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ABSTRACT
Enhanced sampling algorithms are indispensable when working with highly disconnected multimodal distributions. An important applica-
tion of these is the conformational exploration of particular internal degrees of freedom of molecular systems. However, despite the existence
of many commonly used enhanced sampling algorithms to explore these internal motions, they often rely on system-dependent parameters,
which negatively impact efficiency and reproducibility. Here, we present fully adaptive simulated tempering (FAST), a variation of the irre-
versible simulated tempering algorithm, which continuously optimizes the number, parameters, and weights of intermediate distributions
to achieve maximally fast traversal over a space defined by the change in a predefined thermodynamic control variable such as temper-
ature or an alchemical smoothing parameter. This work builds on a number of previously published methods, such as sequential Monte
Carlo, and introduces a novel parameter optimization procedure that can, in principle, be used in any expanded ensemble algorithms. This
method is validated by being applied on a number of different molecular systems with high torsional kinetic barriers. We also consider
two different soft-core potentials during the interpolation procedure and compare their performance. We conclude that FAST is a highly
efficient algorithm, which improves simulation reproducibility and can be successfully used in a variety of settings with the same initial
hyperparameters.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0190659

I. INTRODUCTION

The sampling problem is one of the most significant challenges
faced when performing a molecular dynamics (MD) simulation.
Many methods that aim to solve this problem have been proposed
over the years. One of the most widely used enhanced sampling
methods is replica exchange molecular dynamics (REMD),1 which
uses a series of intermediate distributions to draw samples with
increased temperature and diffuse them back into the distribution
of interest.

In this work, we will focus on the serial and historically much
less popular counterpart of REMD—simulated tempering (ST).2,3

The main advantage of ST over REMD is that all the computa-
tional time is devoted to a single long simulation, which, therefore,
provides maximum decorrelation of the slow degrees of freedom,
such as certain torsions, with respect to their initial values. How-
ever, this comes at a price—ST requires the a priori unknown relative
normalizing constants of the intermediate distributions, and is also
more sensitive to kinetic trapping in temperature space, since it is
no longer guaranteed that every intermediate distribution will pro-
duce an equal number of samples. Even though adaptive approaches
for estimating the intermediate normalization constants have been
developed,4–7 ST still remains underutilized compared to REMD5

arguably due to its lack of robustness.
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Both the REMD and ST methods can be generalized beyond
temperature to any thermodynamic control variable. The inter-
mediate distributions can represent separate ensembles that have
different values for any specific control variable. In this control vari-
able space, samples can be drawn at regions where traversal of high
free energy barriers occurs more frequently and can then be diffused
back into the distribution of interest.

The efficiency of tempering algorithms can be further increased
by utilizing irreversible Markov chain Monte Carlo (MCMC)
methods, which are known to provide faster state mixing than
their reversible counterparts.8,9 A straightforward way to make
reversible algorithms irreversible is to introduce an additional
“lifting coordinate”10 and enforce an antisymmetric balance con-
dition, known as skew detailed balance.11 This “lifting coordinate”
will control the direction of travel in temperature space explic-
itly such that round trips can be enforced. One can then devise
a suitable expression for the acceptance criterion that minimizes
the diffusive motion in temperature space as much as possible.12

This methodology can be readily applied to a variety of MCMC
methods,9 and irreversible REMD and ST algorithms have been pre-
viously published.13–15 The introduction of this irreversibility can
substantially improve the motion in temperature space, which can
reach a scaling of O(N), where N is the number of intermediate
distributions.13

In the following discussion, we will present a general algorithm
called fully adaptive simulated tempering (FAST), which adaptively
determines an optimal parameter protocol for irreversible simu-
lated tempering (IST). While analytical results for selecting optimal
parameters exist for reversible REMD,16–18 irreversible REMD,14,15

and reversible ST,18–20 a simple analytical expression is not known
for IST. Such a methodology is highly desirable not only because
of its general applicability, but also because of the well-known
fact that a well-performing ST algorithm is more efficient than a
well-performing REMD algorithm.21,22 One can then use this opti-
mized procedure to maximize the sampling quality of the tempering
method.

The following optimization process has two layers of adap-
tation: a preliminary offline protocol estimation using adap-
tive alchemical sequential Monte Carlo (AASMC), as described
in Ref. 23, followed by an iterative online protocol refinement during
the ST procedure, to increase the number of round trips. The former
approach is similar to the methodology considered by Syed et al.,14

while the online optimization algorithm is the main contribution of
this work. In the following work, we have focused on round trip opti-
mization to maximize the number of transitions between the easiest
to sample state and the state of interest.

II. THEORETICAL BACKGROUND
A. Simulated tempering (ST)

ST2,3 is an expanded ensemble method, which samples from
a mixture distribution over the coordinates πmix(x⃗), which is a
weighted sum over each underlying ensemble probability distribu-
tion π(λ⃗i, x⃗),

πmix(x⃗) =
Nλ

∑
i=1

wiπ(λ⃗i, x⃗), (1)

FIG. 1. Markov chains corresponding to simulated tempering (ST) [Fig. 1(a)] and
irreversible simulated tempering (IST) [Fig. 1(b)].

where λ⃗ is a vector of control variable values (which may or may not
be temperatures). Nλ denotes the length of λ⃗ and so corresponds to
the total number of individual thermodynamic states that comprises
the expanded ensemble. wi is the corresponding weight of the ith
distribution, and π(λ⃗N , x⃗) is the distribution of interest. While the
assignment of these weights is arbitrary, they are commonly set to
unity so that all the distributions are sampled with equal probability.
This, in turn, requires estimation of the normalization constants for
correct weighting.

