
www.rsc.org/faraday_d

Faraday
Discussions

Royal Society of 
Chemistry

Faraday 
Discussions

Accepted Manuscript

This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been accepted 
for publication.

Accepted Manuscripts are published online shortly after acceptance, 
before technical editing, formatting and proof reading. Using this free 
service, authors can make their results available to the community, in 
citable form, before we publish the edited article. We will replace this 
Accepted Manuscript with the edited and formatted Advance Article as 
soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes to the 
text and/or graphics, which may alter content. The journal’s standard 
Terms & Conditions and the Ethical guidelines still apply. In no event 
shall the Royal Society of Chemistry be held responsible for any errors 
or omissions in this Accepted Manuscript or any consequences arising 
from the use of any information it contains. 

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  C. Taylor, P. Butler and G. M. Day,
Faraday Discuss., 2024, DOI: 10.1039/D4FD00105B.

http://www.rsc.org/faraday_d
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
https://doi.org/10.1039/d4fd00105b
https://pubs.rsc.org/en/journals/journal/FD


Journal Name

Predictive crystallography at scale: mapping, validating,
and learning from 1,000 crystal energy landscapes

Christopher R. Taylora, Patrick W. V. Butlera, and Graeme M. Daya∗†

Computational crystal structure prediction (CSP) is an increasingly powerful technique in materials
discovery, due to its ability to reveal trends and permit insight across the possibility space of crystal
structures of a candidate molecule, beyond simply the observed structure(s). In this work, we demon-
strate the reliability and scalability of CSP methods for small, rigid organic molecules by performing
in-depth CSP investigations for over 1000 such compounds, the largest survey of its kind to-date.
We show that this highly-efficient force-field-based CSP approach is superbly predictive, locating
99.4% of observed experimental structures, and ranking a large majority of these (74%) as among
the most stable possible structures (to within uncertainty due to thermal effects). We present two
examples of insights such large predicted datasets can permit, examining the space group preferences
of organic molecular crystals and rationalising empirical rules concerning the spontaneous resolution
of chiral molecules. Finally, we exploit this large and diverse dataset for developing transferable
machine-learned energy potentials for the organic solid state, training a neural network lattice en-
ergy correction to force field energies that offers substantial improvements to the already impressive
energy rankings, and a MACE equivariant message-passing neural network for crystal structure reop-
timisation. We conclude that the excellent performance and reliability of the CSP workflow enables
the creation of very large datasets of broad utility and explanatory power in materials design.

1 Introduction
The discovery of new materials is important for addressing many
critical societal needs, including energy production and stor-
age, pollution remediation and healthcare. Research endeavours
aimed at improving the success and efficiency of functional ma-
terials discovery, based on traditional efforts developing our un-
derstanding of the rules of crystal packing and, more recently,
applications of machine learning, have benefited greatly from the
availability of databases of stable crystal structures.

A major resource for such efforts has been the growth of acces-
sible, curated databases of crystal structures and (some of) their
properties. The most general and widely-used include the Cam-
bridge Structural Database (CSD)1 for organic and organometal-
lic systems, and the Inorganic Crystal Structure Database2. These
resources are unparalleled in their volume of experimental crys-
tal structure information, but do not currently offer information
about calculated or hypothetical structures. Historically, such

a School of Chemistry, University of Southampton, Southampton SO17 1BJ, United
Kingdom.
† Electronic Supplementary Information (ESI) available alongside publication: com-
putational details of CSP and ML calculations, summary of molecule set including
CSD refcodes, and summary of CSP matches to experiment. Additionally, complete
CSP landscapes and ML models available from DOI: 10.5258/SOTON/D3094.
∗ Author to whom correspondence should be addressed.

data was limited to specialised areas (such as the Atlas of Prospec-
tive Zeolite Structures3), though recent developments have made
remarkable progress in generalising this concept, including ex-
tensions to the Crystallography Open Database (COD)4–7 and the
Materials Project8. In the field of organic molecular crystals, how-
ever, much of our understanding of the rules of crystal packing
derive from databases of experimentally observed structures.

Modern computational chemistry, employing both molecular
and solid-state simulation techniques, can add significantly to
the information that is available from experimentally deter-
mined crystal structures, and identify previously unverifiable
trends. Computational studies of polymorphism9–13 have eval-
uated the typical lattice energy differences between crystalline
polymorphs of organic molecules, studies of conformations of
flexible molecules11,14 in their observed crystal structures have
improved understanding of the limits of molecular strain in
stable structures, and studies of the thermodynamics of co-
crystallisation15–18 have aided in rationalising a complex phe-
nomenon with ramifications for experimental design.

A more complete and, crucially, predictive view of organic
crystal packing can be obtained from crystal structure prediction
(CSP)19,20. A core concept in CSP is the crystal energy landscape
(or CSP landscape) – the set of plausible crystal packings for a
chemical species (or combination thereof), representing an explo-
ration of the crystalline configuration space to identify candidate

Journal Name, [year], [vol.],1–14 | 1

Page 1 of 14 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Ju

ne
 2

02
4.

 D
ow

nl
oa

de
d 

on
 6

/1
0/

20
24

 9
:5

7:
34

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

DOI: 10.1039/D4FD00105B

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00105b


structures predicted to be stable (which ideally includes any ob-
served structures), ranked in terms of this stability. These CSP
landscapes are of great utility in understanding and rationalising
the thermodynamic and kinetic behaviour of crystal systems; mul-
tiple low-energy minima that are close-lying on a CSP landscape
may be indicative of a significant risk of polymorphism, while dy-
namical simulations exploring these landscapes give insight into
the kinetic trapping of metastable forms21 and the observed ab-
sence of other predicted forms22,23.

Moreover, the energy landscape forms the foundation of the
energy-structure-function maps that have in recent years demon-
strated great power in materials discovery24–27. By associating
computed properties (e.g. gas uptake, charge carrier mobility)
with hypothetical crystal structures from the CSP landscape, it be-
comes possible to predict whether a molecule is a promising can-
didate for creating new functional materials, i.e. if it has one (or
more) favourably-ranked crystal structures which are predicted
to achieve the desired property.

The techniques and challenges in the field of organic CSP have
been reviewed19,20; we provide a brief overview for the sake of
context. CSP is typically considered a combination of two broad
challenges: efficient and thorough sampling of the configuration
space of crystal packing, and accurate, cost-effective structural
optimisation, ranking, and property calculation.

