Accepted Manuscript

First- and second-order necessary conditions with respect to components for discrete optimal control problems

Misir J. Mardanov, Telman K. Melikov, Samin T. Malik, Kamran Malikov

PII: S0377-0427(19)30339-5
DOI: https://doi.org/10.1016/j.cam.2019.112342
Article number: 112342
Reference: CAM 112342

To appear in: Journal of Computational and Applied Mathematics

Received date: 9 January 2019
Revised date: 5 July 2019

Please cite this article as: M.J. Mardanov, T.K. Melikov, S.T. Malik et al., First- and second-order necessary conditions with respect to components for discrete optimal control problems, Journal of Computational and Applied Mathematics (2019), https://doi.org/10.1016/j.cam.2019.112342

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Manuscript Click here to view linked References

First- and Second-Order Necessary Condiii ns vith Respect to Components for Discrete Opt im. 1 Cuntrol Problems

Misir J. Mardanov
Institute of Mathematics and Mechanics of AN 1 , Brku, Azerbaijan
Telman K. Melikov
Institute of Mathematics and Mechanics of AN.. ${ }^{\text {r Baku, Azerbaijan, }}$ Institute of Control Systems of Ar, 1'S, Baku, Azerbaijan,
Samin T. Malın ${ }^{1}$
Baku Higher Oil Schc вакu, Azerbaijan
Institute of Mathematics and m_{\star} hanics of ANAS,
Kamraı. $\mathrm{M}_{\text {ı }}$ likov
University c」 - `ex, `olchester, UK

Abstract

This paper is devoter to he study of discrete optimal control problems. We aim to obtain more soll' 'uct ve optimality conditions under weakened convexity assumptions. Ba t. on a new approach introduced in this work, an optimality condition with spect to every component is obtained in the form of a global maximum p. ncir e. In addition, an optimality condition with respect to one of the comp nents or t control in the form of the global maximum principle and with resp to nother component of a control in the form of the linearized maxं num F "inciple are obtained. Furthermore, various second-order optimality cond ions iv terms of singular and quasi-singular controls with respect to the ompo: ents are obtained on the fly.

[^0]Keywords: Discrete maximum principle with respect to compu. nts, , ${ }_{\text {in }}$ ingular and quasi-singular controls with respect to components, Or ım، 1 rontrol, Necessary conditions, Second-order optimality conditions

1. Introduction

The search for necessary optimality condition: f. dis rete optimal control problems (DOCPs) is one of the most attractive $t_{2}{ }^{\text {i }}$ Cs in control optimization theory. It was historically preceded by the discu „ry of he Pontryagin maximum 5 principle [1] for continuous optimal control prow. ms. The first discrete analogue of the maximum principle was obtained lu linear DOCPs by Rozonoer [2]. In the same paper, Rozonoer argued ti to $:$ a moy not be possible to extend the maximum principle to nonlinear $\Gamma \mathrm{nCPs}_{\mathrm{s}}$, and this argument was confirmed by subsequent studies $[3,4]$. Soon after t . is v . ork, extensive studies in this area were devoted to obtaining a number ι°. first- and second-order optimality conditions in various forms. For examnle, the works [5-12] obtain optimality conditions in the form of a global , aximu principle, while $[3,4,13-18]$ obtain similar conditions in the form of a $\iota \cdots$ maximum principle, the linearized maximum principle or the Eul - es atir n. Moreover, second-order optimality conditions in terms of singul r (in the sense of the discrete maximum principle) as well as quasi-singular controls . - e obtained in [14-16, 19-22].

At the sa se tj ae, several results were also obtained in the discrete-time and infinite-ho izon ${ }^{+}$ting. Michel [23] was one of the first researchers to study the concave iscr te-t me infinite-horizon optimal control problem and obtained the necese \quad y anu ifficient conditions for optimality. Blot and Chebbi [24] extended the 1 sults of [2] to the infinite-horizon framework without concavity. A rigorous 2 miysis or the infinite- horizon discrete-time optimal control theory based on everal J ontryagin principles is provided in the book by Blot and Hayek [25]. In a. recent study, Aseev, Krastanov, and Veliov [26] obtain the linearized discrete time optimal control on the infinite horizon without requiring convexity. The
problem of weakening of the latter in optimal control proble is t. amined thoroughly in the book by Zaslavski [27].

Generally, obtaining first- and second-order necessary op: sality conditions
conditions that are satisfied for all elemanta $\boldsymbol{f}_{\perp} \perp$ set of control values. This implies that the results obtained under suc. convexity assumptions are less constructive than the discrete analogu $₹ \subset$. the Pontryagin maximum principle or its corollaries.

It can be claimed that it is ncoenti. 1 to apply a more subtle approach that takes into account the specificity ι° the considered problem in the study of DOCPs. This is due to the it that DOCPs have certain specific features: for example, the discrete . nalogu ; of the Pontryagin maximum principle is not always satisfied unde the tracutional assumptions for nonlinear DOCPs; the ${ }_{45}$ linearized discrete nas nur principle and the discrete analogue of the Euler equation are not u. equences of the discrete maximum principle, unlike for the continuous car and the majority of the methods used to study continuous cases cannot he irectly used for investigating DOCPs.

In ligł of all oı the above points, the aim of this paper is to study DOCPs in the finı - hori on setting to obtain more constructive optimality conditions undf. weak ned convexity assumptions. To do this, we introduce a new approac that veakens the convexity assumptions. Using our approach that studes DC PP_{P} with respect to the components of vector control, we obtain an c_{1} +ima' ty condition with respect to every component in the form of a global ı $4 . \quad$ num principle (see Theorem 3.1). We also obtain an optimality condition ith respect to one of the components of a control in the form of the global maximum principle and with respect to another component of a control in the
form of the linearized maximum principle (see Theorem 3.2). Furt.rmore, we obtain various second-order optimality conditions in te ins of singular and Consequently, this paper is the first that studies $\mathrm{DO}^{\prime}, \mathrm{Ps}$ wi h respect to the components, enabling us to obtain more constructive $o_{1}{ }^{\text {timali }}$ y conditions under a new type of weakened convexity assumptior s, in \sim trast to the existing results, e.g., [13, 15, 18, 20, 22]. Our results har practic implications as they 65 can be used in solving various problems. These inc. ide modelling economic, biomedical and chemical problems and op * mizı_. omplex technological systems in different issues of organization $\mathrm{e}^{\mathrm{f} n \mathrm{n} \sim \cdots \cdots} \mathrm{J}$.

The paper is structured as follows. In Sec. $\mathfrak{~ n ~ 2 , ~ w e ~ i n t r o d u c e ~ t h e ~ o p t i m i z a - ~}$ tion problem and assumptions. Sectiol 3 nows the main results of the present paper for the explicit first- and sec ${ }^{\text {J }}$ - or or optimality conditions for DOCPs with respect to the components \vee f vecte " control. In Section 4, we obtain various increment formulas of the objective ${ }^{\text {n }}$ יnctional with respect to the components by using various assumptir is u nrove the necessary optimality conditions in the next section. Section 5 s. حws th proofs of the theorems. Section 6 discusses perspectives for futur res arch and some open problems. We give concluding remarks in the fina ${ }^{1}$ see n .

2. Problem © tement and Main Assumptions

Consid $\sim \mathrm{r}$ th c following discrete optimization problem:

$$
\begin{equation*}
S(u(\cdot))=\Phi\left(x\left(t_{1}\right)\right) \rightarrow \min , \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\therefore(t+1)=f(x(t), u(t), t), t \in I:=\left\{t_{0}, t_{0}+1, \ldots, t_{1}-1\right\}, x\left(t_{0}\right)=x^{*}, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
u(t) \in U(t) \subseteq \mathbb{R}^{r}, t \in I . \tag{3}
\end{equation*}
$$

Here, \mathbb{R}^{r} is an r-dimensional Euclidean space, $x=(x_{1}, \ldots, x_{n} \backslash T \in \overbrace{}^{n}$ is a
${ }_{80}$ state vector, $u=\left(u_{1}, \ldots, u_{r}\right)^{T} \in \mathbb{R}^{r}$ is a control vector, t is ime (discrete), $x^{*} \in \mathbb{R}^{n}$ is a given vector, $\left.\Phi(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \cdot\right]-\infty,+\infty[$ and $f(x, u, t): \mathbb{R}^{n} \times \mathbb{R}^{r} \times I \rightarrow \mathbb{R}^{n}$ are given functions, $U, t_{1}-1$ is an arbitrary given set, and $U(t)=V(t) \times W(t), t \in I_{-1}:=I \backslash\left\{t_{1}-1\right\}$, re giv n sets satisfying certain conditions, where $V(t) \subseteq \mathbb{R}^{r_{0}}, t \in I_{-1}$, an $\perp W^{\prime}, \subseteq \mathbb{R}^{r_{1}}, t \in I_{-1}$, with ${ }_{85} \quad r_{0}+r_{1}=r$.

A control $u(\cdot)$ satisfying the condition (3) is said \imath be admissible. The pair $(u(\cdot), x(\cdot))$ is said to be an admissible pr oss $\therefore \cdots, c), t \in I$, is an admissible control and $x(t), t \in I \cup\left\{t_{1}\right\}$, is the correannadin crajectory of the system (2). We will find the minimum of the problem (:) -(3) from the set of admissible $90 \quad$ processes $(u(\cdot), x(\cdot))$.

An admissible process $(\bar{u}(\cdot), \bar{x}(\therefore$ is sa d to be an optimal process if it is a solution to the problem expres ${ }^{\sim d}$ bv $\left.{ }^{1}{ }^{1}\right)-(3)$. The components $\bar{u}(\cdot)$ and $\bar{x}(\cdot)$ of an optimal process $(\bar{u}(\cdot), \bar{x}(\cdot))$ are sa $\cdot-1$ to be an optimal control and an optimal trajectory, respectively.

Existing studies (e.g., $\left.{ }^{\text {[1. }} 5,8,13\right]$) that address the nonlinear problem expressed by (1)-(3) he /e s'own that the validity of some necessary optimality conditions depend sle ngly on the structures of the sets $U(t), t \in I$, and $f(x, U(t), t):=\{\quad \quad \quad=f(x, u, t), u \in U(t)\}, t \in I, x \in \mathbb{R}^{n}$. For instance, following $\left[3,4,1^{1}{ }^{\prime}\right.$, it is known that if along the optimal process $(\bar{u}(\cdot), \bar{x}(\cdot))$, the set $\left.f\left(\bar{x}(\theta), \iota^{\prime} A\right) \lambda\right)$ is not convex, then the discrete analogue of Pontryagin's maximum principle can be invalid at the point $\theta \in I$.

Rema, ' . $1 \mathrm{~J}^{\prime}$ should be emphasized that along an admissible process $\left(u^{0}(\cdot), x^{0}(\cdot)\right)$, the r unvexi v of the sets $f\left(x^{0}(\theta), V(\theta), w^{0}(\theta), \theta\right)$ and $f\left(x^{0}(\theta), v^{0}(\theta), W(\theta), \theta\right)$ does. nt alv yys lead to the convexity of the set $f\left(x^{0}(\theta), V(\theta), W(\theta), \theta\right)$, where $\left.\iota^{0}(\theta)=v^{0}(\theta), w^{0}(\theta)\right)^{T}, v^{0}(\theta) \in V(\theta), w^{0}(\theta) \in W(\theta)$ and $\theta \in I_{-1}$ (see Example (1).
=.agarding Remark 2.1, it can be argued that the investigation of the problem xpressed by (1)-(3) by components will be effective. Thus, the main aim of this paper is to study DOCPs with respect to the components of vector control.

Definition 2.2. [28] We call a set $Z \in \mathbb{R}^{m}$ starlike with respect to the point $z_{0} \in Z$ if for any point $z \in Z$, the segment $\mathrm{c} \vee \eta_{n e c}{ }^{n}$. t to z_{0} lies in Z.

It is important to remark here that , ery convex set as well as every open set is a γ-convex set, but the reverse ${ }^{\circ}$ not always true. Indeed, for example, the set $Z=[-1,0[\cup] 1,2]$ is γ-convex, $\mathrm{b}_{\iota}{ }^{+}{ }^{1 t}$ is neither a convex nor an open set and is not even starlike with respec to ny of its points.

To investigate the optimalic, vi....dmissible process $\left(u^{0}(\cdot), x^{0}(\cdot)\right)$, where $u^{0}(t)=\left(v^{0}(t), w^{0}(t)\right)^{T}, t \in I$, the following assumptions are used in the paper.
(A1) The functional (\cdot) is ontinuously differentiable on \mathbb{R}^{n};
(A2) The functior al $\Phi(\cdot)$ in wice continuously differentiable on \mathbb{R}^{n};
(B1) For ever $t \in$, th function $f(\cdot, t)$ and its partial derivative $f_{x}(\cdot, t)$ are continuous v ,thı spect to (x, u) on $\mathbb{R}^{n} \times \mathbb{R}^{r}$;
(B2) For eve $y t \in I_{-1}$, the partial derivative $f_{w}(\cdot, t)$ is continuous with respect to ${ }^{\prime} x, u, \neg \eta \mathbb{R}^{n} \times \mathbb{R}^{r}$;
(B3) evf y $t \in I$, the function $f(\cdot, t)$ and its partial derivatives $f_{x}(\cdot, t)$ and $x x\left(\cdot, t\right.$, are continuous with respect to (x, u) on $\mathbb{R}^{n} \times \mathbb{R}^{r}$;
${ }^{\prime} \mathbf{B}_{2}, \Gamma_{i}$ every $t \in I_{-1}$, the function $f(\cdot, t)$ and its partial derivatives $f_{w}(\cdot, t)$, $f_{w w}\left(\cdot, t, f_{w x}(\cdot, t)\right.$ and $f_{x w}(\cdot, t)$ are continuous with respect to (x, u) on $\mathbb{R}^{n} \times \mathbb{R}^{r}$;
(C1) For every $t \in I_{-1}$, the set $f\left(x^{0}(t), V(t), w^{0}(t), t\right)$ is γ-convex with re.pect to the point $x^{0}(t+1)$;
(C2) For every $t \in I_{-1}$, the set $f\left(x^{0}(t), v^{0}(t), W(t), t\right)$ is -conv x with respect to the point $x^{0}(t+1)$;
(C3) For $\theta_{1}=\theta+1$, there exists $\delta>0$ such that for all $\left.r \in B_{\delta}{ }^{, ~}{ }^{0}\left(\theta_{1}\right)\right)$, the set $f\left(x, v^{0}\left(\theta_{1}\right), W\left(\theta_{1}\right), \theta_{1}\right) \quad$ is starlike with resp ect t. the point ${ }_{140} f\left(x, v^{0}\left(\theta_{1}\right), w^{0}\left(\theta_{1}\right), \theta_{1}\right)$, where $\theta \in\left\{t_{0}, t_{0}+1, \ldots, t_{1} \quad 3\right\} \quad{ }_{2} . B_{\delta}\left(x^{0}\left(\theta_{1}\right)\right)$ is an open ball with radius $\delta>0$ and center $x^{0}\left(\theta_{1}\right)$;
(C4) For $\theta \in I_{-1}$, there exists $\delta>0$ such that for . ll $w \in B_{\delta}\left(w^{0}(\theta)\right) \cap W(\theta)$, the set $f\left(x^{0}(\theta), V(\theta), w, \theta\right)$ is starlike $\quad .+h$ respect to the point $f\left(x^{0}(\theta), v^{0}(\theta), w, \theta\right) ;$
(C5) For every $t \in I_{-1}$, the set $W^{(t)}$ is $\gamma-$ - $)_{n v e x}$ with respect to the point $w^{0}(t)$.