Exploration in parameter space is commonly done in a Gibbs
sampling fashion24 [Fig. 1(a)], where a state change is attempted
after a fixed amount of MD steps. As in REMD, multiple ways of
choosing the proposal probabilities pprop(λ⃗ j ∣λ⃗i) are possible,24 but
a common way of defining the Markov chain is by only attempt-
ing transitions between the nearest neighbors, with equal proposal
probabilities,

pprop(λ⃗j∣λ⃗i) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
2

δ∣i−j∣,1, i ∉ {1, N},

δ∣i−j∣,1, i ∈ {1, N},
(2)

with δ being the Kronecker delta. The acceptance criterion
pacc(λ⃗ j ∣λ⃗i, x⃗) is then related to the importance sampling weight of the
configuration x⃗ and is commonly chosen to satisfy detailed balance,

pacc(λ⃗j ∣λ⃗i, x⃗) = min [1,
wjπ(λ⃗j , x⃗)pprop(λ⃗i∣λ⃗j)

wiπ(λ⃗i, x⃗)pprop(λ⃗j ∣λ⃗i)
]. (3)

B. Irreversible simulated tempering (IST)
Irreversible simulated tempering (IST)13 is a generalization of

ST, which relaxes the condition of detailed balance [Eq. (3)] to that of
skew detailed balance.11 To achieve this, an extra variable σ (“lifting
coordinate”) is introduced,10 thereby creating a mirror image of
the irreversible Markov chain of choice [Fig. 1(b)]. In this way, the
Markov chain increases its state space from Nλ states to 2Nλ − 2
states. Under the skew detailed balance condition, the underlying
Markov chain can be designed in any way, as long as all of its states
are connected. In IST, the extra variable can be thought of as the
direction of the flow—“+1” in the direction λ⃗1 → λ⃗Nλ and “−1” in
the opposite direction [Fig. 1(b)]. This extra variable is strictly +1
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at λ⃗1 and −1 at λ⃗Nλ and can take either value at the intermediate λ⃗
values. This changes the proposal probability pprop(λ⃗ j ∣λ⃗i) to

pprop(λ⃗j , σj ∣λ⃗i, σi) =

⎧⎪⎪
⎨
⎪⎪⎩

δσiσj , λ⃗j = λ⃗i+σi , j ∉ {1, Nλ},

1 − δσiσj , λ⃗j = λ⃗i+σi , j ∈ {1, Nλ}.
(4)

In IST, the skew detailed balance condition enforces the equality,

π(λ⃗i, σi, x⃗)T(λ⃗i+σi , σi∣λ⃗i, σi, x⃗)

= π(λ⃗i+σi ,−σi, x⃗)T(λ⃗i,−σi∣λ⃗i+σi ,−σi, x⃗) (5)

with the transition probability T(⋅) being the product of the pro-
posal probability pprop(⋅) and the acceptance probability pacc(⋅). In
this setting, the probability of evolving in λ⃗ space pacc(λ⃗ j , σ j ∣λ⃗i, σi, x⃗)
is similar to the reversible case [Eq. (3)],

pacc(λ⃗j , σj ∣λ⃗i, σi, x⃗) = min [1,
wjπ(λ⃗j , x⃗)pprop(λ⃗i, σi∣λ⃗j , σj)

wiπ(λ⃗i, x⃗)pprop(λ⃗j , σj ∣λ⃗i, σi)
], (6)

where we have omitted the lifting variable from the probability
distributions, since it is purely a dummy variable that does not
change its functional form. In order to satisfy skew detailed bal-
ance, the probability flow in σ space needs to counterbalance the
flow in λ⃗ space. This leads to the lifting coordinate being flipped with
probability pacc(−σi∣λ⃗i, σi, x⃗),

pacc(−σi∣λ⃗i, σi, x⃗) = max
⎡
⎢
⎢
⎢
⎢
⎣

0, ∑
σk∈{−1,1}

T(λ⃗i−σi , σk∣λ⃗i,−σi, x⃗)

− T(λ⃗i+σi , σk∣λ⃗i, σi, x⃗)
⎤
⎥
⎥
⎥
⎥
⎦

. (7)

The term inside the max[⋅] function is simply the difference
between the forward transition probability at the current state and
the backward transition probability at the mirrored state. This accep-
tance criterion is not the only one that satisfies skew detailed balance
but is the one that minimizes the probability of changing direc-
tions.12 Since the rationale for using IST is precisely the minimiza-
tion of diffusive motion in λ⃗ space, this is the acceptance criterion
that will be used hereafter. Finally, the probability of not accepting
any λ⃗ or σ transitions prej(λ⃗i, σi, x⃗) is

prej(λ⃗i, σi, x⃗) = 1 − pacc(λ⃗j , σj ∣λ⃗i, σi, x⃗) − pacc(−σi∣λ⃗i, σi, x⃗). (8)

In practice, one of pacc(λ⃗ j , σ j ∣λ⃗i, σi, x⃗), pacc(−σi∣λ⃗i, σi, x⃗), and
prej(λ⃗i, σi, x⃗) is chosen using a pseudo-random number uniformly
distributed between 0 and 1, leading to either a transition in λ⃗ space,
a σ flip, or no change. Similarly to ST, the transitions in λ⃗ and σ
space are performed completely independently of the evolution in
coordinate (x⃗) and momentum (p⃗) space and can, in principle, be
attempted at any point in the simulation.

C. Multistate Bennett acceptance ratio (MBAR)
The multistate Bennett acceptance ratio (MBAR)25 is a max-

imum likelihood free energy estimation method, which is also

known to be statistically optimal, in the sense of minimizing the
asymptotic estimator variance. MBAR estimates different thermody-
namic observables by creating a self-consistent expanded ensemble
model π̂mix(λ⃗, x⃗) (here and henceforth, the hat operator denotes an
estimated quantity),

π̂mix(λ⃗, x⃗) =
Nλ

∑
i=1

ŵiπ̂(λ⃗i, x⃗),

ŵi =
Ni

∑
Nλ
k=1 Nk

,

π̂(λ⃗i, x⃗) = e−u(λ⃗ i ,x⃗ )+ f̂ (λ⃗ i),

f̂ (λ⃗i) = − ln ⟨
e−u(λ⃗ i ,x⃗ )

π̂mix(λ⃗, x⃗)
⟩

π̂mix(λ⃗)
,

(9)

where N i is the total number of samples from λ⃗i, ŵi is the estimated
expanded ensemble weight of the ith state, f̂ (λ⃗i) is the estimated free
energy at λ⃗i, usually chosen to be relative to f̂ (λ⃗1), and u(λ⃗i, x⃗) is
the dimensionless potential energy. These equations can be solved
iteratively using different approaches.25,26 One can then estimate
the expectation value of any observable of interest O at any inter-
mediate distribution π(λ⃗k) using importance sampling, even if this
distribution is not explicitly sampled in the observed data,

