(k, k) block will be 

V(k,k)
= Kk(Dk) + ρ2 

k−1Kk−1(Dk)f 
+ ρ2 

k−1ρ2 
k−2Kk−2(Dk) + · · ·+ Pk−1 

i 

2 (3.24) 
K1(Dk), 

jwhere Pj 
= ∏ ρn.i n=i 

The off-diagonal (k, l) blocks for k < l are given by 

V(k,l)
= Pl−1Kk(Dk, Dl) + ρk−1Pl−1 

k−1Kk−1(Dk, Dl)f k 

+ Pk−1 
k−2 P

l−1 
k−2Kk−2(Dk, Dl)

·+ Pk−1Pl−1 Pl−1+ · · K2(Dk, Dl) + Pk−1 K1(Dk, Dl).2 2 1 1 

(3.25) 

Moreover, the vector h′(x) is given by 

h ′(x)T = (Ps−1 , Ps−1 , . . . , ρs−1, 1),i 2 (3.26) 

with h(x) = 1 and the related matrix H is a lower diagonal matrix given by 

H =



1n1 

ρ11n2 1n2 0 

ρ1ρ21n3 ρ21n3 1n3 

P3 
1 1n4 ρ2ρ31n4 ρ31n4 1n4 

. . . . . . 

Ps−1 
1 ρns 1ns . . . ρs−2ρs−11ns ρs−11ns 1ns 


. (3.27) 

The hyperparameter estimation for the model with more than two levels follows the 
same methods with the hyperparameter estimation approach presented in Section 3.2.8. 
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For the purposes of this thesis we demonstrate examples using up to three-levels of 
approximation, where s = 3. The same methodology of multi-level GP approximations 
can be used for larger values of s. 

3.4 Example models 

3.4.1 Overview of the examples 

In this Section, we present the data used for the three example models, introduced in 
Chapter 2, which are used as running examples throughout the thesis. We have a sim-
ple linear regression model where the closed form of the likelihood can be computed 
analytically, a generalised linear mixed model which illustrates the intractable likeli-
hood problem and an Ising model where the computation of the normalising constant 
of the likelihood is extremely expensive for large grids. 

3.4.2 Simple linear regression model 

Recall the simple linear regression model introduced in Section 2.2 given by 

yi = α0 + α1xi + ϵi, ϵi ∼ N (0, σr 
2), (3.28) 

where yi is the response value for each observation i for i = 1, . . . , n, α0 is the intercept, 
α1 is the slope, xi is the predictor value for each observation i and ϵi is the error term 
which is normally distributed with zero mean and variance σr 

2. 

We start by generating some artifcial data. Assume that we have a continuous ex-
planatory variable x, where x = 1, 2, . . . , 16, n = 16, and a measured response y for 
each x. We set the intercept α0 equal to 40 and a unit increase in x is associated with a 
1.5 decrease in y, that is α1 = −1.5. The data were drawn from a normal distribution 
with zero mean and variance of 25, that is ϵi ∼ N (0, 52). 

The likelihood function is given by  
n 

)n/2 1
L(α0, α1, σr 

2; x1, . . . , xn) = (2πσr 
2 exp 

2σ2 ∑(yj − (α0 + α1xj))
2 . (3.29) 

r j=1 

For simplicity, after we ft the model to the data we set the parameters α0 and α1 equal 
to the model coeffcient estimated value and we are interested in the relation between 
the likelihood and the standard deviation of the residuals σr. Figure 3.4 shows the 
standardise likelihood and log-likelihood for the specifc data set as functions of the 
parameter of interest, σr. The values of the likelihood for this particular example are 
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really small, hence we compute the standardise likelihood by using a transformation 
such that the standard deviation of the likelihood evaluations at the training points is 
one. 
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FIGURE 3.4: Likelihood and log-likelihood functions of the simple linear regression 
model as functions of σr at a fne grid of points. 

For the SLR example we do not use any likelihood approximation. We treat this exam-
ple as a toy example to show how GPs can be used as approximations of the likelihood 
for a single-level case. Therefore, we use a single-level GP regression to approximate 
the likelihood using only a small number of likelihood evaluations. 

3.4.3 Generalised linear mixed model 

Recall the two-level random intercept logistic model presented in Section 2.3.4 which 
is given by  

pij log = β0 + β1xij + σui, ui ∼ N (0, 1). (3.30)
1 − pij 

The data set that we will use results from a simulation of a binary two-level model 
and taken from the glmmsr package (Ogden, 2019). We have two observations for each 
cluster, mi = 2, and 50 clusters, m = 50, so 100 observations in total. The number of 
observations for each group mi is small and the model is a sparse model. 

The likelihood for this special case can be simplifed to 

m  mi 

L(β, σ) = ∏∏ f (yij|ηij = xT 
ijβ + ui)ϕ(ui, 0, σ2)dui. (3.31) 

i=1 R j=1 
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As previously mentioned, the likelihood for a GLMM is not analytically tractable for 
this type of models and needs to be approximated. In order to ft and analyse gen-
eralised linear mixed models we can use the package glmmsr in R which fts GLMMs 
with various approximation methods. The log-likelihood function is calculated using 
LA and AGQ methods for different nAGQ in the quadrature formula. 

Using the Laplace approximation the fxed parameter estimates were β̂0 = 0.6525, β̂1 =

−1.1583 and the random effect parameter estimate σ̂ = 0.7484. However, for the spe-
cifc data set we have that the data are sparse and the Laplace approximation might 
not provide a good approximation to the likelihood. Consequently, a more accurate 
approximation method is required. 

The likelihood can be simplifed to the form of equation (3.31) for a two-level model. 
In this situation AGQ could be used for different number of nAGQ in the quadrature 
formula to approximate each of the one dimensional integrals. Using the AGQ approx-
imation with 10 quadrature points (nAGQ = 10) the fxed parameter estimates were 
β̂0 = 0.7168, β̂1 = −1.2734 and the random effect parameter estimate was σ̂ = 1.041. 

The estimate of the standard deviation of the random effect σ is considerably higher 
as nAGQ increases compared with the one obtained from the Laplace approximation 
to the likelihood, where nAGQ = 1. Therefore, the inference for the specifc parameter 
will be different based on the method and accuracy of the approximation method used. 

In order to check why this occurs, we investigate in Figure 3.5 a cut across the various 
approximate log-likelihood surfaces for σ, setting the parameters (β0, β1) equal to their 
estimated value obtained from model ftting, (β̂0, β̂1), for various values of σ, that is 
l(σ, (β̂0, β̂1)). An accurate approximation, which is available for this case is shown 
with the red curve. As can be seen, the maximum of each approximation is different. 
For larger values of σ the approximations obtained using small nAGQ considerably 
underestimate the likelihood and each approximation has different maximum value. 
The aim is to obtain an accurate approximation to the high-level of approximation of 
the likelihood. 

3.4.4 Ising model 

Recall that for the Ising model example we consider a special case of Ising models 
where we set α = 0, and that the lattice has periodic boundaries as shown in Figure 2.1. 
We also have n = m = c. Hence, the model we are looking at is 

pr(Y = y; θ) = Zc,c(θ)
−1 exp(βV1(y)), (3.32) 
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FIGURE 3.5: Cut across the approximate log-likelihood surface of σ of the two-level 
random intercept model approximated using AGQ method for different nAGQs for 
varying values of σ and keeping the remaining model parameters β0 and β1 constant. 

where V1(y) = ∑i∼j yiYj and β is a scalar indicating the inverse temperature. The 
normalising constant is given by 

Zc,c(θ) = ∑ exp{βV1(y)}, (3.33) 
y∈{−1,1}v 

and is computationally expensive for larger grids. 

As mentioned above, we are looking at a special case of the parameter space setting 
α = 0 and we assume that β ∈ [0, 0.43]. This is essential since for the critical value βc,√
where βc = log(1 + 2)/2 ≈ 0.44, the behaviour of the Ising model changes suddenly. 
For values of β > βc we observe large areas of all plus ones or all minus ones. Note 
that for β = βc the maximum likelihood estimator may not have a normal limiting 
distribution (Ogden, 2017). 

Figure 3.6 shows the log-likelihood as a function of β for simulated data from the model 
using the IsingSampler function of the IsingSampler package (Epskamp and Boot, 
2023) in R, with the specifed value of β for the given parameter space, for various 
grids calculated using the formulas for the exact normalising constant given in Section 
2.4.3. The value of β is different for each case and the data is a single grid of size 3 × 3 
and 6 × 6 respectively. As can be seen, the location of the maximum value of the log-
likelihood for each case is close to the value of β used to generate the data given by the 
green dashed line. 
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FIGURE 3.6: Log-likelihood for data simulated from the Ising model with a specifc 
value of β for different grids using the exact normalising constant for a single grid. 

We use the RDA method presented in Section 2.4.4 as an approximation method for 
the normalising constant using different levels of approximation. As in the examples 
above, we use simulated data, and for this example we have simulated data for a 10 ×
10 grid. The log-likelihood computed using the RDA method for two different levels 
of approximation for the normalising constant is shown in Figure 3.7. We have k = 2 
for the low-level approximation (green curve), k = 4 for the high-level (blue curve) and 
the exact calculation (red curve). The true value of β is 0.22 and is given by the orange 
dashed line. The maximum log-likelihood value for k = 2 is at β = 0.277, for the k = 4 
at β = 0.277 and the exact value at β = 0.256. As can be seen, the maximum value 
of the log-likelihood obtained using the high-level approximation is closer to the exact 
value compared to the one obtained from the low-level approximation. This shows 
that it is suffcient to use approximations instead of exact calculations in cases where 
they are computationally expensive. Our approach and methodology aims to illustrate 
how an approximation of the normalising constant of the Ising model and therefore 
the log-likelihood can be formulated based on hierarchical models and multi-level GP 
approximations. 



46 Chapter 3. Gaussian Processes and Hierarchical Experiments

-25

-24

-23

-22

-21

-20

0.0 0.1 0.2 0.3 0.4
β

Lo
g-
lik
el
ih
oo
d

Approximation

Exact

k = 2

k = 4

FIGURE 3.7: Log-likelihood using two approximation levels for the normalising con-
stant, along with the exact log-likelihood, of the Ising model for a simulated example 
for a 10 × 10 grid. Parameter β used for the simulation is at 0.22 (orange dashed line). 

3.5 Applications 

3.5.1 Overview 

The main goal of this section is to illustrate how one can use the methodology presented 
in this chapter to compute approximation of likelihood functions, by combining eval-
uations of approximations available in multiple levels of accuracy. We use Gaussian 
processes as a simulator to multi-level computer experiments to model the likelihood 
surface, based on evaluations of the likelihood or likelihood approximations at a small 
number of parameter values. We work with the SLR model for the single-level GP 
approximation and with the GLMM and Ising model examples for the multi-level GP 
approximation. 

3.5.2 Single-level case 

Simple linear regression model example 

Recall the simple linear regression model in Section 3.4.2. The normal distribution of 
the likelihood of the model has two parameters, the mean µ and the standard deviation 
σr. For simplicity we assume that the mean is constant and we are interested in the 
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likelihood as a function of σr. The likelihood function for the simple linear regression 
model can be computed analytically as shown in (3.29). 

We use this example since the closed form of the likelihood is available in analytic form 
and we want to demonstrate how the methodology works and compare the GP approx-
imation with the true likelihood. We assume that the likelihood could not be calculated 
analytically, which is the case for models with intractable likelihood. Therefore, we use 
Gaussian process regression to compute the Gaussian process posterior. This could be 
used as an approximation to the likelihood. 

Figure 3.8 shows the posterior mean as approximation to the likelihood using 7 train-
ing points of the parameter of interest σr in the interval (2, 10) for the single-level case. 
As can be seen, the posterior mean of the GP, given by the red curve, is close to the true 
value of the likelihood, given by the dashed orange curve, for the majority of values 
in the given interval. We can achieve a better approximation by increasing the training 
points in the whole interval (green dots) or by focusing on the neighbourhood of the 
maximum, since this is the area of the design we are most interested in. A method for 
choosing the experimental design is presented in Chapter 5. The 95% interval estima-
tion is shown by the blue shaded area. The hyperparameters of the Gaussian process 
were estimated as described in Section 3.2.8 and we have used a quadratic prior mean. 
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FIGURE 3.8: Posterior mean of the Gaussian process as an approximation to the likeli-
hood for the simple linear regression model given by the red curve. The true likelihood 
is given by the orange dashed curve, 95% credible intervals by the blue shaded area 

and the training points are in green. 
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Looking at the plot in Figure 3.8, there is a problem arising from the use of likelihood 
evaluations for the GP approximation. The posterior mean is negative for some values 
of σr. To solve this problem we choose to use log-likelihood evaluations for the GP 
approximation as shown in Figure 3.9 and then for computing the emulated likelihood 
we can take the exponential of the posterior mean. The orange curve in Figure 3.9 is 
the exact log-likelihood and the red curve the posterior mean of the GP approxima-
tion using log-likelihood evaluations. As in the likelihood approach, we have used a 
quadratic prior mean structure and the same training points. There is a sudden drop 
in the shape of the log-likelihood at the left boundary and the GP fnds it diffcult to 
estimate the log-likelihood function in that area because it generally assumes that the 
rates of change are similar for the whole function. As a solution to this issue, as part 
of the future work we could look to re-parameterise the parameter of interest to get a 
more symmetric function. 
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FIGURE 3.9: Posterior mean of the Gaussian process as an approximation to the log-
likelihood for the simple linear regression model given by the red curve. The true 
likelihood is given by the orange dashed curve, 95% credible intervals by the blue 

shaded area and the training points are in green. 

Figure 3.10 shows a comparison between the posterior mean resulted from the GP ap-
proximation using evaluations of the likelihood (green curve), the exponential of the 
posterior mean using evaluations of the log-likelihood (blue curve) and the likelihood 
obtained using the analytic form (orange). In this example, the log-likelihood approach 
overestimates the likelihood close to its maximum, but is much more accurate than 
directly emulating the likelihood in the tails. As can be seen, the likelihood approx-
imation obtained by the exponential of the posterior mean using the log-likelihood 
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approach is always non-negative which does not hold when using the likelihood ap-
proach. We need to be more careful with the choice of approximation approach es-
pecially when we would like to approximate the whole surface or if the focus is to 
approximate the associated uncertainty and not only the area of the maximum. For the 
rest of the thesis, we prefer to use the log-likelihood approach for GP approximations 
because the emulated likelihood resulting from that approach is always non-negative. 
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FIGURE 3.10: Comparison of emulated likelihoods using two approaches for GP ap-
proximation along with the true likelihood. 

3.5.3 Two-level likelihood approximation 

Overview 

Suppose that we have a simulator with two levels of approximation: the low-level 
f1(.), with n1 training points, and the high-level f2(.) with n2 training points. The main 
idea is to have evaluations from both levels of approximation simultaneously to obtain 
information from the evaluations of f1(.) and f2(.) to predict the output of f2(.) using 
the posterior distribution given in Section 3.3.3. The hyperparameters of the GP are 
estimated using the calculations presented in Section 3.2.8. 

We also want to examine the behavior of the posterior distribution as the number of 
training points for each level varies. We aim to have a good approximation for the out-
put of the expensive model with as few evaluations of the expensive model as possible. 
As examples of a model with intractable or computationally expensive likelihood func-
tions we will use the generalised linear mixed model introduced in Section 2.3 and the 
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Ising model introduced in Section 2.4. The training points used for the examples of this 
chapter have been chosen randomly using a space-flling design. A method for choos-
ing the training points used for each level taking into account the cost of each level is 
given in Chapter 5. 

Generalised linear mixed model example 

Recall the generalised linear mixed model from Section 2.3. Considering the two hier-
archical levels of the simulator we will use the Laplace approximation method and the 
adaptive Gaussian quadrature approximation method, with 10 quadrature points, of 
the likelihood as the lower and the higher level respectively. 

The parameter of interest is the standard deviation of the random effects in (2.7). As 
before, we fxed the remaining parameters of the model (2.7), β0 and β1 and we set 
them equal to their estimated value after ftting the GLMM. 

Figures 3.11 and 3.12 show how the posterior mean of the Gaussian process varies for 
different number of training points of each of the two levels. In Figure 3.11 we keep 
the number of training points of the high-level constant and we increase the number 
of points of the low-level. Similarly, in Figure 3.12 we increase the high-level training 
points keeping the low-level points constant. Each time we add one additional point 
to the design and we keep the remaining the same. In both Figures the red curve is 
the posterior mean, the blue shaded area represents the 95% credible intervals and the 
blue and green dots are the training points of the high and low-levels respectively. The 
orange dashed line is the accurate approximation of the log-likelihood. The prior mean 
structure used for this example was quadratic since a log-likelihood surface is close to 
a quadratic surface for large samples. 