Furthermore, for the sake of col t_{ν} : ${ }^{\circ}$ nce, we use the following notations.

$$
f(t):=f\left(x^{0}(t), v^{0}(t), u^{\because} \because,+1 \quad f_{x}(t):=f_{x}\left(x^{0}(t), v^{0}(t), w^{0}(t), t\right)\right.
$$

$$
H(t, \hat{u}):=\dot{\psi}^{T}(t ; \hat{u}) f(t), \quad H_{x}(t, \hat{u}):=\dot{\psi}^{T}(t ; \hat{u}) f_{x}(t), \text { and } H_{x x}(t ; \hat{u}):=\dot{\psi}^{T}(t ; \hat{u}) f_{x x}(t)
$$ (similarly, $\left.f_{w}(t), f_{x x}(t) H_{w} \cdot \cdot \hat{u}\right), H_{w w}(t ; \hat{u})$, and $H_{x w}(t ; \hat{u})$ are defined), where $\dot{\psi}(\cdot ; \hat{u})$ is the solutio. of $\left(\gamma_{j}\right)$ and $H(\psi, x, v, w, t)=\psi^{T} f(x, v, w, t)$ - is the Hamilton-Pontryagir run cion

3. Statement fis.~Main Results

The mai res lts of the present paper concern explicit first- and secondorder optir sality u nditions for DOCPs with respect to the components of vector control. $\eta \mathrm{t}^{1}$ is se tion, we present our main results and provide some illustrative exam us to au nonstrate the effectiveness of the obtained conditions.

31 Hi, ' Jrder Necessary Optimality Conditions by Components
The irst-order optimality conditions with respect to the components can be summarized in the following theorems.

「heorem 3.1. Let assumptions (A1), (B1), (C1) and (C2) hold along an admissible process $\left(u^{0}(\cdot), x^{0}(\cdot)\right)$. Then, for the admissible control
$u^{0}(\cdot)=\left(v^{0}(\cdot), w^{0}(\cdot)\right)^{T}$ to be optimal, it is necessary that the int $\epsilon_{4} \cdot n / i t u \epsilon_{0}$

$$
\begin{equation*}
\Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right) \geq 0, \quad \forall \hat{u} \in U\left(t_{1}-1\right) \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \Delta_{\tilde{v}} H(\theta ; \hat{u}) \leq 0, \forall \hat{u} \in U_{0}\left(t_{1}-1\right), \forall(\theta, \tilde{v}) \in r_{-1} \times V(\prime), \tag{5}\\
& \Delta_{\tilde{w}} H(\theta ; \hat{u}) \leq 0, \forall \hat{u} \in U_{0}\left(t_{1}-1\right), \forall\left(\theta, w, \in I_{-} \times W(\theta)\right. \tag{6}
\end{align*}
$$

hold, where $\Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right), \Delta_{\tilde{v}} H(\theta ; \hat{u}), \Delta_{\tilde{w}-}{ }^{\top T}(\theta ; \hat{u})$ (حd $U_{0}\left(t_{1}-1\right)$ are defined by (25), (31), (34) and (63), respectively.

The proof of Theorem 3.1 is given in $S_{t}{ }^{\prime}$ ion 5.
In fact, Theorem 3.1 gives an op ima cu, condition with respect to every 165 component in the form of a globa axis um principle. This form of the maximum principle can be applied for a viaer class of DOCPs than the discrete maximum principle obtained in $[\cup, 7]$. More specifically, it is obvious that for these DOCPs that if the lan in valid, the maximum principle by the components is also valid. Howe or, the (onverse may not always be true. We illustrate this with the followin exampu
Example 3.1 Conside. ${ }^{+1}$. e fo' owing problem:

$$
\begin{aligned}
& x_{1}(t+1)=v\left(+, \sin \left(\frac{\pi}{2} w(\imath)\right), x_{2}(t+1)=v^{2}(t) \cos ^{2}\left(\frac{\pi}{2} w(t)\right),\right. \\
& \left.x_{3}(t+1)=\mu_{1}{ }^{\imath}\right)+x_{2}(t)+x_{3}(t)+w^{2}(t)-v^{2}(t), \quad t \in I=\{0,1\}, \\
& x_{1}(0)=x_{2}\left(v,-x_{3}(0)=0, t_{1}=2, v \in V(t), w \in W(t), t \in\{0,1\},\right. \\
& S(u(\cdot))=\Phi\left(x\left(t_{1}\right)\right)=x_{3}(2) \rightarrow \min ,
\end{aligned}
$$

whei , $u(t)=(v(t), w(t))^{T}, t \in\{0,1\}, V(0)=[-3,-2] \cup[-1,0]$, 175 $\mathrm{V}(\mathrm{J})=[\mathrm{U}, 1] \cup[2,3]$, and $V(1)=W(1)=\left\{ \pm \frac{1}{2}, 0,-1\right\}$.

One can calculate directly $S(u(\cdot))=w^{2}(0)+w^{2}(1)-v^{2}(1)$. It is obvious that if $v^{0}(0)=w^{0}(0)=w^{0}(1)=0, v^{0}(1)=-1, x^{0}(0)=x^{0}(1)=(0,0,0)^{T}$, and $x^{0}(2)=(0,1,-1)^{T}$, then $\left(u^{0}(\cdot), x^{0}(\cdot)\right)$ is an optimal process, where $u^{\iota}(\cdot)=\left(v^{0}(\cdot), w^{0}(\cdot)\right)^{T}, x^{0}(\cdot)=\left(x_{1}^{0}(\cdot), x_{2}^{0}(\cdot), x_{3}^{0}(\cdot)\right)^{T}$.

Furthermore, according to Definition 2.1, the sets

$$
\begin{gathered}
f\left(x^{0}(0), v^{0}(0), W(0), 0\right)=\left\{\left(0,0, w^{2}(0)\right)^{T}: w(0) \in[0,] \cup^{\ulcorner } L, 3_{\lrcorner} \rho\right. \text { and } \\
f\left(x^{0}(0), V(0), w^{0}(0), 0\right)=\left\{\left(0, v^{2}(0),-v^{2}(0)\right)^{T}: v(0, \in[-3,-2] \cup[-1,0]\}\right.
\end{gathered}
$$

are γ-convex with respect to the point $x^{0}(1)$. Howe-r, the wet

$$
\begin{gathered}
f\left(x^{0}(0), V(0), W(0), 0\right)=\left\{\left(v(0) \sin \left(\frac{\pi}{2} w^{r} 0\right)\right\lrcorner, v^{2}\left(0 \cos ^{2}\left(\frac{\pi}{2} w(0)\right)\right.\right. \\
\left.\left.\left.w^{2}(0)-v^{2}(0)\right): v(0) \in[-3,-2] \cup[-1)\right], w(0):[0,1] \cup[2,3]\right\}
\end{gathered}
$$

is not convex and is even not γ-convex with re s_{1} oct to the point $x^{0}(1)$.
Next, along an optimal process $\left(u^{0}(\cdot),{ }^{0}(\cdot)\right)$, considering (25), (26), (31), (34) and (63), we have

$$
\begin{gathered}
\Delta_{\hat{u}} \Phi(f(1))=\hat{w}^{2}-\hat{v}^{-}-\hat{\iota}=(\hat{v}, \hat{w}) \in V(1) \times W(1) ; \\
U_{0}(1)=\left\{\hat{u}=(\hat{v}, \hat{w})^{T}: \hat{v} \in V\left(1, \hat{w} \in W(1), \hat{w}^{2}-\hat{v}^{2}+1=0\right\}=\left\{(-1,0)^{T}\right\},\right. \\
\text { i.e. } \hat{u}=u^{0}(1)=\left(-1,,^{\prime} 1 ; \hat{u}\right)=(0,0,-1)^{T}, \stackrel{\psi}{\psi}(0 ; \hat{u})=(0,-1,-1)^{T} ; \\
\left.\Delta_{\tilde{v}} H(0 ; \hat{u})=0,=V, 0\right), \Delta_{\tilde{w}} H(0 ; \hat{u})=-\tilde{w}^{2}, \tilde{w} \in W(0) ; \\
\Delta_{\tilde{u}} H\left(0 ; \hat{u},=\sin \left(\frac{\pi}{2} \tilde{w}\right)-\tilde{w}^{2}, \tilde{u}=(\tilde{v}, \tilde{w}) \in V(0) \times W(0) .\right.
\end{gathered}
$$

Therefore, fo $u^{n}(\cdot)=\left(v^{0}(\cdot), w^{0}(\cdot)\right)^{T}$, all three statements of Theorem 3.1 are satisfied, r - ly, $\hat{w}^{\llcorner }-\hat{v}^{2}+1 \geq 0, \forall(\hat{v}, \hat{w}) \in V(1) \times W(1) ; 0 \leq 0, \forall \hat{u} \in U_{0}(1)$, $\forall \tilde{v} \in V(0) ; \quad n d-\tilde{w}^{2} \leq 0, \forall \hat{u} \in U_{0}(1), \forall \hat{w} \in W(0)$. However, along an optimal cor rol $u^{0}(\cdot \rho$, the discrete maximum principle is not valid, such as for $\tilde{v}=-3 \in v^{\prime}$,, ar $\mathcal{d} \tilde{w}=1 \in W(0):\left.\left(\tilde{v}^{2} \sin ^{2}\left(\frac{\pi}{2} \tilde{w}\right)-\tilde{w}^{2}\right)\right|_{(-3,1)}=8 \leq 0$. Furthermore, the 1 nown 'ecal maximum principles are not effective (or effective but not applicaı ${ }^{1}$ o $[15\rceil^{1}$ for investigating the optimal problem in Example 3.1 due to the act th. ${ }^{+}$at the point $t=t_{1}-1$, they are valid only for those sets that consist of c. o ele tent.

- onsequently, Example 3.1 allows us to state that maximum principle with - ${ }^{\text {a }}$ spect to the components is valid for a wider class of DOCPs compared to the discrete maximum principle. This implies that the method introduced in
our paper which is based on studying DOCPs with respect to cu. nont. ts have wider application areas.

Theorem 3.2. Let assumptions (A1), (B1), (B2), (C1) ana , '55) hold along an admissible process $\left(u^{0}(\cdot), x^{0}(\cdot)\right)$. Then, in order $f r$ the a missible control $u^{0}(\cdot)=\left(v^{0}(\cdot), w^{0}(\cdot)\right)^{T}$ to be optimal, it is necessary "' at tru ...equalities (4), (5) and

$$
\begin{equation*}
H_{w}^{T}(\theta ; \hat{u})\left(\tilde{w}-w^{0}(\theta)\right) \leq 0, \forall \hat{u} \in U_{0}\left(t_{1}-1\right), \forall(\iota \tilde{w}) \in I_{-1} \times W(\theta) \tag{7}
\end{equation*}
$$

hold, where $U_{0}\left(t_{1}-1\right)$ is defined by (63).

The proof of this theorem is presented in ${ }^{\circ}$ action 5.
In Theorem 3.2, we obtain an opt, na ty condition with respect to one of the components of a control in the $\quad \therefore$ of . global maximum principle and with respect to another component $c^{c} n$ ront. n l in the form of the linearized maximum principle. Note that this theorem $_$. sits own application areas compared to Theorem 3.1, and the rel valu results for the necessary optimality conditions are studied in $[4,13,15]$.

Finally, we emph size shat the fulfillment of the first-order necessary optimality conditions (1)-l, an . (7) does not even guarantee the local minimum of the functional (\perp, in the presence of singularities (see [19]). The next section addresses such - ses.

3.2. Secor l-Orac Necessary Optimality Conditions by Components

In th. of tior, we introduce the concepts of singular as well as quasi-singular contr $\mu \mathrm{s}$ with respect to the components, and for the optimality of such controls, varic 's seco' d-order necessary conditions are obtained.

Definit on 3.1. An admissible control $u^{0}(\cdot)=\left(v^{0}(\cdot), w^{0}(\cdot)\right)^{T}$ satisfying the co.......ns (4)-(6) is called singular with respect to the vector component $v(w)$ ε the point $t=\theta \in I_{-1}$ with the parameter $\left(\hat{u}, V_{0}(\theta)\right) \subseteq U_{0}\left(t_{1}-1\right) \times V(\theta)$ (' $\left.\left.\hat{u}, W_{0}(\theta)\right) \subseteq U_{0}\left(t_{1}-1\right) \times W(\theta)\right)$ if for all $\tilde{v} \in V_{0}(\theta)\left(\tilde{w} \in W_{0}(\theta)\right)$, the following
equality holds:

$$
\begin{equation*}
\Delta_{\tilde{v}} H(\theta ; \hat{u})=0\left(\Delta_{\tilde{w}} H(\theta ; \hat{u})=0\right) \tag{8}
\end{equation*}
$$

where $V_{0}(\theta) \backslash\left\{v^{0}(\theta)\right\} \neq \varnothing\left(W_{0}(\theta) \backslash\left\{w^{0}(\theta)\right\} \neq \varnothing\right)$.
Definition 3.2. An admissible control $u^{0}(\cdot)=\left(v^{0} /,, w^{v}(\cdot)\right)$ satisfying conditions (4), (5) and (7) is called quasi-singular with $r_{t} \cdot n$ t to he vector component w at the point $t=\theta \in I_{-1}$ with the parameter $\left(\hat{u}, r^{,}(\theta)\right) \subseteq U_{0}\left(t_{1}-1\right) \times W(\theta)$ if for all $\tilde{w} \in W_{0}(\theta)$, the following equality holds.

$$
\begin{equation*}
H_{w}^{T}(\theta ; \hat{u})(\tilde{w}-\cdots(n) \quad \mathrm{J}, \tag{9}
\end{equation*}
$$

where $W_{0}(\theta) \backslash\left\{w^{0}(\theta)\right\} \neq \varnothing$, and $U_{0}\left(\leadsto _\therefore\right.$ defined by (63).
Now, we are in the position to + " c . n nt , ur main results for the second-order optimality conditions with rest -at to $\imath^{\text {'e }}$ e components.

Theorem 3.3. Let assumptions (A2), (B3), (C1) and (C3) hold along an admissible process $\left(u^{0}(\cdot), x^{\Gamma}(\cdot)\right)$. N. oreover, let $u^{0}(\cdot)=\left(v^{0}(\cdot), w^{0}(\cdot)\right)^{T}$ be singular with respect to the vec ${ }^{\circ}$ or cu. n nent v at the point $t=\theta \in I_{-1} \backslash\left\{t_{1}-2\right\}$ with the parameter $\left.\left(\hat{u}, V_{\mathrm{C}} A\right)\right)$ and je singular with respect to the vector component w at the point $t=f_{1}$ with ..e parameter $\left(\hat{u}, W_{0}\left(\theta_{1}\right)\right)$. Then, for the admissible control $u^{0}(\cdot)$ to ve opıı. nll, it is necessary that for all $\tilde{v} \in V_{0}(\theta), \tilde{w} \in W_{0}\left(\theta_{1}\right)$ and $\alpha \in \mathbb{R}_{+}$, the ir eque 'ity

$$
\begin{equation*}
\iota^{2} \stackrel{\circ}{M}((\theta, \iota) ; \hat{u})+2 \alpha \stackrel{\circ}{N}\left(\left(\theta_{1}, \tilde{w}\right) ; \hat{u}\right) \Delta_{\tilde{v}} f(\theta)+\grave{M}\left(\left(\theta_{1}, \tilde{w}\right) ; \hat{u}\right) \leq 0 \tag{10}
\end{equation*}
$$

215 holds לere $\sim f(\theta), M(\cdot)$ and $N(\cdot)$ are defined by (16), (48) and (49), respectivel :
s'heor m 3.4. Let assumptions (A2), (B3), (B4), (C4) and (C5) hold along « adr ussible process $\left(u^{0}(\cdot), x^{0}(\cdot)\right)$. Moreover, let $u^{0}(\cdot)=\left(v^{0}(\cdot), w^{0}(\cdot)\right)^{T}$ be 5 .y. . Iar with respect to the vector component v at the point $t=\theta \in I_{-1}$ with the , arameter $\left(\hat{u}, V_{0}(\theta)\right)$ and be quasi-singular with respect to the vector component w at the point $t=\theta$ with the parameter $\left(\hat{u}, W_{0}(\theta)\right)$. Then, for the admissible
control $u^{0}(\cdot)$ to be optimal, it is necessary that for all $\tilde{v} \in V_{0}(\theta), \quad \sim \in W_{v^{\prime}}^{\prime}(\theta)$ and $\alpha \in \mathbb{R}_{+}$, the inequality

$$
\begin{align*}
& \stackrel{\circ}{M}((\theta, \tilde{v}) ; \hat{u})+2 \alpha \AA((\theta, \tilde{v}) ; \hat{u})\left(\tilde{w}-w^{0}(A)\right) \tag{11}\\
+ & \left.\alpha^{2}\left(\tilde{w}-w^{0}(\theta)\right)^{T} \dot{G}(\theta ; \hat{u})\right)\left(\tilde{w}-w^{0}(6) \leq 0\right.
\end{align*}
$$

holds, where $\dot{M}(\cdot), \stackrel{\circ}{\Omega}(\cdot)$ and $\dot{G}(\cdot)$ are defined by (48) (15) and (57), respectively.