⟨O(λ⃗, x⃗)⟩π(λ⃗k)
≈ ⟨O(λ⃗, x⃗)

π̂(λ⃗k, x⃗)
π̂mix(λ⃗, x⃗)

⟩

π̂mix(λ⃗)
, (10)

where the expectation ⟨⋅⟩π̂mix(λ⃗) is obtained by averaging the inte-
grand over each of the total samples. In this work, the samples will
be obtained and move proposals in λ space will occur in the same
workflow. Samples at the current λ state are collected over τsample
units, where τsample is the sampling time between λ change propos-
als. Afterward, the resulting MBAR estimator will be used to predict
the expectation values of the acceptance criteria described above and
estimate transition matrices, as discussed in Sec. III A.

III. DEVELOPING AN ADAPTIVE IST ALGORITHM
An overview of the FAST workflows is provided in Fig. 2.

Section III A–III F provide detail on each aspect of that workflow.

FIG. 2. A summary of the FAST workflow.
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A. On-the-fly protocol adaptation
The main contribution of this work is the development of a

general adaptive on-the-fly procedure to continuously estimate the
optimal protocol λ⃗opt ≡ (λ⃗1,opt , . . . , λ⃗Nλ ,opt). We will define λ⃗opt to be
the protocol that minimizes the predicted expected round trip time
τ̂round,pred(λ⃗) between λ⃗1 = 0 and λ⃗Nλ = 1 [Fig. 1(b)]. To obtain this,
we first use our MBAR model to estimate an expected transition
matrix T̂(λ⃗) connecting all the states in λ⃗ and σ space. In the case
of IST, this translates to a (2Nλ − 2) by (2Nλ − 2)matrix,

T̂ij(λ⃗) ≈ ⟨T̂(λ⃗j , σj ∣λ⃗i, σi, x⃗)
π̂(λ⃗i, x⃗)

π̂mix(λ⃗, x⃗)
⟩

π̂mix(λ⃗)
, (11)

where each transition probability is calculated using the MBAR free
energy estimates according to Eqs. (6)–(8). In all cases, π̂mix is esti-
mated from all previous samples at all λ⃗ values, as described in
Eq. (9).

One can then straightforwardly obtain τ̂round,pred(λ⃗) by express-
ing it as the sum of the mean first passage times τ̂λ=0→λ=1 + τ̂λ=1→λ=0.
More generally, the mean first passage time τ̂i j from state i to state j
can be obtained from the following equation:27

τ̂ij = [(I − T̂ jj)
−11]iτsample, i < j,

τ̂ij = [(I − T̂ jj)
−11]i−1τsample, i > j,

(12)

where T̂ j j is the transition matrix with the jth column and row
removed, I is the identity matrix, 1 is a column vector of ones, and
[⋅]i denotes the ith vector element.

The key assumption behind this methodology is the instan-
taneous decorrelation of the phase space coordinates—a necessary
assumption that is not usually satisfied in real-world applications.
Nevertheless, as will be shown later, it is a very useful assumption
that works remarkably well in practice, since even dense macro-
molecular systems often exhibit apparent local energy decorrelation
at relatively short timescales (1–10 ps).

The minimization of τ̂round,pred(λ⃗) with respect to λ⃗ requires an
appropriate derivative-free optimization method. In this work, we
opt for the covariance matrix adaptation evolution strategy (CMA-
ES) algorithm,28 which is a global optimization algorithm that is
well-known for its robust performance at the number of dimensions
relevant to alchemical transformations (typically ≤50 in practice).29

In order to keep the sensitivity of each λ⃗ value toward variation rel-
atively constant, we will map the λ⃗ protocol onto an equally spaced
sequence ∈ [0, 1] using a piecewise linear interpolation function and
perform the optimization in this transformed space. The optimiza-
tion procedure always keeps three λ⃗ values unchanged: the current
λ⃗ value, 0, and 1. The number of the optimizable λ⃗ variables will be
denoted throughout the text as Ñλ.

Once λ⃗opt(Ñλ) corresponding to a particular number of opti-
mizable values Ñλ is estimated, the final step is to optimize Ñλ. In
this work, this will be done using discrete brute-force optimization,
where λ⃗opt(Ñλ) is first calculated at each of min [0, Ñλ − 1], Ñλ, and
Ñλ + 1 dimensions, using the procedure described above. Afterward,
τ̂round,pred(λ⃗opt(Ñλ)) is evaluated at each of these dimensions until a
local minimum is found, in which case the minimization procedure

terminates. In all cases, the initial protocol guess λ⃗init(Ñλ)will either
be interpolated in transformed space from the previous minimiza-
tion result with the closest (preferably larger) number of dimensions,
or taken from the initial adaptive alchemical sequential Monte Carlo
(AASMC) run.

Even though the procedure outlined above is theoretically exact
and likely to return a globally optimal protocol at infinite sampling,
there are still some practical considerations in order for this method
to be viable in practice. These will be described below.

B. Interpolation
The functional form of the alchemical interpolation scheme

between the two endpoint distributions π(0, x⃗) and π(1, x⃗) does
not theoretically influence the sampling at the distribution of inter-
est. Practically, however, the interpolation procedure needs to be
carefully chosen to ensure good phase space overlap between all
intermediate λ⃗ windows. To achieve this, soft-core potentials are
commonly used for interpolation of Lennard–Jones (LJ) interac-
tions in place of simple linear decoupling. While this results in
more efficient sampling, energy evaluations at each λ⃗ window have
to be performed using the whole Hamiltonian and cannot be sim-
ply interpolated from the energies at the endpoints. Meanwhile, the
MBAR estimator uses the evaluated energy of each sample at each
previously sampled λ⃗ value and each iteration of the above proto-
col optimization algorithm requires energy evaluations at arbitrary
λ⃗ values chosen by the minimizer as well. Therefore, one would
incur unfeasibly high computational expense if full Hamiltonian
evaluation was performed throughout these algorithms.