We investigate how the posterior mean is affected as the number of training points of 
the two levels of approximation varies. Figure 3.11 shows that we manage to obtain a 
good approximation of the log-likelihood, as the number of training points of the cheap 
approximation increases, since the more accurate log-likelihood approximated by the 
AGQ method at the test points is close to the posterior mean of the Gaussian process 
given by the red curve. However, the GP is overconfdent with the increase of training 
points in Figure 3.11c resulting to overestimation of the log-likelihood and minimal 
uncertainty. 

We observe a similar situation as we increase the number of training points of the 
higher level of approximation as can be seen in Figure 3.12 where the approximation is 
overestimating the log-likelihood for some values of σ. 

Nevertheless, in most situations evaluations of the expensive approximation are not 
available in great quantities. Therefore, using multi-level GP approximations we could 
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FIGURE 3.11: Posterior mean of the Gaussian process as an approximation to the log-
likelihood for the GLMM (red curve) for various combinations of training points from 
the two-level GP approximation, with increasing number of low-level training points 
(green dots) keeping the high-level constant (blue dots), along with the accurate AGQ 

approximation of the log-likelihood (orange dashed curve). 
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FIGURE 3.12: Posterior mean of the Gaussian process as an approximation to the log-
likelihood for the GLMM (red curve) for various combinations of training points from 
the two-level GP approximation, with increasing number of high-level training points 
(blue dots) keeping the low-level constant (green dots), along with the accurate AGQ 

approximation of the log-likelihood (orange dashed curve). 

use more evaluations of the cheap approximation and less of the expensive approxima-
tion and still get a good approximation for the log-likelihood. 

Ising model example 

Recall the special case of the Ising model which was introduced in Section 2.4. Consid-
ering the two hierarchical levels of the simulator we will use the reduced-dependence 
approximation method for approximating the normalising constant (2.11). 

We use the simulated Ising model example described in Section 3.4.4 with a 10 × 10 
grid. Figure 3.13 shows the log-likelihood of the Ising model using three different lev-
els of approximation for the normalising constant. The approximations were obtained 
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using k = 3, 4 and 6 in the reduced-dependence approximation method for estimat-
ing the normalising constant of the likelihood of Ising models. Increasing k increases 
the accuracy but also increases the computational cost. As can be seen, the low-level 
approximation does not give an adequate approximation to the log-likelihood. As we 
increase the level of complexity the accurate approximation is relatively close to the 
high-level approximation. However, we would like to avoid using multiple evalua-
tions of the high-level since it is more computationally expensive compared to lower 
level approximations. 
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FIGURE 3.13: Log-likelihood using three levels of approximation of the RDA method 
for the normalising constant of the Ising model for a simulated example with a 10 × 10 

grid along with the exact log-likelihood. 

As in the GLMM case, we demonstrate the methodology for the log-likelihood approxi-
mation using two-level Gaussian processes approximation. For the example, the tuning 
parameters in the RDA method for the cheap approximation of the normalising con-
stant is k = 3 and the expensive approximation is k = 6. 

Figure 3.14, shows the approximation to the log-likelihood for the Ising model where 
we keep the number of high-level training points constant and we increase the number 
of the low-level points. In Figure 3.14a the posterior mean (red curve) is not close to the 
exact log-likelihood (orange curve) probably due to the choice of the prior mean as ex-
plained below. With the increase of training points of the low-level the approximation 
improves. 

Figure 3.15, shows the approximation to the log-likelihood (red curve) for the Ising 
model where we keep the number of low-level training points constant and we increase 
the number of the high-level points. With the increase of the number of high-level 
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FIGURE 3.14: Posterior mean of the Gaussian process as an approximation to the log-
likelihood (red curve) for the Ising model for various combinations of training points 
of the two-level GP approximation, increasing number of the low-level training points 
(green dots) keeping the number of a high-level training points (blue dots) constant 

along with the exact log-likelihood (orange dashed curve). 

points the two-level GP approximation is closer to the exact log-likelihood, however 
for larger number of points it becomes overconfdent with minimal uncertainty. 
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FIGURE 3.15: Posterior mean of the Gaussian process as an approximation to the log-
likelihood for the Ising model for various combinations of training points of the two-
level GP approximation, with keeping the number of a low-level training points (green 
dots) constant and increasing the number of a high-level training points (blue dots) 

along with the exact log-likelihood (orange dashed curve). 

The prior mean structure used for the example was linear. A quadratic prior mean 
structure could be used for this example as well. However, the GP approximation for 
the initial design was really close to the accurate approximation of the log-likelihood 
with minimal uncertainty overestimating the log-likelihood. Therefore, we work with 
a linear prior to demonstrate how the additional points at each level can affect the GP 
approximation even for a case where the choice of the prior mean structure does not 
result to the best initial ft. 

It will be interesting to examine how introducing more than two levels will affect and 
probably beneft the approximation. 
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3.5.4 Three-level likelihood approximation 

Overview 

For this section we suppose that multiple levels of approximation are available. Ap-
proximating the likelihood under this scenario can be easily generalised. For the pur-
poses of this thesis, we only present examples up to three levels each with different 
cost and accuracy. Our aim is to see how the log-likelihood approximation is affected 
by using multiple-levels and if high-level evaluations can be reduced. 

Assume that we have a simulator with three levels: the low-level f1(.), with n1 training 
points and design D1, the middle-level f2(.), with n2 training points and design D2, 
and fnally the high-level f3(.) with n3 training points and design D3. The main idea 
is to have evaluations from all levels of model simultaneously trying to obtain infor-
mation from the output of f1(.), f2(.) and f3(.) to predict the output of f3(.) using the 
posterior distribution given in Section 3.3.4 for s = 3 combining information from all 
three levels. The posterior mean can be then used as the approximation of the complex 
approximation of the likelihood similarly to the two-level case. The hyperparameters 
used are estimated using the calculations presented in Section 3.2.8. 

Ising model example 

As a continuation from the two-level example on the Ising model we introduce a third 
level of approximation which lies in between the previous two levels based on accuracy 
and cost and we want to examine how the additional level impacts the approximation. 

Following the examples in Figures 3.14a and 3.14b where we have two levels of ap-
proximating the normalising constant where the tuning parameter of the RDA method 
is k = 3 and k = 6, we add another level with k = 4. The RDA approximation of the 
log-likelihood for each level is shown in Figure 3.13. We keep the training points of 
the two already existing levels the same. The results are shown in Figure 3.16. With 
the additional level of approximation the three-level GP approximation given by the 
posterior mean (red curve) signifcantly improves in Figures 3.16a and 3.16b compared 
to Figures 3.14a and 3.14b respectively and it is closer to the exact log-likelihood (or-
ange curve). Therefore, using multiple levels for the GP approximation is substantially 
benefcial. 
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FIGURE 3.16: Posterior mean of the Gaussian process as an approximation to the log-
likelihood for the Ising model for various combinations of training points for the three-
level GP approximation: low-level (green dots), middle-level (pink dots) and high-

level (blue dots), along with the exact log-likelihood (orange dashed curve). 

3.6 Increase of the dimensions 

3.6.1 Overview of Gaussian process regression for multi-level simulators 

Up to this stage, the log-likelihood was used only as a function of one parameter and 
the remaining were considered fxed. In this section, we increase the dimension of the 
parameter space and treat the likelihood as a function of the other model parameters 
as well. Therefore, we will be able to conduct inference for all the model parameters. 

The Gaussian process regression presented in Section 3.2.5 focused on the case where 
the dimension of the parameters space, d, is one. The aim of this section is to extend 
Gaussian process regression to compute the posterior predictive distribution for test 
points in the case where the dimension is d = 2, 3, . . . . 

In general, there are no major changes and the formulas for computing the posterior 
mean (3.11) and the posterior covariance (3.12) remain the same. The posterior mean 
will now be a function from Rd to R and posterior covariance a function from Rd ×Rd 

to R. Considering the multi-level GP approximation and the hyperparameter estima-
tion of the GP the calculations stay the same and we can follow the same methodology 
as for the one-dimensional cases. 
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3.6.2 Covariance function 

The covariance function needs to be adapted for multi-dimensions. The covariance 
function can be non-isotropic by setting d2(x, x′) = (x− x′)T M(x− x′) for some pos-
itive semi-defnite M where d = x− x′ is the separation vector. Various forms of M’s 
have been considered in the literature. In general, we can assume that M has the form 

M = ΛΛT + Ψ, (3.34) 

where Λ is a D × k matrix whose columns defne k directions of high relevance, and 
Ψ is a diagonal matrix with positive entries, that captures the axis-aligned relevances. 
Therefore, M has a factor analysis form. To choose k we have to consider a trade-
off between fexibility and required number of parameters (Rasmussen and Williams, 
2005). For the special case where M is diagonal we can use different length-scales on 
different dimensions. 

The squared exponential covariance function can be used for more than one dimensions 
and is given by  

d 
′) = τ2 exp − 1 

(xi,j − xk,j)
2 . (3.35)K(x, x ∑2l2 

j=1 

The length-scale hyperparameter could be different for each input dimension given by 
lj. To model functions with more than one input we could multiply kernels defned 
on each individual input. We can use the product of squared exponential kernels for 
different dimensions each with different length-scale parameter to get the squared ex-
ponential automatic relevance determination (SE-ARD) kernel given by  

d (xi,j − xk,j)
2 

K(x, x′) = τ2 exp −∑ (3.36)
2l2 , 

jj=1 

where the term − 2
1 
l2 will move inside the summation and each of the length-scale pa-
j 

rameters determines the input relevance (Duvenaud, 2014). 

For this stage of the thesis, we use a single length-scale parameter for all of the dimen-
sions. As part of the future work we would like to introduce and estimate different 
length-scale hyperparameter for each dimension. However, this can be more compli-
cated with the increase of the levels of approximation in the multi-level GP regression 
since we will have to estimate multiple length-scale parameters for each level of ap-
proximation used. 
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3.6.3 Training points 

The training points for each dimension are generated using a space-flling design. We 
work with multiple parameters and we would like to be able to have comparable scales 
for easier interpretation of the results. Therefore, we standardise the training points 
such that all of the dimensions are on the same scale. We will use normalisation which 
re-scales the values into a range of (0, 1) by subtracting the minimum value and divid-
ing with the difference between the maximum and minimum value. 

Choosing the experimental design of each model parameter could be challenging. For 
the example used in the thesis, we choose an interval of the model parameters which 
contains the location of the maximum of the log-likelihood. However, that will not 
be always applicable and easy to compute. In the future, we would like to automate 
this procedure by expanding the expected gain in utility method for choosing the ex-
perimental design presented in Chapter 5 to include multi-dimensional problems and 
expand the area of experimentation by probably using a response surface methodology 
by fnding the optimal response (Box and Wilson, 1951). 

3.6.4 Applications 

As an illustration of extending the multi-level Gaussian process to multi-dimensions 
we present the GLMM example using the two-level GP approximation for d = 2. The 
log-likelihood becomes a function of the standard deviation of the random effects, σ
and the intercept parameter β0 from (3.30). We consider the third model parameter β1 

fxed. Looking at the fgures of this section, the x-axis represents the standard deviation 
of the random effects and the y-axis the intercept parameter. We use a two-dimensional 
parameter space example due to demonstration limitations of the results. 

For this example, we choose a space-flling design obtained using the locally optimal 
maximum projection (MaxPro) design from the MaxPro package in R (Ba and Joseph, 
2015) in the neighborhood of a given initial design for continuous factors, where the 
initial design was a Latin hypercube design. We then re-scaled the design points so 
that they lie in the range (0, 1). For each parameter we use 20 points for the low-level 
and 10 points for the high-level of approximation. 

We have used the same methodology as in the one-dimensional case for estimating the 
hyperparameters and computing the GP posterior predictive distribution. The low-
level of approximation is the LA method and the high-level is the AGQ method. The 
surface of the LA method at the test points is given in Figure 3.17. For the calculations 
we used a linear prior mean structure. 

Figure 3.18a shows the surface of the of the Gaussian process posterior mean as an ap-
proximation to the log-likelihood and Figure 3.18b shows the accurate approximation 
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FIGURE 3.17: Surface plot of the Laplace approximation at the test points as the low-
level approximation of the log-likelihood of the GLMM for a two dimensional param-

eter space. 

of the log-likelihood. As can be seen, both surfaces look similar. The similarity of the 
surfaces can also be assessed with computing their difference. 

(A) Approximate log-likelihood (B) Accurate log-likelihood 

FIGURE 3.18: Surface plots of the posterior mean of the two-level GP approximation 
and the accurate approximation of the log-likelihood of the GLMM for a two dimen-

sional parameter space. 

We compute the difference between the approximated log-likelihood and the accurate 
log-likelihood of the GLMM and the result is given in Figure 3.19. As shown in the 
legend of the fgure, the maximum difference varies from 0 to just below 0.02 which 
indicates that the two surfaces are similar. This can also be seen from the contour plot 
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of the differences given in Figure 3.20. Therefore, the methodology of the multi-level 
GP approximation can be used in a multi-dimensional parameter space. 

FIGURE 3.19: Difference between the accurate approximation and the two-level GP 
approximation of the log-likelihood of the GLMM for a two dimensional parameter 

space. 

FIGURE 3.20: Contour plots of the difference between the accurate approximation 
and the two-level GP approximation of the log-likelihood of the GLMM for a two 

dimensional parameter space. 
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3.7 Summary 

This chapter introduced two of the main components of the thesis: Gaussian processes 
and hierarchical experiments and explained how these two can be combined to obtain 
an approximation to the likelihood by using evaluations from various levels of accu-
racy. We introduced the example models and the data that are used throughout this 
thesis as an illustration of the ideas and methodology. Moreover, the posterior distri-
bution of a Gaussian process was defned using results form the multivariate normal 
distribution and its conditional distribution and we discussed a method for estimating 
the hyperparameters of the Gaussian process. 

We focused on the prediction of the output of complex approximation when fast ap-
proximations or lower level approximations are available. The Bayesian approach of 
the approximation of complex approximation using lower level approximations, and 
especially the use of Gaussian processes, can be implemented for a broad feld of multi-
level simulators. In a situation where the most accurate approximation is complex and 
expensive to run, being able to use information obtained from evaluations of the simu-
lator at different levels is exceptionally advantageous. If only a few evaluations of the 
expensive approximation are available, the approximation of the expensive approxima-
tion can been considerably improved using observations from cheaper approximations 
as well. 

We applied the methodology to approximate intractable likelihood functions using 
multiple levels of likelihood approximations. We used a simple linear regression 
model, where we know the closed form of the likelihood, to illustrate and validate 
how we can approximate the likelihood using Gaussian process regression for a 
single-level case. Moreover, we demonstrated how we can approximate a likelihood 
function using observations from two or three scales of approximation. Generalised 
linear mixed model and Ising model were used as examples of models with intractable 
or computationally expensive likelihood functions. Using the GLMM example we 
demonstrated the two-level case with the Laplace approximation method as the lower 
level of the approximation and the AGQ approximation method as the higher level. 
Considering the Ising model example, the RDA method was used for multi-levels for 
approximating the normalising constant and therefore the likelihood. 

Furthermore, we extended the GP regression for a multi-dimensional model parameter 
space. We presented how the covariance function can be adapted to count for more 
than one dimensions and some assumptions for the training points. We applied the 
methodology for a two-dimensional model parameter space for the GLMM example. 
We compared the accurate log-likelihood with the approximated obtained using the 
two-level GP approximation and we found that there is not a big difference between 
the two surfaces. 
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In general, it was shown that the posterior mean of the Gaussian process posterior dis-
tribution can be used as a likelihood approximation and analyses at multiple levels 
of a simulator, which are related through an autoregressive model, can improve the 
accuracy of the highest level of analysis. From the example models, we can see that 
the posterior mean function for multi-level simulator, using few of the expensive eval-
uations, has been considerably improved when we are combining observations from 
multiple levels. 
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Chapter 4 

Inference for the model parameters 
and uncertainty 

4.1 Overview 

In the previous chapters, we have demonstrated how to use a use a Gaussian process 
to obtain an approximation of the likelihood surface. As shown, the resulting posterior 
mean of the GP can be used as an approximation to the likelihood. We aim to use the 
approximation to the likelihood to conduct inference for the model parameters. That 
inference could also include fnding uncertainty intervals for the parameters. However, 
those uncertainty intervals might not be very accurate, because they don’t include the 
uncertainty about the likelihood approximation itself. Hence, there is a concern that 
we will underestimate the uncertainty by ignoring the uncertainty in the likelihood 
approximation. 

The main aim of this chapter is to conduct inference for the model parameters and to 
combine the underlying uncertainty about the parameters given the likelihood with the 
uncertainty about the likelihood itself. For simplifcation we name the posterior given 
approximate likelihood evaluations, the posterior GALE. 