Theorem 3.5. Let assumptions (A2), (B3), (B4), (工1) and (C5) hold along an admissible process $\left(u^{0}(\cdot), x^{0}(\cdot)\right)$. Moreove let $u^{0}(\cdot)=\left(v^{0}(\cdot), w^{0}(\cdot)\right)^{T}$ be singular with respect to the vector compor n. v at the point $t=\theta \in I_{-1} \backslash\left\{t_{1}-2\right\}$ with the parameter $\left(\hat{u}, V_{0}(\theta)\right)$ and b y iningular with respect to the vector component w at the point $t=\theta_{1}$ with, e parameter $\left(\hat{u}, W_{0}\left(\theta_{1}\right)\right)$. Then, for the admissible control $u^{0}(\cdot)$ to be op. ' $m u^{\prime}$ ' it is necessary that for all $\tilde{v} \in V_{0}(\theta)$, $\tilde{w} \in W_{0}\left(\theta_{1}\right)$ and $\alpha \in \mathbb{R}_{+}$, the ineq. - Invy

$$
\begin{align*}
& \stackrel{\circ}{M}\left((\theta, \tilde{v}) ; \hat{\gamma}, \quad{ }^{\top} \Delta_{\tilde{v}} f^{T}(\theta) \stackrel{P}{P}\left(\theta_{1} ; \hat{u}\right)\left(\tilde{w}-w^{0}\left(\theta_{1}\right)\right)\right. \\
& \left.\quad+\alpha^{2}\left(u \quad w^{0}(\theta)\right)^{T} \dot{G}\left(\theta_{1} ; \hat{u}\right)\right)\left(\tilde{w}-w^{0}\left(\theta_{1}\right)\right) \leq 0 \tag{12}
\end{align*}
$$

holds, where $\Delta_{\tilde{v}} f(\theta, \stackrel{\circ}{M} \cdot), \check{「}^{\circ}(\cdot)$ and $\stackrel{\circ}{P}(\cdot)$ are defined by (16), (48), (57) and 220 (62), respectively.

The proofs r these tneorems are presented in Section 5.
Consequ n tly we obtain second-order necessary optimality conditions by componer s in the forms of (10), (11), and (12). Although these conditions have varı : are is of application, the applications of (10) and (11) are less 25 const uctive relative to those of (12). This is because assumptions (C3) and (C4) re rec ired for the validity of optimality conditions (10) and (11), and it s gene ally difficult to determine whether these assumptions are true. Hence, \imath. are $r \boldsymbol{y}$ b be a question, for instance, of whether it is possible to weaken (C4). 1 . 'her words, it is unclear whether Theorem 3.4 is valid if (C4) holds only at ${ }_{230}$ ne point. The following example provides the answer to this question.

Example 3.2 Consider the following optimization problem:

$$
\begin{aligned}
& \left.x_{1}(t+1)=x_{1}(t)+\sqrt{2} v(t) w(t), x_{2}(t+1)=-x_{1}^{2}(t)+x_{2}(t)+\iota^{\prime}(t)\left(u_{1}^{\prime} t\right)-1\right), \\
& x_{1}(0)=x_{2}(0)=0, \quad I=\{0,1\}, t_{1}=2, u(t)=(v(t), w(t))=V+1 \times W(t), \\
& \left.t \in\{0,1\}, V(0)=[-1,0], W(0)=[-2,2], V(1)=W(1) \cdot{ }^{\prime}, \pm 1\right\},
\end{aligned}
$$

$$
S(u(\cdot))=\Phi(x(2))=-x_{2}(2) \rightarrow \mathrm{mi}_{1}
$$

Let us calculate $S(u(\cdot))$:
$S(u(\cdot))=v^{2}(0)\left[2 w^{2}(0)-w(0)+1\right]+v^{2}(1)[1-\cdots(1\lrcorner,) \rightarrow \min$,
where $(v(0), w(0)) \in[-1,0] \times[-2,2]$ and $(v(-) w(1)):\{0, \pm 1\} \times\{0, \pm 1\}$.
Clearly, $u^{0}(t)=\left(v^{0}(t), w^{0}(t)\right)^{T}=(0,1)^{\top}, \quad+\in\{U, 1\}$, is an optimal control, and $x^{0}(t)=(0,0)^{T}, t \in\{0,1,2\}$, is an opt. aı trajectory. Moreover, assumptions (A2), (B3), (B4) and (C5) hold for thi nample, but (C4) is satisfied only at the point $w^{0}=w^{0}(0)=1$, i.e., the set $\left.f\left(x^{\prime}\right), V(0), w^{0}, 0\right)\left.\right|_{w^{0}=1}=\left\{(\sqrt{2} v(0), 0)^{T}\right.$: $v(0) \in[-1,0]\}$ is convex. Now, let u. ci. $\quad \mathrm{k}$ the condition (11) along an optimal process $\left(u^{0}(\cdot), x^{0}(\cdot)\right)$ at the por. $\cdot v$

By (25), (26), (31), (51) and (63), one can write the following calculations:

$$
\begin{gathered}
\Delta_{\hat{u}} \Phi(f(1))=\hat{v}^{2}\left(1-\hat{u}, \hat{u}=(\hat{v} \hat{w}) \in\{0, \pm 1\} \times\{0, \pm 1\}, \Delta_{\tilde{v}} f(0)=(\sqrt{2} \tilde{v}, 0)^{T},\right. \\
f_{w}(0)=(0,0)^{T}, \quad J_{0}(\uparrow)=\left\{(0, \hat{w})^{T}: \hat{w} \in\{0, \pm 1\}\right\} \cup\left\{(\hat{v}, 1)^{T}: \hat{v} \in\{0, \pm 1\}\right\}, \\
\dot{\psi}(1 \cdot)=\dot{\psi}(0 ; u)=(0,1)^{T}, \Delta_{\tilde{v}} H(0 ; \hat{u})=0, \forall \hat{u} \in U(1) \\
\quad{ }^{\top}{ }_{w}(0 ; \hat{u})=0, H_{w w}(0 ; \hat{u})=0, \Delta_{\tilde{v}} H_{w}(0 ; \hat{u})=\tilde{v}^{2}, \\
H_{x x}\left(\psi^{0}(1 ; \hat{u}), x^{n}(1), \hat{u}, 1\right)=\left[\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right], \stackrel{\circ}{\Psi}(1 ; \hat{u})=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \stackrel{\circ}{\Psi}(0 ; \hat{u})=\left[\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right] .
\end{gathered}
$$

Neve by is ${ }^{15},(56)$ and (57), in a similar fashion, one can obtain

$$
\begin{equation*}
\stackrel{\circ}{M}((0 ; \tilde{v}) ; \hat{u})=-4 \tilde{v}^{2}, \check{\Omega}((0, \tilde{v}) ; \hat{u})=\tilde{v}^{2}, \dot{G}(0 ; \hat{u})=0 . \tag{13}
\end{equation*}
$$

Taki g into account the above expressions for $\Delta_{\hat{u}} \Phi(f(1)), \Delta_{\tilde{v}} H(0 ; \hat{u})$ and $H_{n},(U ; \hat{u})$, we obtain that the optimal control $u^{0}(t)=(0,1)^{T}, t \in\{0,1\}$, is sin,ular with respect to the vector component v at the point $t=0$ with parameter $(u, V(0))$, where $\hat{u} \in U_{0}(1)$, and is quasi-singular with respect to the vector
component w at the point $t=0$ with parameter $(\hat{u}, W(0))$, w. $\cdot{ }^{-} \mathrm{re} u \quad U_{0}(1)$. Thus, taking into account (13), the condition (11) takes thf for n

$$
-4 \tilde{v}^{2}+2 \alpha \tilde{v}^{2}(\tilde{w}-1) \leq 0, \quad \forall(\alpha, \tilde{v}, \tilde{w}) \in R_{+} \times[-1.0\rceil \times\llcorner\cap 2]
$$

This inequality for $\alpha=3, \tilde{v}=-1, \tilde{w}=2$ is not satisfied: ? <0.
Thus, Example 3.2 enables us to state that ass mption (C4) is essential for the validity of Theorem 3.4 and generally cannot ι weak ned.

4. Various Increment Formulas of the Un:ective Functional by Components

In this section, considering separat, car es, irst- and second-order increment formulas of the objective functiona. (1) w. h respect to the components are obtained along an admissible process $\left.\left(u^{\prime} \cdot\right), x^{0}(\cdot)\right)$, where $u^{0}(t)=\left(v^{0}(t), w^{0}(t)\right)^{T}$, $v^{0}(t) \in V(t), t \in I$, and $w^{0}(t) \in W(0, t \in I$. The results of this section are auxiliary and play an importa ... le in the proof of the theorems in the following section.

4.1. First-Order Inc emf it F rmulas

To obtain first order lı. :ement formulas, we consider the following various cases.

Case 1.1 Ass mptions (A1), (B1) and (C1) hold true.
Let $\left(\theta, \tilde{v}, u, \quad I_{-1} \times V(\theta) \times U\left(t_{1}-1\right)\right.$ be any fixed point. Consider the special variatior of \dagger ie armissible control $u^{0}(\cdot)=\left(v^{0}(\cdot), w^{0}(\cdot)\right)^{T}$ in the form

$$
u\left(t ; p_{1}, \varepsilon\right)= \begin{cases}u^{0}(t), & t \in I \backslash\left\{\theta, t_{1}-1\right\} \tag{14}\\ \left(v(\varepsilon), w^{0}(\theta)\right)^{T}, & t=\theta \\ \hat{u}, & t=t_{1}-1\end{cases}
$$

Hesu, $\mu_{1}:=(\theta, \tilde{v}, \hat{u})$, and the vector function $\left.\left.v(\varepsilon):\right] 0, \tilde{\gamma}_{1}\right] \rightarrow V(\theta)$ is the solution $r_{/}$the following equation:

$$
\begin{equation*}
\left.\left.f\left(x^{0}(\theta), v(\varepsilon), w^{0}(\theta), \theta\right)-f(\theta)=\varepsilon \Delta_{\tilde{v}} f(\theta), \varepsilon \in\right] 0, \tilde{\gamma}_{1}\right], \tag{15}
\end{equation*}
$$

where $\left.\left.\tilde{\gamma}_{1}:=\gamma(\tilde{u}) \in\right] 0,1\right]$ exists by Definition 2.1, and

$$
\begin{equation*}
\Delta_{\tilde{v}} f(t):=f\left(x^{0}(t), \tilde{v}, w^{0}(t), t\right)-f\left(x^{0}(t), v^{0}(t),,^{0}\left(t^{\prime}, t\right) .\right. \tag{16}
\end{equation*}
$$

260 Note that the existence of $\left.v(\varepsilon):] 0, \tilde{\gamma}_{1}\right] \rightarrow V(\theta)$ follows ' $\mathrm{om}\left(\mathrm{C}^{\prime}\right)$ and Definition 2.1, and it is clear that for every $\left.\varepsilon \in] 0, \tilde{\gamma}_{1}\right]$, the function $u_{1} \cdot n_{1} .5$, is an admissible control.

Consider an admissible process $\left(u\left(\cdot ; p_{1}, \varepsilon\right), x_{\backslash}^{\prime} \cdot p_{1}, \varepsilon\right)$ It is obvious that the increment $\left.\left.x\left(t ; p_{1}, \varepsilon\right)-x^{0}(t)=: \Delta x\left(t ; p_{1}, \varepsilon\right), t \in I \cup\left\{t_{1}\right\}, \equiv \in\right] 0, \tilde{\gamma}_{1}\right]$, is a solution to the system

$$
\left\{\begin{array}{l}
\Delta x\left(t+1 ; p_{1}, \varepsilon\right)=f\left(x^{0}(t)+\Delta x\left(t ;{ }_{r} \quad \varepsilon\right), u\left(t ; p_{1}, \varepsilon\right), t\right)-f(t), \tag{17}\\
\Delta x\left(t ; p_{1}, \varepsilon\right)=0, \quad t \in\left\{t_{0}, t_{0}+\ldots \ldots\right\} .
\end{array}\right.
$$

Considering (14) and (15), the syste ${ }^{1}{ }^{\prime}(17$, can be written in a clearer manner:
where $\varepsilon \epsilon] 0, \tilde{\gamma}^{\prime},{ }^{\top}, \quad n d$

$$
\begin{align*}
& \left.\Delta_{\hat{u},} t_{1}-1\right):=f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)-f\left(t_{1}-1\right) \\
& \Delta_{x\left(t-1 ; p_{1}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right) \tag{19}\\
& \quad:-f\left(x\left(t_{1}-1 ; p_{1}, \varepsilon\right), \hat{u}, t_{1}-1\right)-f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right) .
\end{align*}
$$

Le us a pply the steps method. Then, using Taylor's formula considering B1), n obtain from (18)

$$
\begin{equation*}
\left.\left.\left\|\Delta x\left(t ; p_{1}, \varepsilon\right)\right\| \leq \tilde{K}\left(p_{1}\right) \varepsilon, t \in I, \varepsilon \in\right] 0, \tilde{\gamma}_{1}\right], \tilde{K}\left(p_{1}\right)>0 \tag{20}
\end{equation*}
$$

ぃ. 'ere $\|\cdot\|$ is the Euclidean norm and $\tilde{K}\left(p_{1}\right)$ is some number.