The sampling of hypothetical crystal packing arrangements is
made extremely difficult due to the “curse of dimensionality“—
the number of independent degrees of freedom to sample cre-
ates a vast configurational space. As a result, simple grid-based
sampling approaches must be eschewed in favour of more sophis-
ticated techniques, such as low-discrepancy quasi-random sam-
pling28,29 and genetic algorithm approaches.30

Meanwhile, the optimisation and ranking methods must be ac-
curate enough to describe the fine balance of different intermolec-
ular interactions (electrostatics, dispersion, hydrogen-bonding,
etc.), resolving lattice energy differences often smaller than a
kJ mol−1, while sufficiently cost-effective to be applied to very
large numbers (»105) of trial crystal structures. Historically, this
has entailed the use of simple empirical force fields, but mod-
ern developments often employ tailor-made force fields18,31 or
machine-learned potentials derived from ab initio calculations.
Still, empirical force fields retain their power even today due to
their efficiency and broad transferability, often being the initial
step of a hierarchy of increasingly accurate (and expensive) en-
ergy models employed in one CSP workflow.

Despite these two broad and ongoing challenges, organic CSP
has demonstrated enormous success in diverse applications, cru-
cially proving itself to be a truly predictive technique, guiding
synthesis and discovery of novel forms of porous materials24,
highly-flexible pharmaceutical molecules31, co-crystals32, simple
molecules previously thought to be monomorphic33 and templat-
ing of predicted metastable polymorphs.34 A recurrent landmark
in the field is the series of Cambridge Blind Tests of CSP, showcas-
ing the diversity of methods (and success rates thereof) employed
within different CSP techniques to predict experimental crystal
structures without any knowledge beyond the molecular chemical
diagram35. Recent iterations of the Blind Test have demonstrated

that CSP method development is successfully keeping apace with
the complexity of molecules and crystal structures specifically se-
lected to stress-test it.

Some of the most consequential recent developments in CSP
have employed machine learning (ML) techniques in one form or
another36. Among the most intuitive applications is the use of
ML to learn relationships between the structure and lattice en-
ergy, either by learning the difference (i.e. ∆-ML) between lat-
tice energies computed at a lower level of theory to those at a
higher level,37–40 or to learn the relationship between the lattice
energy and the ML descriptors directly through the training of
ML potentials41,42. These approaches have achieved high accu-
racy predictions at a fraction of the cost of the full periodic den-
sity functional theory (DFT) reference calculations – particularly
significant given the latter’s ubiquity in recent Blind Test entries.

That said, ML techniques have further applications in CSP be-
yond improved optimisations and energy rankings. In particular,
ML and related approaches applied to databases of experimen-
tal crystal structures and properties have demonstrated success
in predicting NMR chemical shifts43 and in formulating models
of molecular hydrogen bond propensities within crystals44. Re-
cent work by Cersonsky45 has demonstrated machine-learning of
the relationship between crystal lattice energies and the relative
contributions to these by different chemical functional groups,
paving the way for data-driven insights into new crystal engi-
neering techniques. ML also been shown to have potential to
enhance the analysis of crystal energy landscapes, by identifying
structure-function relationships that might evade simple inspec-
tion but nevertheless offer explanatory and predictive power46.

Our aims in this work are threefold. Firstly, we seek to demon-
strate the capability of our method for efficient, large-scale rigid-
molecule organic CSP by presenting the results of the largest to-
date CSP study, applying the methods to over 1000 molecules
with observed crystal structures in the CSD. Secondly, we in turn
assess the quality and reliability of our method by evaluating how
often the experimental crystal structures of these molecules are
reproduced in our CSPs, and how well they are ranked ener-
getically compared to hypothetical structures on their CSP land-
scapes. Finally, we demonstrate example applications of this
dataset, including assessing the distribution of CSP-derived space
group preferences as a function of predicted lattice energy, spon-
taneous resolution of chiral molecules and the training of trans-
ferable machine-learned energetic models from a very large set of
CSP landscapes.

2 Computational Methods

2.1 Molecule Selection

We used the CSD’s ConQuest software and Python API1 to search
the CSD for crystal structures of rigid molecules to which our CSP
methods could be applied on a very large scale. Restricting our
search to solved crystal structures (i.e. with coordinates for all
atoms in the asymmetric unit) of single chemical species (no co-
crystals, solvates, inclusion compounds), we additionally filtered
structures based on the following criteria: containing only ele-
ments from C, H, N, O, F; Z′ ≤ 1; molecular weight less than 230;
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and importantly containing no rotatable bonds (as defined by the
CSD’s internal criteria).

2.2 Molecular Geometry Optimisation

For each molecule, we began by extracting its in-crystal confor-
mation from the corresponding CSD entry (where there is more
than one entry, we select only the first listed in the database). This
molecular conformation was optimised in DFT (as implemented
in Gaussian47), using the PBE048,49 exchange-correlation func-
tional, a Pople-type 6-311G** basis50, and Grimme’s D3 disper-
sion correction51 with Becke-Johnson damping52.

Distributed multipole analysis (DMA,53,54 using the GDMA
package) was performed on the resulting molecular conformers’
charge densities to obtain atom-centred multipoles, as part of
the model potential applied during lattice energy minimisation
of trial crystal structures; multipoles up to hexadecapole were
calculated for all atoms. The MULFIT55,56 software was used to
fit atomic point charges for each molecule to best describe the
molecular electrostatic potential. The resulting molecular con-
formers and their sets of multipoles are then used as the inputs
to CSP, with each unique molecule represented by a single con-
former and corresponding set of atomic multipoles and charges.

2.3 Crystal Structure Generation and Optimisation

CSP was performed using the Global Lattice Energy Explorer
(GLEE) package,28 which uses quasi-random sampling of crys-
tal packing variables to generate trial crystal structures uniformly
distributed across the lattice energy landscape, followed by rigid-
molecule lattice energy minimisation using an anisotropic atom-
atom intermolecular force field. All resulting local energy minima
are treated as possible crystal structures of the molecule.