In this work, two different approaches will be compared
(Fig. 3). The first is always exact and uses a recently developed
linearly interpolatable Gaussian soft-core potential (GSC),30 where
only three expensive energy evaluations are needed per sample,
which can be afterward stored in memory and readily interpolated
as needed. The second approach utilizes a commonly used soft-core
potential (CSC),31 where expensive energy evaluations will be made
at each λ⃗ value of the protocol. These will then be interpolated lin-
early in order to approximate intermediate energies for the MBAR
estimator and protocol minimizer. Since protocol convergence is
asymptotically guaranteed (discussed in Sec. III E), the energy inter-
polation error resulting from this procedure at the protocol λ⃗ values
will always tend to zero. This also means that the fraction of samples
at the past suboptimal λ⃗ values diminishes over time, meaning that
the CSC approach also results in asymptotically exact free energy
values of the converged λ⃗ protocol, despite being approximate at
finite sampling. However, the energy and free energy errors at all
non-converged λ⃗ values will remain finite, meaning that the proto-
col optimization procedure is always approximate in this setting and
is, therefore, not guaranteed to converge to the true asymptotically
optimal protocol.

C. Improving MBAR estimation
Although MBAR is an asymptotically optimal estimator, it is

known to produce biased estimates at finite sampling.32 These can
then adversely influence the adaptation process, resulting in local
trapping of the free energy and/or protocol estimates and, therefore,
highly suboptimal efficiency. To help tackle this problem, one can
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FIG. 3. Main stages of the Gaussian soft-core potential (GSC) [Fig. 3(a)] and the classical soft-core potential (CSC) alchemical schemes [Fig. 3(b)].

use an ensemble of MBAR estimators, using bootstrap aggregation
(“bagging”)—a technique often used in machine learning applica-
tions to increase the robustness of the estimation.33 In the current
setting, the process consists of simply bootstrapping all available tra-
jectory frames Nboot times and fitting an MBAR estimator to each
bootstrapped dataset, resulting in Nboot different, but equally valid,
estimators. One can then use the average of the predictions from
these models to obtain any observable of interest. In this work,
bagging will be used when calculating the Metropolis acceptance cri-
terion and the transition matrix, of which both are dependent on
all estimated free energy values ⃗̂f provided by the corresponding
MBAR model,

p̂acc(λ⃗j , σj , f̂ j ∣λ⃗i, σi, f̂ i, x⃗)↦ ⟨p̂acc(λ⃗j , σj , f̂ j ∣λ⃗i, σi, f̂ i, x⃗)⟩
boot

T̂(λ⃗, ⃗̂f )↦ ⟨T̂(λ⃗, ⃗̂f )⟩
boot

.
(13)

In order for bootstrapping to generate a correct distribution of
the estimators of interest, one needs to supply it with decorrelated
samples. Although, as previously discussed, the instant decorrelation
assumption is often sufficiently satisfied in practice for timescales
on the order of 1–10 ps, it is still essential to obtain a reliable esti-
mate of the effective decorrelation time τdecorr for more challenging
systems. While a method for estimating τdecorr has been previously
published,34 its applicability to FAST is limited due to the constant
changes in the λ⃗ protocol, meaning that an alternative approach
needs to be taken.

To obtain an estimate of τdecorr , we first note that the round
trip time τ̂round,pred(λ⃗) predicted by the transition matrix T̂(λ⃗) is
directly proportional to the sampling time τsample between λ⃗ pro-
posals [Eq. (12)], where it is assumed that τsample provides complete
decorrelation at each λ⃗ value. However, since the transition matrix
T̂(λ⃗) is independent of τsample, one can also regard the true observed
round trip time τ̂round,true as being predicted by the same transition

matrix T̂(λ⃗), with the only difference being the effective sampling
time between λ⃗ proposals. We now propose that this effective sam-
pling time be equal to an effective decorrelation time τdecorr , which
can be estimated using the following equation:

τ̂decorr =
τ̂round,true

τ̂round,pred(λ⃗)
τsample. (14)

It should be noted that the ratio τ̂round,true

τ̂round,pred(λ⃗)
may not necessarily

be independent of τsample in practice. Therefore, τ̂decorr is best viewed
not as a physical autocorrelation time, but rather as an effective devi-
ation from the instantly decorrelated transition matrix model. In this
work, the rounded dimensionless Ndecorr ≡ max [1, ⌊ τ̂decorr

τsample
⌉] will be

used to remove the correlated samples. This will be achieved by start-
ing from an initial sample pseudo-randomly chosen from the most
recent Ndecorr samples and then keeping only every Ndecorr-th previ-
ous sample. The resulting effective number of samples Nsamples, eff will
afterward be bootstrapped and used for MBAR estimation. Finally, if
no round trips have yet been observed, τ̂decorr will be estimated from
the expected transition time of the longest transition so far observed,
instead of the round trip time.

It is important to note that even though, in general, different λ
states will have significantly different true decorrelation times, it is,
nevertheless, useful to obtain an averaged empirical estimate of them
in the form of an effective decorrelation time τ̂decorr . This makes both
the estimation and the use thereof practically feasible.

D. Computational footprint of FAST
Since the computational power required to handle both the esti-

mation of the transition matrix and the free energies scales linearly
with respect to the total number of samples Nsamples, performing
these calculations at a fixed frequency will result in a total computa-
tional cost of O(N2

samples). To alleviate this, these calculations will, in
practice, be performed at an exponentially diminishing frequency,
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reducing the complexity to O(Nsamples log Nsamples). If the imple-
mentation is parallelized, written in a compiled language, and/or
run in the background on the central processing unit (CPU), while
the MD simulation is run on the graphics processing unit (GPU),
the computational overhead from adaptation can become negligi-
ble with suitably chosen frequency parameters. In this work, the
free energies will be calculated every ⌊1 + 0.01Nsamples,eff ⌉ steps, while
protocol optimization will be performed every ⌊100 + 0.1Nsamples,eff ⌉

steps, meaning that the number of steps between subsequent opti-
mizations increases linearly with respect to the effective number of
samples in both cases.