Furthermore, taking into account (19),(20) and (B1), for $\Delta_{x\left(t_{1}-1,, ., \varepsilon\right) J^{\prime}} x^{0}\left(t_{1}-\right.$ $1), \hat{u}, t_{1}-1$), we easily obtain the followings:

$$
\begin{align*}
& \Delta_{x\left(t_{1}-1 ; p_{1}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)= \tag{21}\\
& \qquad f_{x}\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right) \Delta x\left(t_{1}-1 p_{1}, \varepsilon\right)+o(\varepsilon) \\
& \left.\left\|\Delta_{x\left(t_{1}-1 ; p_{1}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)\right\| \leq t_{1}\right) \varepsilon, \quad\left(p_{1}\right)>0 . \tag{22}
\end{align*}
$$

Here and throughout the paper, we will use $\varepsilon^{-m} o\left(\varepsilon^{m}\right) \rightarrow 0$ as $\varepsilon \rightarrow 0$, with $m>0$.
Let us now calculate the increment $S\left(u\left(\cdot, n_{1}, \varepsilon ;, \quad \nu\left(u^{0}(\cdot)\right)=: \Delta S\left(u^{0}(\cdot) ; p_{1}, \varepsilon\right)\right.\right.$, where $u\left(t ; p_{1}, \varepsilon\right), t \in I$, is defined by (14) c. $\quad\left(t_{1}\right)=f\left(t_{1}-1\right)$, by (18) and (19), the following equality holds:

$$
\begin{align*}
& \Delta S\left(u^{0}(\cdot) ; p_{1}, \varepsilon\right)=\Phi\left(x^{0}\left(t_{1}\right)+\Delta x\left(t_{1} p_{1}, \varepsilon\right)\right)-\Phi\left(x^{0}\left(t_{1}\right)\right) \\
& =\Phi\left(f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)+\Delta_{\left.a \cdot t_{1}-1 ; p_{1}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)\right) \tag{23}\\
& \left.\left.-\Phi\left(f\left(t_{1}-1\right)\right), \varepsilon \in\right] 0, \tilde{\gamma}_{1}\right] .
\end{align*}
$$

From (23), considering (2, art (A1) and using the Taylor expansion at the point $f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-\right.$) we r stain

$$
\begin{align*}
& \Delta S\left(u^{0}(\cdot) ; p_{1}, \varepsilon\right)=\Delta_{\hat{u}} \Phi(f(t-1))+ \tag{24}\\
& \Phi_{x}^{T}\left(f\left(x^{0}\left(t_{1}-1, \hat{u}, t_{1}-1\right) \Delta_{x\left(t_{1}-1 ; p_{1}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)\right)+o_{1}(\varepsilon),\right.
\end{align*}
$$

where

$$
\begin{equation*}
\left.\Delta_{\hat{u}^{\Psi},}\left(t_{1}-1\right)\right):=\Phi\left(f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)\right)-\Phi\left(f\left(t_{1}-1\right)\right) \tag{25}
\end{equation*}
$$

Follc -in , $[15]^{1}$ we introduce the vector function $\dot{\psi}(t ; \hat{u}), t \in I$, as the solution of themear dincrete system

$$
\left\{\begin{array}{l}
\dot{\psi}(t-1 ; \hat{u})=f_{x}^{T}(t) \dot{\psi}(t ; \hat{u}), \quad t \in\left\{t_{0}+1, \ldots, t_{1}-2\right\}, \tag{26}\\
\dot{\psi}\left(t_{1}-2 ; \hat{u}\right)=f_{x}^{T}\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right) \dot{\psi}\left(t_{1}-1 ; \hat{u}\right), \\
\dot{\psi}\left(t_{1}-1 ; \hat{u}\right)=-\Phi_{x}\left(f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)\right)
\end{array}\right.
$$

265 -et us continue the calculation of $\Delta S(\cdot)$ by considering (21) in (24). Then, by (26), the expansion (24) takes the form

$$
\begin{align*}
& \Delta S\left(u^{0}(\cdot) ; p_{1}, \varepsilon\right)=\Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right) \\
& \left.-\dot{\psi}^{T}\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-1 ; p_{1}, \varepsilon\right)+o_{\Sigma}(\varepsilon), \varepsilon \in\right\rceil 0, \gamma_{1} \tag{27}
\end{align*}
$$

Here and throughout the paper, we denote $o_{\Sigma}(\varepsilon)$ as a cotal re ainder term.
Let us now calculate the second term in (27). Int $\left.t \cup \vdash_{\square}, \ldots, t_{1}-2\right\}$. Then, from (18), taking into account (20) and applying 'ay' r's ormula, we obtain

$$
\begin{equation*}
\Delta x\left(t+1 ; p_{1}, \varepsilon\right)=f_{x}(t) \Delta x\left(t ; p_{1}, \varepsilon\right)+o_{2}\left(\varepsilon ; t, \quad t \in\left\{\theta_{1}, \ldots, t_{1}-2\right\}\right. \tag{28}
\end{equation*}
$$

Consider (28) in the following identity:

$$
\begin{aligned}
& \dot{\psi}^{T}\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-1 ; p_{1}, \varepsilon\right) \quad{ }^{i T}, n, \dot{\omega}, \Delta x\left(\theta_{1} ; p_{1}, \varepsilon\right) \\
& +\sum_{t=\theta_{1}}^{t_{1}-2}\left[\dot{\psi}^{T}(t ; \hat{u}) \Delta x\left(t+1 ; p, \quad i, T(t-1 ; \hat{u}) \Delta x\left(t ; p_{1}, \varepsilon\right)\right] .\right.
\end{aligned}
$$

Then, by (26), for $\left.\dot{\psi}^{T}\left(t_{1}-2 ; \hat{u}\right) \Delta x, 1 ; 1, \varepsilon\right)$, we easily obtain the following representation:

$$
\begin{equation*}
\dot{\psi}^{T}\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-1 ; p_{1}, \varepsilon\right)=\dot{\psi}^{T}(\theta ; \hat{u}) \Delta x\left(\theta_{1} ; p_{1}, \varepsilon\right)+o_{\Sigma}(\varepsilon) \tag{29}
\end{equation*}
$$

Therefore, taking into account (29) in (27) and considering the equality $\Delta x\left(\theta_{1} ; p_{1}, \varepsilon\right)=\varepsilon \Delta_{\tilde{v}} f(\prime)\left(\right.$ see $\left.\left({ }^{\prime \prime}\right)\right)$ and the definition of the function $H(\cdot)$, for $\Delta S\left(u^{0}(\cdot) ; p_{1}, \varepsilon\right)$, we $\imath^{\text {'t, }} \mathrm{n} \mathrm{ntr} \approx$ first-order increment formula of the form

$$
\begin{equation*}
\left.\Delta S\left(u^{0}(\cdot) ; p^{\prime}, \varepsilon,-\Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right)-\varepsilon \Delta_{\tilde{v}} H(\theta ; \hat{u})+o_{\Sigma}(\varepsilon), \varepsilon \in\right] 0, \tilde{\gamma}_{1}\right] . \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{\tilde{v}} H(t ; \hat{u})=\dot{\psi}^{T}(t ; \hat{u}) \Delta_{\tilde{v}} f(t) \tag{31}
\end{equation*}
$$

Cast $1 \therefore$ As amptions (A1), (B1) and (C2) hold true.
I, ᄃ $p_{2}=(\theta, \tilde{w}, \hat{u}) \in I_{-1} \times W(\theta) \times U\left(t_{1}-1\right)$ be an arbitrary fixed vector parameter. Simila to (14), let us define a variation (with respect to the component J) of t^{\prime} e admissible control $u^{0}(\cdot)=\left(v^{0}(\cdot), w^{0}(\cdot)\right)^{T}$ as follows:

$$
u\left(t ; p_{2}, \varepsilon\right)= \begin{cases}u^{0}(t), & t \in I \backslash\left\{\theta, t_{1}-1\right\} \tag{32}\\ \left(v^{0}(\theta), w(\varepsilon)\right)^{T}, & t=\theta \\ \hat{u}, & t=t_{1}-1\end{cases}
$$

Here, the vector function $\left.w(\varepsilon):] 0, \tilde{\gamma}_{2}\right] \rightarrow W(\theta)$ is the solution ι° the 1 llowing equation:

$$
\left.f\left(x^{0}(\theta), v^{0}(\theta), w(\varepsilon), \theta\right)-f(\theta)=\varepsilon \Delta_{\tilde{w}} f(\theta), \varepsilon \in 10 . \tilde{\gamma}_{2\lrcorner}{ }^{-1} 0,1\right]
$$

where $\Delta_{\tilde{w}} f(\theta)$ is defined similarly to (16). Note thai the exi tence of $w(\varepsilon)$:] $\left.0, \tilde{\gamma}_{2}\right] \rightarrow W(\theta)$ follows from (C2) and Definition $2 \ldots$

In this case, using (32) and applying step by step + ches cheme used to obtain the formula (30), for increment $\left.S\left(u\left(\cdot ; p_{2}, \varepsilon\right)\right)-S\left(u^{n} \cdot\right)\right)=: \Delta S\left(u^{0}(\cdot) ; p_{2}, \varepsilon\right)$, we easily obtain

$$
\begin{equation*}
\left.\left.\Delta S\left(u^{0}(\cdot) ; p_{2}, \varepsilon\right)=\Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right)-\varepsilon \wedge \sim H(\iota \cdot)+o_{\Sigma}(\varepsilon), \varepsilon \in\right] 0, \tilde{\gamma}_{2}\right], \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{\tilde{w}} H\left(t ; \hat{v}^{\prime}=\dot{\psi}^{-} \quad t ; \hat{u}\right) \Delta_{\tilde{w}} f(t) . \tag{34}
\end{equation*}
$$

Case 1.3 Assumptions (A1), (B1), ($\perp^{\prime 2}$) and (C5) hold true.
Consider the special variation ω_{2}^{+}he admissible control $u^{0}(\cdot)=\left(v^{0}(\cdot), w^{0}(\cdot)\right)^{T}$ in the form

$$
\begin{align*}
& \int_{u^{0}}\left(t, \quad t \in I \backslash\left\{\theta, t_{1}-1\right\},\right. \\
& u(t ; p, \varepsilon) \quad\left\{\left(v^{0}(\theta), w(\varepsilon)\right)^{T}, \quad t=\theta,\right. \tag{35}
\end{align*}
$$

Here, $p_{3}:=(\theta, \hat{u}, \hat{u})$, ware $\theta \in I_{-1}, \tilde{w} \in W(\theta)$ and $\hat{u} \in U\left(t_{1}-1\right)$ are arbitrary fixed points, $\left.\left.\left.\left.\nu(\varepsilon)=w^{0}(\theta)+\varepsilon\left(\tilde{w}-w^{0}(\theta)\right) \in W(\theta), \varepsilon \in\right] 0, \tilde{\gamma}_{3}\right] \subset\right] 0,1\right]$, where the existence $c^{f} \tilde{\gamma}_{3} . \quad \sim(\tilde{w})$ follows from (C5) by considering Definition 2.1.

Cons der in a ${ }^{\prime}$ missible process $\left(u\left(\cdot ; p_{3}, \varepsilon\right), x\left(\cdot ; p_{3}, \varepsilon\right)\right)$. Similar to (18), considerir $=\left(\mathrm{B} \check{\iota}\right.$,,${ }^{\mathrm{f}} \mathrm{r}$ the increment $x\left(\cdot ; p_{3}, \varepsilon\right)-x^{0}(\cdot)=: \Delta x\left(\cdot ; p_{3}, \varepsilon\right)$, we can write

$$
\wedge_{r}\left(1 ; p_{3}, \varepsilon\right)= \begin{cases}0, & t_{0}-1 \leq t<\theta, \tag{36}\\ \varepsilon f_{w}(\theta)\left(\tilde{w}-w^{0}(\theta)\right)+o(\varepsilon), & t=\theta, \\ f\left(x\left(t ; p_{3}, \varepsilon\right), u^{0}(t), t\right)-f(t), & \theta<t<t_{1}-1, \\ \Delta_{\hat{u}} f\left(t_{1}-1\right) & \\ +\Delta_{x\left(t_{1}-1 ; p_{3}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right), & t=t_{1}-1,\end{cases}
$$

${ }_{275}$ where $\left.\left.\varepsilon \in\right] 0, \tilde{\gamma}_{3}\right] ; \Delta_{\hat{u}} f(\cdot)$ and $\Delta_{x\left(t_{1}-1 ; p_{3}, \varepsilon\right)} f(\cdot)$ are defined simila. ${ }^{\prime}{ }^{v}$ to $\left.{ }^{\prime} 9\right)$. From (36), similar to (20) - (22), we obtain

$$
\begin{align*}
& \left.\left.\left\|\Delta x\left(t ; p_{3}, \varepsilon\right)\right\| \leq \tilde{K}\left(p_{3}\right) \varepsilon, t \in I, \varepsilon \in\right] 0, \tilde{\gamma}_{3}\right], \tilde{K}\left(p_{3}\right)>0 \\
& \Delta_{x\left(t_{1}-1 ; p_{3}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)= \tag{37}\\
& f_{x}\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right) \Delta x\left({ }_{1}-1: n_{3}, \varepsilon\right)+o(\varepsilon) \\
& \left\|\Delta_{x\left(t_{1}-1 ; p_{3}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)\right\| \leq \hat{K}\left(p_{3}\right) \varepsilon,{ }_{2}\left(p_{3}\right)>0 .
\end{align*}
$$

Following the scheme used to obtain formula (30, and taking into account (25), (26), (35)-(37), (A1) and (B1), for i九 "emt. $\omega^{\prime}\left(u\left(\cdot ; p_{3}, \varepsilon\right)\right)-S\left(u^{0}(\cdot)\right)=$: $\Delta S\left(u^{0}(\cdot) ; p_{3}, \varepsilon\right)$, we have

$$
\Delta S\left(u^{0}(\cdot) ; p_{3}, \varepsilon\right)=\Delta_{\hat{u}} \Phi\left(f \left(t_{1}-1, \quad i T(\theta ; \hat{u}) \Delta x\left(\theta+1 ; p_{3}, \varepsilon\right)+o_{\Sigma}(\varepsilon)\right.\right.
$$

Therefore, considering $\Delta x\left(\theta+1 ; p_{\iota} \quad\right.$) $=\varepsilon .{ }^{\circ}{ }^{v}(\theta)\left(\tilde{w}-w^{0}(\theta)\right)+o(\varepsilon)$ (see (36)) in the last equality, we obtain the follow. vg nirst-order increment formula:

$$
\begin{equation*}
\left.\left.\Delta S\left(u^{0}(\cdot) ; p_{3}, \varepsilon\right)=\Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right)-\varepsilon H_{w}^{T}(\theta ; \hat{u})\left(\tilde{w}-w^{0}(\theta)\right)+o_{\Sigma}(\varepsilon), \varepsilon \in\right] 0, \tilde{\gamma}_{3}\right] \tag{38}
\end{equation*}
$$

4.2. Second-Order Inr ement \neg rmulas

We next consider h_{f} foll r wing various cases for obtaining the second-order increment formul

Case 2.1 Assumptic_is (A2), (B3), (C1) and (C3) hold true.
 $\left.\mathbb{R}_{+}:=\right] 0,+\infty\left[, \theta \in{ }^{r}{ }_{0}, t_{0}+1, \ldots, t_{1}-3\right\}, \theta_{1}=\theta+1, \tilde{v} \in V(\theta), \tilde{w} \in W\left(\theta_{1}\right)$ and $\hat{u} \in$ $U\left(t_{1}-1\right)$, re ny f zed points. Consider an admissible process $\left(u\left(\cdot ; c_{1}, \varepsilon\right), x\left(\cdot ; c_{1}, \varepsilon\right)\right)$ and t^{\prime}. incremınt $x\left(\cdot ; c_{1}, \varepsilon\right)-x^{0}(\cdot)=: \Delta x\left(\cdot ; c_{1}, \varepsilon\right)$, where $u\left(\cdot ; c_{1}, \varepsilon\right)$ and $\Delta x\left(\cdot ; c_{1}, \varepsilon\right)$ are c \quad fined ε; follows:

$$
u\left(t ; c_{1}, \varepsilon\right)= \begin{cases}u^{0}(t), & t \in I \backslash\left\{\theta, \theta_{1}, t_{1}-1\right\} \tag{39}\\ \left(v(\varepsilon), w^{0}(\theta)\right)^{T}, & t=\theta \\ \left(v^{0}\left(\theta_{1}\right), w(\varepsilon)\right)^{T}, & t=\theta_{1} \\ \hat{u}, & t=t_{1}-1\end{cases}
$$

$$
\left\{\begin{array}{l}
\Delta x\left(t+1 ; c_{1}, \varepsilon\right)=f\left(x^{0}(t)+\Delta x\left(t ; c_{1}, \varepsilon\right), u\left(t ; c_{1}, \varepsilon\right)\right)-(t) \tag{40}\\
\Delta x\left(t ; c_{1}, \varepsilon\right)=0, \quad t \in\left\{t_{0}, t_{0}+1, \ldots, \theta\right\}
\end{array}\right.
$$