To deal with the uncertainty problem we will use a Bayesian framework to enable us 
to combine those different types of uncertainty. We will use a sampling-based method 
to approximate the posterior GALE. We do this in two steps, frst we sample from 
the multi-level GP approximation for the likelihood, we multiply with the prior of the 
model parameter of interest to compute the posterior and then we sample from the 
posterior of the model parameter resulting from that sampled likelihood. Following 
that procedure we can obtain an approximated posterior distribution of the model pa-
rameter. 
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To approach this problem, sampling methods such as MC could be used but that could 
be used but it is unnecessarily complicated for the examples we present. In the litera-
ture, there exist methods that use single-level GPs with more complex sampling algo-
rithms such as Rasmussen (2003), Gramacy and Lee (2010) and Overstall and Woods 
(2013). 

We compare the resulting approximated posterior distribution of the model parameter 
with the true posterior, if this is available, or with a more accurate approximation of the 
posterior, which in most cases will be more costly to compute. The methodology will 
be applied to two examples using multi-level GP approximation for the log-likelihood. 

4.2 Sampling from the Gaussian process posterior distribution 

Obtaining samples from the Gaussian process posterior distribution will enable us to 
base inferences on posterior summaries of the parameters calculated from the samples. 
To sample from the Gaussian process posterior distribution we draw random samples 
from the corresponding multivariate Gaussian distribution with the posterior mean 
and posterior covariance of the Gaussian process posterior at the test points as the 
mean vector and the covariance matrix respectively. 

We would like to describe or at least approximate the approximate log-likelihood func-
tion at every point in the given interval, not just at the test points used. Therefore, 
we use spline interpolation to fnd a function underlying the value between the given 
points. Spline interpolation is useful for this case to overcome the situation where the 
value of the sample of the parameter of interest at the maximum of the log-likelihood 
does not usually match exactly with a value of the test points used. Using the com-
puted samples, we obtain the interpolation function for each sample at the test points. 

The samples of the posterior distribution with the corresponding interpolation func-
tion could be used as a tool for various aspects such as fnding the estimator of the 
parameter of interest by maximising the approximation to the log-likelihood generated 
from each draw of the posterior distribution of the Gaussian process. The value of these 
estimates will give us more information about how certain or uncertain we should be 
regarding the location of the true maximum likelihood estimate. We obtain samples for 
each example in Section 4.4 

We would like to compute an estimate of the parameter of interest by maximising the 
approximation to the log-likelihood for each of the samples from the posterior Gaus-
sian process distribution as described in Section 4.2, to get the maximum likelihood 
estimate. Even when it is not possible to compute the MLE analytically, it can be calcu-
lated numerically (Myung, 2003). Hence, optimisation algorithms could be used to fnd 
the location of the maximum of the function in the required interval. For each sample 
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from the Gaussian process we get a different estimate of the parameter of interest with 
its own uncertainty and therefore a different interval estimation. 

The problem we would like to emphasise is how to quantify and combine the uncer-
tainty generated from two sources: the underlying uncertainty about the model pa-
rameters given the data with the uncertainty from using the Gaussian process model 
as an approximation for the likelihood in order to be able to conduct inference for the 
model parameters. One way of dealing with this problem is using Bayesian inference 
and computing an approximated posterior distribution of the model parameters. 

4.3 Approximated posterior distribution of model parameters 

In order to combine the uncertainty obtained from the posterior given approximate 
likelihood evaluations, the posterior GALE uncertainty, and the underlying uncertainty 
about the model parameters given the data we compute an approximated posterior 
distribution for the model parameter of interest. The methodology is described in Al-
gorithm 1. 

We start by computing the Gaussian process posterior distribution using Gaussian pro-
cess regression either for a single-level approximation as described in Section 3.2.5 or 

¯for the multi-level approximation case as described in Section 3.3.3 given by N (µ̄, V). 
The posterior mean µ̄ can then be used as an approximation to the likelihood or the 

¯log-likelihood and the posterior covariance V as a measure of uncertainty. This will 
remain fxed for the following steps. 

We then obtain a sample li(y1, . . . , yn|θ) from the Gaussian process emulator of the 
likelihood or log-likelihood evaluated at fxed test points θtest for the model parame-
ter from the corresponding multivariate Gaussian distribution where the mean will be 
given by the posterior mean of the GP, µ̄, and the covariance by the posterior covariance 

¯of the GP, V . We use a fne grid of test points in the given interval. For future work for 
a high dimensional parameter space it would become diffcult to evaluate the whole 
likelihood/posterior surface at a dense grid of test points, so in that case we would 
need an alternative posterior sampling-based method. 

Following, we multiply the likelihood or the exponential of the log-likelihood sample 
with the predefned prior of the parameter of interest at the test points, π(θtest), to 
compute a sample from the posterior, unnormalised sample, under Bayesian inference 

fi(θtest|y1, . . . , yn) = li(y1, . . . , yn|θtest)× π(θtest). 

In general, Bayesian statistics considers the parameters of a model to be random vari-
ables in their own right rather than fxed unknowns. In order to implement a Bayesian 
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approach, prior beliefs about the model parameters θ are required and are represented 
by the prior, a probability density (or mass) function. The posterior density (mass) 
function, represents the density of the parameters giving a modifed belief about θ in 
the light of the observed data and provides inference about the unknown parameters 
combining information from the data through the likelihood with the information from 
the prior using Bayes’ theorem (Gelman et al., 2013). 

Posterior inference can be used in a formal way to make predictions using the posterior 
predictive distribution. The specifcation of parameter priors is a primary element of 
Bayesian inference. The prior distribution represents the knowledge about θ prior to 
observing the data. The prior of the model parameter for each of the examples of this 
chapter is tailored to the specifc example and the characteristics of the model parame-
ter. 

For the next step, we compute the average of the resulting samples from the posterior 
to calculate the normalising constant 

Zi = ∑ fi(θ|y1, . . . , yn), 
θ∈θtest 

and we divide each unnormalised sample with Zi so that the posterior will sum up to 
one, that is 

Fi(θtest|y1, . . . , yn) = fi(θtest|y1, . . . , yn)/Zi, 

We store each normalised posterior sample, fi(θtest|y1, . . . , yn), and we repeat this pro-
cedure for a large enough number of likelihood or log-likelihood samples, nsamples. 

Finally we compute the average of the samples of the posterior to get the approximated 
normalised posterior GALE of the model parameter 

ns 

G(θ|y1, . . . , yn)) = ∑ Fi(θ|y1, . . . , yn)/ns. 
i 

We compare the approximated posterior GALE distribution of the model parameter of 
interest with the true posterior, if that is available, or with an accurate approximation 
of the posterior visually through density plots. When interpreting these comparisons 
we have to take into consideration that we do not expect to have a perfect match. The 
reason is that we expect extra uncertainty in the posterior sampling from the approxi-
mated posterior because we conduct inference based on a few likelihood evaluations, 
rather than based on the whole likelihood surface. We also anticipate the posterior 
GALE to get closer to the posterior as the number of likelihood evaluations increases. 
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Algorithm 1 Approximated posterior GALE distribution of model parameter 

1. Compute the Gaussian process posterior distribution as an approximation to the 
¯likelihood or log-likelihood N (µ̄, V); 

2. Draw a sample from the Gaussian process emulator of the likelihood or log-
likelihood, li(y1, . . . , yn|θtest), evaluated at fxed grid of test points, θtest, for the 
model parameter using the corresponding multivariate Gaussian distribution; 

3. Multiply the likelihood or the exponential of the log-likelihood sample from Step 
2 with a predefned prior of the model parameter at the test points to compute the 
posterior and consider this as an unnormalised sample of the posterior given by 

fi(θtest|y1, . . . , yn) = li(y1, . . . , yn|θtest)× π(θtest); 

4. Calculate the normalising constant of each sample of the posterior to compute 
the normalised sample of the posterior so that the area under the density curve 
will sum up to 1; 

Fi(θtest|y1, . . . , yn) = fi(θtest|y1, . . . , yn)/Zi, 

where 

Zi = ∑ fi(θ|y1, . . . , yn)
θ∈θtest 

is the normalising constant; 

5. Store each sample of the posterior; 

6. Repeat steps 2 - 5 for a reasonable number, ns, of likelihood or log-likelihood 
samples; 

7. Compute the average of the samples of the posterior to get the approximated 
normalised posterior GALE 

ns 

G(θ|y1, . . . , yn)) = ∑ Fi(θ|y1, . . . , yn)/ns. 
i 

The resulting normalised posterior GALE, G(θ|y1, . . . , yn), will form an approximated 
posterior distribution for the model parameter of interest. 

4.4 Applications 

4.4.1 Introduction 

For demonstrating the ideas presented in this chapter we work with examples where 
the approximation was obtained using the multi-level GP approximation. More specif-
ically the GLMM example for a two-level GP approximation and the Ising example 
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using a three-level GP approximation. The same methods can be applied for any num-
ber of levels used for approximation since the only requirement is the resulting GP 
posterior distribution as the approximation of the likelihood. 

The goal of the examples is to demonstrate how we can obtain an approximated poste-
rior distribution of the parameter of interest when the likelihood is intractable follow-
ing the steps of Algorithm 1. We will also demonstrate how the validity of the resulting 
approximated posterior distribution of the model parameter can be checked. 

For the examples, the likelihood is either intractable or computationally expensive. We 
work in one dimension and we aim to approximate the posterior distribution of the 
model parameter of interest. We will investigate how the number of training points 
used at each level of approximation infuence the approximated posterior distribution 
of the parameter of interest by increasing the number of training points of the low-level 
as has been done in previous examples. 

Recall the GLMM example given in Section 3.5.3. For the GLMM example the param-
eter of interest is the standard deviation of the random effects, and we assume that 
the remaining model parameters are known and fxed. The examples we refer to are 
demonstrated in Figure 3.11. For the Ising model we work with the three-level GP ap-
proximation given in Section 3.5.4 and the parameter of interest is the scalar parameter 
β indicating the inverse temperature. 

4.4.2 Sampling from the multi-level GP approximation 

Generalised linear mixed model 

Figure 4.1 demonstrates log-likelihood samples (grey curves) from the Gaussian pro-
cess posterior distribution computed using the two-level GP approximation for vari-
ous designs where the number of training points of the low-level increases. As shown, 
the maximum value of each sample varies. Increasing the low-level training points re-
sults to a better approximation (red curve) of the log-likelihood, with lower uncertainty, 
however overconfdent in some areas. 

We aim to compute the maximum likelihood estimate through optimisation for each 
sample. Figure 4.2 demonstrates the random samples of the approximation of the log-
likelihood from the Gaussian process posterior given in Figure 4.1 and the vertical blue 
dashed lines illustrate the approximate location of the maximum for each sample using 
optimisation. As can be seen, the location of the maximum is different for each sample. 
With the increase of training points the locations of the maximum for each sample gets 
closer. 
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FIGURE 4.1: Log-likelihood samples (grey curves) along with the posterior mean of the 
two-level GP approximation (red curve), the accurate log-likelihood (orange dashed 
curve) and the training points of low-level (green dots) and high-level (blue dots) for 

two designs of the GLMM example. 
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FIGURE 4.2: Log-likelihood samples (grey curves) along with the posterior mean of the 
two-level GP approximation (red curve), the accurate log-likelihood (orange dashed 
curve), the training points of low-level (green dots) and high-level (blue dots) for two 
designs and the location of the maximum for each sample (vertical blue dashed lines) 

for two designs of the GLMM example. 

Ising model 

Similarly with the GLMM example we have in Figure 4.3 log-likelihood samples (grey 
curves) from the Gaussian process posterior distribution computed using the three-
level GP approximation for a design where each level has three points. The posterior 
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mean (red curve) of the GP approximation is close to the accurate likelihood (orange 
curve) and most of the samples are within the interval estimation given by the blue 
shaded area. For instance, for β = 0.105, 92% of the samples are within the interval 
estimation. However, the maximum value varies for each sample. 
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FIGURE 4.3: Log-likelihood samples (grey curves) along with the posterior mean of the 
three-level GP approximation (red curve), the accurate log-likelihood (orange dashed 
curve) and the training points of low-level (green dots), middle level (pink dots) and 

high-level (blue dots) for the Ising model example. 

In Figure 4.4 we have the approximate location of the maximum for each sample using 
optimisation. As can be seen, the location of the maximum is different for each sample. 
With the increase of the training points we expect the locations of the maximum to 
concentrate to one area like the GLMM example. 

4.4.3 Posterior distribution of the model parameter 

To compute the posterior distribution of the model parameter we follow Algorithm 1. 
For Step 1 we compute the GP posterior distribution. After ftting the GP process pos-
terior distribution, we sample from a corresponding multivariate normal distribution. 
We obtain samples of the unormalised posterior distribution of the model parameter by 
multiplying the samples of the approximate likelihood from Gaussian process regres-
sion with a prior distribution. We normalise the accurate posterior density numerically 
so that the area under the curve is one and get the posterior GALE of the model param-
eter. 
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FIGURE 4.4: Log-likelihood samples (grey curves) along with the posterior mean of the 
three-level GP approximation (red curve), the accurate log-likelihood (orange dashed 
curve) and the training points of low-level (green dots), middle level (pink dots) and 
high-level (blue dots) and the location of the maximum for each sample (vertical blue 

dashed lines) for the Ising model example. 

Generalised linear mixed model 

Working with the GLMM example, as a prior distribution of the standard deviation of 
the random effects we use a half-Cauchy prior distribution with scale equal to 5. The 
half-Cauchy is a convenient weakly informative distribution which has a broad peak 
at zero and a scale parameter (Gelman et al., 2013). Moreover, the half-Cauchy prior 
performs well near the origin and does not lead to drastic compromises in other parts 
of the parameter space (Polson and Scott, 2012). Most importantly, we have chosen a 
half-Cauchy prior since the variance parameter has to be positive. The posterior GALE 
of the model parameter for the GLMM example is shown in Figure 4.5 for two designs. 

Ising model 

For the Ising example, we choose as a prior distribution of the parameter β a Cauchy 
distribution with location 0.2 and scale 25. The posterior GALE for the GLMM example 
is shown in Figure 4.6. 
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FIGURE 4.5: Posterior GALE for the two-level approximation of the GLMM example 
for two designs. 
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FIGURE 4.6: Posterior GALE for the three-level approximation of the Ising model ex-
ample. 

4.4.4 Comparisons 

We would like to check if the approximated posterior distribution of the model pa-
rameter is valid. For examples where we cannot compute the posterior distribution 
analytically, we have an accurate approximation of the likelihood and hence we can 
multiply that with the chosen prior to get an accurate approximation to the posterior. 
As another form of comparison, we have a plot of three posterior densities of the model 
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parameter obtained using the posterior GALE of the model parameter, the accurate ap-
proximation of the posterior and the posterior calculated using the GP posterior mean 
as an approximation of the log-likelihood, which we call the single approximated pos-
terior. We apply these to both of the examples. 

Generalised linear mixed model 

Figure 4.7 shows the posterior GALE (green curve) for each combination of the train-
ing points and the accurate approximation of the posterior (orange curve). With the 
increase of the training points used for each level of approximation used in the GP re-
gression model we obtain a better approximation since the two curves look similar and 
overlap for some values of the parameter. 
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FIGURE 4.7: Normalised posterior GALE (green) for the GLMM example for the 
model parameter with the accurate posterior of the model parameter (orange) for two 

designs. 

Figure 4.8 compares the posterior densities of the model parameter σ obtained using 
the posterior GALE (green), the accurate approximation of the posterior (orange) and 
the single approximated posterior (pink). The three curves giving the posterior of the 
model parameter have a similar shape. The posterior GALE and single approximated 
posterior distributions are a bit wider than the accurate posterior in Figure 4.8a where 
there are less training points of the low-level due to the extra uncertainty of the log-
likelihood approximation. 



74 Chapter 4. Inference for the model parameters and uncertainty

0.0

0.2

0.4

0.6

0 1 2 3
σ

P
os

te
rio

r d
is

tri
bu

tio
n

accurate

GALE

single

0.0

0.2

0.4

0.6

0 1 2 3
σ

P
os

te
rio

r d
is

tri
bu

tio
n

accurate

GALE

single

(A) D1 = 3, D2 = 3 (B) D1 = 4, D2 = 3 

FIGURE 4.8: Comparing posterior densities of the model parameter of the GLMM 
example obtained using three different ways for two designs. 

Ising model 

Figure 4.9 shows a comparison between the posterior GALE of the model parameter 
(green curve) and the exact posterior (orange curve) for the Ising model example. 
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FIGURE 4.9: Normalised posterior GALE (green) for the Ising example for the model 
parameter with the exact posterior of the model parameter (orange). 

Figure 4.10 compares the posterior densities of the model parameter β obtained using 
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the posterior GALE (green), the accurate/exact posterior (orange) and the single ap-
proximated posterior (pink). The posterior GALE is closer to the exact posterior com-
pared to the single approximated posterior indicating the need of sampling from the 
multi-level GP approximation of the log-likelihood and not relying solely in the single 
approximated posterior which overestimates the posterior around the maximum. 
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FIGURE 4.10: Comparing posterior densities of the model parameter of the Ising 
model example obtained using three different ways. 