Meanwhile, the memory consumption of the energy matrices
required for the MBAR calculations always increases linearly over
time, meaning that depending on the system and the simulation
length, one might run into memory limitations. In this work, how-
ever, matrices with ∼1.6 × 105 samples (over 160 ns) were routinely
handled with memory usage of less than one gigabyte, which is well
within the capability of an average computer. Therefore, these con-
siderations are reserved for more computationally intensive cases,
where memory requirements could potentially be alleviated by lim-
iting the number of samples used for adaptation, using stochastic
approximations of MBAR,35–37 and/or offloading the matrices to the
hard drive using specialized libraries.38

The CPU and memory requirements of the free energy estima-
tion procedure are not only dependent on Nsamples but also on the
total λ⃗ value history, which also grows over time (linearly or logarith-
mically, depending on the adaptation frequency). This means that
exploring a space of continuous (or very high-precision) λ⃗ values will
likely result in unfeasibly high computational requirements, and in
this work, all λ⃗ values will be preliminarily rounded to two decimal
places, meaning that only a maximum of 101 λ⃗ values can be present
in the energy matrix. In most practical cases, it is expected that two
to three significant figures are completely sufficient for achieving
near-optimal performance, while using a relatively low amount of
memory.

It is often the case that when one runs MD simulations on GPU-
containing compute nodes, they have a large number of CPUs in
addition to the GPUs. Not many MD engines can utilize both at
the same time, with GROMACS being one of the notable excep-
tions. Meanwhile, OpenMM does not have this capability, meaning
that we can freely run protocol optimization to the unutilized CPU
while running exclusively on the GPU, without impacting the sim-
ulation performance. Of course, this optimization would also be
possible on the GPU, but then it would interfere with the simulation
and decrease its performance in practice. Therefore, an ideal com-
puting architecture is one that has at least a few CPUs in addition
to a GPU to aid efficient optimization. In terms of the parameters
discussed above in this section, the only reason we have imposed
these limitations is to make the calculations better performing on
the compute nodes we used. These parameters are not dependent
on the protein–ligand system, but only on the computer hardware
specifications.

E. Convergence
The algorithm described above is highly adaptive and includes

the following non-Markovian steps:

● Observable estimation from the MBAR model (free energies
and acceptance rates).

● Protocol minimization.
● Estimation of τdecorr .

Using general results from the literature, it can be shown that
the algorithm is asymptotically convergent, despite the multiple
layers of adaptation. To demonstrate this, we first state the two
sufficient conditions for asymptotic convergence: containment and
diminishing adaptation.39 The former condition means that if adap-
tation is stopped at any point, the convergence to the corresponding
stationary distribution is guaranteed. This condition is readily sat-
isfied, since all the above procedures produce finite quantities and
non-adaptive IST is still an ergodic sampling algorithm that satisfies
skew detailed balance [Eq. (5)], even if suboptimal weights and/or
λ⃗ values are used. The second condition can be trivially enforced by
using all generated samples for the adaptation, since the variance of
any sample-dependent quantity diminishes at infinite sampling. If
τ̂decorr is used to remove correlated samples, it also needs to converge
to a finite value in order for the above assertion to hold. As can be
seen from Eq. (14), this convergence is guaranteed as long as the
expected round trip time is finite—a condition which is also satisfied
for the IST Markov chain considered hereafter due to its ergodicity
[Fig. 1(b)].

F. Summary of the method
The full FAST algorithm is shown in Fig. 2. The only required

input is a set of samples generated at a range of λ⃗ values with
sufficiently good overlap. These can be readily generated by an adap-
tive sequential Monte Carlo (SMC) algorithm, such as the adaptive
alchemical sequential Monte Carlo (AASMC) algorithm presented
in Ref. 23. Although AASMC requires a number of input parameters,
they are all system-independent and only affect the efficiency of the
initial stages of the simulation, since FAST eventually converges to
an asymptotically optimal protocol regardless of the initial input.
In addition, all the parameters required by the FAST algorithm are
related to free energy and/or protocol estimation frequency and
quality. Therefore, apart from the degrees of freedom to enhance,
all input given to FAST is effectively system-independent, making
FAST a nearly black-box enhanced sampling method.

In the following discussion, we will validate FAST on a range of
protein-bound and solvated ligand systems, where we will enhance
the motions of certain torsional degrees of freedom by decoupling
one side of the rotatable bond of interest from the rest of the system
at λ = 0. In all cases, the same AASMC and FAST parameters will
be used, to demonstrate the wide applicability of the method with
minimal prior knowledge.

IV. RESULTS
A. Terphenyl in water

A relatively simple system with an insurmountable kinetic bar-
rier is the terphenyl derivative shown in Fig. 4, making it a good test
case for alchemical methods. To sample both conformers, one of the
2-tert butyl phenyl groups was completely decoupled at λ = 0. This
large alchemical change makes this system one of the more chal-
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FIG. 4. Two terphenyl derivative rotamers [Figs. 4(a) and 4(b)], the mean relative
populations of these states obtained using FAST and AFE calculations after 6
runs [Fig. 4(c)], and the average number of λ values over time generated during
the FAST simulations [Fig. 4(d)]. The error bars represent one standard sample
deviation.

lenging test cases involving a solvated system. FAST simulations of
this alchemical change were validated against alchemical free energy
(AFE) calculations. The details of the setup of these and all subse-
quent AFE calculations can be found in Sec. I of the supplementary
material.

The relative rotamer populations, shown in Fig. 4(c), are well-
converged for both the CSC and the GSC soft-core potentials,
with the dominant conformer being the cis state at 84% ± 2% and
83% ± 3%, respectively. These results are in excellent agreement with
the populations obtained from alchemical free energy (AFE) calcu-
lations (83% ± 0%), indicating that both FAST protocols are able to
handle this system without any issues.

As shown in Table S1, both the CSC and the GSC protocols
result in a similar number of round trips—∼2.5 ns−1. This is reflected
by the final observed protocol lengths, with an average of 11 ± 2 total
λ values for CSC and 10 ± 1 for GSC. These final protocols are ∼4 λ
windows shorter on average than the protocol obtained by the initial
AASMC run (∼14 for both CSC and GSC). This not only showcases
the increased efficiency of sampling in λ⃗ space but also demonstrates
the independence of this method on the initial protocol generated by
AASMC.