280 Here, the vector functions $\left.v(\varepsilon):] 0, \gamma_{1}\right] \rightarrow V(\theta)$ and $\left.w(c): 10 f_{1}^{*}\right] \rightarrow W\left(\theta_{1}\right)$ are defined implicitly as follows:
(a) $\left.v(\varepsilon):] 0, \gamma_{1}\right] \rightarrow V(\theta)$ is a solution of the ${ }^{\text {collowino }}$ quation:

$$
\begin{equation*}
\left.\left.f\left(x^{0}(\theta), v(\varepsilon), w^{0}(\theta), \theta\right)-f(\theta)=\varepsilon_{\iota} \wedge_{\tilde{v}} f(f), \varepsilon \in\right] 0, \gamma_{1}\right] \tag{41}
\end{equation*}
$$

where $\Delta_{\tilde{v}} f(\theta)$ is defined by (16), and $\left.\left.\left.\gamma_{i} \quad \because \cdot u\right)^{-1} \gamma, \quad \gamma=\gamma(\tilde{v}) \in\right] 0,1\right]$.
First, by assumption (C1) and Definition $2 .$. the solution of equation (41) as a vector function $v(\cdot)$ exists; second, by,v sidering (41) and equality $u\left(\theta ; c_{1}, \varepsilon\right)=$ $\left(v(\varepsilon), w^{0}(\theta)\right)^{T}$ from (40), we have

$$
\begin{equation*}
\left.\Delta x\left(\theta_{1} ; c_{1}, \varepsilon, \quad \varepsilon \alpha \Delta_{\tilde{v}} f(\theta), \varepsilon \in\right] 0, \gamma_{1}\right] \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
\left.\left.\left\|\Delta x\left(\theta_{1} ; \quad \varepsilon\right)\right\| \leq \Sigma \varepsilon, \varepsilon \in\right] 0, \gamma_{1}\right], K=K\left(c_{1}\right)>0 \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
\left.\left.x^{0}\left(\theta_{1}\right)+\Delta x\left(\rho ; c_{1}, \varepsilon\right) \in \zeta_{\delta}\left(x^{0}\left(\theta_{1}\right)\right), \varepsilon \in\right] 0, \gamma_{1}^{*}\right], \gamma_{1}^{*}=\min \left\{\gamma_{1}, \frac{\delta}{K+1}\right\} \tag{44}
\end{equation*}
$$

(b) $\left.w(\varepsilon):\urcorner,{ }_{1}^{*}\right] \rightarrow W\left(\theta_{1}\right)$ is a solution of the following equation:

$$
\begin{array}{r}
f\left(x\left(\rho_{i} ; c_{1}, \ldots v^{0}\left(\theta_{1}\right), w(\varepsilon), \theta_{1}\right)-f\left(x\left(\theta_{1} ; c_{1}, \varepsilon\right), v^{0}\left(\theta_{1}\right), w^{0}\left(\theta_{1}\right), \theta_{1}\right)\right. \\
\left.\left.=\varepsilon \Delta_{\tilde{w}} f\left(x\left(\theta_{1} ; c_{1}, \varepsilon\right), v^{0}\left(\theta_{1}\right), w^{0}\left(\theta_{1}\right), \theta_{1}\right), \varepsilon \in\right] 0, \gamma_{1}^{*}\right] \tag{45}
\end{array}
$$

wher $\leq x\left(\theta_{1} ;{ }_{1}, \varepsilon\right)=x^{0}\left(\theta_{1}\right)+\Delta x\left(\theta_{1} ; c_{1}, \varepsilon\right)$ and

$$
\begin{align*}
& \Delta_{\tilde{w},}\left(x\left(\theta_{1} ; c_{1}, \varepsilon\right), v^{0}\left(\theta_{1}\right), w^{0}\left(\theta_{1}\right), \theta_{1}\right) \tag{46}\\
& :=\left(x\left(\theta_{1} ; c_{1}, \varepsilon\right), v^{0}\left(\theta_{1}\right), \tilde{w}, \theta_{1}\right)-f\left(x\left(\theta_{1} ; c_{1}, \varepsilon\right), v^{0}\left(\theta_{1}\right), w^{0}\left(\theta_{1}\right), \theta_{1}\right) .
\end{align*}
$$

1. , 33$),(44),(46)$ and Definition 2.2, the solution of equation (45) as a vector \therefore nction $w(\cdot)$ exists.

In this case, for $S\left(u\left(\cdot ; c_{1}, \varepsilon\right)\right)-S\left(u^{0}(\cdot)\right)=: \Delta S\left(u^{0}(\cdot) ; c_{1}, \varepsilon\right.$, the t. llowing second-order increment formula holds:

$$
\begin{align*}
& \left.\Delta S\left(u^{0}(\cdot) ; c_{1}, \varepsilon\right)=\Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right)-\varepsilon\left[\alpha \Delta_{\tilde{v}} H(\theta ; \hat{u})+\Delta_{\tilde{w}} \digamma_{1} \cdot Q_{1} ; \hat{u}\right)\right] \\
& -\frac{\varepsilon^{2}}{2}\left[\alpha^{2} \stackrel{\circ}{M}((\theta, \tilde{v}) ; \hat{u})+2 \alpha \stackrel{\circ}{N}\left(\left(\theta_{1}, \tilde{w}\right) ; \hat{u}\right) \Delta_{\tilde{v}} f(\theta)+{ }^{r}\left(\left(\theta_{1}, \tilde{u} ; \hat{u}\right)\right]\right. \tag{47}\\
& \left.\left.+o_{\Sigma}\left(\varepsilon^{2}\right), \varepsilon \in\right] 0, \gamma_{1}^{*}\right]
\end{align*}
$$

Here, $\Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right), \Delta_{\tilde{v}} H(\theta ; \hat{u})$ and $\Delta_{\tilde{w}} H\left(\theta_{1} ; u\right.$, are curlmed by (25), (31) and (34), respectively, and

$$
\begin{align*}
& \stackrel{\circ}{M}((\tau, p) ; \hat{u}):=\Delta_{p} f^{T}(\tau) \stackrel{\circ}{\Psi}(\tau ; \hat{u}) \Delta_{p} f(\tau) \quad(\tau \quad) \in\left\{(\theta, \tilde{v}),\left(\theta_{1}, \tilde{w}\right)\right\}, \tag{48}\\
& \stackrel{\circ}{N}\left(\left(\theta_{1}, \tilde{w}\right) ; \hat{u}\right):=\Delta_{\tilde{w}} H_{x}^{T}\left(\theta_{1} ; \iota\right)+\Delta_{\tilde{w}} f^{T}\left(\theta_{1}\right) \stackrel{\circ}{\Psi}\left(\theta_{1} ; \hat{u}\right) f_{x}\left(\theta_{1}\right), \tag{49}
\end{align*}
$$

285 where the matrix function $\dot{U}^{\circ}(t: \hat{u}), t \in I$, is defined as the solution of the linear discrete system [15]

It shou. be noted that $\dot{\psi}(t ; \hat{u}), t \in I$, defined by (26) and $\stackrel{\circ}{\Psi}(t ; \hat{u}), t \in I$, corr spond ,) the admissible control $\hat{u}(t), t \in I$, where $\hat{u}\left(t_{1}-1\right)=\hat{u} \in U\left(t_{1}-1\right)$, and u^{\prime} ' $=\quad(t)=\left(v^{0}(t), w^{0}(t)\right)^{T}, t \in I_{-1}$.

The roof of (47) is presented in Appendix A.
r.e 2.2 Assumptions (A2), (B3), (B4), (C4) and (C5) hold true.

Again, we start with a vector parameter $c_{2}=(\alpha, \theta, \tilde{v}, \tilde{w}, \hat{u})$, where $\alpha \in \mathbb{R}_{+}$, $\iota=I_{-1}, \tilde{v} \in V(\theta), \tilde{w} \in W(\theta)$ and $\hat{u} \in U\left(t_{1}-1\right)$ are arbitrary fixed points. Consider
also the variations of the admissible control $u^{0}(\cdot)=\left(v^{0}(\cdot), w^{0}(\cdot),{ }^{T}\right.$ of $\iota_{\text {. }}$. form

$$
u\left(t ; c_{2}, \varepsilon\right)= \begin{cases}u^{0}(t), & t \in I \backslash\left\{\theta, t_{1} 1\right\} \tag{52}\\ (v(\varepsilon), w(\varepsilon))^{T}, & t=\theta \\ \hat{u}, & t=t_{1}-1\end{cases}
$$

Here,

$$
\begin{equation*}
\left.\left.\left.w(\varepsilon)=w^{0}(\theta)+\varepsilon \alpha\left(\tilde{w}-w^{0}(\theta)\right) \in B_{\delta}\left(w^{0}(\theta)\right) \cap h^{\prime} \theta\right), \varepsilon \in\right] 0, \gamma_{2}\right] \tag{53}
\end{equation*}
$$

where $\gamma_{2}:=\min \left\{(1+\alpha)^{-1} \gamma(\tilde{w}),(1+\alpha)^{-1}\left(1+\left\|u \quad w^{v}(\theta)\right\|\right)^{-1} \delta\right\}$ (the scalar $\gamma(\tilde{w}) \epsilon$]0,1] exists by (C5) and Definition 2.1) aı ${ }^{1}$ it is clear that $\left.\left.\gamma_{2} \in\right] 0,1\right]$; the vector function $\left.v(\varepsilon):] 0, \gamma_{2}\right] \rightarrow V(\theta)$ is a sol $\therefore \sim f$ the following equation:

$$
\begin{align*}
& \left.f\left(x^{0}(\theta), v(\varepsilon), w(\varepsilon), \theta\right)-{ }^{0}(\theta),,^{0}(\theta), w(\varepsilon), \theta\right)= \tag{54}\\
& \left.=\varepsilon\left[f\left(x^{0}(\theta), \tilde{v}, w(\varepsilon), f^{\prime} \quad f\left(x^{\urcorner}(\theta), v^{0}(\theta), w(\varepsilon), \theta\right)\right], \varepsilon \in\right] 0, \gamma_{2}\right] .
\end{align*}
$$

Note that the existence of $\left.w(\varepsilon):] 0, \gamma_{2}\right\rfloor \rightarrow W(\theta)$ follows from (C5) and Definition 2.1, and the existence of $\left.(\varepsilon):\rfloor \quad \gamma_{2}\right] \rightarrow V(\theta)$ follows from (C4) by considering (53) and Definition 2.2 Ot \cdot 'v y y, for every $\left.\varepsilon \in] 0, \gamma_{2}\right]$, the function $u\left(\cdot ; c_{2}, \varepsilon\right)$ is an admissible con ${ }^{+}$ol.

In this case, fr $\left.S\left(u_{\text {(}} \quad_{2}, \varepsilon\right)\right)-S\left(u^{0}(\cdot)\right)=: \Delta S\left(u^{0}(\cdot) ; c_{2}, \varepsilon\right)$, the following second-order inceeme.. formula holds:

$$
\begin{align*}
& \Delta S\left(u^{0}(\cdot) \cdot{ }_{2}, \varepsilon^{\prime}=\right. \\
& \left.\quad \Delta_{\hat{u}} \Psi^{\prime}{ }_{.}{ }^{.}\left(t_{1}-1\right)\right)-\varepsilon\left[\Delta_{\tilde{v}} H(\theta ; \hat{u})+\alpha H_{w}^{T}(\theta ; \hat{u})\left(\tilde{w}-w^{0}(\theta)\right)\right] \\
& \quad \varepsilon^{2}-\left[\left(M((\theta, \tilde{v}) ; \hat{u})+2 \alpha \Omega((\theta, \tilde{v}) ; \hat{u})\left(\tilde{w}-w^{0}(\theta)\right)\right.\right. \tag{55}\\
& + \\
& \left.\left.\left.+\alpha^{2}\left(\tilde{w}-w^{0}(\theta)\right)^{T} \dot{G}(\theta ; \hat{u})\left(\tilde{w}-w^{0}(\theta)\right)\right]+o_{\Sigma}\left(\varepsilon^{2}\right), \varepsilon \in\right] 0, \gamma_{2}\right] .
\end{align*}
$$

fere, $I^{\circ}{ }^{r}((\theta, \tilde{v}) ; \hat{u})$ is defined by (48), and

$$
\begin{gather*}
\stackrel{\circ}{\Omega}((\theta, \tilde{v}) ; \hat{u}):=\Delta_{\tilde{v}} H_{w}^{T}(\theta ; \hat{u})+\Delta_{\tilde{v}} f^{T}(\theta) \stackrel{\circ}{\Psi}(\theta ; \hat{u}) f_{w}(\theta), \tag{56}\\
\dot{G}(\theta ; \hat{u}):=f_{w}^{T}(\theta) \stackrel{\circ}{\Psi}(\theta ; \hat{u}) f_{w}(\theta)+H_{w w}(\theta ; \hat{u}) \tag{57}
\end{gather*}
$$

where $\Delta_{\tilde{v}} H_{w}^{T}(\theta ; \hat{u})$ is analogously defined by（50）．
The proof of（55）is presented in Appendix B．
Case 2．3 Assumptions（A2），（B3），（B4），（C1）and（C5，＇id true．
Consider the variations of the admissible control $\left.)^{\prime}(\cdot)={ }^{\prime} v^{0}(\cdot), w^{0}(\cdot)\right)^{T}$ of the form

$$
u\left(t ; c_{3}, \varepsilon\right)= \begin{cases}u^{0}(t), & t \in I\left\{r, \theta_{1}, 1-1\right\} \tag{58}\\ \left(v(\varepsilon), w^{0}(\theta)\right)^{T}, & t=\theta \\ \left(v^{0}\left(\theta_{1}\right), w(\varepsilon)\right)^{T}, & t=? \\ \hat{u}, & \vdots_{1}-1\end{cases}
$$

Here，
（a）$c_{3}=\left(\alpha, \theta, \theta_{1}, \tilde{v}, \tilde{w}, \hat{u}\right)$ ，where $\alpha \cdot \mathbb{R}_{+}, \theta \in I_{-1} \backslash\left\{t_{1}-2\right\}, \tilde{v} \in V(\theta)$, $\tilde{w} \in W\left(\theta_{1}\right)$ and $\hat{u} \in U\left(t_{1}-1\right)$ are arb．＇ra．${ }^{+}$tixed points；
（b）the vector function $v(\varepsilon$, リアハパ $\quad \rightarrow V(\theta)$ is a solution of the equation

$$
\begin{equation*}
\left.\left.f\left(x^{0}(\theta), v(\varepsilon), \quad \text { に. } \theta\right)-f(\theta)=\varepsilon \Delta_{\tilde{v}} f(\theta), \varepsilon \in\right] 0, \gamma(\tilde{v})\right], \tag{59}
\end{equation*}
$$

where $\Delta_{\tilde{v}} f(\theta)$ is definf l by $\left.(-)^{\circ}\right)$ and the existence of $v(\cdot)$ follows from（C1）by considering Definitic ${ }^{\text {a }} 2.7$ ，an ．
（c）the vector unction $\left.(\varepsilon):] 0, \bar{\gamma}_{3}\right] \rightarrow W\left(\theta_{1}\right)$ is defined as

$$
\begin{equation*}
\left.\left.w(\varepsilon)=w^{0}\left(\theta_{1}\right)+\alpha \varepsilon\left(\tilde{w}-w^{0}\left(\theta_{1}\right)\right), \varepsilon \in\right] 0, \bar{\gamma}_{3}\right] \tag{60}
\end{equation*}
$$

where $\bar{\gamma}_{3}:(1+)^{-1} \gamma(\tilde{w})$ ，the existence of $w(\cdot)$ and $\left.\left.\gamma(\tilde{w}) \in\right] 0,1\right]$ follows from （C5）an De niti n 2．1．

Fr－very \vee tor parameter c_{3} and for all $\left.\left.\varepsilon \in\right] 0, \gamma_{3}\right]$ ，where $\gamma_{3}=\min \left\{\gamma(\tilde{v}), \bar{\gamma}_{3}\right\}$ ， the inction $\iota\left(t ; c_{3}, \varepsilon\right), t \in I$ is an admissible control．
ın this case，for $S\left(u\left(\cdot ; c_{3}, \varepsilon\right)\right)-S\left(u^{0}(\cdot)\right)=: \Delta S\left(u^{0}(\cdot) ; c_{3}, \varepsilon\right)$ ，the following
second-order increment formula holds:

$$
\begin{align*}
& \Delta S\left(u^{0}(\cdot) ; c_{3}, \varepsilon\right)=\Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right)- \\
& \varepsilon\left[\Delta_{\tilde{v}} H(\theta ; \hat{u})+\alpha H_{w}^{T}\left(\theta_{1} ; \hat{u}\right)\left(\tilde{w}-w^{0}\left(\theta_{1}\right)\right)\right] \\
&-\frac{\varepsilon^{2}}{2}\left[\stackrel{\circ}{M}((\theta, \tilde{v}) ; \hat{u})+2 \alpha \Delta_{\tilde{v}} f^{T}(\theta) \stackrel{\circ}{P}\left(\theta_{1} ; \hat{u}\right)\left(\tilde{w}-v^{0}\left(\theta_{1}\right)\right.\right. \tag{61}\\
&\left.\left.\left.+\alpha^{2}\left(\tilde{w}-w^{0}\left(\theta_{1}\right)\right)^{T} \dot{G}\left(\theta_{1} ; \hat{u}\right)\left(\tilde{w}-w^{0}\left(\theta_{1}\right)\right]+r_{\left\langle l^{2}\right.}{ }^{2}\right), \varepsilon \in\right] 0, \gamma_{3}\right],
\end{align*}
$$

where $\dot{M}(\cdot)$ and $\dot{G}(\cdot)$ are defined by (48) and (51, respectively, and

$$
\begin{equation*}
\left.\left.\stackrel{\circ}{P}\left(\theta_{1} ; \hat{u}\right):=H_{x w}\left(\theta_{1} ; \hat{u}\right)+f_{x}^{T} A_{1}\right)^{\prime}{ }^{\prime} \theta_{1} \cdot \imath\right) f_{w}\left(\theta_{1}\right) \text {. } \tag{62}
\end{equation*}
$$

The proof of (61) is given in Appenc. \mathbf{C}.