Space group symmetry is used to reduce the dimensional-
ity of the search space, so that only the position and orienta-
tion of molecules in the asymmetric unit are sampled, with all
other molecules in the unit cell generated by symmetry. In this
study, we restrict ourselves to generating crystal structures with
one independent molecule in the asymmetric unit (Z′ = 1). We
sampled the 26 most commonly observed space groups for or-
ganic molecular crystals (listed in Supporting Information); these
space groups cover over 99.4% of Z′ ≤ 1 structures in the CSD.
These space groups were sampled equally, irrespective of their
observed frequency in the CSD: quasi-random structures are gen-
erated and lattice energy minimised until 10,000 successfully en-
ergy minimised crystal structures were found in each space group
(260,000 structures per molecule). The CSP process is highly par-
allelisable, as each crystal structure structure is independent.

Trial crystal that passed geometric checks were lattice energy-
minimised in three stages. Non-electrostatic interactions (prin-
cipally intermolecular dispersion and exchange-repulsion) were
described by the FIT exp−6 force field57,58, supplemented by flu-
orine parameters from Williams and Houpt.59 At the final stage
of optimisation, performed using DMACRYS,58 the FIT potential
was applied with atomic multipole electrostatics. Full details are
provided in Supporting Information.

It is commonplace that multiple unique initial configurations

optimise to the same local energy minimum. We remove these
duplicates by fast comparison of simulated powder X-ray diffrac-
tion patterns, followed by structural comparisons using the COM-
PACK60 algorithm as implemented in the CSD Python API.

Locating Experimental Structures on the Landscapes

To assess our CSP workflow’s performance, comparison of the
known experimental crystal structures to the sets of predictions
was automated using the COMPACK algorithm between the ex-
perimental crystal structures of these molecules and every unique
crystal structure of that molecule in the CSP set.

2.4 Machine Learned Interatomic Potentials

To investigate the potential of the CSP dataset to train data-
derived models, a subset of the predicted crystal structures with
energies within 8.0 kJ mol-1 of the global energy minimum on
their CSP landscape was selected for training a lattice energy
correction to the FIT+DMA force field. The subset was deter-
mined by active learning via query-by-committee using a commit-
tee of eight high-dimensional neural network potentials (NNPs),
with selected structures evaluated by DFT+D single points at
the B86bPBE+XDM level. From this, a dataset of the crystal
structures and the corresponding energy correction between the
FIT+DMA and B86bPBE+XDM lattice energies (∆E) was created.
B86bPBE+XDM lattice energies were calculated as the total en-
ergy less the energies of the isolated molecules from the unit cell
calculated with the same basis set and tolerances.

The initial dataset (before the active learning iterations) was
generated by randomly selecting up to 10 low energy predicted
crystal structures for each compound, resulting in a dataset of
10,249 structures approximately evenly distributed across the
compounds. To evaluate transferability, the total dataset was par-
titioned into a training dataset consisting of the CSP structures
for a randomly selected ca. 85% of the compounds and an ex-
trapolation test set consisting of CSP structures for the remaining
compounds. A further in-domain test set was formed by randomly
extracting one structure per compound from the training set. The
NNPs were then trained on the remaining training dataset to yield
a ∆-ML model capable of predicting the lattice energy correction.
The standard deviation between the ensemble of NNPs was used
to estimate the uncertainty of predictions, and was exploited in
the active learning iterations to add high uncertainty candidates
from the remaining low energy predicted structures of the train-
ing compounds, which overall added a further 1000 structures to
the training set. Corrected CSP landscapes were calculated using
the final model by adding predicted lattice energy corrections to
the FIT+DMA energies (FIT+DMA+∆-ML). Additionally, for per-
forming unconstrained geometry optimisations MACE equivariant
message-passing neural network (MPNN) models were trained
using a dataset derived from that of the NNP correction model.
Further details of the datasets and machine learning models are
provided in the supporting information.
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Fig. 1 Molecular diagrams and crystal structure CSD reference codes for
(top three rows) a random selection of the 1007 molecules included in the
large-scale CSP study. The bottom three rows show molecules in the set
with the largest differences between in-crystal and optimised molecular
geometries (as measured by all-atom RMSD); the CSP landscapes for
these molecules were re-optimised using the transferrable MACE model
(final section).

3 Results

3.1 Diversity of Survey Set
Our aforementioned search criteria yielded 1007 distinct
molecules crystallising in 1040 crystal structures observed in the
CSD. The constraint of no rotatable bonds necessarily limits
chemical diversity, but despite this our candidate set still displays
a variety of chemical functionalities and molecular structures, as
seen in Figure 1 and Table 1. A complete list of molecules, in-
cluding formulae, CSD refcode identifiers, SMILES strings, and
systematic and common names is available in the Supporting In-
formation.

functional functional functional
group count group count group count

benzene 418 ether 572 ester 134
pyridine 76 amide 297 carbonyl 702

imidazole 35 imide 43 imine 13
furan 22 lactone 91 secondary amine 405

piperdine 51 epoxide 73 tertiary amine 537
urea 22 ketone 269 halogen (F) 240

Table 1 Total counts of selected functional groups across the full set of
molecules, as assessed by RDKit 61 from SMILES strings.

Fig. 2 A histogram of the RMSD between all atomic positions in the
gas-phase optimised CSP candidate molecules, relative to their initial
in-crystal conformations. The red portions of each bar indicate the
molecules in that bin with spiro carbon centres.

Deviation between experimental and gas-phase conforma-
tions

Despite restricting our set to molecules containing no rotatable
bonds, this does not preclude molecular flexibility entirely. More
complex collective motions cannot be described in terms of a sin-
gle torsional angle about a covalent bond, and so molecules dis-
playing such conformational flexibility are present in this candi-
date set – the prototypical example is a ring “flip” or buckling,
such as the boat-chair interconversion of cyclohexane rings.

As a measure of the typical deviation in molecular geometry
between the observed crystal structures and the DFT optimised
molecules used in CSP, we present in Figure 2 the histogram of
all-atom root-mean-squared deviations (RMSD) in atomic posi-
tions between the gas-phase conformers used in CSP and their
in-crystal initial conformations as extracted from the CSD.

As might be expected from such rigid molecules, the average
RMSD after gas-phase optimisation is very small – approximately
0.11 Å, which corresponds to e.g. adjusting the C-H bond lengths
in fluorobenzene by 0.16 Å. While the distribution is skewed
towards small conformational changes, the outliers with larger
RMSD values demonstrate the limitations of defining molecular
flexibility in terms of rotatable bonds alone. The largest RMSD
values correspond to systems where changes in ring conforma-
tion cause large overall molecular changes – the largest observed
RMSD of 0.60 Å occurs in 7-oxa-1-azaspiro(4.4)non-1-en-6-one
1-oxide (CSD reference code: DOBYOJ), in which a 5-membered
saturated ring can twist about a spiro carbon centre. The high-
est molecular RMSD values are largely associated with molecules
containing spiro carbon atoms (denoted by the red portions of
bars in Figure 2).