4.5 Summary 

In this chapter, the main goal was the approximation of the posterior distribution of 
model parameter in order to conduct inference of the model parameter and to assessed 
the uncertainty generated from the Gaussian process regression when approximating 
the likelihood and the underlying uncertainty from the likelihood itself. We presented 
how sampling form the GP posterior distribution can be applied to compute an ap-
proximated posterior distribution of the model parameters. 

We demonstrated how we can approximate the posterior distribution of the model pa-
rameters using the methodology presented through the generalised linear mixed model 
where the likelihood is intractable and the posterior distribution cannot be calculated 
analytically. We used the Gaussian process regression with multi-level approximation 
case to compute an approximation of the log-likelihood and then we sampled to ob-
tained the posterior given approximation likelihood evaluations. As shown in this 
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chapter, with the increase of the low-level training points, for the multi-level approx-
imation case, we managed to compute a good approximated posterior distribution of 
the model parameter. 

Concluding, the approximated posterior distribution will help us to conduct inference 
for the model parameters and to combine the uncertainty from the likelihood approxi-
mations using Gaussian process regression and hierarchical modelling and the under-
lying uncertainty of the model parameters given the data. 
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Chapter 5 

Experimental Design and Expected 
Gain in Utility 

5.1 Overview 

Bayesian optimisation (BO) is a particularly well-suited sequential design method to 
global optimisation problems where the function we want to optimise is an expensive 
to evaluate function, f , or it might require running an expensive simulation. It was frst 
proposed by Kushner (1964) and improved by Močkus (1975) and Jones et al. (1998). 

Likelihood approximations are one case where general Bayesian optimisation methods 
for a function f could be used, where f is a likelihood. Considering the hierarchical ex-
periments and the likelihood approximations discussed in previous chapters, we need 
to decide at how many points to evaluate each level of likelihood approximation based 
on their cost, and at which values of the parameters, so that we compute an accurate 
approximation to the maximum likelihood estimate at minimal cost. 

We use BO to choose the experimental design of the computer experiment by optimis-
ing the likelihood. Given a design and the corresponding approximate function eval-
uations, we defne a utility as the maximum of the emulated high-level function given 
the data. Given some initial design and corresponding approximate function evalua-
tions we need to choose a new point to add to the design without further evaluations 
of the function approximations. We have the posterior distribution of each approxima-
tion at any candidate point and we use this to compute the expected utility of adding 
any candidate point to the existing design. We add the point which gives the largest 
expected gain in utility (EGU) relative to the cost of evaluating that level of function 
approximation. When the value of the EGU falls below a predefned threshold then we 
do not gain anymore information from adding any new points to the design and so we 
stop. 
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5.2 Bayesian optimisation 

5.2.1 Introduction 

Bayesian optimisation is a class of methods used for optimising objective functions that 
are computationally expensive to evaluate. In general, Bayesian optimisation creates 
a surrogate for the objective function and computes the uncertainty in that surrogate 
using Gaussian process regression. Then it uses an acquisition function to choose where 
to sample next. 

The Bayesian optimisation is outlined in Algorithm 2. More specifcally, when we work 
with Bayesian optimisation, we assume a prior distribution for the unknown or expen-
sive function f , usually a Gaussian process prior. We then start by evaluating the func-
tion at an initial design of a small number of randomly selected space-flling design 
points, obtaining their function values and ftting a Gaussian process (GP) regression 
model to the results. The aim is to choose a new point to add to the design. We achieve 
this via an acquisition function to select the location of the next observation and up-
date the prior to the posterior for each new point added to the design (Frazier, 2018). 
The acquisition function calculates the value that would have been generated by eval-
uating the objective function at a new point based on the current posterior distribution 
over f . 

The posterior probability of f is updated using the prior and all the available function 
evaluations. The GP posterior estimates the function value for any point we consider 
in the design space, as well as the uncertainty of the estimation. Therefore, we are able 
to make inference about the optimum and we repeat this process until some stopping 
criterion is met. 

Algorithm 2 Bayesian optimisation 

1. Assume a prior for the expensive function f ; 

2. Evaluate f at an initial design; 

Repeat sequentially steps 3-5 until some stopping criterion is met: 

3. Choose a new design point via an acquisition function; 

4. Update the posterior probability distribution of f using the prior and all the avail-
able data (function evaluations at the existing points and at the new point) using 
Bayes’ theorem; 

5. Conduct inference about the optimum. 

To choose the new design point we need to make sure that there is a balance between 
exploration and exploitation behaviour. Exploration means to evaluate the f at a point 
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x in a highly uncertainty region and examine the case where f (x) might be greater 
that f (x ∗) where x ∗ is the point that maximise f . Exploitation is gained from function 
evaluations, best estimated function value, meaning to include locations where there 
might be a high probability that f (x) could be larger than f (x ∗). Both exploitation 
and exploration are required, that means that a candidate point x that is both more 
exploitative and more exploratory than an alternative point x is to be chosen over x ∗. 

Acquisition functions guide how to explore the surface during Bayesian optimisation 
(Wilson et al., 2018). They encode the value of potential points at which to evaluate 
the function in the optimisation and defne the balance between exploration and ex-
ploitation. There are a large number of acquisition functions available. Some common 
choices for the acquisition functions are expected improvement (EI), entropy search and 
knowledge gradient. We will give more emphasis on the EI acquisition function, which 
measures the expected value of the improvement at each point over the best observed 
point. 

5.2.2 Expected improvement 

The EI acquisition function was frst introduced by Močkus (1975) and developed af-
terwards by Jones et al. (1998). It is used for effcient optimisation of computationally 
expensive black-box functions. The improvement can be considered as an increase in 
utility when a new point is been added to the design. 

Consider the case where there is no noise in the observations and let 

yi = f (xi). 

Let D = (x1, . . . , xn) be a design, and defne the utility of that design to be 

u(D) = max f (x). (5.1) 
x∈D 

This utility corresponds to a particular method for choosing which point x to report as 
the best point, once we have chosen a design and ftted a Gaussian process. With this 
utility, we say that we would choose the point in our training set which has the largest 
value of f (.). Once the utility is fxed, we can defne an improvement for a candidate 
point x̃ as the difference in the utility between a new design D̃ = (x1, . . . xn, x̃) and the 
current design D. The improvement I(.) is given by 

I(x̃) = u(D̃ )− u(D). (5.2) 

We want to calculate how much the utility can be expected to improve over the current 
optimum for every possible input. 
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By the time we consider adding the new candidate point, we know the values of the 
function at the design points D, f (D) = ( f (x1), . . . , f (xn)). Let f ∗(D) = maxx∈D f (x)
be the maximum point in the design D. Conditional on f (D), 

u(D)| f (D) = f ∗(D) (5.3) 

is a known quantity, whereas  f (x̃) if f (x̃) > f ∗(D)
u(D̃ )| f (D) = = max{ f (x̃), f ∗(D)} (5.4) f ∗(D) otherwise 

is random, depending on the unknown value of f (x̃). Conditional on f (D), the im-
provement is 

I(x̃)| f (D) = max{ f (x̃)− f ∗(D), 0}. (5.5) 

Therefore, the expected improvement is 

EI(x̃) = E[I(x̃)| f (D)], (5.6) 

where the expectation is taken over f (x̃), which is normally distributed with mean and 
variance which can be calculated from the GP ft to (D, f (D)). In a single-level case of 
the multi-level GP approximation with no noise the expected improvement is available 
in closed form, which makes it easy to use. Some useful properties of the EI are that EI 
is zero at points that are already in the design and the distance from a sampled point 
increases then EI increases as well. 

The expected improvement process works following Algorithm 3. We start by choos-
ing an initial set of sampled points spread over the entire design space. Preferably a 
design with space-flling properties so that we uniformly cover the domain to explore 
the function globally. We then evaluate the function at the initial design and use the EI 
formula from (5.6) to choose the point that gives the greatest EI from a set of candidate 
points and we add it to the existing design. This process stops when the EI is smaller 
than a predefned tolerance value. 

Note that the main focus of the examples used in the thesis is the location of the maxi-
mum and we assume MLE for the underlying inference. In a different situation, where 
we work in Bayesian inference we would need to emulate the whole likelihood surface 
rather than just the maximum. 

Generalised linear mixed model example 

As a demonstration of the EI we have a single-level approximation of the log-likelihood 
of the GLMM model. Figure 5.1 shows the posterior mean of the GP calculated in 
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Algorithm 3 Computing expected improvement 

1. Choose a small initial set of sampled points spread over the entire design space; 

2. Evaluate the true function at these points; 

3. Use EI formula 

EI(x̃) = E[I(x̃)| f (D)]

to pick the location of the next evaluation among some candidate points - choose 
the point that gives the greatest expected improvement; 

4. After observing that point add it to the training set and repeat; 

5. Stop when the maximum of the EI is smaller than a tolerance value. 

red calculated using the initial experimental design consisting of three points given in 
green. The credible intervals are shown with the blue shaded area and the accurate 
approximation with the dashed orange line. 
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FIGURE 5.1: Posterior mean (red curve) as a single-level approximation to the log-
likelihood for the GLMM example with three training points as the initial design 

(green dots) and the accurate log-likelihood (orange dashed curve). 

We add new points to the design using Algorithm 3. The results of the EI for all the 
candidate points and the resulting GP posterior mean after each addition of a new point 
are shown in Figure 5.2 with the chosen point to add to the design indicated in purple. 
For the frst iteration, shown in Figure 5.2a, the EI curve has one peak at the candidate 
point x̃ = 0.83 indicating the we would sample there next. For the next iteration, as 
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shown in Figure 5.2b, we add the new point at x̃ = 1.03. The fnal EI iteration and 
the resulting posterior mean are given in Figure 5.3 where the new point is at x̃ = 1.03 
again. 

The prior mean structure for this example was constant so that we could be able to 
demonstrate how the EI works since using a quadratic prior mean structure resulted to 
the GP approximation being overconfdent and overestimating the log-likelihood. This 
shows that even with not the appropriate prior mean structure the GP approximation 
can beneft from using the EI to choose the experimental design. 
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FIGURE 5.2: Expected improvement for each candidate point for two iterations and 
resulting GP posterior mean after the addition of a new point (purple dot) for the 

single-level approximation of the GLMM example. 

The hyperparameters of the GP were re-estimated after the addition of each new point 
to the design. The estimated hyperparameters of the GP for each iteration are shown 
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FIGURE 5.3: Final expected improvement iteration and GP approximation using the 
posterior mean (red curve) as a single-level approximation to the log-likelihood for the 

GLMM example. New point added is shown with the purple dot. 

in Figure 5.4. The blue dots give the estimated signal variance hyperparameter and the 
red dots give the estimated length-scale hyperparameter values. As can be seen, the 
hyperparameters tends to decrease after the frst few iterations of the EI. The addition of 
uncertainty bounds in Figure 5.4 and subsequent fgures of hyperparameter estimation 
will be benefcial and we will consider this as part of the future work. 
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FIGURE 5.4: Hyperparameter estimation after each iteration of the expected improve-
ment and the addition of new design points for the GLMM example. 
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5.2.3 Expected improvement for noisy observations 

Suppose that we do not observe f (xi) but we observe 

yi = f (xi) + ϵi, ϵi ∼ N(0, σ2). 

Given noisy observations the GP regression proceeds similarly to the noiseless case and 
we obtain the GP posterior as explained in Section 3.2.5. Computing EI for noisy ob-
servations is challenging because we no longer know the function value of the current 
best point. The utility of a design D can still be defned as in (5.1) but we no longer ob-
serve f (D), and we need to condition on the observed values of yi at the design points 
D = (x1, . . . , xn) which are y(D) = (y1, . . . , yn). 

The expected improvement is 

EI(x̃) = E[I(x̃)|y(D)], (5.7) 

which is not available in closed form for noisy observations. Calculating the EI in the 
noisy case is more challenging that in the noise-free case. 

It is questionable whether the utility (5.1) is sensible for the noisy case. In the noise-
free setting, this utility could be justifed as taking a cautious approach, only choosing 
to report a point as optimal if we have evaluated the function f (.) there. This guard 
against the possibility that the true function values outside of the design points may 
differ substantially from the values predicted under the model. 

However, in the noisy case, we do not observe the function values even at the design 
points, so this justifcation for the utility (5.1) no longer holds. A consequence of us-
ing this utility is that we will never choose the same point twice in the design as the 
expected improvement for a point already in the design is zero. This is a weakness of 
this approach. Intuitively it could be helpful to evaluate the function several times at a 
single point, in order to improve our knowledge of the value of the underlying function 
there. When evaluations have noise, the fnal solution reported will necessarily include 
uncertainty since we can hardly evaluate it an infnite number of times (Frazier, 2018). 

For the likelihood approximations we are interested in the rest of the thesis, the under-
lying function is deterministic, so in the absence of error we will always get the same 
point, which the GP will exactly interpolate. The methodology of this chapter can be 
applied to underlying functions which are stochastic. 

Numerous methods in the literature approach Bayesian optimisation for noisy observa-
tions. The knowledge gradient, entropy search, and parallel entropy search acquisition 
functions apply directly in the setting where noise is included, and they retain their 
one-step optimality properties. 
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Knowledge gradient can outperform expected improvement substantially in problems 
with substantial noise (Frazier et al., 2009). The knowledge gradient accounts for the 
inclusion of noise and does not restrict the fnal recommendation to a previously sam-
pled point. It explores a class of solutions wider than just the ones that have been pre-
viously evaluated when recommending the fnal solution. A simple way to compute 
the knowledge gradient acquisition function is by using simulation (Frazier, 2018). 

The entropy search (Hennig and Schuler, 2011) acquisition function values the infor-
mation there is about the location of the global maximum according to its differential 
entropy. It explores the point to evaluate that causes the largest decrease in differential 
entropy. Predictive entropy search (Hernández-Lobato et al., 2014) looks for the same 
point, but uses a reformulation of the entropy reduction objective based on mutual 
information. Entropy search can be computed and optimised approximately (Hennig 
and Schuler, 2011), however, it is still challenging because the entropy of the maximiser 
of a Gaussian process is not available in closed form and need a large number of eval-
uations (Frazier, 2018). 

Unlike EI, which only considers the posterior at the point sampled, knowledge gra-
dient, entropy search and predictive entropy search are infuenced by how the mea-
surement alters the posterior over the whole domain, not only whether it has an im-
provement over an incumbent solution at the sampled point which is benefcial when 
working with noisy observations. Therefore, they can provide signifcant value to the 
Bayesian optimisation problem compared to EI. 

Knowledge gradient, entropy search and predictive entropy search are valid ap-
proaches for dealing with noisy observations. However, for this thesis we do not 
consider knowledge gradient or entropy search further since we are interested in a 
method that can be expanded to consider multi-level Bayesian optimisation as well as 
noisy observations. Therefore, we introduce in the next section the expected gain in 
utility. 

5.3 Expected gain in utility 

5.3.1 Introduction 

The utility (5.1) corresponds to a certain reporting method which is a method for choos-
ing which point x to report as the best point, which maximises the function f (.), once 
we have chosen a design and ftted a GP. By considering different possible reporting 
methods, we can derive corresponding utility, improvement and expected improve-
ment functions. 
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In general, let x ∗(D) be the reported maximiser of the function f (.), given design points 
D and corresponding response values y(D). Note that the response values could be of 
any kind of function evaluations such as noise-free function evaluations, noisy function 
evaluations, or function evaluations at different accuracy levels, which is what we work 
with. Given any such x ∗(D), the utility for the design D can be defned as 

u ∗(D) = f (x ∗(D)). (5.8) 

The utility (5.1) for the EI can be considered as a special case of (5.8) by choosing 
x ∗(D) = arg maxx∈D f (x). Note that the reported maximiser x ∗(D) behaves in the 
same way as in expected improvement so that we choose the point in the design D that 
gives the largest value of f (.). 

The function we want to maximise is the posterior mean of f (.). Hence, we have as our 
reporting method x ∗ that maximises the posterior mean of f (.), given the data. That is 

x ∗(D) = arg max µ f (x|D, y(D)), (5.9) 
x∈X

where µ f (.|D, y(D)) is the posterior mean and X is the set of all possible values of x. 

In general, the improvement can be given by 

I(x̃) = u(D̃ )− u(D) = f (x ∗(D̃ ))− f (x ∗(D)). (5.10) 

The expected improvement can be considered as the difference in expected utilities 
between the current design and the design with the candidate point x̃ added. To dis-
tinguish between this extension of expected improvement and the original defnition 
of expected improvement, we follow the work of the unpublished manuscript of Waite 
and Woods (2017) and call this quantity the Expected Gain in Utility (EGU) which is 
given by 

EGU(x̃) = E[I(x̃)] = E[u(D̃ )]− E[u(D)] = E[ f (x ∗(D̃ ))]− E[ f (x ∗(D))]. (5.11) 

Hence, we need to compute the expected utility for the current design, E[u(D)], and the 
expected utility of the design with the added candidate point x̃, E[u(D̃ )]. Some useful 
properties of the EGU is that the EGU is non-negative and it can be shown that the EI 
is a special case of the EGU (Waite and Woods, 2017). 