5. Proofs of Theorems

Recall that

$$
\begin{equation*}
U_{0}\left(t_{1}-1\right):=\left\{\hat{u}: \hat{u} \in U\left(\iota_{1}-1\right), \Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right)=0\right\}, \tag{63}
\end{equation*}
$$

where $\Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right)$ is tefined $\mathrm{y}(25)$.
Here, we present p oofs or - .eorems 3.1-3.5.
Proof. of Theorem $3.1 \perp_{\circ} \cdot$ th conditions of the theorem, the increment formulas (30) and (33) ar va. \quad. Then, along an optimal process $\left(u^{0}(\cdot), x^{0}(\cdot)\right)$, for every $p_{1}=(\theta, \tilde{v}, \hat{u}) p_{2}=(\theta, \tilde{w}, \hat{u})$ and for all $\left.\varepsilon \in\right] 0, \min \left\{\tilde{\gamma}_{1}, \tilde{\gamma}_{2}\right\}[$, the following inequalities $4{ }^{1}$ d

$$
\begin{align*}
& \Delta S^{\prime} u^{0}\left(\because ; p_{1}, \varepsilon\right)=\Delta_{\hat{u}} \Phi\left(t_{1}-1\right)-\varepsilon\left[\Delta_{\tilde{v}} H(\theta ; \hat{u})+\varepsilon^{-1} o_{\Sigma}(\varepsilon)\right] \geq 0, \tag{64}\\
& \left.\Delta S u^{0}(\cdot) ; p_{2}, \varepsilon\right)=\Delta_{\hat{u}} \Phi\left(t_{1}-1\right)-\varepsilon\left[\Delta_{\tilde{w}} H(\theta ; \hat{u})+\varepsilon^{-1} o_{\Sigma}(\varepsilon)\right] \geq 0, \tag{65}
\end{align*}
$$

vhere ${ }^{\imath} \in I_{-1}, \tilde{v} \in V(\theta), \tilde{w} \in W(\theta)$ and $\hat{u} \in U\left(t_{1}-1\right)$. The inequality (4)
 い. - - equality (5) follows from (64) considering (63), the arbitrariness of $\varepsilon \in$,, $\min \left\{\tilde{\gamma}_{1}, \tilde{\gamma}_{2}\right\}\left[\right.$ and the definition of $o_{\Sigma}(\varepsilon)$. Similarly, we obtain the proof of the inequality (6) from (65).

Proof. of Theorem 3.2 Since (A1), (B1) and (C1) hold, formu. (30, is valid. Then, along the optimal process $\left(u^{0}(\cdot), x^{0}(\cdot)\right)$, inequality ('4) olds. Thus, as in the proof of Theorem 3.1, we obtain the validity of inequ ${ }^{1 \%}$, ies (4) and (5).

Moreover, since (A1), (B1), (B2) and (C5) hold, fc mula '38) can be used. Then, for every $p_{3}=(\theta, \tilde{w}, \hat{u}) \in I_{-1} \times W(\theta) \times U\left(t_{1}-1\right)$ a. γ for $\left.\left.11 \varepsilon \in\right] 0, \tilde{\gamma}_{3}\right]$, the increment (38) is nonnegative along the optimal roce $\left.\sim^{\prime} u^{0}(\cdot), x^{0}(\cdot)\right)$. Therefore, considering (63), the arbitrariness of $\left.\varepsilon \in] 0, \tilde{\pi}_{2}\right]$ and \dagger^{\prime}. e definition of $o_{\Sigma}(\varepsilon)$, we obtain the validity of inequality (7).

Proof. of Theorem 3.3 By the conditions of i a theorem, for every vector parameter $c_{1}=\left(\alpha, \theta, \theta_{1}, \tilde{v}, \tilde{w}, \hat{u}\right)$ and for all $\left.-10, \gamma_{1}^{*}\right\rfloor$, formula (47) is valid. Then, considering (63) and Definition 3.1, $\because \hat{\wedge} \in U_{0}\left(t_{1}-1\right)$ and for all $\tilde{v} \in V_{0}(\theta)$, $\tilde{w} \in W_{0}\left(\theta_{1}\right), \alpha \in \mathbb{R}_{+}$and $\left.\left.\varepsilon \in\right] 0, \gamma_{1}^{*}\right]$, form. 'a (47) takes the form

$$
\begin{align*}
& \Delta S\left(u^{0}(\cdot) ; c_{1}, \varepsilon\right)=-\frac{\varepsilon^{2}}{\Gamma}\left[\alpha^{2}{ }^{\circ}((\theta, \tilde{v}) ; \hat{u})\right. \tag{66}\\
& +2 \alpha \stackrel{\circ}{N}\left(\left(\theta_{1}, \tilde{w}\right) ; \hat{u}\right) \Delta_{\tilde{v}} f\left(0,+\stackrel{\circ}{M}\left(\left(\theta_{1}, \tilde{w}\right) ; \hat{u}\right)+\varepsilon^{-2} o_{\Sigma}\left(\varepsilon^{2}\right)\right]
\end{align*}
$$

${ }_{325}$ Thus, since along the of imal © n ntrol $u^{0}(\cdot)$, the increment $\Delta S\left(u^{0}(\cdot) ; c_{1}, \varepsilon\right)$ is nonnegative, taking ints acc \cdot nt ne arbitrariness of $\left.\varepsilon \in] 0, \gamma_{1}^{*}\right]$ and the definition of $o_{\Sigma}\left(\varepsilon^{2}\right)$, we easily $\mathrm{ota}^{\circ} 1$ th \curvearrowleft validity of (10) from (66).

Proof. of Theor $n 3.4$ by the conditions of this theorem, for every $c_{2}=(\alpha, \theta, \tilde{v}, \tilde{w}, \hat{u})$ and tu all $\left.\left.\varepsilon \in\right] 0, \gamma_{2}\right]$, formula (55) holds. Then, by Definition 3.1 and (9), akir δ into account (63), for $\hat{u} \in U_{0}\left(t_{1}-1\right)$ and for all $\tilde{v} \in V_{0}(\theta)$, $\tilde{w} \in W_{0}(\theta) \quad \alpha \in \mathbb{K}_{+}$and $\left.\left.\varepsilon \in\right] 0, \gamma_{2}\right]$, formula (55) takes the form

$$
\begin{align*}
\Delta S\left(u ; c_{2}\right)= & -\frac{\varepsilon^{2}}{2}\left[\stackrel{\circ}{M}((\theta, \tilde{v}) ; \hat{u})+2 \alpha \AA((\theta, \tilde{v}) ; \hat{u})\left(\tilde{w}-w^{0}(\theta)\right)\right. \tag{67}\\
& \left.+\alpha^{2}\left(\tilde{w}-w^{0}(\theta)\right)^{T} \dot{G}(\theta ; \hat{u})\left(\tilde{w}-w^{0}(\theta)\right)+\varepsilon^{-2} o_{\Sigma}\left(\varepsilon^{2}\right)\right]
\end{align*}
$$

$\mathrm{F}_{\mathrm{u}} \mathrm{c}$ ce, since along the optimal control $u^{0}(\cdot)$, the increment $\Delta S\left(u^{0}(\cdot) ; c_{2}, \varepsilon\right)$ is `onnega ive, considering the arbitrariness of $\left.\varepsilon \in] 0, \gamma_{2}\right]$ and the definition of $n_{\Gamma}\left(\varepsilon^{-}\right)$, we easily obtain the validity of (11) from (67).

Troof. of Theorem 3.5 Since assumptions (A2), (B3), (B4), (C1) and (C5) are satisfied, for every $\theta \in I_{-1} \backslash\left\{t_{1}-2\right\}, \tilde{v} \in V(\theta), \tilde{w} \in W\left(\theta_{1}\right)$ and $\hat{u} \in U\left(t_{1}-1\right)$ and
for all $\varepsilon \in] 0, \gamma_{3}$], formula (61) holds. Then, by Definitions 3.1 $\sim d$ 3.4, taking into account (63), for $\hat{u} \in U_{0}\left(t_{1}-1\right)$ and for all $\tilde{v} \in V_{0}(\theta), \jmath \in V_{\wedge}\left(\theta_{1}\right), \alpha \in \mathbb{R}_{+}$ and $\varepsilon \in] 0, \gamma_{3}$], formula (61) takes the form

$$
\begin{align*}
\Delta S\left(u^{0}(\cdot) ; c_{3}, \varepsilon\right)= & -\frac{\varepsilon^{2}}{2}\left[\dot{\circ}((\theta, \tilde{v}) ; \hat{u})+2 \alpha \Delta_{\tilde{v}} f^{T}(\theta) \stackrel{\circ}{P}\left(\left({ }_{1} ; \hat{u}\right)\left(\tilde{w} \quad w^{0}\left(\theta_{1}\right)\right)\right.\right. \tag{68}\\
& \left.+\alpha^{2}\left(\tilde{w}-w^{0}\left(\theta_{1}\right)\right)^{T} \dot{G}\left(\theta_{1} ; \hat{u}\right)\left(\tilde{w}-w\left(\theta_{1}\right)\right)+\varepsilon^{-2} o_{\Sigma}\left(\varepsilon^{2}\right)\right]
\end{align*}
$$

Thus, since along the optimal control $u^{0}(\cdot)$, the lıuremf it $\Delta S\left(u^{0}(\cdot) ; c_{3}, \varepsilon\right)$ is nonnegative, considering the arbitrariness of $\left.\varepsilon \in \downharpoonleft \cup, \gamma_{3}\right]$ and the definition of $o_{\Sigma}\left(\varepsilon^{2}\right)$, we easily obtain the validity of (12) fro. (68).

6. Perspectives and Open Problems

In this section, we provide a short dis ussion regarding the prospects that are open to the researchers of ope atrol problems when using the new approach to optimality conditi ne intr duced in this paper.

First, to demonstrate the applu tion of studying DOCPs with respect to the components of vector Jun ${ }^{1}$, we have considered a simple discrete optimal problem. However, we be: \cdot ve th t our approach may be applied to more complicated discrete opti al rontror problems, such as the problems with terminal equality and inequ-lity ms^{\star} a aints, problems with a delay, and infinite horizon discrete time op ${ }^{+}$..1 control problems. Future research may examine whether our approach \quad indeed be applied to such optimal control problems.

Second, i. thi, study, we have obtained optimality conditions with respect to the comp nen+s of ector control in the form of a global maximum principle by using assu ^ stio's (C1), (C2), and (C5). However, these assumptions may not hold or sor • DOCPs. In this case, first- and second-order necessary optimality cond ins v th respect to components can be obtained in the form of a local naxim. m principle.

Fin .ly, we use assumption (C3) to prove Theorem 3.3. As noted in section $3 \ldots$ is not easy to determine whether (C3) holds in the application of Theo. ${ }^{\mathrm{m}}$ 3.3. Therefore, it is interesting to investigate whether assumption (C3) is essential for the validity of Theorem 3.3.

7. Conclusions

In this paper, we have established more constructive fir ,t- a dd sucond-order necessary optimality conditions under lightened convex i+ assu. ntions. These results are obtained by introducing a new approach th t weake is such assumptions. This approach studies optimal control proble -.. witı _espect to the components of vector control, and it is more characte. ${ }^{\circ} \mathrm{ct} \cdot$ for discrete rather than the continuous optimal control problems.

Acknowledgment

This work was supported by the Presidiuı of the National Academy of Sciences of Azerbaijan within the framew "k of the program "Mathematical Modelling of Continuous and Discrete 1 ' ${ }^{\text {vosst }}$ with the help of Modern Computer Programs," resolution no. 7/3 - Marc' 14, 2018.

Appendices

AppendixA. Proof ffor wa (47)
Consider an ad nis \cdot le r rocess $\left(u\left(\cdot ; c_{1}, \varepsilon\right), x\left(\cdot ; c_{1}, \varepsilon\right)\right)$, where an admissible control $u\left(\cdot ; c_{1}, \varepsilon\right)$ is tefined by (39), (41) and (45). Then, taking into account (39), (42), (45, nd the inequality $\gamma_{1}^{*} \leq \gamma_{1}$, we can write the system (40) as follows:

$$
\Delta n\left(t+Z_{1}, \varepsilon\right)= \begin{cases}0, & t_{0}-1 \leq t<\theta, \tag{A.1}\\ \varepsilon \alpha \Delta_{\tilde{v}} f(\theta), & t=\theta, \\ \varepsilon \Delta_{\tilde{w}} f\left(x\left(\theta_{1} ; c_{1}, \varepsilon\right), v^{0}\left(\theta_{1}\right), w^{0}\left(\theta_{1}\right), \theta_{1}\right) \\ +\Delta_{x\left(\theta_{1} ; c_{1}, \varepsilon\right)} f\left(\theta_{1}\right), & t=\theta_{1}, \\ f\left(x\left(t ; c_{1}, \varepsilon\right), u^{0}(t), t\right)-f(t) & \theta_{1}<t<t_{1}-1, \\ \Delta_{\hat{u}} f\left(t_{1}-1\right)+\Delta_{x\left(t_{1}-1 ; c_{1}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right), & t=t_{1}-1 .\end{cases}
$$

Here, $\left.\varepsilon \in] 0, \gamma_{1}^{*}\right], x\left(t ; c_{1}, \varepsilon\right)=: x^{0}(t)+\Delta x\left(t ; c_{1}, \varepsilon\right), \Delta_{\tilde{v}} f(\theta)$ is de. ${ }^{-}$ned $\nu_{v}(16)$, $\Delta_{\hat{u}} f(\cdot)$ and $\Delta_{x\left(t_{1}-1 ; c_{1}, \varepsilon\right)} f(\cdot)$ are analogously defined by (y), and $\Delta_{\tilde{w}} f(\cdot)$ is defined by (46).