Regardless, the overall inflexibility displayed by this set serves
as a strong indicator that our assumption of a single, near-
crystalline conformer of each molecule is reasonable, and unlikely
to be a systematic source of error in predicting many known struc-
tures of molecules in this set.

4 | 1–14Journal Name, [year], [vol.],

Page 4 of 14Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Ju

ne
 2

02
4.

 D
ow

nl
oa

de
d 

on
 6

/1
0/

20
24

 9
:5

7:
34

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

DOI: 10.1039/D4FD00105B

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00105b


Fig. 3 The relative frequency of space groups observed for crystal struc-
tures (where Z′ ≤ 2) of molecules in the CSD with a molecular weight
under 230 (black) and the subset (blue) of these molecules with no rotat-
able bonds selected for our CSP surveys. The distributions are presented
for only the 20 most common space groups (of the general molecule case)
for clarity.

Crystalline diversity

Figure 3 shows a comparison of the distribution of crystallo-
graphic space groups for most small molecules in the CSD to the
rigid-molecule subset selected for our CSP survey. There is no
significant difference in the relative occurrence of different crys-
talline symmetries between the two sets, though the relative or-
dering of space groups by frequency varies slightly. For example,
space group 15 (C2/c) is observed slightly more frequently in our
rigid set and space group 2 (P1̄) slightly less so. Regardless, our
rigid molecule set is reasonably representative of the range of
crystal packing symmetries observed in the CSD.

In contrast, our rigid molecule set displays a diminished fre-
quency of hydrogen bonding (H-bonding) in the observed crys-
tal structures compared to the CSD more generally, as might
be expected by excluding rotatable bonds. 26.7% (277) of
crystal structures of molecules in our subset contain at least
one intermolecular H-bond. This compares to 62.3% of struc-
tures of molecules of similar size without rotatable bond restric-
tions, demonstrating the bias introduced by the omission of com-
mon H-bonding groups due to their flexibility, including alcohols
(−OH), carboxylic acids (−COOH), and primary amines (−NH2).
However, the proportion of H-bonded systems is still significant
enough that meaningful H-bond chemistry is incorporated in our
survey, albeit underrepresented. Consequently, our set in turn
overrrepresents chemistry such as π-π stacking and “weak” (i.e.
more isotropic, less localised) interactions, and assessments of
our CSP energy model’s performance must be made with these
biases in mind.

3.2 Quality Assessment of the CSP Results
We propose that the dataset of predicted crystal structure land-
scapes across a large, diverse set of molecules is valuable for the
development of future predictive models. To evaluate the quality
of the dataset, we assess three aspects: completeness of the land-

Fig. 4 An example CSP landscape for a single molecule – the set of
predicted lattice energy minima from our CSP workflow. Each point
represents a local energy minimum, and thus a stable hypothetical crystal
packing. The blue square point is the global energy minimum, which in
the absence of experimental information is taken to be the most likely
crystal structure. If the red circled point is a match to the experimentally-
observed crystal structure, ∆E is the difference in energy between it and
the global minimum, the energy rank used in this work as a measure of
the quality of the calculated energies.

scapes; how well, geometrically, the CSP calculations reproduce
the known crystal structures of these molecules and the quality of
the relative energies of the predicted structures.

The 26 space groups included in our standard search include
those with an observed frequency above 0.05 % in the CSD. Nat-
urally, in a very large survey of molecules, we include some that
crystallise in less frequent space groups; for these 8 cases, we
added the space group of the observed crystal structure to the
search. In 3 additional cases, the symmetry of the observed struc-
ture means that it could not have been sampled without perform-
ing CSP with multiple independent molecules (Z’ > 1); in these
cases, we include the datasets in our study, knowing that the ob-
served crystal structures could not have been located. Of those
that could have been located, the searches find matches for 1034
of the 1040 observed crystal structures: reasons for the 6 missed
matches are discussed below.

A main assumption in CSP is that the observed crystal struc-
tures of a molecule correspond to the lowest energy possible
structures. We use this assumption to assess the quality of the
calculated energies. Figure 5 summarises the energetic ranking
of experimentally observed crystal structures within the CSP land-
scapes via the distribution of ∆E, the energy difference between
the prediction matching the experimental crystal structure and
the global lattice energy minimum crystal structure on their par-
ent molecule’s CSP landscape; an example landscape is shown in
Figure 4. In the case of molecules with chiral centers and only one
stereoisomer present, ∆E is calculated only among Sohncke space
groups (those whose symmetry elements contain only transla-
tions, rotations and rototranslations).

Of the 1034 experimentally determined crystal structures
where a matching structure was identified on the CSP landscape,
424 (41%) correspond to the global lattice energy minimum from
CSP. Those that do not correspond to global energy minima could
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Fig. 5 A histogram of the frequency (blue bars) with which our CSP
workflow achieves a match to the experimentally-known structures of
our molecule set, grouped by the relative energy of that match compared
to the CSP global minimum (0.5 kJ/mol bins). The red dashed line
relates to the secondary (right) y-axis, the proportion of known structures
located successfully as a function of the relative energy at that bin and
below. Note the broken x-axis; the highest-energy bin (blue hatching)
encompasses all matches with relative energy greater than 10 kJ/mol.

be due to inaccuracy of the model potential (FIT+DMA), neglect
of other contributions to the lattice free energy or where the ki-
netics of crystallisation favour a metastable structure. Nyman and
Day found that, for crystals of rigid molecules, lattice vibrational
contributions to room temperature free energy differences be-
tween polymorphs rarely exceed 2 kJ/mol9,10; 767 (74%) of ob-
served crystal structures are found within 2 kJ/mol of the global
energy minimum – the estimated error introduced by neglecting
lattice vibrations and thermal expansion in the CSP calculations.

Furthermore, the known structure(s) almost always lie within
8 kJ/mol of the global lattice energy minimum (1011, 97.8%,
of the observed crystal structures), consistent with the observa-
tion10 that known polymorphic pairs of small, rigid molecules are
rarely separated by more than this energy difference. Thus, the
energy model used here, combining empirically parameterised
repulsion-dispersion with atomic multipole electrostatics, pro-
vides energy ranking of crystal structures that is consistent with
observed polymorphism, within the limits of temperature-free lat-
tice energy-based predictions.