These short final protocol lengths present a somewhat sur-
prising result, because one would expect to need a higher number
of intermediate windows for an alchemical perturbation of this
size. Indeed, many reported free energy protocols use a higher
number of intermediate λ windows for arguably simpler alchemi-
cal changes.40–42 The advantage of using FAST over conventional
wisdom is, therefore, not only the increased robustness and repro-
ducibility of the method compared to manual tuning, but also the
increased relative amount of sampling time at λ = 1.

The main potential weakness of ST-based methods is the non-
uniform sampling in λ⃗ space. In this work, we will consider the
sampling ratio between λ = 1 and λ = 0, N1

N0
, and the final relative

effective decorrelation time, τ̂decorr [Eq. (14)], to gauge the sam-
pling reliability of FAST. As shown in Table S2, the CSC protocol
results in a less uniform sampling ratio between the two terminal
λ values against that observed using GSC. The computed geomet-
ric mean sampling ratio between terminal λ values using CSC and
GSC was N1

N0
= 1.63 ± 1.48 and N1

N0
= 0.97 ± 1.11, respectively. Mean-

while, τ̂decorr is comparable between both potentials, with an average
value of 1.37 ± 0.04 ps for CSC and 1.47 ± 0.07 ps for GSC (Table S3).
Nevertheless, both protocols result in satisfactory sampling ratios
and effective decorrelation times, making FAST suitable for the
conformational exploration of this system.

B. T4-lysozyme
Another application of FAST is protein side-chain exploration.

One such test case is the Val111 rotation in T4-lysozyme L99A
with bound p-xylene (PDB ID: 187L43), which has been previously
explored with other enhanced sampling methods44–46 and was also
investigated in Ref. 23. Although this is a relatively simple test case, it
is a good way to compare the maximum efficiency of both soft-core
potentials in this setting.

There are three characteristic conformers for Val111, as shown
in Figs. 5(a)–5(c). These have previously proven difficult to sam-
ple with regular MD,46 and, therefore, enhanced sampling methods
are needed. In this setting, we can achieve this sampling simply by
completely alchemically decoupling the Val111 isopropyl group at
λ = 0 with both FAST and Hamiltonian replica exchange molecular
dynamics (H-REMD). The details of the setup of the H-REMD sim-
ulations performed for this system and all subsequent systems can
be found in Sec. I of the supplementary material.

As shown in Fig. 5(d), both the CSC and GSC protocols result
in statistically equivalent populations after 160 ns of sampling, with
the dominant conformer being the trans state at 72% ± 7% and
77% ± 9%, respectively. These results show that the CSC protocol
is slightly better converged in this case, similarly to the previous
system.

Although both FAST protocols result in variances that are
apparently higher than the H-REMD ones, the initial H-REMD state
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FIG. 5. Three T4-lysozyme Val111 rotamers [Figs. 6(a)–6(b)], the mean rela-
tive populations of these states obtained using FAST and H-REMD after 6 runs
[Fig. 5(d)], and the average number of λ values over time generated during the
FAST simulations [Fig. 5(e)]. The error bars represent one standard deviation.

can significantly affect the final populations even after 160 ns of
cumulative sampling over 40 λ values. For instance, the trans con-
former populations are 76% ± 5% and 53% ± 5%, if one starts from
the trans and gauche(–) states, respectively. Therefore, H-REMD
results in a significant bias toward the initial supplied conformer,

meaning that there is insufficient decorrelation from the initial coor-
dinates. This problem is in contrast not observed when FAST is
used, since all the sampling time is dedicated to a single replica. It
follows that despite the lower apparent H-REMD variance, there
is a higher bias in the resulting population, and if all H-REMD
simulations are considered together, their cumulative standard devi-
ation becomes 12%, which is higher than either of the FAST
protocols.

The resulting round trips per nanosecond are 6.23 ± 0.25 for
CSC and 3.88 ± 0.38 for GSC, as shown in Table S1, suggesting that
the CSC protocol is significantly more efficient compared to GSC. In
comparison, the H-REMD protocol results in only 1.57 ± 0.08 round
trips per ns (details of calculation in SI), indicating that the worse-
performing FAST protocol is still more than twice as efficient as the
unoptimized H-REMD protocol. This is evidenced by the low final
number of λ values: ∼6 in both CSC and GSC cases from 9 ± 0 and
11 ± 1 initial λ values, respectively [Fig. 5(e)], again showing that
the FAST procedure is largely independent of the initial protocol
estimated by AASMC.

Similarly to the previous test case, the GSC protocol results
in more uniform N1

N0
ratios with an average of 0.93 ± 1.29 com-

pared to 1.59 ± 1.26 for CSC (Table S2). However, a higher τ̂decorr
is observed for GSC: 2.31 ± 0.28 ps compared to 1.63 ± 0.05 ps for
CSC (Table S3). It can be, therefore, concluded that FAST with CSC
is more efficient for this test case than FAST with GSC, while H-
REMD has a very low comparative efficiency to both of the FAST
protocols.

C. Protein tyrosine phosphatase 1B (PTP1B)
A practically important use case for enhanced sampling meth-

ods is bound ligand conformer sampling. One such test case is
PTP1B bound to a thiophene derivative (PDB ID: 2QBS47). The
rotation of the ligand 3-aminophenyl ring is a rare event whose
exploration would be desirable in, for example, binding free energy
calculations. This results in two alternative ligand conformers,
shown in Figs. 6(a) and 6(b). Here, we achieve this exploration by
completely turning off the 3-aminophenyl ring at λ = 0.

As in the previous test cases, the CSC and GSC protocols
result in statistically equivalent populations [Fig. 6(c)]: 90% ± 3% :
10% ± 3% and 87% ± 7% : 13% ± 7% with a higher variance
observed for the GSC protocol. Similar populations are observed
for H-REMD starting from state 1 and state 2: 91% ± 4% : 9% ± 4%
and 89% ± 3% : 11% ± 3%, respectively, showing that in this case, H-
REMD provides the results of equivalent quality to the CSC protocol.
All these populations agree with AFE calculations, which results
in populations of 88% ± 2% : 12% ± 2%. Similarly to the terphenyl
test case, AFE results in lower variance compared to the FAST—an
expected behavior for a low number of conformers. As this num-
ber increases, however, AFE calculations become increasingly more
impractical. Furthermore, obtaining conformational populations
using AFE methods requires prior knowledge of the conform-
ers of interest—knowledge, which is not required by FAST and
H-REMD.