From (A.1), similar to (20)-(22), taking into accou it asse η ption (B3) and (43), we obtain

$$
\begin{equation*}
\left.\left.\left\|\Delta x\left(t ; c_{1}, \varepsilon\right)\right\| \leq K^{*}\left(c_{1}\right) \varepsilon, t \in I, \varepsilon \in\right] 0, \gamma_{1}^{*}\right], \sim^{*}\left(c_{1}\right) \geq K\left(c_{1}\right) \tag{A.2}
\end{equation*}
$$

$$
\begin{align*}
& \Delta_{x\left(t_{1}-1 ; c_{1}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)= \\
& f_{x}\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-\backslash \Delta x\left(t_{1}-1 ; c_{1}, \varepsilon\right)+o(\varepsilon),\right. \tag{A.3}
\end{align*}
$$

$$
\begin{equation*}
\left.\| \Delta_{x\left(t_{1}-1 ; c_{1}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-\cdot \nu \leq \Lambda_{1}^{\prime}\left(c_{1}\right) \varepsilon, \varepsilon \in\right] 0, \gamma_{1}^{*}\right], \hat{K}\left(c_{1}\right)>0 \tag{A.4}
\end{equation*}
$$

Now, let us calculate the in $\left.\quad \ldots+u^{0}(\cdot) ; c_{1}, \varepsilon\right)$. Similar to (23), we can write

$$
\begin{align*}
\Delta S\left(u^{0}(\cdot) ; c_{1}, \varepsilon\right)= & \left.\Phi\left(f\left(x^{0} . t_{1}-1\right), \hat{\iota}, t_{1}-1\right)+\Delta_{x\left(t_{1}-1 ; c_{1}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)\right) \\
& -\Phi\left({ } _ { j } \left(t_{1}-1, \cdots\right.\right. \tag{A.5}
\end{align*}
$$

From (A.5), con suring (A.4) and assumption (A2) and using the Taylor expansion at the . \quad int $f\left(x^{J}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)$, we obtain $\Delta S\left(u^{0}(\cdot) ;{ }_{1}, \varepsilon, \quad \Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right)+\Delta^{(1)} S\left(u^{0}(\cdot) ; c_{1}, \varepsilon\right)+\frac{1}{2} \Delta^{(2)} S\left(u^{0}(\cdot) ; c_{1}, \varepsilon\right)+o\left(\varepsilon^{2}\right)\right.$,
wher, $\left.\Delta_{\hat{u}} \Phi^{\prime} f\left(\iota_{1}-1\right)\right)$ is defined by (25), and
$\Lambda^{(1)} S\left(u^{n}, ~, ; c_{1}, \varepsilon\right):=\Phi_{x}^{T}\left(f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)\right) \Delta_{x\left(t_{1}-1 ; c_{1}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)$,

$$
\begin{align*}
\Delta^{(2)} & S\left(u^{0}(\cdot) ; c_{1}, \varepsilon\right):=\Delta_{x\left(t_{1}-1 ; c_{1}, \varepsilon\right)} f^{T}\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right) \times \tag{A.8}\\
& \times \Phi_{x x}\left(f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)\right) \Delta_{x\left(t_{1}-1 ; c_{1}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right)
\end{align*}
$$

By (26) and the definition of the function $H(\cdot)$, the formula , 7) w kes the form

$$
\Delta^{(1)} S\left(u^{0}(\cdot) ; c_{1}, \varepsilon\right)=-\Delta_{x\left(t_{1}-1 ; c_{1}, \varepsilon\right)} H\left(\dot{\psi}\left(t_{1}-1 ; \hat{u}\right), x_{\left.\left(\iota_{1}-1\right), \omega, t_{1}-1\right) .}\right.
$$

From the last equality, according to (A.2), assumptinn (2) and Taylor's formula, we have the following representation for $\Delta^{()} S^{\prime}{ }_{\iota}{ }^{\prime}\left(\cdot ; c_{1}, \varepsilon\right)$:

$$
\begin{align*}
& \Delta^{(1)} S\left(u^{0}(\cdot) ; c_{1}, \varepsilon\right)=-H_{x}^{T}\left(\dot{\psi}\left(t_{1}-1 ; \hat{u}\right), x^{0}\left(t_{1}-1\right), \hat{u}, \iota_{1}-1\right) \Delta x\left(t_{1}-1 ; c_{1}, \varepsilon\right) \\
& -\frac{1}{2} \Delta x^{T}\left(t_{1}-1 ; c_{1}, \varepsilon\right) H_{x x}\left(\dot{\psi}\left(t_{1}-1 ; \hat{u}\right), x^{0}\left(t_{1}-1\right), \hat{L}^{+}-1\right) \Delta x\left(t_{1}-1 ; c_{1}, \varepsilon\right)+o_{1}\left(\varepsilon^{2}\right) \tag{A.9}
\end{align*}
$$

Furthermore, substitute (A.3) int $\xlongequal{〔}$) 'I nen, by (51), we have

$$
\begin{array}{r}
\Delta^{(2)} S\left(u^{0}(\cdot) ; c_{1}, \varepsilon\right)=-\Delta x^{T}\left(t_{1}-\ldots \varepsilon\right)_{\jmath}^{T}\left(x^{0}\left(t_{1}-1\right), \hat{u}, t_{1}-1\right) \stackrel{\circ}{\Psi}\left(t_{1}-1 ; \hat{u}\right) \times \\
\left.\left.\times f_{x}\left(x^{0}\left(t_{1}-1\right) \hat{\therefore}+-\right) \Delta x\left(t_{1}-1 ; c_{1}, \varepsilon\right)+o_{2}\left(\varepsilon^{2}\right), \varepsilon \in\right] 0, \gamma_{1}^{*}\right] \tag{A.10}
\end{array}
$$

Substituting (A.9) and (f.10) in. (A.6) and taking into account (26) and (51), we obtain

$$
\begin{array}{r}
\Delta S\left(u^{0}(\cdot) ; c_{1}, \varepsilon,=\Delta_{\hat{u}} \Phi^{\prime} f\left(t_{1}-1\right)\right)-\dot{\psi}^{T}\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-1 ; c_{1}, \varepsilon\right) \\
\left.\left.-\frac{1}{2} \Delta x^{T}\left(t_{1}-1 c_{1}, \varepsilon\right) \stackrel{\circ}{\Psi}\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-1 ; c_{1}, \varepsilon\right)+o_{\Sigma}\left(\varepsilon^{2}\right), \varepsilon \in\right] 0, \gamma_{1}^{*}\right] . \tag{A.11}
\end{array}
$$

Let us nor ca :ulate the second term in (A.11). According to the definition of $H(\cdot)$ and ($\mathrm{A} . \quad$ । , we have the followings:

$$
\begin{align*}
& \dot{\psi}^{T}\left(\theta_{1} ; \backslash \Delta\left(\theta_{2} c_{1}, \varepsilon\right)=\varepsilon \Delta_{\tilde{w}} H\left(\dot{\psi}\left(\theta_{1} ; \hat{u}\right), x\left(\theta_{1}, c_{1}, \varepsilon\right), v^{0}\left(\theta_{1}\right), w^{0}\left(\theta_{1}\right), \theta_{1}\right)\right. \\
& +\Delta_{x\left(\theta_{1} ; c_{1},\right.} H\left(\theta_{1} ; \hat{u}\right), \quad \dot{\psi}^{T}(\theta ; \hat{u}) \Delta x\left(\theta_{1} ; c_{1}, \varepsilon\right)=\varepsilon \alpha \Delta_{\tilde{v}} H(\theta ; \hat{u}) \tag{A.12}\\
& \left.\dot{\psi}^{T}(\iota, \hat{\imath}) \Delta, t+1 ; c_{1}, \varepsilon\right)=\Delta_{x\left(t ; c_{1}, \varepsilon\right)} H(t ; \hat{u}), t \in\left\{\theta_{2}, \ldots t_{1}-2\right\} .
\end{align*}
$$

Ne, firs consider (A.12) in the following identity

$$
\begin{aligned}
& \left.{ }^{T} T t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-1 ; c_{1}, \varepsilon\right)=\dot{\psi}^{T}(\theta ; \hat{u}) \Delta x\left(\theta_{1} ; c_{1}, \varepsilon\right)+\dot{\psi}^{T}\left(\theta_{1} ; \hat{u}\right) \Delta x\left(\theta_{2} ; c_{1}, \varepsilon\right) \\
& +\sum_{t=\theta_{2}}^{t_{1}-2} \dot{\psi}^{T}(t ; \hat{u}) \Delta x\left(t+1 ; c_{1}, \varepsilon\right)-\sum_{t=\theta_{1}}^{t_{1}-2} \dot{\psi}^{T}(t-1 ; \hat{u}) \Delta x\left(t ; c_{1}, \varepsilon\right)
\end{aligned}
$$

Then, taking into account (26), (50), assumption (B3) and the \neg vlor Armula, we easily obtain

$$
\begin{align*}
& \dot{\psi}^{T}\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-1 ; c_{1}, \varepsilon\right)=\varepsilon\left[\alpha \Delta_{\tilde{v}} H(\theta ; \hat{u})+\Delta_{\tilde{w}} H\left(\theta_{1} ; \hat{u}\right)\right\rfloor \\
& +\varepsilon^{2} \alpha \Delta_{\tilde{w}} H_{x}^{T}\left(\theta_{1} ; \hat{u}\right) \Delta_{\tilde{v}} f(\theta)+\frac{1}{2} \sum_{t=\theta_{1}}^{t_{1}-2} \Delta x^{T}\left(t ; c_{1}, \varepsilon\right) H_{x x}(t \hat{u}) \Delta x\left(t c_{1}, \varepsilon\right)+o_{\sum}\left(\varepsilon^{2}\right) . \tag{A.13}
\end{align*}
$$

Next, we calculate the third term in (A.11). Trom (A^{1}), taking into account (A.2) and Taylor formula, we have the following deco upositions:

$$
\begin{align*}
& \Delta x\left(\theta_{1} ; c_{1}, \varepsilon\right)=\varepsilon \alpha \Delta_{\tilde{v}} f(\theta), \quad \Delta x\left(\theta_{2} ; c_{1}, \varepsilon\right)=\varepsilon \Delta_{u} f\left(\theta_{1}\right)+f_{x}\left(\theta_{1}\right) \Delta x\left(\theta_{1} ; c_{1}, \varepsilon\right)+o_{\Sigma}\left(\varepsilon ; \theta_{1}\right), \\
& \Delta x\left(t+1 ; c_{1}, \varepsilon\right)=f_{x}(t) \Delta x\left(t ; c_{1}, \varepsilon\right)+o\left(\varepsilon ; \iota, \quad t \in\left\{\theta_{2}, \ldots, t_{1}-2\right\} .\right. \tag{A.14}
\end{align*}
$$

Let us consider (A.14) in the following $1 h^{\prime}$ ntity:

$$
\begin{aligned}
& \Delta x^{T}\left(t_{1}-1 ; c_{1}, \varepsilon\right) \stackrel{\circ}{\Psi}\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-, c_{1}, \varepsilon\right)=\Delta x^{T}\left(\theta_{1} ; c_{1}, \varepsilon\right) \stackrel{\circ}{\Psi}(\theta ; \hat{u}) \Delta x\left(\theta_{1} ; c_{1}, \varepsilon\right) \\
& +\Delta x^{T}\left(\theta_{2} ; c_{1}, \varepsilon\right) \stackrel{\circ}{\Psi}\left(\theta_{1} ; \hat{u}\right) \Delta x\left(\theta_{2} ; c_{1}, \varepsilon, \sum_{t=\theta_{2}}^{\iota_{1}-2} \Delta x^{T}\left(t+1 ; c_{1}, \varepsilon\right) \stackrel{\circ}{\Psi}(t ; \hat{u}) \Delta x\left(t+1 ; c_{1}, \varepsilon\right)\right. \\
& \left.\left.-\sum_{t=\theta_{1}}^{t_{1}-2} \Delta x^{T}\left(t ; c_{1}, \varepsilon\right) \stackrel{\circ}{\Psi}(t-\cdot \hat{u}) \Delta x\left(; c_{1}, \varepsilon\right), \varepsilon \in\right] 0, \gamma_{1}^{*}\right] .
\end{aligned}
$$

Then, by (51), we of ain

$$
\begin{align*}
\Delta x^{T}\left(t_{1}-1 ; c_{1}, \varepsilon\right) & \stackrel{\circ}{\Psi}\left(t_{1}-2 ; \iota, \Delta x\left(t_{1}-1 ; c_{1}, \varepsilon\right)=\varepsilon^{2}\left[\alpha^{2} \Delta_{\tilde{v}} f^{T}(\theta) \stackrel{\circ}{\Psi}(\theta ; \hat{u}) \Delta_{\tilde{v}} f(\theta)\right.\right. \\
& \left.+2 \alpha \Delta_{\tilde{w} J}^{T}\left(\theta_{1}\right) \Psi\left(\theta_{1} ; \hat{u}\right) f_{x}\left(\theta_{1}\right) \Delta_{\tilde{v}} f(\theta)+\Delta_{\tilde{w}} f^{T}\left(\theta_{1}\right) \stackrel{\circ}{\Psi}\left(\theta_{1} ; \hat{u}\right) \Delta_{\tilde{w}} f\left(\theta_{1}\right)\right] \\
& \quad-\sum_{A_{1}}^{t-2} \Delta x^{T}\left(t ; c_{1}, \varepsilon\right) H_{x x}(t ; \hat{u}) \Delta x\left(t ; c_{1}, \varepsilon\right)+o_{\sum}\left(\varepsilon^{2}\right) . \tag{A.15}
\end{align*}
$$

As a result le us consider (A.13) and (A.15) in (A.11). Then, taking into acco, η t (48) and (49), for $\Delta S\left(u^{0}(\cdot) ; c_{1}, \varepsilon\right)$, we obtain formula (47).

A noendixB. Proof of Formula (55)

Consider an admissible process $\left(u\left(\cdot ; c_{2}, \varepsilon\right), x\left(\cdot ; c_{2}, \varepsilon\right)\right)$, where $u\left(\cdot ; c_{2}, \varepsilon\right)$ is defined by (52)-(54). Then, similar to (A.1), by (52)-(54) and considering (19),
for the increment $\left.\left.x\left(\cdot ; c_{2}, \varepsilon\right)-x^{0}(\cdot)=: \Delta x\left(\cdot ; c_{2}, \varepsilon\right), \varepsilon \in\right] 0, \gamma_{2}\right]$, we ω^{\prime} wriu

$$
\Delta x\left(t+1 ; c_{2}, \varepsilon\right)= \begin{cases}0, & t_{0}-1 \leq t<\theta, \tag{B.1}\\ \varepsilon\left[f\left(x^{0}(\theta), \tilde{v}, w(\varepsilon), \theta\right)\right. & t=\theta, \\ \left.-f\left(x^{0}(\theta), v^{0}(\theta), w(\varepsilon), \theta\right)\right]+\Delta_{w(\varepsilon)} f(t, & \theta<t<t_{1}-1, \\ f\left(x\left(t ; c_{2}, \varepsilon\right), u^{0}(t), t\right)-f(t) & t=t_{1}-1 .\end{cases}
$$

From (B.1), similar to (20)-(22), taking into ar. unt assumptions (B3), (B4) and applying Taylor's formula, we obtain t_{ι} followings:

$$
\begin{gathered}
\left.\left\|\Delta x\left(t ; c_{2}, \varepsilon\right)\right\| \sim O(\varepsilon, \quad(t, \varepsilon) \in I \times] 0, \gamma_{2}\right], \\
\Delta_{x\left(t_{1}-1 ; c_{2}, \varepsilon\right)} f\left(x^{0}\left(t_{1}-1\right), \hat{u},{ }_{1}-1\right)= \\
f_{x}\left(x^{0}\left(t_{1}-1\right), \hat{\cdot} t_{1}-1\right) \Delta x\left(t_{1}-1 ; c_{2}, \varepsilon\right)+o(\varepsilon), \\
\left.\left.\left.\| \Delta_{x\left(t_{1}-1 ; c_{2}, \varepsilon\right)} f, x^{0}\left(l_{1}-1\right), \hat{u}, t_{1}-1\right) \| \sim O(\varepsilon), \quad \varepsilon \in\right] 0, \gamma_{2}\right] .
\end{gathered}
$$

These will be used to ristain \because r nulas below.
Applying an app fac 1 sim iar to the scheme used to obtain (A.11), by (25), (26), (51), (52), (${ }^{\top}, 1$) anc ssumptions (A2) and (B3), for $\Delta S\left(u^{0}(\cdot) ; c_{2}, \varepsilon\right)$, we obtain a decompositio - in the form

$$
\begin{align*}
& \Delta S\left(u^{0}(\cdot) \sim_{n}, \varepsilon,=\Delta_{\hat{u}} \Phi\left(f\left(t_{1}-1\right)\right)-\dot{\psi}^{T}\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-1 ; c_{2}, \varepsilon\right)\right. \\
& \left.\left.-\frac{1}{2} \Delta{ }^{2}\left(t-1 ; c_{2}, \varepsilon\right) \Psi\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-1 ; c_{2}, \varepsilon\right)+o_{\sum}\left(\varepsilon^{2}\right), \varepsilon \in\right] 0, \gamma_{2}\right] \tag{B.2}
\end{align*}
$$