Recall that for the cases we work on in this thesis, to fnd x ∗(D), we ft a Gaussian 
process to the data (D, y(D)). Depending on the application, this might be a simple 
GP without noise, a GP with noise, or a multi-level GP. We then compute the posterior 
mean for the function f (.), and fnd the value of x which maximises this posterior mean. 
At the point which we consider adding x̃, the responses y(D) are known, so x ∗(D) is 
fxed. 
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It can be shown that the expected utility of the current design is the maximum of the 
posterior mean 

E[u(D)] = E[ f (x ∗(D))] = µ f (x ∗(D)|D, y(D)) = max µ f (x|D, y(D)). (5.12) 
x∈X

For notation purposes, let µ∗f (x|D, y(D)) be the maximum of the current posterior 
mean, hence, E[u(D)] = µ∗f (x|D, y(D)). 

Computing the expected utility of the design with added x̃ it is a bit more challenging 
since the expectation is with respect to the posterior distribution of the function f (.)
and the response at the candidate point y(x̃), given the current training data (D, y(D)). 
The expected utility of the design with added x̃ can be decomposed as 

E[u(D̃ )] = Ef {Ey(x̃)[u(D̃ )]}. 

We can use a Monte Carlo approximation to E[u(D̃ )] if in the inner expectation we fx 
the function f (.) and calculate the expected utility conditional on this and in the outer 
expectation, we take the expectation with respect to the current posterior distribution 
for f (.). Another idea to approximate E[u(D̃ )] based on Waite and Woods (2017) is to 
switch the ordering of the conditioning, resulting to 

E[u(D̃ )] = Ey(x̃){Ef |y(x̃)[u(D̃ )]}. (5.13) 

In the inner expectation, we fx the value of the response at the candidate point y(x̃)
and calculate the expected utility conditional on this. In the outer expectation, we take 
the expectation with respect to the current posterior distribution for y(x̃). The inner 
expectation from (5.13) is given by the maximum of the new posterior mean of f (.)
given the additional point (x̃, y(x̃)). That is, 

Ef |y(x̃)[u(D̃ )] = Ef |y(x̃)[ f (x ∗(D̃ ))]

= µ f (x ∗(D)|D̃, y(D̃ ))
(5.14) 

= max µ f (x|D + x̃, y(D̃ ))
x∈X
∗= µ f (D̃, y(D̃ )). 

The posterior predictive density for y(x̃) given the current training data (D, y(D)) is a 
normal density derived from the Gaussian process posterior at candidate point x̃. For 
notation, let µy(x̃) be the posterior predictive mean and σy(x̃) be the standard deviation 
of y(x̃). We have that E[u(D̃ )] can be written as an integral  ∞

E[u(D̃ )] = µ∗f (D̃, y(D̃ ))ϕ(y, µy(x̃), σy(x̃))dy, (5.15) 
−∞

where y(D̃ ) = y(D) + y and ϕ(y, µ, σ) is the N(µ, σ2) density. We could approxi-
mate this one-dimensional integral by using quadrature. Suppose that z1, . . . , znq and 
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w1, . . . , wnq are standard Gauss-Hermite quadrature (Liu and Pierce, 1994) points and 
weights such that  ∞ nq 

g(z) exp (−z2)dz ≈ ∑ wig(zi). (5.16) 
−∞ i=1 

√
Let yi = µ + 2σzi, vi = wi/

√
p, then (5.16) becomes 

 ∞ nq 

g(y)ϕ(y, µ, σ)dz ≈ ∑
−∞

yig(yi). (5.17) 
i=1 

For a multi-level case we are concern about which is the best level to add the new point. 
Therefore, we set y(x̃) = fi(x̃) if x̃ is a candidate point to be added to level i. 

Recall that our aim is to approximate E[u(D̃ )] at each candidate point x̃ to compute the 
EGU from (5.11). The procedure for approximating E[u(D̃ )] is described in Algorithm 
4. We start by ftting a GP approximation using the initial training data to compute the 
posterior mean and posterior covariance. We compute quadrature points based on the 
mean and covariance and we compute the maximum of the posterior mean for each 
quadrature point after ftting a new GP where the new point has been added to the 
design. We continue by fnding the maximum of the posterior mean and we compute 
an approximation to the expected utility at the new design given by 

nq 

E[u(D̃ )] ≈ ∑ viµ
∗
i . 

i=1 

Algorithm 4 Approximating E[u(D̃ )] at each candidate point x̃ 

1. Find the mean µy(x) and standard deviation σy(x̃) of posterior predictive distri-
bution of y(x̃) given the current Gaussian process ftted to the initial training data 
(D, y(D)); 

√
2. Find quadrature points yi = µy(x̃) + 2σy(x̃)zi, i = 1, . . . , nq; 

3. Compute µ∗ = µ∗f (D + x̃, y(D) + yi) for each quadrature point yi, i = 1, . . . , nq,i 
by ftting a new Gaussian process with the new point (x̃, yi) added to the training 
set; 

4. Find the maximum of the new posterior mean of f (.); 
nq5. Calculate ∑i=1 viµ

∗ as an approximation to E[u(D̃ )].i 

Therefore, we can combine the approximation of E[u(D̃ )] from Algorithm 4 with the 
expected utility of the current design from (5.12) to compute the expected gain in utility 
from the formula 

EGU(x̃) = E[u(D̃ )]− E[u(D)]. 
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The quality of the approximation of E[u(D̃ )] should improve as the number of quadra-
ture points nq increases. We have also used a Monte Carlo approach for approximating 
E[u(D̃ )] but it was more time-consuming, compared to the approximation presented 
in Algorithm 4. This happened because the MC approach required ftting a new GP at 
each of the simulation runs for each candidate point at which we would like to evaluate 
the expected gain in utility. For suffciently large nq the approximation in Algorithm 4 
was within the uncertainty interval for the analogous Monte Carlo approach. 

5.3.2 Applications 

Introduction 

We consider some simple examples to demonstrate the implementation of the EGU. For 
each example we start with an initial design D, set of training points, and each time we 
add one more point to the design based on the results of EGU. The posterior mean of the 
Gaussian process is been plotted each time, and we can see how the uncertainty reduces 
with the addition of new training points. The estimated values of the hyperparameters 
after each iteration are presented as well. 

The EGU for all the candidate points and the location and the value of the maximum, 
which is where we add the new point to the design are shown in the relevant plots. The 
EGU plots are useful as a visual confrmation of convergence. With the addition of new 
points in the design, based on points that maximise the EGU, the value of EGU will 
eventually settle down. As stopping criteria of the EGU we defne a tolerance value of 
EGU that we are satisfed with. 

Generalised linear mixed model 

Recall the GLMM example in Section 3.4.3 where we want to compute an approxima-
tion the log-likelihood. We work with a single-level GP approximation. We start with 
the initial design and we ft a GP. In Figure 5.5 we have the initial posterior mean, given 
by the red curve, which can be used as the approximation to the log-likelihood. Our 
aim is to maximise the posterior mean using the EGU to choose the experimental de-
sign. The green dots are the training points and the blue area gives the 95% credible 
interval estimate. We use this simple example as a demonstration for the EGU algo-
rithm for the single-level approximation case. For this example we do have an accurate 
approximation of the log-likelihood given by the orange dashed curve. 

Figure 5.6 shows the EGU function for the GLMM example for the frst few iterations. 
The EGU of the frst iteration has one peak at the candidate point x̃ = 1.26 indicating 
that we would sample there. For the following iteration, as shown in Figure 5.6b the 
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FIGURE 5.5: Posterior mean (red curve) as a single-level approximation to the log-
likelihood for the GLMM example with two training points as the initial design (green 

dots) and the accurate log-likelihood (orange dashed curve). 

EGU is maximised at x̃ = 0.47. The EGU meets its stopping criteria, hence there is no 
need to add any new points to the design. 

The resulting Gaussian process posterior mean after each iteration of the EGU along 
with the new candidate points added (purple dots) each time are shown in Figures 
5.6c and 5.6d. We can clearly observe an improvement on the posterior mean which 
is now closer to the accurate approximation of the log-likelihood (orange curve) and 
a decrease in uncertainty. At some areas, where there are limited design points the 
GP approximation underestimates the log-likelihood. However, the main focus of the 
EGU is the location of the maximum and not the whole likelihood surface. To deal with 
the case where we want to emulate the whole likelihood surface, a Bayesian inference 
approach would be more suitable. 

Following this procedure we achieve a good approximation of our log-likelihood by 
avoiding multiple unnecessary random evaluations which might be benefcial for the 
approximation but costly at the same time. 

The EGU function is multi-modal as shown in the EGU plots. Similarly to the EI ap-
proach, it is easy to demonstrate that EGU is zero at the sampled points. For this ex-
ample, we have included a design point at x = 1.73 in the set of candidate points to 
demonstrate that the EGU is zero at points that have already been in the design. The 
EGU is positive in between the candidate points, though perhaps very small, as can be 
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FIGURE 5.6: EGU for each candidate point for the GLMM example for two iterations. 
Gaussian process posterior mean after each iteration of the EGU for the GLMM exam-

ple with the new point added in purple. 

seen in Figure 5.6. It is also common to have large areas where the EGU is essentially 
zero and so appears fairly fat. 

We have the estimated hyperparameters of the GP for each iteration after adding the 
new candidate point to the design in Figure 5.7. The blue dots give the estimated signal 
variance hyperparameter and the red give the length-scale hyperparameter values. 
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FIGURE 5.7: Hyperparameter estimation after each iteration of the EGU and the addi-
tion of new design points for the GLMM example. 

Ising model 

Recall the Ising model introduced in Section 2.4. We use the EGU algorithm to choose 
the design points for this example. Similarly to the GLMM example we have in Figure 
5.8 the initial GP posterior mean as an approximation to the log-likelihood of the Ising 
model. As can be seen, we use only three space-flling training points for our initial 
design (green dots) and the approximation is not particularly good. The red curve giv-
ing the approximation is not close to the accurate approximation given by the orange 
dashed curve. That could be also due to the choice of the prior mean structure which 
was linear prior. However, we use this example which does not have a great initial ft, 
to demonstrate how the EGU works. 

Figure 5.9 shows the frst two iterations of the EGU for the Ising model example. To 
start with, EGU has one peak at the candidate point x̃ = 0.22 indicating the we would 
sample there. For the next iteration, the expected EGU is maximised at x̃ = 0.28 and 
thus we add this point in our design. The resulting Gaussian process posterior mean 
after each iteration of the EGU along with the new candidate points added (purple 
dots) each time is also shown in Figure 5.9. 

The fnal EGU iteration and the resulting posterior mean are given in Figure 5.10 where 
the new point is at x̃ = 0.17. We managed to obtain a really good approximation of 
the log-likelihood using the EGU. The estimated hyperparameters of the GP for each 
iteration after adding the new candidate point to the design in Figure 5.11 where there 
is not a big change in the hyperparameters and they follow a similar trend. 
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FIGURE 5.8: Posterior mean (red curve) as a single-level approximation to the log-
likelihood for the Ising model example with the accurate log-likelihood approximation 

(orange dashed curve) and initial design points (green dots). 

5.4 Bayesian optimisation for multi-level Gaussian process 

5.4.1 Introduction 

One of the main focuses of our work are systems that can be approximated with models 
of varying degrees of accuracy. It would be preferable to work with the most accurate 
model. However, highly accurate models may need more time to compute making 
optimisation not effcient for most algorithms. On the other hand, working with a fast, 
low-accuracy model may result to a lower accuracy. Instead of searching for the optimal 
intermediate degree of accuracy, a sensible approach is to use all levels of models and 
construct a utility based on multiple levels. 

Considering the utility, suppose we have d levels, where level-1 is the least accurate 
(i) (i)and level-d is the most accurate, with design Di = (x1 , . . . , xni ) at level i, and noise-

free evaluations of the function fi(.) at the level-i design points Di, where f1(.) = f (.)
is the function we wish to emulate. 

The utility of a design D = (D1, . . . , Dd) could be 

u(D) = max f (x)
x∈D1 

to match the initial utility (5.1) as closely as possible, since we only know the values of 
the function of interest f (.) for the level-1 design points D1. However, with this choice, 
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FIGURE 5.9: EGU for each candidate point for two iterations and Gaussian process 
posterior mean after each iteration of the EGU for the Ising model example. New 

point added in purple. 

adding a point to the design at level-2 or above would leave the utility unchanged, so 
the improvement and expected improvement for such points are zero. With this choice 
of utility we would only ever choose to add points to the level-1 design. 

5.4.2 Literature on multi-level Bayesian optimisation 

Other researchers examine ways to do optimisation using both low and high-level 
models. Two of the approaches found in the literature for multi-level BO are the two-
stage learning, where low-level approximations are trained for a certain amount of 



95 5.4. Bayesian optimisation for multi-level Gaussian process

0e+00

2e-04

4e-04

6e-04

0.0 0.1 0.2 0.3 0.4
candidate points

E
xp

ec
te

d 
ga

in
 in

 u
til

ity

-67.5

-65.0

-62.5

-60.0

0.0 0.1 0.2 0.3 0.4
β

Po
st

er
io

r m
ea

n Approximation

 k = 2
 k = 3
 k = 4
 k = 6
Exact

-68

-66

-64

-62

0.0 0.1 0.2 0.3 0.4
β

po
st

er
io

r m
ea

n

(A) EGU III (B) GP approximation III 

FIGURE 5.10: Final EGU iteration and resulting Gaussian process posterior mean for 
the Ising model example. New point added in purple. 
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FIGURE 5.11: Hyperparameter estimation after each iteration of the EGU and the ad-
dition of new design points for the Ising model example. 

time in order to warm-up - start the learning on the expensive more accurate approxi-
mation, and the adding points to each level simultaneously approach. 

Considering the two-stage learning method, Alexander et al. (2007) use an exchange 
algorithm to choose which points of the search space to sample within each level of 
analysis. Their main idea is to explore the space at the low-level of accuracy and exploit 
at the high-level. They start by choosing an initial design for the low-level model, they 
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ft a GP approximation making sure that the cheap model achieves the desired model 
accuracy. Then, they select a subset of the design points of the lower level using their 
exchange algorithm and they build an initial multi-level model using both designs. 
Following an iterative process of updating the multi-level model with new data using 
expected improvement (probably any acquisition function could work) they evaluate 
next where the expected improvement is maximum. 

Song et al. (2018) propose the use of a Multi-fdelity Mutual Information Greedy (MF-
MI-Greedy) which is a general and principled multi-fdelity BO framework that pri-
oritises maximising the amount of mutual information gathered across different levels. 
Consider the fdelity as a level of accuracy of a model. The cost of each lower fdelity 
is determined according to the maximal approximation error in function value when 
compared with the target fdelity. MF-MI-Greedy is divided in two phases: the explo-
ration phase where the algorithm focuses on exploring the low fdelity actions and the 
optimisation phase where the algorithm tries to optimise the payoff function by per-
forming an action at the target fdelity. 

Another approach presented in Kandasamy et al. (2017) is to use the cheap approxi-
mations to guide search for the optimum of the function and reduce the overall cost of 
optimisation. The key idea is to choose a fdelity only if we have suffciently reduced 
the uncertainty at all lower fdelities. They are implementing Gaussian process up-
per confdence bound algorithm (GP-UCB) which models the function as a Gaussian 
process and uses upper confdence bounds techniques to determine the next point of 
evaluation. 

We propose the multi-level EGU which is an extension of the EGU presented in Section 
5.3. The multi-level EGU work with all of the models simultaneously and takes into 
consideration the cost of each level rather than working with each level separately. It 
will be interesting to compare the results from the EGU for multi-level BO with meth-
ods from the literature based on effciency, accuracy and cost as part of the future work. 

5.5 EGU for multi-level Gaussian processes 

5.5.1 EGU algorithm for multi-level Gaussian processes 

Choosing the experimental design of each level of approximation in a multi-level ap-
proximation case is challenging and there are several factors that need to be taken into 
consideration. To tackle this issue, we introduce the EGU for multi-level Gaussian pro-
cesses in order to choose the experimental design for each level of approximation based 
on its cost. 
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The EGU for a multi-level GP approximation is described in Algorithm 5. We start by 
estimating the hyperparameters of the multi-level GP and we ft the GP using the initial 
set of the design points of each level. Furthermore, we compute the EGU for each of 
the candidate points for each level separately based on Algorithm 4. With this step we 
compute what will be the expected gain in utility if we add the candidate point to each 
level. 