Both FAST protocols result in a similar number of round trips
per nanosecond: 2.29 ± 0.35 for CSC and 2.24 ± 0.27 for GSC (Table
S1). These can be compared to 0.64 ± 0.08 for H-REMD, mean-
ing that both FAST protocols result in a nearly fourfold increase
in efficiency. This behavior is again explained by both CSC and
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FIG. 6. Two thiophene derivative rotamers bound to PTP1B [Figs. 6(a) and 6(b)],
the mean relative populations of these states obtained using FAST, H-REMD, and
AFE calculations after 6 runs [Fig. 6(c)], and the average number of λ values over
time generated by the FAST simulations [Fig. 6(d)]. The error bars represent one
standard sample deviation.

GSC, resulting in an unexpectedly low total number of λ windows
[Fig. 6(d)]: 8 in both cases. This presents a significant improve-
ment over the initial 13 (CSC) and 12 (GSC) λ values obtained by
AASMC and shows that decoupling a whole phenyl ring does not

necessarily require a large number of intermediate steps, as long as
the decoupling is performed optimally.

As in the previous systems, the N1
N0

ratio is less optimal for
the CSC protocol, with a mean value of 1.36 ± 1.53, compared to
0.92 ± 1.32 for GSC (Table S2). The average τ̂decorr is statistically
equivalent in both cases: 2.10 ± 0.36 ps for CSC vs 2.16 ± 0.21 ps for
GSC. (Table S3). Therefore, both protocols have a comparable per-
formance for this system, with the CSC protocol resulting in lower
population variance and the GSC protocol having more consistent
N1
N0

ratios.

D. Transforming growth factor beta (TGF-β)
The final test case combines the exploration of a torsional

degree of freedom of a ligand bound to transforming growth fac-
tor beta (TGF-β) and the nearby Ser82 rotamers. It is experimentally
known (PDB ID: 4X2J48) that the 4-aminophenyl group of the ligand
occupies two alternative states with approximately equal occupancy
[Figs. 7(a) and 7(b)] and that the Ser82 group has three alternative
conformations [Figs. 8(a)–8(c)]. However, a related PDB structure
of a more symmetric 3-aminophenyl ligand derivative (PDB ID:
4X2G48) was, instead, used to keep the procedure consistent with
our previous publication.23 Sampling enhancement was achieved
by decoupling both the 3-aminophenyl ligand group and the Ser82
hydroxymethyl group at λ = 0.

FIG. 7. Two TGF-β ligand rotamers [Figs. 7(a) and 7(b)] and the mean relative
populations of these states obtained using the FAST and H-REMD after 6 runs
[Fig. 7(c)]. The error bars represent one standard sample deviation.
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FIG. 8. Three TGF-β Ser82 rotamers [Figs. 7(a) and 7(b)] and the mean rela-
tive populations of these states obtained using FAST and H-REMD after 6 runs
[Fig. 7(c)]. The error bars represent one standard sample deviation.

Both FAST protocols result in highly variable ligand popula-
tions [Fig. 7(c)], with state 1 being occupied at 21% ± 35% using the
CSC protocol and at 76% ± 26% using the GSC protocol. This high
uncertainty is partially observed in the H-REMD runs, where the
simulations starting from state 1 stayed in it 95% ± 6% of the time,
compared to 34% ± 19% if state 2 is used as an initial state. Similarly
to the T4-lysozyme test case, we can see that initial structure bias-
ing is an issue when H-REMD is used and the cumulative variance
of all H-REMD results over both initial conformers is 34%, which is
comparable to the CSC results.

The Ser82 populations are better converged for GSC than CSC
[Fig. 8(d)], with state 3 being occupied at 94% ± 3% and 82% ± 25%,
respectively. Although these results are consistent between both
protocols, they differ significantly from the H-REMD simulations,
where a higher variance is observed when both ligand state 1 and
state 2 are simulated with state 1 as the initial conformation for
Ser82.

These insufficiently converged results can be related to the
low number of round trips: only 0.09 ± 0.07 per nanosecond using
the CSC protocol compared to 0.03 ± 0.02 with the GSC proto-
col (Table S1). The H-REMD simulations result in similarly low
efficiency with 0.05 ± 0.03 round trips per nanosecond. Since the
effective decorrelation time was estimated to be 50 ± 25 ps (CSC)
and 129 ± 67 ps (GSC), as shown in Table S3, it is clear that
the instantaneous decorrelation assumption breaks down in this

case and kinetic barriers in λ⃗ space decrease the efficiency of the
simulations.

The clustering analysis of the ligand triazanaphthalene ring
center of geometry relative to the initial structure reveals the pres-
ence of two main ligand clusters, shown in Figs. 9(a) and 9(b). When
plotted over time for one of the FAST CSC simulations [Fig. 9(c)],
it is revealed that the trappings in λ⃗ space are correlated with the
observed cluster: cluster 1 is more favorable at the lower λ values,
while cluster 2 is preferred at the fully coupled λ values. This behav-
ior readily explains the low number of round trips, and it can be
concluded that a slow orthogonal rare event limits the mobility in λ⃗
space and results in a high effective decorrelation time.

FIG. 9. Two TGF-β ligand clusters [Figs. 9(a) and 9(b)], their transitions over time
[Fig. 9(c)], and the average number of λ values over time [Fig. 9(d)].
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Unfortunately, determining orthogonal rare events a priori is
not a straightforward task, meaning that systems exhibiting such
a behavior are likely to prove challenging for FAST, since the low
number of round trips inevitably implies low uniformity of sam-
pling. This is evidenced by the highly inconsistent N1

N0
ratios at

4.91 ± 5.94 for CSC and 6.59 ± 27.84 for GSC (Table S2). Neverthe-
less, the optimization procedure still results in a relative increase
in efficiency, where the initial AASMC λ values are consistently
decreased from ∼16 to 11 for CSC and 10 for GSC [Fig. 9(d)]. How-
ever, this increase is completely overshadowed by the slow binding
mode change.