We quantify the geometric quality of the predictions using
an all-atom RMSD within 30-molecule clusters (RMSD30) from
experimentally-determined crystal structures and their corre-
sponding match within the CSP sets. A histogram of RMSD30 (Fig-
ure 6) shows that geometric agreement is generally very good:
RMSD30 is below 0.4 Å in 78.9% (816) of matches. As a visualisa-
tion of this level of agreement, Figure 7 shows an overlay of the X-
ray determined crystal structure of (1aR,2aS,5aS,5bS)-perhydro-
4H-oxireno(3,4)cyclopenta(1,2-b)furan-4-one62 (CSD reference
code SIBJIX) and the predicted global lattice energy minimum,
with RMSD30 = 0.393 Å. As a reference for these values, consider
the RMSD30 between structural determinations of the same crys-
tal structure at ambient and low temperature: RMSD30 = 0.204
Å between neutron diffraction crystal structures of naphthalene
at 5 K and 295 K, and RMSD30 = 0.160 Å between 20 K and 330

Fig. 6 A histogram of the geometric deviation between experimentally-
determined crystal structures and the corresponding matching structures
from CSP. The deviation is measured as the RMSD in atomic positions
within 30-molecule clusters from experimental and CSP structures. Note
the broken x-axis – the largest-deviation bin (green hatching) includes all
matches with RMSD30 greater than 1.0 Å.

K crystal structures of form I paracetamol63. 327 matches have
RMSD30 below 0.204 Å, i.e. have geometric deviations that are
of a magnitude that can be explained by the temperature-free na-
ture of structural optimisations used in CSP. While known crystal
structures are reproduced very well by CSP in most cases, there
are a small number where agreement is less satisfactory: in 32
cases (3 % of structures), RMSD30 > 1 Å. Despite what might be
assumed, we find no significant correlation between the RMSD30

of the experimental match and the molecular RMSD of the par-
ent gas-phase conformer used for CSP. Assuming an experimental
match is found, the geometric quality of the match is only weakly
sensitive to the difference in the molecular conformation used
for CSP; even the most extreme outlier in molecular conforma-
tional change (the aforementioned DOBYOJ) achieves a reason-
able geometric match to the experimental crystal structure, with
RMSD30 = 0.654 Å.

It is evident that an overwhelming proportion of such rigid
molecules can successfully be treated with the CSP workflow im-
plemented here. Our sampling procedure followed by a cost-
effective, approximate minimisation method successfully locates
the vast majority of observed crystal structures with excellent ge-
ometric agreement to the experimental structure, and routinely
ranks them as among the most stable structres on the landscape.

Analysis of individual outliers

The cases where no match whatsoever is found to the experimen-
tal structure are limited – approximately 0.5% of the experimen-
tal structures considered.

One missed match was for the molecule 4,8b-
dihydropyrrolo[3,4-b]indole-1,3(2H,3aH)-dione (CSD reference
code BUVGAC), which displays a large deviation in molecular
geometry between the observed crystal and the gas phase opti-
mised geometry used in CSP. Flexibility in the fused ring system
allows the molecule to “fold up” in the gas-phase optimisation,
sufficiently to change its packing behaviour. As a result, the
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Fig. 7 Overlay of 30-molecule clusters from the X-ray determined crystal
structure (atoms coloured by element, CSD reference code SIBJIX) with
the matching prediction (blue) – the global energy minimum structure
for (1aR,2aS,5aS,5bS)-perhydro-4H-oxireno(3,4)cyclopenta(1,2-b)furan-
4-one. For this match, RMSD30 = 0.393 Å.

experimental crystal structure is not a minimum on a CSP
landscape derived from the gas-phase conformer.

In the case of DNNEPH10 (1,8-dinitroso-naphthalene), we fail
to find the experimental structure despite an apparently rigid, pla-
nar molecule that changes very little in the gas-phase optimisa-
tion. However, even optimising the known crystal structure using
our FIT+DMA energy model results in a final structure that does
not match, i.e. the experimental structure appears to be unstable
at our level of theory. This may indicate a failure of our energy
model for a case of somewhat unusual chemistry.

Two of the missed matches are unusual cases in which a ref-
code “stem” (the initial six letters, typically shared by a “family” of
multiple CSD entries of the same species) is used by crystal struc-
tures containing distinct chemical bonding arrangements. Our
procedure takes a single representative of a CSD refcode family
as the source for the molecular connectivity, which was assumed
to stay fixed. In the case of refcodes XUGHUD/XUHGUD01,
there is a tautomeric difference, which led to no match with
XUHGUD01. For IHEPUG/IHEPG02, the subject molecule is a
diastereomeric fused ring system, which exists in an anti configu-
ration in IHEPUG, but a syn configuration in IHEPUG02. It is ar-
guable that these crystal structures should not be considered part
of the same “family”, as these distinct bonding arrangements are
not interconvertible. CSP was performed with the isomer found
in IHEPUG, so no crystal structure matching IHEPUG02 was lo-
cated. These two systems demonstrate a shortcoming of our ap-
proach, in that we assumed that a given CSD refcode “stem” al-
ways denotes the same molecular connectivity, including proto-
nation states. Fortunately, these are the only instances of this
assumption failing in the entire set.

Our final missed match occurs for QIBCEK, benzo(f)phthalazin-
4(3H)-one, another rigid planar molecule. However, upon in-
spection, we posit that there are flaws in the experimental de-
termination of this structure as held in the CSD – there are ex-
tremely close hydrogen contacts (<1.4 Å) and an unsatisfied
potential hydrogen-bonding arrangement despite a 1:1 donor-

acceptor availability. While we retain it as a missed match for the
purposes of conservatively asssessing our CSP method’s perfor-
mance, we also emphasise that such a large-scale, unbiased work-
flow has potentially identified an incorrect experimental structure
simply through its absence from the CSP landscape.

3.3 Revisiting Empirical Rules
Large databases of experimentally determined crystal structures
have been analysed to uncover trends in the packing preferences
of organic molecules. The availability of high quality crystal en-
ergy landscapes should allow organic solid state researchers to
gain deeper insight into these preferences and, we hope, to dis-
cover new rules that will benefit the field of crystal engineering.
We give two examples here: the unequal frequency with which
molecules occupy the possible space groups and the spontaneous
resolution of chiral molecules.