As part of the process, it will be necessary to compute a factor that determines the 
cost of each level of approximation and calculate the EGU per unit cost. the The EGU 
per unit cost is calculated by dividing the maximum EGU of each level of the set of 
candidate points with the predefned cost of each level. We will examine if it will be 
better to add the next point at the higher level of approximation, which we already 
know that will be benefcial but could me costly, or to add a point at the lower levels of 
approximation by comparing the EGU per unit cost of each level. 

Algorithm 5 EGU for multi-level GP approximation 

1. Estimate the hyperparameters and ft the Gaussian process using the multi-level 
approximation using the initial set of training points; 

2. Compute the EGU for each candidate point for each level separately based on the 
Algorithm 4; 

3. Calculate the EGU per unit cost of each level, where 

EGU per unit cost = max(EGU/cost); 

4. Compare the EGU per unit cost for each level to choose where is best to add the 
point; 

5. Add the new point to the level with the highest EGU per unit cost. 

5.5.2 Applications 

Overview 

We demonstrate the use of EGU for multi-level Gaussian process approximation us-
ing two examples. For each example we present the EGU for each level of approxi-
mation, the decision made, which includes the new point added to the design and at 
which level. We also plot the resulting posterior mean of the GP, which is used as the 
approximation to the high-level approximation of the log-likelihood function and the 
estimated values of the hyperparameters after the addition of the new point to the de-
sign. We have the GLMM example demonstrating the two-level approximation and the 
Ising model for the three-level approximation case. 



98 Chapter 5. Experimental Design and Expected Gain in Utility

Generalised linear mixed model 

For the two-level approximation of the likelihood of the GLMM we have the initial 
design and the posterior mean in Figure 5.12. We use Algorithm 5 to decide where and 
at which level is more benefcial to add the next training point. 
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FIGURE 5.12: Posterior mean (red curve) as a two-level approximation to the log-
likelihood for the GLMM example for the initial design with three points in each level. 

For the GLMM example we use LA as the low-level and AGQ as the high-level. There 
is not a big difference between the cost of the LA and the AGQ methods. Therefore 
for illustration purposes of this example we choose arbitrary values of the cost of each 
level with the AGQ method being 10 times more costly. 

Figure 5.13 shows the EGU per cost function for the GLMM example for the one it-
eration for the low-level and the high-level and the resulting GP posterior after the 
iteration of the EGU along with the new candidate points added in the design given 
in purple. We choose to add the new point at the level with the higher EGU per cost. 
Hence, we add the point to the high-level at x̃ = 0.92. The stopping conditions for the 
EGU is met because there is no more gain from adding more points to the design. As 
can be seen, there is an improvement on the approximation and we manage to decrease 
uncertainty. However, for some values in the interval, the approximation is overconf-
dent. 

The estimated hyperparameters for each approximation level after each iteration are 
shown in Figure 5.14. For this example, we only needed one iteration of the EGU to 
choose the experimental design, Hence, we can not have a clear understanding about 
the behavior of the hyperparameters. 
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FIGURE 5.13: EGU per cost of the candidate points for each level and resulting GP 
posterior after the addition of the new point (purple dot). 

Ising models 

In section 3.5.4 we introduced a third level of log-likelihood approximation for the Ising 
model. We would like to choose the experimental design of each level for a three-level 
GP approximation, which can easily be generalised for multi-levels. We follow the 
same procedure as for the two-level approximation EGU. The levels of approximation 
are based on the tuning parameter of the RDA method. 

For the Ising model example we have a cost function for each level of the RDA method 
for each k is given by 

2O(c + kc2k), (5.18) 
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FIGURE 5.14: Hyperparameter estimation after the EGU iteration and the addition of 
the new design point for the GLMM example. 

where n = m for a m × m grid as described in Section 2.4. For this example m = 10. 
This cost can be used when computing the EGU per cost to decide at which level we 
could add the candidate point x̃. 

The initial design for the example consists of four points in the low-level (green dots), 
3 points of the middle level (pink dots) and 3 points in the high-level (blue dots) as 
shown in Figure 5.15. The tuning parameter of the RDA method is k = 3, 4 and 6 for 
each level respectively. 

We add points to the design until there is no more beneft on the approximation of 
adding anymore points. This is based on a stopping criterion where the maximum 
value of EGU of all levels hits a minimum predefned threshold value. 

Figure 5.16 shows the EGU per cost of each candidate point for each level of approx-
imation. As can be seen, the EGU per cost of the low-level is higher than the EGU 
per cost of the high-level or the middle-level suggesting we add the next point to the 
low-level design. The approximation of the log-likelihood (red curve) considerably im-
proves and gets closer to the exact log-likelihood (orange dashed line). 

The EGU per cost for the next iteration for each level is given in Figure 5.17. The re-
sulting posterior mean of the GP is also shown and the new point added to the design 
is given with the purple dot. Based on the EGU per cost of each level we add a new 
point at the low-level at x̃ = 0.16. For the second iteration of the EGU we can see 
that the EGU of each level is negative, however it is really close to zero. The fnal GP 
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FIGURE 5.15: Posterior mean (red curve) as a three-level GP approximation to the log-
likelihood for the Ising model example with the initial design: 4 training points of the 
low-level (green dots), 3 points of the middle-level (pink dots) and the 3 points of the 

high-level (blue dots). 

approximation has really small uncertainty and underestimates the log-likelihood for 
some parts of the interval. 

The estimated hyperparameters for each approximation level after each iteration are 
shown in Figure 5.18. As can be seen, the hyperparameters converge to a single value 
after few iterations of the EGU. 

5.6 Summary 

In this chapter we presented a Bayesian optimisation approach to choose the experi-
mental design (set of training points) for the Gaussian process emulator of the function 
of interest, which in our case is the log-likelihood function with the aim to fnd the 
point maximising the log-likelihood. The reporting method, utility, we use it such that 
we choose the new point that maximises the posterior mean of our function of interest. 

We presented the multi-level EGU for BO which can be used when we aim to choose a 
new point to add to the existing design without further evaluations of the function ap-
proximations when multiple levels of approximation are available each with different 
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FIGURE 5.16: EGU per cost of the candidate points for each of the three levels and the 
resulting GP posterior for the Ising model example. New point added given by the 

purple dot - Iteration 1. 

computational cost. The EGU can be used to develop high quality design for hierarchi-
cal experiments across multiple areas beyond the likelihood approximation examples 
we have worked with in this thesis. 
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FIGURE 5.17: EGU per cost of the candidate points for each of the three levels and the 
resulting GP posterior for the Ising model example. New point added given by the 

purple dot - Iteration 2. 
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Chapter 6 

R package hela: hierarchical 
experiments and likelihood 
approximations 

6.1 Overview 

The aim of this chapter is to present the R package hela which stands for hierarchi-
cal experiments and likelihood approximations. The package hela offers a statistical 
method for statistical design, modelling and inference using systems and approxima-
tions available on at least two hierarchical scales. Moreover, it provides a method for 
choosing the experimental design for experiments with multiple levels. 

An example of the usage of hela is the approximation of intractable likelihood function 
using hierarchical experiments by combining approximations each having a different 
level of accuracy and cost. The user can input any model to approximate the likelihood 
they want. The package works for up to three levels of approximation of the intractable 
likelihood. For future versions of hela we would like to give the option to the user 
to use as many levels of approximation as they want. The package has three main 
functions, the gp post(), hyper est() and egu(). The package also has a plotting 
function gp posterior plot() to produce plots of the results. 

The GLMM example that will be used in this chapter to demonstrate how the package 
works has already been presented in this thesis. Hence, for more detailed analysis of 
the model structure and the dataset used refer to Section 3.4.3. 

The function gp post() stands for Gaussian process posterior and it is used to compute 
a multi-level GP posterior distribution using the method presented in Section 3.3. The 
implementation of gp post(), the arguments and the output are described in Section 
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6.3. The functions hyper est() and hyperest three() stand for hyperparameter es-
timation for two and three-level cases respectively, and they are used to estimate the 
hyperparameters of the GP using optimisation methods described in Section 3.2.8. The 
implementation of these two functions, the arguments and the output are described in 
Section 6.2. The egu() and egu three() functions stand for expected gain in utility and 
they are used to compute the experimental design of two and three-level GP approx-
imations respectively. The implementation of these functions, the arguments and the 
output are described in Section 6.4. 

The hela package can compute an approximation using up to three levels of approx-
imation. The extension to generalise hela for multi-level approximations, with no re-
striction on the number of levels used, will be included in future versions of hela. 

The package is available on GitHub and can be installed using the R code 

devtools::install_github("thdrnrch/hela", subdir="hela")

library("hela")

6.2 Hyperparameter estimation in hela

Usage of hyper optim() and hyper optim three()

The hyperparameters of the Gaussian process can be estimated using the functions 
hyper optim() and hyper optim three() for two and three-level approximations ac-
cordingly. The approach we use to estimate the hyperparameters ζ = (τ2, l) for each 
level of the GP and the coeffcient vector b is to maximise the likelihood as a function 
of the hyperparameters and b. We do that by maximising frst the b-profle likelihood 
over the hyperparameter. The numerical optimisation method used for the estimation 
is the Nelder-Mead method (Nelder and Mead, 1965). More details for the method used 
to compute the hyperparameters are given in Section 3.2.8. 

The functions have necessary and optional arguments. For both functions, the user 
needs to specify the initial values of the hyperparameters, that will be used for the 
optimisation, the training points of each level, the function evaluations of each level at 
the training points used and the prior mean structure. The usage of the hyper optim()

is given by 

hyper_optim(hypers, train_points_low, train_points_high,

l_train_low, l_train_high, prior_mean_str)

In a similar way, the usage of hyper optim three() is given by 
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hyper_optim_three(hypers, train_points_low, train_points_mid,

train_points_high, l_train_low, l_train_mid,

l_train_high, prior_mean_str)

The explanation of the arguments of the functions can be found below and in the doc-
umentation fle of the functions by typing in the R console the code 

?hyper_optim

?hyper_optim_three

Arguments of hyper optim()

The hyper optim() function has as its frst argument the initial values of the hyperpa-
rameters, hypers, that the user wants to use in the optimisation to estimate the hyper-
parameters. hypers will have to be a vector containing the initial values of the signal 
variance parameter and the length scale parameter of each level and the initial value of 
the autoregressive parameter. 

The user needs to specify the training points used for each level of approximation 
through the vectors train points low and train points high for low and high-level 
respectively. Similarly, the function has as arguments the evaluations of each approx-
imation level at the specifed training points through the vectors l train low and 
l train high for low-level and high-level respectively. 

The prior mean structure of the Gaussian process needs to be specifed as a function of 
the input points through prior mean str. The package has three options of prior mean 
functions available: linear prior mean, linear prior(), constant, const prior(), or 
quadratic, quad prior() structures, or the user can insert their own prior mean func-
tion as a function of the input points. The function uses a nugget term, p, which is 
predefned in the function and used for computational reasons as explained in Section 
3.2.6. The default value is p = 1e-4. We choose a small nugget term so it will not affect 
the results. 

An example of how the function works is given in Section 6.6 for the two-level GP 
approximation of the GLMM example. A table of the arguments of the hyper optim()

function and their description can be found in Table A.1 in Appendix A. The function 
arguments with the asterisk are mandatory for the function. 
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Output of hyper optim()

The function hyper optim() returns a list containing the estimated hyperparameters 
(optim hypers) of each level: 

The signal variance parameter of the low-level is

The length-scale parameter of the low-level is

The signal variance parameter of the high-level is

The length-scale parameter of the high-level is

The autoregressive parameter is

Additional components include the optimisation result (optim result). A table of the 
output of the hyper optim() function and their description can be found in Table A.2 
in Appendix A. 

Arguments of hyper optim three()

The function hyper optim three() works in a similar way as the hyper optim() func-
tion. The only difference is the addition of the training points and the evaluations of the 
third level of approximation given by train points mid and l train mid respectively. 

A table of the arguments of the hyper optim three() function and their description 
can be found in Table A.3 in Appendix A. The function arguments with the asterisk are 
mandatory for the function. 

Output of hyper optim three()

Similarly with the hyper optim() function, hyper optim three() returns a list con-
taining the estimated hyperparameters (optim hypers) of each level: 

The signal variance parameter of the low-level is

The length-scale parameter of the low-level is

The signal variance parameter of the middle-level is

The length-scale parameter of the middle-level is

The signal variance parameter of the high-level is

The length-scale parameter of the high-level is

The autoregressive parameter between the low and middle level is

The autoregressive parameter between the middle and high level is
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Additional components include the optimisation result (optim result). A table of the 
output of the hyper optim three() function and their description can be found in Ta-
ble A.4 in Appendix A. 

It is not compulsory for the remaining functions of the package to use the hyperparam-
eter estimation functions presented in this section to estimate the hyperparameters. 
The user can estimate the hyperparameters of the GP using their own optimisation 
method. However, when a hela function has as argument the estimated hyperparame-
ters the user needs to enter them in a vector form in the same format and order like the 
output optim hypers of the hyper optim() or the hyper optim three() functions. For 
example, for a two-level approximation the hyperparameters need to be in a vector of 
the form 

estimated_hypers <- c(sigma_sq_1, l_1, sigma_sq_2, l_2, r_1)

# sigma_sq_1 is the signal variance parameter of the low-level

# l_1 is the length-scale parameter of low-level

# sigma_sq_2 is the signal variance parameter of the high-level

# l_2 is the length-scale parameter of high-level

# r_1 is the autoregressive parameter

6.3 Multi-level Gaussian process approximation in hela

Usage of gp post()

The Gaussian process posterior distribution computed using the multi-level Gaussian 
process presented in Section 3.3 can be applied using the gp post() function for two 
and three levels of approximation. The function has necessary and optional arguments. 
The user needs to defne the 

• training points of each level 

• evaluations of each approximation level at the training points 

• test points the user wants to estimate the intractable function at 

• estimated hyperparameters as a result of hyper optim() or hyper optim three()

or any hyperparameter values the user estimated 

• prior mean structure 

• how many approximations levels are used 
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The usage of the gp post() is given by 

gp_post(train_points_low, train_points_high,

test_points, hypers, prior_mean_str,

train_points_mid = NULL, l_train_mid

l_train_low,

approx_levels,

= NULL)

l_train_high,

The explanation of the arguments of the function can be found below and in the docu-
mentation fle of the function by typing in the R console the code 

?gp_post

Arguments of gp post()

The gp post() function has as its arguments the training points of each level, 
train points low, train points mid, if the user computes a three-level approxima-
tion, default value is NULL, and train points high. Same holds for the evaluations of 
the approximation at the training points of each level l train low, l train mid and 
l train high. 

The user needs to specify the points that they want to predict the intractable function at, 
test points. Moreover, the function has as an argument the estimated hyperparame-
ters resulting from the output of the hyper optim() or hyper optim three() functions 
based on how many levels have been used. As previously mentioned, as an alterna-
tive, the user can enter their own estimated hyperparameters but they have to be in a 
specifc format, like the output of hyper optim(). 

The prior mean structure of the Gaussian process needs to be specifed as a function of 
the input points using prior mean str. The package has three available options: lin-
ear prior mean, linear prior, constant, const prior, or quadratic, quad prior, struc-
tures, or the user can insert their own prior mean function as a function of the input 
points. If the user used the hela functions for hyperparameter optimisation they need 
to make sure that they use the same prior mean structure for the two functions. More-
over, the approx levels argument is a constant indicating how many levels of approx-
imation are used. 

A table of the arguments of the gp post() function and their description can be found 
in Table A.5 in Appendix A. The function arguments with the asterisk are mandatory 
for the function. 
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Output of gp post()

The function gp post() returns a list containing the posterior mean (gp mean) and pos-
terior covariance (gp cov) of the Gaussian process posterior distribution. The resulting 
posterior mean can be considered as the approximation of the high-level approxima-
tion of the intractable function and the posterior covariance as a measure of uncertainty. 
A table of the output of the gp post() function and their description can be found in 
Table A.6 in Appendix A. 

6.4 Multi-level Bayesian optimisation using expected gain in 
utility in hela

Usage of egu()

The expected gain in utility method for choosing the experimental design of each level 
of approximation presented in Chapter 5 can be applied using the egu() function for 
a two-level approximation and the egu three() for a three-level approximation. The 
function has only necessary arguments. The user needs to specify the 

• GP posterior mean and covariance at the initial design 

• estimated hyperparameters from the initial design 

• initial values of the hyperparameters for the estimation 

• minimum tolerance value of the EGU as stopping criteria 

• maximum number of the training points to be added to the design as stopping 
criteria 

• candidate points 

• approximation functions of each level having as their input the training points 

• initial training points of each level 

• evaluations of each approximation level at the initial training points 

• test points 

• computational cost of each level 

• prior mean structure 
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The usage of the egu() is given by 

egu(result_gp, hypers, hyper_initial, egu_min, max_points,

cand_points, log_lik_high, log_lik_low,

train_points_low, train_points_high, l_train_low, l_train_high,

test_points, cost_h, cost_l, prior_mean_str)

The explanation of the arguments of the function can be found below and in the docu-
mentation fle of the function by typing in the R console the code 

?egu

Arguments of egu()

The egu() function has as its frst argument a list containing the GP posterior mean 
vector and the posterior covariance matrix of the initial design, result gp, which can 
be obtained using the gp post function. We treat the posterior mean as the quantity we 
want to maximise through the EGU method. Also, the function asks for the estimated 
hyperparameters at the initial design resulting from the output of the hyper optim() or 
hyper optim three() functions. Moreover, the user needs to specify the initial values 
of the hyperparameters for the estimation, hyper initial. 