Lf ${ }^{\prime}$.s now, similar to (A.13), calculate the second term in (B.2). Using the defin tion of he function $H(\cdot)$ and the identity

$$
\begin{aligned}
\dot{\nu}^{T}\left(t_{1}-? ; \hat{u}\right) \Delta x\left(t_{1}-1 ; c_{2}, \varepsilon\right)= & \dot{\psi}^{T}(\theta ; \hat{u}) \Delta x\left(\theta_{1} ; c_{2}, \varepsilon\right)+\sum_{t=\theta_{1}}^{t_{1}-2} \dot{\psi}^{T}(t ; \hat{u}) \Delta x\left(t+1 ; c_{2}, \varepsilon\right) \\
& -\sum_{t=\theta_{1}}^{t_{1}-2} \dot{\psi}^{T}(t-1 ; \hat{u}) \Delta x\left(t ; c_{2}, \varepsilon\right)
\end{aligned}
$$

considering (26), (52), (53), (B.1) and assumptions (B3) and (b-- znd c.pplying Taylor's formula, we obtain

$$
\begin{align*}
& \dot{\psi}^{T}\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-1 ; c_{2}, \varepsilon\right)=\varepsilon \Delta_{\tilde{v}} H(\theta ; \hat{u})+\varepsilon \alpha H_{w}^{T}\left(\theta ; \hat{\imath} \backslash\left(\tilde{w}-0^{0}(\theta)+\right.\right. \\
& \left.\varepsilon^{2} \alpha \Delta_{\tilde{v}} H_{w}^{T}(\theta ; \hat{u})\left(\tilde{w}-w^{0}(\theta)\right)+\frac{\varepsilon^{2} \alpha^{2}}{2}\left(\tilde{w}-w^{0}(\theta)\right)^{T} H_{w w} \theta ; \hat{u}\right)\left(\tilde{u}-w^{0}(\theta)\right) \tag{B.3}\\
& +\frac{1}{2} \sum_{t=\theta_{1}}^{t_{1}-2} \Delta x^{T}\left(t ; c_{2}, \varepsilon\right) H_{x x}(t ; \hat{u}) \Delta x\left(t ; c_{2}, \varepsilon\right)+o_{\Sigma}(\varepsilon)
\end{align*}
$$

We next, similar to (A.15), calculate the third ter . in (B.2) using the identity

$$
\left.\begin{array}{rl}
& \Delta x^{T}\left(t_{1}-1 ; c_{2}, \varepsilon\right) \stackrel{\circ}{\Psi}\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-\varsigma_{2}, \varepsilon\right)=\Delta x^{T}\left(\theta_{1} ; c_{2}, \varepsilon\right) \stackrel{\circ}{\Psi}(\theta ; \hat{u}) \Delta x\left(\theta_{1} ; c_{2}, \varepsilon\right) \\
+ & \sum_{t=\theta_{1}}^{t_{1}-2} \Delta x^{T}\left(t+1 ; c_{2}, \varepsilon\right) \stackrel{\circ}{\Psi}(t ; \hat{u}) \Delta x\left(t+1 ; \cdot, \varepsilon-\sum_{t=\theta_{1}}^{t_{1}} 2\right.
\end{array} x^{T}\left(t ; c_{2}, \varepsilon\right) \stackrel{\circ}{\Psi}(t-1, \hat{u}) \Delta x\left(t ; c_{2}, \hat{u}\right)\right) ~ \$
$$

and considering (51), (53), (B.1) ani as mptions (B3) and (B4). As a result, we have the following decompos. 'nn:

$$
\begin{align*}
& \Delta x^{T}\left(t_{1}-1 ; c_{2}, \varepsilon\right) \stackrel{\circ}{\Psi}\left(t_{1}-\cap, u, \wedge x\left(t_{1}-1 ; c_{2}, \varepsilon\right)=\right. \\
& =\varepsilon^{2}\left[\Delta_{\tilde{v}} f^{T}(\theta) \Psi ْ(\theta ; \hat{u})-f(\theta)+2 \alpha \Delta_{\tilde{v}} f^{T}(\theta) \Psi(\theta ; \hat{u}) f_{w}(\theta)\left(\tilde{w}-w^{0}(\theta)\right)\right. \\
& \left.+\alpha^{2}\left(\tilde{w}-w^{0}(\theta)\right)^{T} f_{w}^{T}(\jmath) \Psi^{\prime}(\theta ; \hat{u}) f_{w}(\theta)\left(\tilde{w}-w^{0}(\theta)\right)\right] \tag{B.4}\\
& \left.\left.\left.\left.-\sum_{t=\theta_{1}}^{t_{1}-2} \Delta x^{T}(t:\urcorner, \varepsilon\right) H_{x x} \backslash t ; \hat{u}\right) \Delta x\left(t ; c_{2}, \varepsilon\right)+o_{\sum}\left(\varepsilon^{2}\right), \varepsilon \in\right] 0, \gamma_{2}\right] .
\end{align*}
$$

Then, substit tiir $_{1}$; (B.3) and (B.4) into (B.2) and considering (48), (56) and 380 (57), we obtaıı. ormula (55).

Apl endixe , Proof of Formula (61)

Cor sider an admissible process $\left(u\left(\cdot ; c_{3}, \varepsilon\right), x\left(\cdot ; c_{3}, \varepsilon\right)\right)$, where $u\left(\cdot ; c_{3}, \varepsilon\right)$ is de1 ned br (58)-(60). Then, similar to (A.1), by (58) and (59) and considering and (19), for the increment $\left.\left.x\left(\cdot ; c_{3}, \varepsilon\right)-x^{0}(\cdot)=: \Delta x\left(\cdot ; c_{3}, \varepsilon\right), \varepsilon \in\right] 0, \gamma_{3}\right]$, the
following equality is valid:

$$
\Delta x\left(t+1 ; c_{3}, \varepsilon\right)= \begin{cases}0, & t=\theta, \tag{C.1}\\ \varepsilon \Delta_{\tilde{v}} f(\theta), & t=1<\theta \\ \left.f\left(x^{0}\left(\theta_{1}\right)+\Delta x\left(\theta_{1} ; c_{3}, \varepsilon\right), v^{0}\left(\theta_{1}\right), w(\varepsilon), \theta_{1}\right)-+\theta_{1}\right), & t=\theta_{1}, \\ f\left(x\left(t ; c_{3}, \varepsilon\right), u^{0}(t), t\right)-f(t), & \theta_{1}<t<t_{1}-1, \\ \Delta_{\hat{u}} f\left(t_{1}-1\right)+\Delta_{x\left(t_{1}-1 ; c_{3}, \varepsilon\right)} f\left(x_{1}-1, \hat{u}, t_{1}-1\right), & t=t_{1}-1\end{cases}
$$

Using (C.1), let us step by step apply an approc. he similar to the scheme used to obtain formula (A.11). Then, taking inc account (25), (26), (51) and assumptions (A2) and (B3), for $\Delta S\left(u^{0}{ }^{\prime} ; c_{\S}, \varepsilon\right.$, , we obtain

$$
\begin{array}{r}
\Delta S\left(u^{0}(\cdot) ; c_{3}, \varepsilon\right)=\Delta_{\hat{u}} \Phi\left(f \left(t_{1} \quad 1,-\dot{\psi}^{T}\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-1 ; c_{3}, \varepsilon\right)\right.\right. \\
\left.\left.-\frac{1}{2} \Delta x^{T}\left(t_{1}-1 ; c_{3}, \varepsilon\right) \stackrel{\circ}{\Psi}\left(t_{1}-2 ; \imath^{\prime} \backslash x_{1}-1 ; c_{3}, \varepsilon\right)+o_{\Sigma}\left(\varepsilon^{2}\right), \varepsilon \in\right] 0, \gamma_{3}\right] . \tag{C.2}
\end{array}
$$

Let us now calculate t^{2}. wn nd and third terms in (C.2). First, similar to (A.13), considering (16), '?6), (3), (C.1) and assumptions (B3) and (B4) and applying Taylor's forr ula we easily obtain

$$
\begin{align*}
& \dot{\psi}^{T}\left(t_{1}-2 ; \hat{u}\right) \Delta\left(t_{1}-\perp, \cdot, \varepsilon\right)=\varepsilon\left[\Delta_{\tilde{v}} H(\theta ; \hat{u})+\alpha H_{w}^{T}\left(\theta_{1} ; \hat{u}\right)\left(\tilde{w}-w^{0}\left(\theta_{1}\right)\right)\right] \\
& +\frac{\varepsilon^{2}}{2}\left[\alpha^{2}\left(\tilde{w}-w^{0}\left(\theta_{1}\right),^{T} H_{w w}\left(\theta_{1} ; \hat{u}\right)+2 \alpha \Delta_{\tilde{v}} f^{T}(\theta) H_{x w}\left(\theta_{1} ; \hat{u}\right)\right]\left(\tilde{w}-w^{0}\left(\theta_{1}\right)\right)\right. \\
& \left.\left.\quad+\frac{1}{2} \sum_{t \hat{\theta}_{1}}^{t_{1}-2} \dot{r}^{\prime}\left(t ; c_{3}, \varepsilon\right) H_{x x}(t ; \hat{u}) \Delta x\left(t ; c_{3}, \varepsilon\right)+o_{\sum}\left(\varepsilon^{2}\right), \varepsilon \in\right] 0, \gamma_{3}\right] \tag{C.3}
\end{align*}
$$

 (B3) nd (B_{ι}), we obtain

$$
\begin{align*}
\Delta x^{T}\left(t_{1}-1 ; c_{3}, \varepsilon\right) & \stackrel{\circ}{\Psi}\left(t_{1}-2 ; \hat{u}\right) \Delta x\left(t_{1}-1 ; c_{3}, \varepsilon\right)=\varepsilon^{2}\left[\Delta _ { \tilde { v } } f ^ { T } (\theta) z \left(\theta: \hat{n}^{\prime}, \wedge_{\tilde{v}} f(\theta)\right.\right. \\
& \left.+2 \alpha \Delta_{\tilde{v}} f^{T}(\theta) f_{x}^{T}\left(\theta_{1}\right) \Psi\left(\theta_{1} ; \hat{u}\right) f_{w}\left(\theta_{1}\right)\left(\tilde{w}-w^{\prime}{ }^{\wedge}\right)\right) \\
& \left.\left.+\alpha^{2}\left(\tilde{w}-w^{0}\left(\theta_{1}\right)\right)^{T} f_{w}^{T}\left(\theta_{1}\right) \Psi\left(\theta_{1} ; \hat{u}\right) f_{u} \theta_{1}\right)\left(\tilde{w}-w^{0}\left(\theta_{1}\right)\right)\right] \\
& \left.-\sum_{t=\theta_{1}}^{t_{1}-2} \Delta x^{T}\left(t ; c_{3}, \varepsilon\right) H_{x x}(t ; \hat{u}) \Delta x\left(, c_{3}, o_{\sum}\left(\varepsilon^{2}\right), \varepsilon \in\right] 0, \gamma_{3}\right] . \tag{C.4}
\end{align*}
$$

385 Thus, we substitute (C.3) and (C.4) into (C. ${ }^{\wedge}$. Thf 1 , considering (48), (57) and (62), for $\Delta S\left(u^{0}(\cdot) ; c_{3}, \varepsilon\right)$, we obtain formu: (61).

References

[1] L.S. Pontryagin, V.G. Boıyanskii, R.V. Gamkrelidze, E.F. Mishchenko, Mathema ical Theory of Optimal Processes, Wiley, New York, $196 ?$
[2] L.I. Rozonoer, 'ontry ıgin's maximum principle in theory of optimal systems, .vtc hatika i telemekhanika 20 (12) (1959) 1561-1578.
[3] A.G. T utkovsn., On necessary and sufficient optimality conditions for impuls control systems, Avtomatika i telemekhanika 24 (8) (${ }^{1}$ J63 1056-1064.
[4 B. Jorw n, W.E. Polak, Theory of a class of discrete optimal control - yste ıs, Journal of Electronics and Control 17 (1964) 697-711.
[5] \therefore Halkin, On the necessary conditions for the optimal control of .onlinear systems, J. Math. Anal. 12 (1964) 1-12.

3] J.M. Holtzman, Convexity and maximum principle for discrete systems, IEEE Trans. Automatic Control 11 (1) (1966) 30-35.
[7] A.I. Propoi, The maximum principle for discrete control systems, Automation and Remote Control26 (7) (1965) 1167-1177.
[8] B.S. Mordukhovich, Optimal control of discrete sys. nns, ¿ifferencialnye Uravnenija 9 (4) (1973) 727-734.
[9] B.S. Mordukhovich, Approximation methode in p. hlems of optimization and control, Nauka, Moscow, 198 :
[10] J. Dolezal, Optimal control of discrete systr \& involving delays, J. Optim. Theory Appl. 39 (1) (1983) 59-七u.
[11] M.J. Mardanov, T.K. Melikov, Aew D screte Analogue of Pontryagin's Maximum Principle, Du. 'ady Mathematics 98 (3) (2018) 549-551.
[12] M.J. Mardanov, T.K. Meı'ov. n.... Malik, On strengthening of optimality conditions in eret control systems, Proceedings of the Institute of Mathematics . nd Mechanics, National Academy of Sciences of Azerbaijan 44 '1) (2018) 135-154.
[13] R. Gabasov, C 1 the heory of optimal processes in discrete systems. USSR Computa ' n na' Mathematics and Mathematical Physics 8 (4) (1968) 90123
[14] R. Hi^{1} cher, V. цeidan, Discrete optimal control, Second order optimality cona. :ons. Journal of Difference Equations and Applications $\varepsilon(200$ 2) 875-896.
[15, M J. Mardanov, T.K. Melikov, N.I. Mahmudov, On necessary op'ma'ty conditions in discrete control systems. International J. of -ontrol 88 (10) (2015) 2097-2106.

Itu] V.V. Gorokhovik, S.Ya. Gorokhovik, B. Marinkovi'c, First and second order necessary optimality conditions for a discrete-time optimal control problem with a vector-valued objective function, Positivity 17 (2013) 483-500.
[17] V.G. Boltyanskii, Optimal control of discrete systelı. Wı., NewYork, 1978.
[18] R.B. Vinter, Optimality and sensitivity of dicrrete 'ime Processes, Control and Cybernetics 17 (2) (1988) 191211.
[19] R. Gabasov, F.M. Kirillova, Concernir of therwv of necessary conditions for optimality for discrete systemı, Aut mation and Remote Control 12 (1969) 1921-1928.
[20] L.T. Ashchepkov, Optimal con ol wuth discontinuous systems, Nauka, Moscow, 1987.
[21] M.J. Mardanov, T.K. Mel. uv, ^ mothod for studying the optimality of controls in discrete s^{-}-tem: Proceedings of the Institute of Mathematics and Mechanics, A tic.al Academy of Sciences of Azerbaijan 40 (2) (2014) 5-13.
[22] Z.T. Mingaleer „, ı.^ Shvartsman, Second-order necessary optimality conditions ${ }^{f} \mathrm{r} \mathrm{r}$ a r iscrete optimal control problem. Differential Equations 50 (12) (2014) 1643-1649.
[23] P. Mic' el, Soıı. larifications on the transversality condition. Econometiıca bu '3) (1990) 705-723.
[24] ! Blr ©, H. Chebbi, Discrete time Pontryagin principle in infinite horizu. J. Math. Anal. Appl., 246 (2000) 265-279.
[25] B' st, N. Hayek, Infinite-horizon optimal control in the discrete-- me framework. Springer Briefs in Optimization, Springer, New _ork, 2014.
[: 3] S.M. Aseev, M.I. Krastanov, V.M. Veliov, Optimality conditions for discrete-time optimal control on infinite horizon, 2016.
[27] A.J. Zaslavski, Stability of the turnpike phenomenon in discrete-time optimal control problems. Springer, 2014.
[28] K. Leichtweis, Convex sets, Nauka, Moscow, 1985.
[29] J.P. Aubin, H. Frankowska, Set-valued analysis, Bir nawier, 1990.

[^0]: ${ }^{1}$ norresponding author
 F mail: saminmelik@gmail.com
 'Z1025, Khojaly ave. 30, Baku, Azerbaijan
 A. 11141, B.Vahabzade str. 9, Baku, Azerbaijan