3.3.1 Space Group Preferences

There are strong space group preferences for experimentally ob-
served crystal structures: over 80% of molecular crystals occupy
5 of the 230 three-dimensional space groups. Having applied an
approach in generating trial crystal structures that is unbiased in
the how the 26 space groups included in our searches are sam-
pled, we analyse the results of CSP to investigate space group
preferences within the low energy structures on the set of crystal
energy landscapes.

We preface our analysis by emphasising that the space group
frequencies presented in Figure 8 are those for the CSP land-
scapes, i.e. only those of structures generated using an asym-
metric unit containing a complete molecule (in these single-
species systems, Z′=1) and without detecting and assigning ad-
ditional symmetry after the minimisation. In contrast, those of
the observed crystal structures in the CSD are the full, maximal-
symmetry space group (allowing fractions of molecules in the
asymmetric unit, i.e . Z′ ≤ 1). Hence. the space groups enumer-
ated for the CSP set can be thought of as “lower bounds” on the
symmetry – higher-symmetry space groups may be assignable if
the molecules present internal symmetry.

The global lattice energy minimum for each molecule is the
energetically preferred packing; the distribution of space groups
among the global minima structures are highly consistent with
the observed statistics – perhaps as expected, as CSP has been
demonstrated in this work to often identify observed structures
of these molecules as global minima.

Space group frequencies are often explained by close packing
arguments: the commonly observed space groups have combina-
tions of symmetry elements that facilitate close packing of irreg-
ular shapes.64 Examining the space group distribution amongst
the densest predicted crystal structure for each molecule gives a
similar distribution to that from global energy minima; minimis-
ing energy and maximising density lead to similar space group
preferences. However, there are differences after the three most
popular space groups: the next few have almost equal frequencies
among high density structures, suggesting that they are equally
good at promoting close packing and that observed differences
between these space groups relate to subtler influences of sym-
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Fig. 8 The relative frequencies of space groups of crystal structures. Light blue (top left) are those of rigid molecules in the CSD (as in Figure 3),
while the rest are obtained from CSP landscapes at the global density maximum (purple, top right), at the global energy minimum (blue, bottom
left), and within 7.2 kJ/mol of the global energy minimum (orange, bottom right). The ordering of space groups on the x-axis is chosen to match
that in Figure 3. Only the 20 most common space groups for rigid molecules are presented for clarity.

metry on lattice energy.
Considering hypothetical structures higher on the CSP energy

landscape (up to the usual energy limit of polymorphism, 7.2
kJ mol−1, in the bottom right panel of Figure 8), we see a fur-
ther flattening of the distribution, and an overrepresentation of
space group 15 (C 2/c) compared to global energy minima struc-
tures. These changes in distribution with energy, which we do
not examine in deeper detail here, are only available from access
to complete energy landscapes and are relevant in the discov-
ery of high energy, metastable materials, which have sometimes
been observed to have attractive properties.24,65 Thus, we feel
that large datasets of CSP landscapes hold potential for gener-
alising our understanding of symmetry preferences in molecular
crystals.

3.3.2 Spontaneous Resolution of Chiral Molecules

As a second example of insight that can be gained from large
numbers of crystal energy landscapes, we examine the tendency
for spontaneous resolution of chiral molecules. It is generally
accepted that crystallisation from a racemic solution of a chi-
ral molecule more frequently yields racemic crystals rather than
undergoing spontaneous resolution into a mixture of crystals,
each containing a single stereoisomer.66 However, information
in structural databases alone is limited: knowing whether crys-
tals were grown from racemic or enantiomerically pure solution
is necessary to interpret the incidence rate of spontaneous res-
olution and the molecular characteristics that influence this be-

haviour. Furthermore, where enantiomers separate upon crys-
tallisation, it is not possible to grow racemic crystals, so that com-
parison of racemic vs enantiomerically pure crystal structures is
not possible. Computed crystal energy landscapes make it possi-
ble to compare the structures and relative energies of the alterna-
tive crystallisation outcomes.

In Figure 9, we show the difference in stability and density be-
tween the energy minimum across all Sohncke (i.e. enantiopure)
space groups and the minimum across enantiogenic (i.e. racemic)
space groups for the 356 molecules in our set containing at least
one chiral centre. This energy difference represents the propen-
sity for spontaneous resolution of a racemic solution compared to
a racemic crystal of both enantiomers.

In general, there is a slight but consistent lattice energy penalty
to enantiopurity – the average difference in lattice energy be-
tween the enantiopure global minimum and the racemic global
minimum is 2.7 kJ/mol, favouring the racemate. Of the 356 chi-
ral molecules, racemic crystallisation is preferred in 86% (305)
of molecules and spontaneous resolution is predicted to occur
for approximately 14% (51) of molecules, although those with
small lattice energy differences could be influenced by thermal
contributions that are not included here. Moreover, this is ac-
companied (or perhaps driven) by improved packing in the race-
mate – on average, optimal enantiopure structures are 2.3% less
dense than optimal racemic structures, consistent with the empir-
ical Wallach’s rule67,68.
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Fig. 9 The difference in lattice energy (∆Elatt, top red histogram) and
relative density (∆ρ, right blue histogram) between the energy minimum
in Sohncke (enantiopure) space groups and that in racemic space groups,
for all molecules in our set containing at least one chiral centre. The
scatter plot (center) displays the relationship between these values for
each comparison (red and blue lines indicate the origin, i.e. no change in
either quantity).

3.4 Machine Learned Interatomic Potentials
One of the more straightforward applications of machine learn-

ing in CSP is for the prediction of high quality lattice ener-
gies, to reduce the cost of geometry optimisations or of the fi-
nal energy ranking of structures.69 Such approaches have been
demonstrated in molecular organic CSP by training models on
the landscapes of individual molecules.37,39,40 The CSP dataset
developed in this work has significant potential for training data-
derived models for organic crystals that could be applied more
broadly.