There are are two quantities that act as stopping criteria of the EGU: a minimum toler-
ance value of EGU that the user is satisfed with, egu min, and the maximum number 
of additional training points, max points, to be added to the design. If one of the two 
stopping criteria is met then the EGU stops. The user needs to specify a set of candidate 
points that they want to include in the design, cand points, and the approximation 
functions of each level as a function of the training points. 

Moreover, the egu() function requires the initial training points of each level, 
train points low and train points high, the evaluations of the approximation of 
each level at the initial design, l train low and l train high and the computational 
cost of each level, cost l and cost h for the low-level and high-level respectively. 

As before, the prior mean structure of the Gaussian process needs to be specifed as 
a function of the input points using prior mean str. The user can use the package’s 
prior mean structures or insert their own prior mean function as a function of the input 
points. 

A table of the arguments of the egu() function and their description can be found in 
Table A.7 in Appendix A. The function arguments with the asterisk are mandatory for 
the function. 
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Output of egu()

The function egu() returns a list containing the updated training points of each level: 

The training points of the low-level are

The training points of the high-level are

Some of the additional components of the output of egu() include the GP posterior 
mean and covariance, the estimated hyperparameters after each addition of a new 
point, the EGU of each level of approximation, the new points added to the design 
and at which level. This information is also useful for plotting purposes to produce the 
EGU plots given in Chapter 5. A table of all of the outputs of the egu() function and 
their description can be found in Table A.8 in Appendix A. 

Arguments and output of egu three()

The egu three() function works in a similar way with the egu() function with the 
only difference that we now use one additional level of approximation. Tables of the 
arguments and outputs with their description of the egu three() function can be found 
in Table A.9 and A.10 in Appendix A. 

6.5 Plotting in hela

Usage of gp posterior plot()

The gp posterior plot() can be used to produce plots of the GP posterior distribution 
including the posterior mean, which we consider as the approximation of the high-
level approximation of the log-likelihood and the posterior covariance as a measure 
of uncertainty in the form of credible intervals. The plot also includes the training 
points used for each level and the true or accurate approximation to the log-likelihood 
if this is available. The plots of the GP posterior in this thesis were produced using the 
gp posterior plot() function. 

The function has necessary and optional arguments. The user needs to give the training 
points of each level, the function evaluations of each level at the training points, the test 
points used for prediction, the posterior mean vector and posterior covariance matrix 
as a result of using the gp post() function. The usage of gp posterior plot() is given 
by 
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gp_posterior_plot(train_points_low, train_points_high, test_points,

l_train_low, l_train_high, gp_mean, gpcov,

accurate = NULL, train_points_mid = NULL,

l_train_mid = NULL)

The explanation of the arguments of the function can be found below and in the docu-
mentation fle of the functions by typing in the R console the code 

?gp_posterior_plot

Arguments of gp posterior plot()

The gp posterior plot() function has as its arguments the training points of each 
level, train points low and train points high, the evaluations of the approxima-
tion of each level at the training points, l train low and l train high, of the low and 
high level respectively for the two-level approximation case. For the case where the 
user is using a three-level approximation the function has as optional arguments the 
training points, train points mid, and the log-likelihood approximation evaluations 
of the additional level training points, l train mid, whose default value is NULL. 

Moreover, the function requires the test points used for the prediction, test points, the 
posterior mean, gp mean, and posterior covariance, gp cov, as a result of the gp post()

function. The user can also inputs the true or accurate approximation of the high-level, 
accurate, if that is available, to plot for comparisons, the default value is NULL. 

A table of the arguments of the gp posterior plot() function and their description 
can be found in Table A.11 in Appendix A. The function arguments with the asterisk 
are mandatory for the function. 

Output of gp posterior plot()

The function gp posterior plot returns a plot of the Gaussian process posterior which 
includes the posterior mean (red curve), 95% interval estimation which is calculated 
based on the posterior mean and posterior covariance as a measure of uncertainty (blue 
shaded area) and the training points of each level (green, pink and blue dots for low, 
middle and high level respectively). Moreover, the function gives the option to plot an 
accurate approximation (orange dashed line) for comparisons. Examples can be found 
in previous chapters of the thesis and in Section 6.6. 
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6.6 Applications using hela package 

6.6.1 Overview 

In this section, the use of the hela package is demonstrated through the GLMM exam-
ple. In general, the user can use any model and up to three levels of approximation of 
the intractable likelihood they wish to compute an approximation for the high-level of 
approximation using multi-level GP approximation. 

6.6.2 Generalised linear mixed model example 

We focus on log-likelihood approximations and we using as our example the GLMM 
example presented in Section 3.4.3 for a two-level GP approximation. For examples that 
use three-level approximation the user can follow the same procedure as the two-level 
case but using the respective functions for the three levels as described in this chapter. 
The examples presented in previous chapters of this thesis can be reproduce using the 
functions in the hela package. 

The data for the GLMM example are taken from the glmmsr package (Ogden, 2019). The 
glmmsr package is not currently available on CRAN and can be obtained from GitHub 
using the R code 

devtools::install_github("heogden/glmmsr")

library("glmmsr")

For the GLMM model we use three training points of the low-level and three training 
points of the high-level as in Example 3.11. The training points were generated using 
a LHD from the randomLHS function of the lhs package (Carnell, 2022). The low-level 
approximation of the log-likelihood was calculated using the LA method and the high-
level using the AGQ approximation method with nAGQ = 10. The arguments for the 
GLMM example are 

train_points_low <- c(2.996337891, 0.001464844, 0.963134766)

train_points_high <- c(2.998535156, 0.002929688, 1.378417969)

test_points <- seq(0, 3, length.out = 100)

l_train_low <- c(-72.67779, -66.61996, -66.01664)

l_train_high <- c(-70.14021, -66.61994, -65.82183)

More specifcally, the evaluations of the log-likelihood approximations, l train low

and l train high, are computed using the code 
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modfr <- find_modfr_glmm(response ~ covariate + (1 | cluster),

data = two_level, family = binomial)

m_est <- c(0.7167604, -1.2733840)

# high-level

lik_function_high <- find_lfun_glmm(modfr, method = "AGQ", list(nAGQ=10))

train_high_inputs <- cbind(train_points_high, matrix(rep(m_est,

each = length(train_points_high)),

nrow = length(train_points_high)))

l_train_high <- apply(train_high_inputs, 1, lik_function_high)

# low-level

lik_function_low <- find_lfun_glmm(modfr, method = "Laplace", NULL)

train_low_inputs <- cbind(train_points_low, matrix(rep(m_est,

each = length(train_points_low)),

nrow = length(train_points_low)))

l_train_low <- apply(train_low_inputs, 1, lik_function_low)

We consider the log-likelihood of the GLMM as a function of the standard deviation 
of the random effects, we fx the remaining of the model parameters and we set them 
equal to their estimated values after ftting the model, m est. For more information on 
how to use the find modfr glmm() and find lfun glmm() functions please refer to the 
vignette of the glmmsr package (Ogden, 2019). 

6.6.3 Hyperparameter estimation 

The hyperparameter estimation for the two-level approximation is done using the 
hyper optim() function. The initial values of the hyperparameters and the prior mean 
structure are given by 

hypers <- rep(0.5, 5)

prior_mean_str <- quad_prior

where quad prior is a function giving the quadratic prior mean structure. Then, the 
estimated hyperparameters can be calculated using 

hyperparameters <- hyper_optim(hypers = hypers,

train_points_low = train_points_low,

train_points_high = train_points_high,

l_train_low = l_train_low,

l_train_high = l_train_high,

prior_mean_str = quad_prior)
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The outcome hyper optim() gives the estimated hyperparameters: 

"The signal variance parameter of the low-level is 0"

"The length-scale parameter of the low-level is 0.73278"

"The signal variance parameter of the high-level is 0.53368"

"The length-scale parameter of the high-level is 0.69386"

"The autoregressive parameter is 0.59871"

or it can be accessed using the code 

hyperparameters$optim_hypers

and the outcome of this line of code is a vector with entries 

$optim_hypers

ssquare1 l1 ssquare2 l2 r1

4.112279e-26 7.327787e-01 5.336828e-01 6.938563e-01 5.987097e-01

where ssquare1 and ssquare2 are the signal variance parameters and l1 and l2 are 
the length-scale parameters of the low and high levels respectively and r1 gives the 
autoregressive parameter between the low and high level. If the user wishes to use 
their own method for estimating hyperparameters they need to have them in this form 
to be used as an argument of the other functions. 

6.6.4 Two-level approximation 

Using the optimised hyperparameter values obtained from the hyper optim() func-
tion, or any other hyperparameter values that the user calculated independently, we 
can approximate the high-level of approximation by combining evaluations from the 
high and low levels using the gp post() function. 

result_gp <- gp_post(train_points_low = train_points_low,

train_points_high = train_points_high,

l_train_low = l_train_low,

l_train_high = l_train_high,

test_points = test_points,

hypers = hyperparameters$optim_hypers,

prior_mean_str = prior_mean_str,

approx_levels = 2,

train_points_mid = NULL, l_train_mid = NULL)
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Since we work with a two-level approximation train points mid and l train mid are 
kept to their default NULL values. The output of the gp post() function can be extracted 
using the code 

result_gp$gp_mean

result_gp$gp_cov

For this example, an accurate approximation of the log-likelihood is available, 
accurate high, calculated using the code 

test_inputs <- cbind(test_points,

matrix(rep(m_est,each = length(test_points)),

nrow = length(test_points)))

accurate_high <- apply(test_inputs, 1, lik_function_high)

The outcome of the gp post() function can be plotted using the gp posterior plot()

function, that is 

gp_posterior_plot(train_points_low = train_points_low,

train_points_high = train_points_high,

test_points = test_points,

l_train_low = l_train_low,

l_train_high = l_train_high,

gp_mean = result_gp$gp_mean,

gp_cov = result_gp$gp_cov,

accurate = accurate_high,

train_points_mid = NULL, l_train_mid = NULL)

The resulting plot can be seen in Figure 6.1. The red curve is the posterior mean of the 
Gaussian process which can be used as the approximation to the high-level, the orange 
dashed curve is the accurate approximation of the log-likelihood which is available in 
the example (added for comparison, the user has the option not to plot this in case that 
this is not available), the blue shaded area is the 95% credible interval and the blue and 
green dots are the training data for high and low level respectively. 

6.6.5 Expected gain in utility 

The expected gain in utility method for multi-level Bayesian optimisation has been 
presented in Chapter 5. We continue with the same example from the multi-level GP 
approximation and we consider as our initial design for the EGU the training points 
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FIGURE 6.1: Posterior mean (red curve) as a two-level GP approximation to the log-
likelihood for the GLMM example along with the accurate AGQ approximation of the 

log-likelihood (orange). 

used in Section 6.6.2. The aim is to add new points to the existing design at each level 
which will beneft the prediction the most. This can be achieved using the egu() func-
tion. 

The minimum tolerance value of the EGU is set to 1e-1 and we want up to three new 
points added to the design. The candidate points are generated from an equally spaced 
sequence of numbers covering the interval of interest. For the LA and AGQ approxima-
tion methods there is no signifcant difference in computational cost, therefore, we set 
an arbitrary cost to each level of approximation assigning the higher cost to the AGQ 
method. 

More specifcally, the arguments of the function are given by 

cost_h <- 2.1; cost_l <- 2

hyper_initial <- rep(0.5, 5)

cand_points <- seq(0, 3, length.out = 20)

# approximation function of the high-level

# as a function of the training points

log_lik_high <- function(train_d2){
m_est <- c(0.7167604, -1.2733840)

train_high_inputs <- cbind(train_d2, matrix(rep(m_est,

each=length(train_d2)), nrow=length(train_d2)))

l_train_exp <- apply(train_high_inputs, 1, lik_function_high)

return(l_train_exp)
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}
# approximation function of the low-level

# as a function of the training points

log_lik_low <- function(train_d1){
m_est <- c(0.7167604, -1.2733840)

train_low_inputs <- cbind(train_d1, matrix(rep(m_est,

each=length(train_d1)), nrow=length(train_d1)))

l_train_ch <- apply(train_low_inputs, 1, lik_function_low)

return(l_train_ch)

}

The egu() function can be used with the code 

EGU_results <- egu(result_gp = result_gp,

hypers = hyperparameters$optim_hypers,

hyper_initial = hyper_initial, egu_min = 1e-1,

max_points = 3, cand_points = cand_points,

log_lik_high = log_lik_high, log_lik_low = log_lik_low,

train_points_low = train_points_low,

train_points_high = train_points_high,

l_train_low = l_train_low,

l_train_high = l_train_high,

cost_h = cost_h, cost_l = cost_l,

test_points = test_points,

prior_mean_str = prior_mean_str)

While the egu() function is running the user gets an update how many new points have 
been added to the design and at which candidate point the egu() is at. The outcome of 
egu() gives the training points of each level: 

"The training points of the low-level are"

2.996 0.001 0.963

"The training points of the high-level are"

2.999 0.003 1.378 0.947

The remaining of the outputs of the egu() can be extracted using the code 

# hyperparameters of each level for each new point

EGU_results$ssquare1; EGU_results$l1;

EGU_results$ssquare2; EGU_results$l2; EGU_results$r1

# EGU per cost of each level of approximation for each new point
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EGU_results$egu_high; EGU_results$egu_low

# updated training points of each level

EGU_results$train_points_low; EGU_results$train_points_high

# evaluations of the log-likelihood

EGU_results$l_train_low; EGU_results$l_train_high

# posterior mean and posterior covariance after each new point

EGU_results$post_covar; EGU_results$post_mean

# new points added to the design

EGU_results$new_point

Using these results we can produce a plot of the estimated hyperparameters after the 
addition of each new point as shown in Figures 5.14 and 5.18. Moreover, we can plot the 
EGU per cost after each iteration to assess the decision taken as shown in Figure 5.13. 
We favour the approximation level which has the greater EGU per cost since adding 
that point to the design will beneft the prediction more. 

6.7 Summary 

This chapter presented the R package hela for obtaining multi-level GP approxima-
tions based on a hierarchy of approximation levels. The package hela offers a statistical 
method for statistical design, modelling and inference using systems and approxima-
tions available on at least two hierarchical scales. Moreover, it provides a method for 
choosing the experimental design for experiments with multiple levels. 

An example using GLMM was used to illustrate how the package can be used for a 
two-level GP approximation. The same procedures can be followed for a three-level 
GP approximation using the corresponding functions. We will continue to update and 
improve the hela package to incorporate a general multi-level GP approximation of 
intractable functions and to expand the EGU methodology. 
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Chapter 7 

Discussion 

7.1 Thesis synopsis 

In this thesis, we developed statistical methods for statistical design, modelling and 
inference using systems and approximations available on multiple hierarchical scales. 
We also used Bayesian optimisation to choose the experimental design based on ex-
pected gain in utility and the cost of each level of approximation. 

Chapter 2 gave a brief introduction of the preliminary material we used in the thesis. 
We presented an overview of generalised linear mixed models and Ising models. 

In Chapter 3 we introduced the idea of hierarchical experiments and likelihood approx-
imations. More specifcally, we gave an overview of Gaussian process, Gaussian pro-
cess regression and presented the methodology of how this could be combined with hi-
erarchical experiments. As the running examples of the thesis, we considered a model 
where the likelihood is given in closed form, the simple linear regression model, in 
order to be able to demonstrate how the methodology works, and cases where the 
likelihood function of a model is intractable or computationally expensive, such as the 
likelihood of a generalised linear mixed model and Ising model. 

Moreover, we demonstrated how hierarchical experiments and Gaussian process can be 
used to approximate a likelihood function. Considering the SLR model we did not have 
to use a likelihood approximation to ft the Gaussian process, instead we used some 
evaluations of the known likelihood and we worked with the single-level Gaussian 
process regression. For the GLMM example we used the multi-level GP approximation 
approach to obtain an approximation of the likelihood and subsequently to the maxi-
mum likelihood estimate by combining information from two levels of approximation 
using Gaussian process regression. We used the Laplace approximation as the lower-
level and the adaptive Gaussian quadrature with ten quadrature points as the higher 
level. Using the same approach for the Ising model, we used the reduced-dependence 
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approximation method to approximate the normalising constant of the likelihood for 
different levels of approximation. 