V. DISCUSSION
The above results show that FAST is an efficient general-

purpose enhanced sampling method of specific internal degrees
of freedom, which readily extends the functionality of AASMC to
longer timescales. In all the above test cases, FAST significantly
decreases the number of required intermediate states within the ini-
tial alchemical protocols provided by AASMC, resulting in a higher
proportion of samples being drawn from λ = 1. This results in a bet-
ter reproducibility of the method, since manual protocol tuning is
not required.

However, the choice of the functional form of the interpola-
tion procedure is still a factor that can impact reproducibility. We
have shown that although both the CSC and GSC protocols result
in similar populations, they exhibit different efficiencies, with GSC
consistently resulting in higher dihedral population variance. More-
over, the T4-lysozyme test case demonstrates that GSC can result in
a significantly lower round trip rate than CSC. The reason for this
is likely suboptimal long-range phase space overlap, which can be
explained by the fact that the GSC potential does not always accu-
rately reproduce the real LJ potential, resulting in higher kinetic
barriers in λ⃗ space. This is also evidenced by the PTP1B test case,
where the GSC protocol produced populations with higher vari-
ance than the H-REMD protocol, even though the number of round
trips in the former setting was almost four times higher than the
latter.

Interestingly, however, GSC consistently produces more opti-
mal N1

N0
ratios (i.e., closer to unity) with lower standard deviations

than CSC, where the latter consistently produced samples more
highly biased toward λ = 1. This is a surprising result, since with infi-
nite sampling and converged free energy values, one would expect
these ratios to approach unity and there is no obvious reason why the
sampling should be biased in one direction in favor of another. Nev-
ertheless, it appears that GSC is more reliable in this regard, likely
due to its often smoother free energy profiles.30 This smoother pro-
file also presumably leads to a better convergence of the λ⃗ protocol
of GSC for T4-lysozyme and PTP1B, as the optimization problem
is closer to a convex one, and there are fewer alternative minima in
which the optimizer (CMA-ES) can get stuck relative to CSC.

It has also been demonstrated that τdecorr appears to be a
very useful metric for determining unexpected kinetic barriers. For
instance, it expectedly produces values close to 1 ps in the solvated
terphenyl test case, meaning that there is low effective correlation in
a homogeneous environment. Meanwhile, τdecorr is extremely high
in the case of TGF-β, which immediately hints at orthogonal slow
degrees of freedom that impact the sampling negatively. Therefore,

τdecorr can be monitored in real time to gauge the performance of the
FAST sampler if needed.

TGF-β is a particularly interesting test case, since it results in
a significantly higher variance between different repeats compared
to the other systems. Even though the nature of the transforma-
tion is similar to the other test cases, a substantial increase in τdecorr
indicates that local exploration of phase space and λ⃗ space is not as
efficient as in the other test cases. As shown in Sec. IV D, this is
readily explained by the several alternative binding modes the ligand
adopts throughout the simulations. Some of these modes are favor-
able only in a particular range of λ windows, resulting in significant
kinetic trapping and a drastic decrease in sampling efficiency. More-
over, any kinetic trapping due to binding modes away from λ = 1
indicates that these new modes are not physically relevant and only
decrease sampling efficiency to no benefit. This demonstrates the
undesirable impact of alchemical decoupling on sampling—it can
significantly affect the relative populations in an unexpected way.

Despite the high robustness of FAST on a range of systems, the
above test cases show the main weaknesses of the method: unex-
pected kinetic barriers in λ⃗ space, as well as slow orthogonal degrees
of freedom, can significantly affect the sampling efficiency. However,
this is a problem that is not unique to FAST, but is more gener-
ally relevant to all alchemical/tempering methods using a family of
intermediate distributions. Since the slow degrees of freedom are not
always known in advance, it will be, therefore, useful to develop a
more general framework to improve long-range phase space overlap
either by optimizing the functional form of the soft-core potential,
or by using, for example, restraint potentials that can help smooth
the kinetic barriers in λ⃗ space. Future work addressing these can,
therefore, help alleviate suboptimal effective decorrelation times.

VI. CONCLUSION
A fully adaptive version of irreversible simulated tempering has

been presented (FAST), where the intermediate distribution proto-
col is adaptively optimized in real time alongside the relative weights
of the distributions. Validation on a variety of systems contain-
ing small molecules shows that this method is highly efficient and
requires little prior knowledge.

We have also compared two soft-core interpolation methods:
classical soft-core potential (CSC) and Gaussian soft-core potential
(GSC). In all the test cases, CSC resulted in a lower final distribu-
tion variance. Moreover, CSC exhibited higher round trip rates in
most cases, as well as lower effective decorrelation times. Never-
theless, more consistent sampling across λ values was observed for
GSC, while CSC consistently produced more samples at the dis-
tribution of interest (λ = 1) during the 160 ns of total simulation
time.

While the results presented indicate improved sampling effi-
ciency yielded by FAST in comparison with other tempering meth-
ods such as H-REMD, the method has been shown to be sim-
ilarly susceptible to orthogonal slow modes affecting sampling
over the alchemical/temperature states. Unforeseen kinetic bar-
riers in the alchemical/temperature space and phase space have
been shown to be the main weakness of FAST and, more gener-
ally, alchemical/tempering methods. These have been observed in a
protein–ligand system with a slow binding mode transition (TGF-β).
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Future research will need to improve the robustness of FAST toward
orthogonal slow modes.

SUPPLEMENTARY MATERIAL

Details regarding the system preparation, simulation protocols,
and FAST algorithm performance are available in the supplementary
material.
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DATA AVAILABILITY
All system preparation, the initial AASMC procedure, and the

reference Hamiltonian replica exchange molecular dynamics (H-
REMD) and alchemical free energy (AFE) calculations have been
performed similarly to Ref. 23, while the FAST procedure was per-
formed using OpenMMSLICER 2.0.0.49 The scripts used to perform

all FAST simulations as well as initial structures for such simulations
are available to download via a Zenodo repository.50
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