3.4.1 Transferable ∆-ML lattice energy corrections

To illustrate the use of CSP to train transferable machine-learned
energy models, we trained a committee neural network poten-
tial using atom-centred symmetry functions70,71 for lattice energy
corrections to the force field used in this work (FIT+DMA), cor-
recting the lattice energies to the B86bPBE+XDM level. An initial
model was trained on 7950 selected crystal structures from ca.
85% of the CSP landscapes (up to 9 crystal structures per land-
scape), randomly selected from within 8 kJ mol-1 of the global en-
ergy minimum of each landscape. This corresponds to just under
5% of the crystal structures (166,395) within this energy range
for these landscapes. One crystal structure per landscape was
withheld as an in-domain test set, while 10 crystal structures per
landscape from the remaining CSP landscapes are used as an ex-
trapolation test set. Following initial training, active learning was
applied to identify crystal structures from the training landscapes

with highest uncertainty in the lattice energy correction. After
two iterations (adding 1000 training structures), a slight decrease
in errors was observed in the test set, but no improvement in the
extrapolation set (see Supporting Information), so training was
halted. We also tried a third iteration of active learning with a
wider energy window on each landscape, potentially including
more diverse structures, but this did not lower the errors on the
test or extrapolation sets. Consequently, we decided to proceed
with the model after two iterations of active learning.

The performance of the resulting model on the held out test set
shows remarkably low errors (Figure 10), returning an MAE of
just 0.93 kJ mol-1. Moreover, a similarly low MAE of 1.57 kJ mol-1

is achieved on the extrapolation test set, which contained crys-
tal structures of compounds not included in the training of the
correction. Compared to the errors for the baseline FIT+DMA,
which returned MAEs of 7.80 and 7.95 kJ mol-1 on the test set
and extrapolation set respectively, the correction offers a marked
improvement in accuracy. The fact that the errors for the correc-
tion are slightly higher on the extrapolation set shows that there
are limitations to the transferability of the correction. We ex-
pect that better transferability can be achieved as we increase
the number of CSP landscapes available for training; the gener-
ation of additional landscapes can be targeted to weaknesses in
the underlying force field and molecular types where the current
machine learned correction has large errors.

Although the performance of the correction on the test sets is
encouraging, an important question is whether the improved en-
ergies are significant enough to produce improved stability rank-
ings of organic crystals. To evaluate the influence on ranking, we
applied the correction to all of the CSP landscapes, re-ranking all
the predicted structures based on the corrected energies. There-
after, we compared the ranking of the matches to the experi-
mental structures in terms of both their ranking and their en-
ergy above the global minimum with that found using FIT+DMA.
Structures with predicted uncertainties greater than 25 kJ mol-1

were omitted from this analysis. This amounted to 257 struc-
tures (out of 3.9 million total) with examination indicating the
structures were predominately high energy structures containing
voids.

The resulting distributions (Figure 11) over both the training
and extrapolation compounds illustrate clearly that the corrected
energies in general improve the rankings of the experimental
structures. For instance, the correction results in an increase from
424 (FIT+DMA) to 501 (FIT+DMA+∆-ML) of observed struc-
tures ranked as global energy minima, and an increase from 767
(FIT+DMA) to 839 (FIT+DMA+∆-ML) within 2 kJ mol-1 of the
global energy minimum (the approximate limit of vibrational con-
tributions to free energy differences). These improvements are
observed in the CSP landscapes of the extrapolation and training
molecules (see Supporting Information). Importantly, the correc-
tion also greatly improves the worst ranked experimental matches
with the proportion ranked above 35 in energy ranking decreas-
ing by over a third, from 69 (FIT+DMA) to 45 (FIT+DMA+∆-ML)
(see Supporting Information).
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Fig. 10 Correlation of (left) force field (FIT+DMA) lattice energies and (right) force field with machine learned correction vs DFT (B86bPBE+XDM)
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B86bPBE+XDM lattice energy correction. Separate disctributions for
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3.4.2 Transferable MACE total energy model

While the ∆-ML approach successfully improves the quality of the
CSP energy rankings, some of the CSP matches to experimental
crystal structures are still relatively high on their energy land-
scape, even after applying the lattice energy correction. Consid-
ering the demonstrated accuracy of the correction, the high rela-
tive energies could be the result of limitations with the rigid-body
lattice energy minimised geometries, which an energy correction
is unable to remedy. Indeed, many of the structures with high
relative energies are for compounds which had large geometric
deviations between the experimental in-crystal molecular confor-
mations and the gas-phase optimised molecular geometries used
(and kept rigid) during CSP. Improving the performance of CSP
for these more flexible molecules in our study likely requires re-
optimising the predicted crystal structures and relaxing the rigid-
molecule constraint.

The FIT+DMA+∆-ML model is not suitable for this task be-
cause it is only a correction to the intermolecular contribution
to the lattice energy. Therefore, using a dataset derived from the
CSP structures selected for the energy correction model, with per-
turbed atomic coordinates to sample conformational degrees of
freedom, we trained a total energy MACE (higher order equivari-
ant message passing neural network) model. Full details are pro-
vided in the Supporting Information. The trained MACE model
was then applied to geometry optimise the predicted structures
of 15 compounds with large differences in molecular geometry
between the observed crystal structure and the DFT-optimised
molecule (see Figure 1, bottom three rows).

Re-optimisation with the trained MACE model yielded consid-
erable improvements in the geometric agreement of predicted
structures with experiment and of their energy ranking on the
CSP landscapes (Table 2). RMSD30 between experimental and
predicted structures decreased upon re-optimisation for 14 of the
15 compounds, by up to 1.4 Å, and moved the match to the ob-
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FIT+DMA MACE
crystal RMSD30 ∆E RMSD30 ∆E

structure (Å) (kJ mol−1) (Å) (kJ mol−1)
ATCDEO 0.341 7.26 0.125 (-0.216) 6.67 (-0.59)
BIRTUR 0.396 6.06 0.391 (-0.005) 0.02 (-6.03)
BIXKUP 0.813 16.32 0.208 (-0.605) 0.00 (-16.32)
BIXLOK 1.048 4.95 0.265 (-0.783) 0.00 (-4.95)
DALBIC 0.343 1.45 0.206 (-0.137) 3.70 (+2.25)
DEBFOI 1.208 4.18 0.110 (-1.098) 0.00 (-4.18)
DOBYOJ 0.654 1.27 0.640 (-0.014) 3.55 (+2.28)
JASGIT 1.837 15.77 1.776 (-0.061) 9.72 (-6.05)
KOGFER 0.247 0.37 0.248 (+0.001) 0.00 (-0.37)
QEKQIG 0.824 4.84 0.139 (-0.684) 0.00 (-4.84)
TAVTUH 1.751 12.03 0.325 (-1.426) 1.87 (-10.16)
TUNWUV 1.103 9.55 0.399 (-0.704) 0.00 (-9.55)
UDEXUZ 0.725 7.41 0.216 (-0.509) 0.75 (-6.66)
WACYAB 0.721 9.81 0.216 (-0.505) 0.92 (-8.89)
WACYEF 0.975 14.02 0.200 (-0.775) 0.00 (-14.02)