The GP multi-level approximation can also be expanded for multi-dimensions. We pre-
sented an example using GLMM where the log-likelihood function was considered as 
a function of two model parameters and we obtained the posterior predictive distribu-
tion using multi-level GP approximation. 

As a general result, the posterior mean of the Gaussian process posterior distribution 
can be considered as a good approximation to a high-level approximation of an in-
tractable or computationally costly likelihood using observations from multiple levels 
of approximation without having to use a lot of evaluations of the higher level of ap-
proximation. 

In Chapter 4 we focused on conducting inference of the model parameters and dealing 
with different sources of uncertainty. We draw likelihood samples using the corre-
sponding multivariate Gaussian distribution from the Gaussian process posterior dis-
tribution used as an approximation to the likelihood, and we obtained samples form 
the resulting posterior for the model parameter of interest by multiplying the resulting 
likelihood with a predefned prior. Hence, we were able to conduct inference for the 
model parameter and combine the underlying uncertainty about the model parameters 
given the data with the uncertainty from using the multi-level Gaussian process model 
as an approximation of the likelihood rather than the true likelihood itself. 

In Chapter 5 we introduced expected gain in utility which is a Bayesian optimisation 
approach to choose the experimental design. We focused on the Gaussian process em-
ulator of the function of interest, which in our case is the log-likelihood function with 
the aim to fnd the point maximising the log-likelihood. The reporting method, utility, 
we use was such that we choose the new point that maximises the posterior mean of 
the function of interest. The challenging part was to apply Bayesian optimisation to 
choose the experimental design for multi-level approximations of the likelihood, each 
with different cost. We expanded EGU to consider multi-level approximations and we 
added the point at the level which gives the largest EGU relative to the cost of each 
level. 

Chapter 6 includes the vignette of our R package, hela. It includes the statistical meth-
ods presented in this thesis for statistical design, modelling and inference of the model 
parameters, choosing the experimental design using EGU using systems and approxi-
mations available on multiple hierarchical scales and plotting the GP approximation. 

The development of new statistical methodology such as the one described in this thesis 
is important for the application of models with intractable likelihood functions. Our 
goal is to provide adequate inference for the model parameters, to combine various 
sources of uncertainty and to choose the experimental design by fnding an optimal 
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balance between time and cost. There is also a lot of scope for future work in extending 
the work of this thesis. 

7.2 Future work 

7.2.1 Expected gain in utility 

We believe EGU has potential to improve and generate high quality designs for hierar-
chical experiments across application areas, beyond the likelihood examples we have 
considered so far. 

For this thesis, we have used the EGU for one-dimensional problems for single and 
multi-level Bayesian optimisation. It will be challenging to choose the experimental 
design in the higher dimensional parameter space case since the number of training 
points increase exponentially with the number of dimensions. Therefore, it is important 
to choose the training points wisely since we will not be able to have a fne full grid of 
training points at a low cost. Hence, it is vital to extend EGU for higher dimensional 
cases as well. 

When we considered extending the GP regression to multi-dimensional there was a 
need for choosing the experimental region of each model parameter. Future work on 
the EGU could focus on how the area of experimentation can be expanded possibly 
using a response surface methodology (Box and Wilson, 1951). 

The main application of the EGU for this thesis was to fnd the optimal design aiming to 
fnd a good approximation for the maximum likelihood estimate. The evaluation of the 
approximation mainly considers the point estimates and not the associated uncertainty. 
We would like to research on how to apply the same technique when the main focus 
is to accurately approximate the associated uncertainty at minimum cost and how the 
algorithms can be modifed. 

In the literature, there are other approaches as well for multi-level Bayesian optimisa-
tion such as two-stage learning method by Alexander et al. (2007), the MF-MI-Greedy 
method by Song et al. (2018) and the GP-UCB method by Kandasamy et al. (2017) which 
were described in the thesis. It would be useful to compare these methods with our 
EGU for multi-level BO method based on effciency, accuracy and cost. 

7.2.2 Assessing the accuracy of Gaussian process approximation 

For the examples we examined in this thesis, we were able to have an accurate approx-
imation of the likelihood function we were interested in. Using the accurate approxi-
mation we could assess the accuracy of the GP approximation graphically. However, 
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that is not applicable for most cases. Therefore, future work could also check the accu-
racy of the Gaussian process approximation and the hierarchical experiments method. 
To assess how accurately the Gaussian process approximation model will perform in 
practice we could use cross-validation methods (Hastie et al., 2009). 

7.2.3 Working in multi-dimensions 

When working in a multi-dimensional parameter space it is more challenging to choose 
a kernel of the Gaussian process. In general, kernels can be combined to compute new 
ones with different properties allowing the inclusion of high-level structure into the 
models. To model functions with more that one input it is useful to multiply kernels 
defned on each individual part (Duvenaud, 2014). The SE-ARD kernel is the result of 
the product of kernels over different dimensions with different length-scale parameters. 
It is usually used for most applications of Gaussian processes because it is simple and 
easily interpretable. 

For this thesis, we have used a single length-scale parameter for all of the dimensions 
used. Therefore, as part of the future work, we would like to introduce and estimate 
different length-scale parameters for each dimension to distinguish between the rel-
evance of each dimension. However, this becomes more complicated when working 
with multi-level GPs since for each level of approximation we will have to estimate 
multiple length-scale hyperparameters. 

7.2.4 R package 

Throughout the duration of the thesis, we created the R package, hela for developing 
the statistical methods presented in this thesis. We used the package for the purposes 
of the thesis’ calculations and we will continue to improve the package to make it more 
general for multi-level GP approximations, include multi-dimensions, update it and 
integrate further elements. 

7.2.5 Hierarchical experiments and optimal designs 

In the future, it will be interesting to explore a way of integrating the hierarchical ex-
periments into optimal design experiments. Working with optimal experiment design, 
the Fisher information is used to determine and optimise the design for maximising the 
expected accuracy of the model parameter estimates (Kreutz and Timmer, 2013). 

The Fisher information can be considered as a measure of the amount of information 
about the parameters given the experimental data and is directly related to the accuracy 
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of the estimated parameters. The calculation of the Fisher information is based on the 
second order derivatives and it is only valid if a quadratic approximation of the log-
likelihood exists. However, for models where the likelihood is intractable the Fisher 
information cannot be obtained analytically. Hence, using the methods and ideas pre-
sented in this thesis we would like to fnd optimal designs using the Fisher information. 
We can obtain all the derivatives analytically for a Gaussian process (Stephenson, 2010). 
Having the second derivatives available will be useful for the design problem. In this 
case the choice of design points will be different from what we presented so far since 
we will be interested in the behaviour of the log-likelihood around the maximum, not 
just in the location of the maximum. 

7.2.6 Application to other examples 

There are many areas of statistical research that require to understand and utilise hi-
erarchical differences in the accuracy and cost of systems and approximations across 
different scales. This thesis, was mainly focused on likelihood approximations using 
hierarchical experiments. 

The methodology developed for multi-level GP approximation and EGU for a multi-
level BO can be expanded to be used for other examples. An example problem is the 
design of experiments across lab, pilot and manufacturing scales to understand and 
predict manufactured product performance in the pharmaceutical industry. The hier-
archical levels for this example could be the scales of physical experiments, for instance, 
the lab scale could be the low-level and the physical scale could be the high-level, and 
multi-level GP approximations could be used to approximate the output of the produc-
tion scale combining evaluations from both scales. 
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Appendix A 

Documentation of the functions in 
hela

A.1 Arguments and output of the hyper optim() function 

Argument Description 

hypers* A vector containing the initial values of the hyperparameters, 
used for optimisation, of the Gaussian process of each level: sig-
nal variance, length scale and autoregressive parameters. 

train points low* A vector containing the training points of the low-level. 

train points high* A vector containing the training points of the high-level. 

l train low* A vector containing the low-level function approximation at the 
low-level training points. 

l train high* A vector containing the low-level function approximation at the 
high-level training points. 

prior mean str* A function giving the structure of the prior mean. 

TABLE A.1: Arguments of the function hyper optim() with their description. The 
mandatory arguments are denoted with *. 
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Output 

optim hypers

optim result

Description 

A vector containing the estimated hyperparameters: signal-
variance parameter, length-scale parameter of each level and au-
toregressive parameter. 

The result of the hyperparameter optimisation using the Nelder-
Mead method. 

TABLE A.2: Output of the function hyper optim() with a description. 



A.2. Arguments and output of the hyper optim three() function 131 

A.2 Arguments and output of the hyper optim three() func-
tion 

Argument Description 

hypers* A vector containing the initial values of the hyperparameters, 
used for optimisation, of the Gaussian process of each level: sig-
nal variance, length scale and autoregressive parameters. 

train points low* A vector containing the training points of the low-level. 

train points mid* A vector containing the training points of the middle-level. 

train points high* A vector containing the training points of the high-level. 

l train low* A vector containing the low-level function approximation at the 
low-level training points. 

l train mid* A vector containing the low-level function approximation at the 
middle-level training points. 

l train high* A vector containing the low-level function approximation at the 
high-level training points. 

prior mean str* A function giving the structure of the prior mean. 

TABLE A.3: Arguments of the function hyper optim three() with their description. 
The mandatory arguments are denoted with *. 

Output Description 

optim hypers A vector containing the estimated hyperparameters: signal-
variance parameter, length-scale parameter of each level and au-
toregressive parameters. 

optim result The result of the hyperparameter optimisation using the Nelder-
Mead method. 

TABLE A.4: Output of the function hyper optim three() with a description. 
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A.3 Arguments and outputs of the gp post() function 

Argument Description 

train points low* A vector containing the training points of the low-level. 

train points high* A vector containing the training points of the high-level. 

l train low* A vector containing the low-level function approximation at the 
low-level training points. 

l train high* A vector containing the low-level function approximation at the 
high-level training points. 

test points* A vector containing the test points used for prediction. 

hypers* A vector containing the hyperparameters of the Gaussian process 
of each level: signal-variance, length scale and autoregressive pa-
rameters as a result of the hyper optim() function. 

prior mean str* A function giving the structure of the prior mean. 

approx levels* Constant indicating how many levels of approximation to use. 
Choose between 2 or 3. 

train points mid A vector containing the training points of the middle-level for a 
three-level approximation. Default value is NULL. 

l train mid A vector containing the low-level function approximation at the 
middle-level training points for a three-level approximation. De-
fault value is NULL. 

TABLE A.5: Arguments of the function gp post() with their description. The manda-
tory arguments are denoted with *. 

Output Description 

gp mean A vector containing Gaussian process posterior mean. 

gp cov A matrix containing Gaussian process posterior covariance. 

TABLE A.6: Output of the function gp post() with a description. 
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A.4 Arguments and outputs of the egu() function 

Argument Description 

result gp* A list containing the GP posterior mean and posterior covariance 
as a result of the gp post() function. 

hypers* A vector containing the hyperparameters of the Gaussian process 
of each level: signal-variance, length scale and autoregressive pa-
rameters as a result of the hyper optim() function. 

hyper initial* A vector containing the initial values of the hyperparameters for 
estimation. 

egu min* Expected gain in utility minimum tolerance as a stopping rule. 

max points* Maximum points to be added to the experimental design as a 
stopping rule. 

cand points* A vector containing the candidate points. 

log lik high* Function of the high-level points giving the high-level approxi-
mation. 

log lik low* Function of the low-level points giving the low-level approxima-
tion. 

train points low* A vector containing the training points of the low-level. 

train points high* A vector containing the training points of the high-level. 

l train low* A vector containing the low-level function approximation at the 
low-level training points. 

l train high* A vector containing the high-level function approximation at the 
high-level training points. 

test points A vector containing the test points used for predictions. 

cost h* Constant indicating the cost of the high-level. 

cost l* Constant indicating the cost of the low-level. 

prior mean str* A function giving the structure of the prior mean. 

TABLE A.7: Arguments of the function egu() with their description. The mandatory 
arguments are denoted with *. 
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Output Description 
ssquare1 List with the estimated signal variance hyperparameter of the 

low-level for each iteration of the EGU. 
ssquare2

l1

List with the estimated signal variance hyperparameter of the 
high-level for each iteration of the EGU. 
List with the estimated length-scale hyperparameter of the low-
level for each iteration of the EGU. 

l2 List with the estimated length-scale hyperparameter of the high-
level for each iteration of the EGU. 

r1 List with the estimated autoregressive parameter for each itera-
tion of the EGU. 

train points low List containing the training points of the low-level for each itera-
tion of the EGU. 

train points high List containing the training points of the high-level for each iter-
ation of the EGU. 

l train low List containing the function evaluations at the low-level training 
points for each iteration of the EGU. 

l train high List containing the function evaluations at the high-level training 
points for each iteration of the EGU. 

high p

low p

A logical vector indicating if the new point was added to the 
high-level. 
A logical vector indicating if the new point was added to the low-
level. 

egu high

egu low

List containing the EGU of the candidate points when added to 
the high-level for each iteration of the EGU. 
List containing the EGU of the candidate points when added to 
the low-level for each iteration of the EGU. 

post mean List containing the GP posterior mean vector for each iteration of 
the EGU. 

post cov List containing the GP posterior covariance matrix for each itera-
tion of the EGU. 

total cost Constant indicating the total cost. 
points n

new point

Constant indicating the number of new points added to the de-
sign. 
Vector containing the new points added to the design. 

new lik Vector containing the evaluations of the new training points. 

TABLE A.8: Output of the function egu() with a description. 
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A.5 Arguments and output of the egu three() function 

Argument Description 

result gp* A list containing the GP posterior mean and posterior covariance 
as a result of the gp post() function. 

hypers* A vector containing the hyperparameters of the Gaussian process 
of each level: signal-variance, length scale and autoregressive pa-
rameters as a result of the hyper optim() function. 

hyper initial* A vector containing the initial values of the hyperparameters for 
estimation. 

egu min* Expected gain in utility minimum tolerance as a stopping rule. 

max points* Maximum points to be added to the experimental design as a 
stopping rule. 

cand points* A vector containing the candidate points. 

log lik high* Function of the high-level points giving the high-level approxi-
mation. 

log lik mid* Function of the middle-level points giving the middle-level ap-
proximation. 

log lik low* Function of the low-level points giving the low-level approxima-
tion. 

train points low* A vector containing the training points of the low-level. 

train points mid* A vector containing the training points of the middle-level. 

train points high* A vector containing the training points of the high-level. 

l train low* A vector containing the low-level function approximation at the 
low-level training points. 

l train mid* A vector containing the middle-level function approximation at 
the middle-level training points. 

l train high* A vector containing the high-level function approximation at the 
high-level training points. 

test points A vector containing the test points used for predictions. 

cost h* Constant indicating the cost of the high-level. 

cost m* Constant indicating the cost of the middle-level. 

cost l* Constant indicating the cost of the low-level. 

prior mean str* A function giving the structure of the prior mean. 

TABLE A.9: Arguments of the function egu three() with their description. The 
mandatory arguments are denoted with *. 
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The output of egu three() function is similar with the egu() function with the differ-
ences and additional outputs shown in Table A.10. 

Output Description 
ssquare2 List with the estimated signal variance hyperparameter of the 

middle-level for each iteration of the EGU. 
ssquare3 List with the estimated signal variance hyperparameter of the 

high-level for each iteration of the EGU. 
l2 List with the estimated length-scale hyperparameter of the 

middle-level for each iteration of the EGU. 
l3 List with the estimated length-scale hyperparameter of the high-

level for each iteration of the EGU. 
r1 List with the estimated autoregressive parameter between the 

low and middle levels for each iteration of the EGU. 
r2 List with the estimated autoregressive parameter between the 

middle and high levels for each iteration of the EGU. 
train points mid List containing the training points of the middle-level for each 

iteration of the EGU. 
l train mid List containing the function evaluations at the middle-level train-

ing points for each iteration of the EGU. 
mid p A logical vector indicating if the new point was added to the 

middle-level. 
egu mid List containing the EGU of the candidate points when added to 

the middle-level for each iteration of the EGU. 

TABLE A.10: Additional output of the function egu three() with a description. 
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A.6 Arguments of the gp posterior plot() function 

Argument Description 

train points low* A vector containing the training points of the low-level. 

train points high* A vector containing the training points of the high-level. 

test points* A vector containing the test points used for prediction. 

l train low* A vector containing the low-level function approximation at the 
low-level training points. 

l train high* A vector containing the low-level function approximation at the 
high-level training points. 

gp mean* A vector containing Gaussian process posterior mean as a result 
of the gp post() function. 

gp cov* A matrix containing Gaussian process posterior covariance as a 
result of the gp post() function. 

accurate* A vector containing the evaluations of the true or accurate ap-
proximation if available. Default value is NULL. 

train points mid A vector containing the training points of the middle-level for a 
three-level approximation. Default value is NULL. 

l train mid A vector containing the low-level function approximation at the 
middle-level training points for a three-level approximation. De-
fault value is NULL. 

TABLE A.11: Arguments of the function gp posterior plot() with their description. 
The mandatory arguments are denoted with *. 
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