Table 2 Crystal structure RMSD30 and energetic ranking of matches
to the experimentally-determined crystal structures within CSP land-
scapes for 15 molecules re-optimised with the transferable MACE model.
Changes between the rigid-molecule force field reslts (FIT+DMA) and
MACE are shown in parentheses. Bold entries highlight where MACE
re-optimisation leads to improvement.

served structure closer to the global energy minimum in all but
2 cases, with 7 becoming the global energy minimum structure.
Figure 12 illustrates the improved geometric agreement for one
of these molecules.

Re-optimisation of CSP structures was also run for 4,8b-
dihydropyrrolo[3,4-b]indole-1,3(2H,3aH)-dione, where no
match to the experimental crystal structure (CSD reference code
BUVGAC) was identified in the CSP. However, no match was
identified after re-optimisation with the MACE model; in this
case, molecular flexibility would have been required during
structure generation, rather than post-CSP re-optimisation. Now
that a transferable MACE model has been trained, it could
potentially be implemented earlier in the CSP workflow.

It should be noted though that the MACE model is a semi-
local model and so neglects long-range interactions that can be
important for highly accurate relative energies. Overall, the re-
sults of the unconstrained optimisations confirm that the high
relative energies of these crystal structure matches estimated by
FIT+DMA+∆-ML are largely a result of limitations with the rigid-
body lattice energy minimised geometries. It is worth reiterating
that the limitations of the CSP geometries only affected a small
number of structures; in the vast majority of cases, as shown ear-
lier, the predicted structures at the FIT+DMA level achieved high
quality matches to the experimentally-determined crystal struc-
tures. Undoubtedly, the success of the FIT+DMA+∆-ML energy
correction is a reflection of the performance of the baseline em-
pirical force field.

4 Conclusions
We have presented (to our knowledge) the largest CSP dataset
produced to-date, serving as a computational survey of crystal
packing in the organic solid state for small, rigid molecules. Using
established, well-characterised CSP methods, we produced crys-
tal structure energy landscapes for over 1000 such molecules, all
of which have at least one known, solved crystal structure avail-

Fig. 12 Overlay of the experimentally determined crystal structure (atoms
coloured by element) of (exo,exo,exo)-1,2:4,5:7,8-triepoxycyclododec-10-
ene (CSD reference code WACYEF) with (left) the matching structure
from the force field (FIT+DMA) CSP (blue) and (right) the matching
CSP structure after re-optimisation with the transferable MACE model
(purple). Hydrogen atoms are hidden for clarity. The large structural
deviation in the FIT+DMA structre is driven by deviation in the molecular
geometry.

able in the CSD. In total, our CSP landscapes contain over 4 mil-
lion unique crystal structures, each with an associated lattice en-
ergy at a consistent level of theory.

We have assessed the quality of the dataset by evaluating its
reliability at predicting the known crystal structures of these
molecules, both in terms of the quality of the geometric match
of the crystal structures and the resulting energy ranking of the
experimental forms on their respective landscapes compared to
other hypothetical structures. Our CSP approach is overwhelm-
ingly successful at predicting crystal structures of these simple
molecules – over 99% of all experimental structures have a match
located in our CSP searches. 41% of experimental structures are
predicted to be the global energy minimum on their landscapes,
and 74% are found within 2 kJ/mol of this minimum, a margin
equivalent to the estimated error introduced by ignoring thermal
effects and ranking based solely on static, 0 K lattice energies. Ge-
ometrically, the typical discrepancy between experimental struc-
tures and their closest predicted matches is comparable to the
thermal fluctuations in experimental crystal structure solutions of
the same solid form obtained at low temperatures versus ambient
conditions. Such remarkable performance demonstrates the con-
sistency and accuracy of our chosen methods for optimising and
ranking these structures.

Such a large dataset of many possible crystal packings should
prove a valuable resource for identifying a variety of crystal pack-
ing trends, and we make this data available to the community
as part of this work. Herein, we studied space group distri-
butions among low-energy hypothetical structures compared to
those observed in the CSD, and find substantial overlap, partic-
ularly among the most common space groups. We also demon-
strated the potential of this varied dataset to explore chirality in
the organic solid state, finding very good agreement with estab-
lished empirical rules concerning the propensity of racemic mix-
tures to crystallise in racemic crystal structures as opposed to sep-
arate enantiopure crystals.

Additionally, we have shown the power of such large-scale CSP
to train transferable machine learned potentials for organic solid-
state systems. A committee neural network potential trained on
single-point periodic DFT lattice energies achieved excellent ac-
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curacy in correcting our force field energy landscapes to the DFT
level, reducing energy errors by approximately 8 fold. While the
NNP performance is reduced on molecules reserved as an ex-
trapolation set compared to those seen in training, the potential
still demonstrates improvements to the quality of the resulting
CSP rankings increasing the number of experimental structures
ranked as the global energy minimum by 18% overall. We fur-
ther demonstrated the development of a transferable MACE po-
tential using structures derived from the CSP landscapes to al-
low re-optimisation of crystal structures, testing it successfully on
those molecules in our set where the molecular geometry distor-
tion between the conformation in the known crystal structure and
the gas-phase-optimised one was largest. The results showed im-
proved structural agreement with experimental structures in al-
most all cases and much improved energy rankings, moving sev-
eral poorly-ranked observed structures to the global energy mini-
mum.

Using these mature, well-tested CSP methods alongside mod-
ern machine learning approaches, we have demonstrated the
ability of CSP to create very large, diverse datasets of hypo-
thetical crystal structures, and the utility of this information in
both understanding broad trends in organic crystal structures and
in training more advanced energetic models for refinement and
transferability. It is our hope that the variety and quantity of CSP
data presented here, alongside our demonstrations of possible ap-
plications, enables the greater organic solid-state computational
community to develop even more sophisticated models and tech-
niques in pursuit of truly predictive, computational data-driven
discovery of novel materials.
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